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SLOPES OF MODULAR FORMS AND REDUCIBLE GALOIS

REPRESENTATIONS

AN OVERSIGHT IN THE GHOST CONJECTURE

JOHN BERGDALL AND ROBERT POLLACK

Abstract. The ghost conjecture, formulated by this article’s authors, pre-
dicts the list of p-adic valuations of the non-zero ap-eigenvalues (“slopes”) for
overconvergent p-adic modular eigenforms in terms of the Newton polygon of
an easy-to-describe power series (the “ghost series”). The prediction is re-
stricted to eigenforms whose Galois representation modulo p is reducible on a
decomposition group at p. It has been discovered, however, that the conjecture
is not formulated correctly. Here we explain the issue and propose a salvage.

1. Introduction

Let p be a prime number. The authors previously made a conjecture on the
p-adic slopes of modular eigenforms with a fixed Galois representation modulo p
subject to that representation being locally reducible at p. See Conjecture 1.1 below
and also [6, Conjecture 7.1]. The local reducibility condition has turned out to be
too strong — one reducible situation (and its twists) must also be excluded. This
article will explain the exclusion and how to salvage the conjecture. We provide
both computational and theoretical evidence for the corrected conjecture.

It is important to correct false conjectures. In this case, however, it is specifi-
cally important because there is ongoing progress toward a proof of the conjecture,
for Galois representations that are locally reducible with sufficiently generic Serre
weights, by Liu, Truong, Xiao, and Zhao. A paper explaining their strategy is
available as a preprint [19]. The proof itself has also been announced [18].

A general proof, however, will remain out of reach until faulty hypotheses are
removed! Addressing the prior misconception further allows us the opportunity to
address, in writing, the special case of eigenforms that are twists of E2 modulo p.
We had previously not tested that case out of convenience.

In [6], the authors called the reducibility assumption “Buzzard regular”, based
on Buzzard’s work [11]. It is unfortunate that Buzzard’s name was attached, by
us, to the faulty condition. Our strongest apologies.

1.1. Recollection of the ghost conjecture. Fix algebraic closures Q of Q, Qp

of Qp, and Fp of Fp. Let GQ = Gal(Q/Q) and N ≥ 1 be an integer that is co-prime

to p. We then consider continuous, semi-simple, representations ρ : GQ → GL2(Fp)
that are modular of level N . Recall that if f is a cuspidal, normalized, eigenform of
level Γ1(N) with coefficients in Qp, then there is a continuous, semi-simple, Galois

representation ρf : GQ → GL2(Fp) such that if ℓ ∤ Np is a prime, then ρf is
unramified at ℓ and the trace of a Frobenius element at ℓ is equal to aℓ(f), the ℓ-th
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Fourier coefficient of f . Saying ρ is modular of level N means ρ ∼= ρf for such an
f .

For k ≥ 2 we define Sk(ρ) ⊆ Sk(Γ1(N),Qp) to be the Qp-span of the eigenforms
f of weight k and level Γ1(N) such that ρf

∼= ρ. So, ρ is modular of level N
exactly when Sk(ρ) 6= {0} for some k. Define Γ0 = Γ1(N) ∩ Γ0(p) and then
S0
k(ρ) ⊆ Sk(Γ0,Qp) in a similar fashion. We write the dimensions of these spaces

as:

d(k, ρ) = dimQp
Sk(ρ);

dp(k, ρ) = dim
Qp
S0
k(ρ).

Set dnewp = dp − 2d. (The function dnewp counts the eigenforms that are p-new.)
The ghost conjecture is based on the definition of a sequence of monic polyno-

mials g1(w), g2(w), . . . ∈ Zp[w] as follows:

(1) The zeros of gi(w) are wk = (1 + 2p)k − 1, for the finite list of integers k
such that

d(k, ρ̄) < i < d(k, ρ̄) + dnew(k, ρ̄).

(2) Fix k now. If i1, i2, . . . , im is the list of consecutive indices i for which
gi(wk) = 0 (the i satisfying the prior inequalities), then the multiplici-
ties of wk as a zero are: for i1, im the multiplicity is one; for i2, im−1 the
multiplicity is two; and so on.

In other words, the multiplicity of wk as a zero of gi for i = 1, 2, 3, . . . has the
form

[0, 0, . . . , 0, 1, 2, 3, . . . , 3, 2, 1, 0, 0, . . . ],

where the first string of zeros ends at index d(k, ρ) and there are (dnew(k, ρ) − 1)-
many non-zero numbers.

Having defined the polynomials gi(w), we set

Gρ̄(w, t) = 1 +
∑

i≥1

gi(w)t
i ∈ 1 + tZp[[w, t]].

The ghost conjecture predicts that this series models the characteristic power series
of the Up-operator acting on overconvergent p-adic cuspforms whose eigensystem
modulo p matches ρ.

More precisely, let D ⊆ GQ be a decomposition group at p and I ⊆ D be the
inertia subgroup. Write ω : GQ → F×

p for the cyclotomic character modulo p. Then,

denote by b(ρ) the unique integer 2 ≤ b(ρ) ≤ p such that det(ρ)|I = ωb(ρ)−1.
We consider the rigid analytic spaceWb(ρ) whoseQp-points are the p-adic weights

κ : Z×
p → Q

×

p whose action on the the torsion subgroup of Z×
p is raising to the b(ρ)-

th power. Given κ ∈ Wb(ρ), write wκ = κ(1 + 2p)− 1 and S†
κ(ρ) for the ρ-isotypic

component of the space of overconvergent p-adic cuspforms of level Γ1(N) and
weight κ. The zeros wk defined in (1) occur only at integer weights k ≥ 2 that lie
in Wb(ρ). (Recall, det(ρf )|I = ωk−1, so if d(k, ρ) 6= 0 then b(ρ) ≡ k mod p− 1.)

The ghost conjecture for ρ stated in [6] is:

Conjecture 1.1 (False). Assume p ≥ 5 and ρ 6∼= ωj ⊕ ωj+1 for any j. If ρ|D is
reducible, then, for each κ ∈ Wb(ρ), the Newton polygon of Gρ̄(wκ, t) is the same as

the Newton polygon of the characteristic series of the Up-operator acting on S†
κ(ρ̄).

1.2. Counter-examples. We give two counter-examples here.
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1.2.1. Detailed example. Let p = 5 and N = 3. We choose ρ̄ = ω ⊕ ωχ where χ is
the quadratic Dirichlet character of conductor 3. The dimension functions d, dp,
and dnewp can be determined using a computer algebra system with built-in libraries
for modular forms, such as Magma [9] or Sage [21]. The result is compiled in Table
1. From the dimensions, we see that

g1(w) = w − w3;

g2(w) = w − w7;

g3(w) = (w − w11)(w − w15) · · · .
Since g1(w7) has 5-adic valuation 1, the least slope on the Newton polygon of
Gρ(w7, t) is 1 or less. On the other hand, any weight 7 overconvergent p-adic
eigenform with slope at most 1 is classical by Coleman’s classicality theorem [15,

Theorem 6.1]. Yet, the slopes of U5 acting on S0
7(ρ) ⊆ S†

7 are [ 52 ,
5
2 , 3, 3] (calculated

using Magma). This is the contradiction.

Table 1. Dimensions of ρ-isotypic components in Sk(Γ1(3)) and
Sk(Γ1(3) ∩ Γ0(5)), for ρ = ω ⊕ ωχ.

k d(k, ρ̄) dp(k, ρ̄) dnewp (k, ρ̄)

3 0 2 2

7 1 4 2

11 2 6 2

15 2 8 4
...

...
...

...

Remark 1.2. Strictly speaking, neither Magma (nor Sage) currently has intrinsic
commands to determine the slopes in Sk(ρ). The authors provide code in the github
repository [4].

1.2.2. Another example. The reader might wonder if the fundamental issue in the
prior example is that either ρ is Eisenstein or ρ ∼= ρ ⊗ χ, both somehow global
phenomena. This is not the case.

Explicitly, continue to let p = 5 and also let ψ be the quadratic character modulo
43. Then, in S7(Γ1(43), ψ) there is a 20-dimensional Galois orbit of newforms in
which the 5-adic slope 2 occurs twice, once for an absolutely irreducible ρ and once
more for ρ⊗ψ (which is a new representation). Further, S7(ρ) is 1-dimensional and
thus 2 is the lowest slope occurring for ρ. Yet, as in Section 1.2.1, one can check
that the ghost series formalism would predict the lowest slope in S7(ρ) is 1.

In fact, ρ⊗ ω−1 lifts to an ordinary eigenform of weight 5, and thus ρ is locally
reducible at p = 5. By Proposition 2.2 and point (ii) in the proof of Theorem 2.5
below, we even have

(1.1) ρ|D ∼=
(

nr(α)ω ∗
0 nr(−α)ω

)

where α ∈ F
×

5 . (For unfamiliar notations or definitions, see Section 2.) The ex-
tension (1.1) is even non-split! If it were split, then by [16, Theorem 4.5] the
representation ρ⊗ ω−1 would arise from a weight one form over F5 of level 43 and
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character ψ. We verified such a form does not exist using a computer package called
Weight1, which calculates weight one eigenforms modulo p, written by Wiese. (The
code, which requires Magma, is currently available on Wiese’s website [24].)

1.2.3. The general phenomenon. The common link between the examples is indi-
cated by the equation (1.1). In both cases, ρ ⊗ ω−1 is reducible at p = 5 and its
semi-simplification is an unramified representation for which a Frobenius element
acts with trace zero. Generalizing these examples, the fundamental gap we found
in the ghost conjecture occurs for ρ that are twists of representations which locally
at p are reducible, with semi-simplification that is unramified with Frobenius trace
zero. Indeed, in Proposition 3.8 we will show that the ghost conjecture will always
fail in such examples. However, as long as we exclude such representations (which
we do in Section 2), we believe that the ghost conjecture will hold for remaining
ρ’s.

1.3. A brief history. We first encountered the example in Section 1.2.1 in 2015-
16, when we learned by explicit computation that the ghost series formalism failed
to predict the 5-adic slopes of eigenforms of level Γ1(3) (with no restriction on
the Galois representations modulo 5). We apparently overlooked that computation
when formulating the ρ-version of our conjecture. Later, in 2018, James Newton
asked us about the ρ-conjecture for examples where ρ is unramified at p (up to a
twist). We mistakenly missed the counter-examples once more. We realized our
mistake only in early 2021 after our attention was diverted toward questions on
reductions of crystalline Galois representations.

1.4. Plan for the remainder of the article. In Section 2 we revisit the reducible
versus irreducible dichotomy and replace it with a new one, which we name regular
versus irregular. We study this new dichotomy in both local and global terms,
relating it to crystalline lifts on the one hand and slopes of modular forms in low
weight on the other. The salvaged conjecture and evidence is given Section 3.
Concluding, and open-ended, remarks occupy Section 4.

1.5. Acknowledgements. We thank Liang Xiao for keeping us updated on the
progress of his collaboration with Liu, Truong, and Zhao, which aims to prove the
ghost conjecture. Both authors also thank the Max Planck Institute for Mathemat-
ics in Bonn, Germany, for its hospitality in July 2021, when this paper was largely
written. The research was also supported by a Simons Collaboration Grant (PI:
J.B. Award #713782) and an NSF grant (PI: R.P. DMS-1702178).

2. Salvaging the ghost conjecture: redefining regularity

To salvage Conjecture 1.1, we redefine regularity, replacing the reducible vs.
irreducible dichotomy with a slightly different one. In this section we let p be any
prime, unless noted.

We first fix notations for local Galois representations modulo p. Let Qp2 be the

unramified quadratic extension of Qp and write ω2 : GQ
p2

→ F
×

p for a niveau 2

fundamental character. Let GQp
= Gal(Qp/Qp) and GQ

p2
= Gal(Qp/Qp2) ⊆ GQp

.

We then write ind(ωs
2) = Ind

GQp

G
Q2
p

(ωs
2η) where η is the quadratic character of Qp2 .

Thus ind(ωs
2) has determinant ωs and ind(ωs

2)|I = ωs
2 ⊕ ωsp

2 . Given α ∈ F
×

p we
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also write nr(α) for the character on GQp
that is unramified and whose value on a

Frobenius element is α. In this notation, ind(1) = nr(
√
−1)⊕ nr(−

√
−1).

The continuous, semi-simple, representations r : GQp
→ GL2(Fp) are completely

classified. Up to a twist by a character, any r is isomorphic to either ind(ωs
2) for

some 0 ≤ s ≤ p − 1 or nr(α) ⊕ nr(β)ωt with α, β ∈ F
×

p and 0 ≤ t ≤ p − 2. The
irreducible r occur for twists of ind(ωs

2) with 1 ≤ s ≤ p − 1. The representation
ind(ωs

2) is reducible when s ≡ 0 mod p+ 1.

Definition 2.1. A continuous, semi-simple, representation r : GQp
→ GL2(Fp) is

called irregular if r is a twist of ind(ωs
2) for some s ∈ Z.

Naturally, we say r is regular when it is not irregular. Note that regular repre-
sentations are always reducible, but the regularity of r depends on the entire action
of D, whereas the reducibility depends only on r|I .

The next proposition illustrates the regular versus irregular dichotomy in terms
of crystalline lifts with small Hodge–Tate weights. The reader who is unfamiliar
with p-adic Hodge theory may prefer to skip to Theorem 2.5 or reference the well-
written introduction to [13]. The notation is as follows. For ap ∈ Qp such that
vp(ap) > 0 and k ≥ 2, Vk,ap

denotes the unique two-dimensional, irreducible,
crystalline representation of GQp

whose Hodge–Tate weights are {0, k−1} and such
that the characteristic polynomial of the crystalline Frobenius acting onDcrys(V

∗
k,ap

)

is t2 − apt+ pk−1. Write V k,ap
for the semi-simplification of the reduction of Vk,ap

modulo p.

Proposition 2.2. Let r : GQp
→ GL2(Fp) be a continuous, semi-simple, represen-

tation. The following conditions are equivalent (the (a)’s and (b)’s are individually
equivalent):

(1) The representation r is irregular:
(a) r is a twist of ind(ωs

2) with s 6≡ 0 mod p+ 1, or
(b) r is a twist of ind(ωs

2) with s ≡ 0 mod p+ 1.
(2) Either:

(a) r irreducible, or
(b) r a twist of an unramified representation whose Frobenius trace is zero.

(3) Either:
(a) r is a twist of V k,ap

for some 2 ≤ k ≤ p+ 1 and vp(ap) > 0, or

(b) r is a twist of V p+2,ap
for any vp(ap) > 1.

Proof. The equivalence of (1) and (2) follows directly from the discussion prior to
Definition 2.1. The equivalence of (1) and (3) follows from calculations of V k,ap

when k is small. Namely, if 2 ≤ k ≤ p + 1 then V k,ap
∼= ind(ωk−1

2 ) (which is, in
particular, irreducible and thus irregular). When k = p+ 2, we have:

(2.1) V p+2,ap
=











ind(ω2
2) if 0 < vp(ap) < 1;

nr(α) ⊕ nr(α−1) if 1 = vp(ap), where α+ α−1 =
ap

p
∈ F

×

p ;

ind(1)⊗ ω if 1 < vp(ap).

Thus V p+2,ap
is irregular when vp(ap) 6= 1. See [7, Théorème 3.2.1] for these results.

From them, we plainly see (3) implies (1) and (1) implies (3) since any irregular r
is a twist of ind(ωs

2) for some 0 ≤ s ≤ p− 1. �
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Remark 2.3. The trivial representation mod 2 is irregular by Proposition 2.2(2),
since it is unramified with Frobenius trace 2 = 0. See Section 4.1.

We now turn toward global considerations. Given a representation ρ, write ρss for
the semi-simplification. (This depends on the group that ρ is representing, but the
context will be clear any time we use the notation.) Since the decomposition groups
D ⊆ GQ at p are all conjugate and isomorphic to GQp

, we can speak unambiguously
about a global representation ρ being regular on D or not:

Definition 2.4. We say ρ is regular if (ρ|D)ss is regular.

The action of D is reducible for every regular ρ, so our new regular condition
implies the condition in Conjecture 1.1. The difference is that we have further
excluded one particular twist-stable family of reducible representations.

We describe now a mechanism in terms of the arithmetic of modular forms to
determine whether or not a given ρ is regular. Write

Sk((ρ)) =

p−2
∑

j=0

Sk(ρ⊗ ωj) ⊆ Sk(Γ1(N),Qp).

The space Sk((ρ)) is stable under the Tp-operator. Recall, if f is an eigenform then
vp(ap(f)) ≥ 0. We say f is ordinary if vp(ap(f)) = 0.

Theorem 2.5. Consider the following two conditions:

(1) The representation ρ is regular.
(2) For all 2 ≤ k ≤ p + 1, the eigenforms in Sk((ρ)) are all ordinary, and the

eigenforms in Sp+2((ρ)) are either ordinary or satisfy vp(ap(f)) = 1.

Then, (1) always implies (2). If p ≥ 3, then (2) implies (1).
More precisely:

(a) If ρ|D is irreducible, then there exists a non-ordinary eigenfrom g of weight
between 2 and p+3

2 such that ρ is a cyclotomic twist of ρg.
(b) If p ≥ 3 and ρ is irregular but ρ|D is reducible, then there exists a j such

that Sp+2(ρ⊗ ωj) 6= {0} and vp(ap(g)) > 1 for all g ∈ Sp+2(ρ⊗ ωj).

Proof. To start, we recall two fundamental facts. For any eigenform f , we let

ρf : GQ → GL2(Qp)

be the corresponding global p-adic Galois representation. Then:

(i) If f is ordinary, then ρf |D is reducible and (ρf |I)ss ∼= 1⊕ ωk−1.
(ii) If f is non-ordinary, then ρf |D is isomorphic to a twist of Vk,ap(f).

It seems the first result was first proven by Deligne in the 1970’s but never published.
A common reference is [25, Theorem 2]. For the second, see [10, Théorème 6.5].

Now we prove (1) implies (2). Suppose that ρ is regular and f is an eigenform of
weight 2 ≤ k ≤ p+ 2 such that ρf = ρ⊗ ωj . Then, either f is ordinary or V k,ap(f)

is regular by (ii). By Proposition 2.2, and the classification of V p+2,ap
in equation

(2.1), the latter can only happen if k = p + 2 and vp(ap(f)) = 1. This proves (1)
implies (2).

Now we will prove (2) implies (1). By [16, Theorem 3.4] there exists an eigenform
f of weight 1 ≤ k ≤ p + 1 where ρ ∼= ρf ⊗ ωj , with the caveat that f may be an
Eisenstein series or, in the case k = 1, f may be only a mod p modular form.
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Furthermore, the theory of θ-cycles (see [16, Proposition 3.3]) predicts the least
positive weight in which ρf ⊗ ωj lifts to a modular eigenform.

Now consider (a), where ρ|D is irreducible. Then, the possibility of k = 1 cannot
actually occur. Indeed, if f has weight one then ρf |D is unramified by theorems of
Gross, Coleman–Voloch, and Wiese. See [23, Corollary 1.3]. The theory of θ-cycles
(ap = 0 and k ≥ 2 in [16, Proposition 3.3] cited above) then implies there exists a

non-ordinary eigenform g of weight between 2 and p+3
2 such that ρg

∼= ρf ⊗ ωj for
some j. This completes the proof of (a).

In case (b), we assume that p ≥ 3 and after twisting that ρ = ρf with ρf |D
reducible, yet irregular and f has weight 1 ≤ k ≤ p+ 1. We first claim that either:
k = p and f is ordinary, or k = 1. Further, in both cases (ρf |I)ss ∼= 1⊕ 1.

To see this, note first that if k = 1 then, as above, ρf is unramifed at p and
thus (ρf |I)ss ∼= 1 ⊕ 1. If k ≥ 2, we first check that f is ordinary. Indeed, if f
is Eisenstein, then it is ordinary because p ∤ N . If f were cuspidal non-ordinary,
then (ii) and Proposition 2.2 would imply ρf |D is irreducible, which it is not. So,

f is ordinary. Then, by (i) we see (ρf |I)ss ∼= 1 ⊕ ωk−1. But ρ is irregular, and so

Proposition 2.2 implies ωk−1 = 1, which implies k = p since 2 ≤ k ≤ p+ 1.
Finally, regardless of whether k = p and f is ordinary, or k = 1, the theory

of θ-cycles guarantees there exists a modular eigenform g of weight p + 2 such
that ρg

∼= ρf ⊗ ω. For such g, we have (ρg|I)ss ∼= ω ⊕ ω and thus g is non-
ordinary by (i). Here we use p 6= 2 to know ω 6= 1. In particular we’ve shown
that Sp+2(ρf ⊗ ω) 6= {0}. We also see from (ii) that V p+2,ap(g) is reducible and
irregular for any g ∈ Sp+2(ρf ⊗ ω). Thus, by Proposition 2.2, vp(ap(g)) > 1 for all
g ∈ Sp+2(ρf ⊗ ω). This completes the proof of (b). �

Remark 2.6. A key step in the proof of part (b) of Theorem 2.5 is that if f is an
ordinary eigenform of weight p, then ρf⊗ω lifts to an eigenform of weight p+2. This
statement also holds when f is non-ordinary, as long as p ≥ 5. For instance, one
could directly argue using modular symbols modulo p as in [3, Theorem 3.4(a,b)].
(That reference assumes p ≥ 5 throughout.)

For p = 3, though, there exist weight 3 forms f where ρf ⊗ ω doesn’t lift to
weight 5. For instance, if χ is the quadratic character modulo 7, then S3(Γ1(7), χ)
is spanned by a unique eigenform ([22, Newform 7.3.b.a]) whose q-expansion begins
q−3q2+ · · · , whereas S5(Γ1(7), χ) is spanned by a unique eigenform ([22, Newform
7.5.b.a]) whose q-expansion is q + q2 + · · · . These two eigenforms are not twists of
each other modulo 3.

3. The salvaged conjecture and evidence

We now state for the record our salvaged ρ-ghost conjecture. We place into the
conjecture the hypotheses we need, as a reminder.

Conjecture 3.1 (The salvaged ρ-ghost conjecture). Let p ≥ 5. If ρ is regular in the
sense of Definition 2.4, then, for each κ ∈ Wb(ρ), the Newton polygon of Gρ̄(wκ, t)
is equal to the Newton polygon of the characteristic series of the Up-operator acting
on S†

κ(ρ̄).

In the next subsections, we provide computational and theoretical evidence for
our salvaged conjecture.
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Remark 3.2. Notice that Conjecture 3.1 includes ρ ∼= ωj ⊕ωj+1, in contrast with
Conjecture 1.1. See Section 3.1 below.

Remark 3.3. Condition (2) in Theorem 2.5 appears in Buzzard’s slope conjectures
when p = 2 (see [11, Definition 1.3]). For odd primes, it was irrelevant in Buzzard’s
work, since restricting to level Γ0(N) removes concerns about odd weights p and
p+ 2.

3.1. Galois multiplicities. In order to construct the series Gρ(w, t), and thus
test Conjecture 3.1, one must understand the functions d(k, ρ) and dp(k, ρ). In
fact, each of these functions are determined after a finite computation. Specifically,
either can be determined from the values d(k′, ρ ⊗ ωi) with 2 ≤ k′ ≤ p + 1 and
0 ≤ i ≤ p− 2 along with multiplicities of Eisenstein series (if ρ is Eisenstein). This
is explained in [6, Section 6]. The technique involves modular symbols modulo p,
which is the source of the assumption p ≥ 5. We do not currently know dimension
formulas when p = 2, 3. For an alternative method via the trace formula, which is
adaptable to p = 2, 3, see forthcoming work of Anni, Ghitza, and Medvedovsky [1].

There is one caveat: the exposition in [6] ignores the case ρ ∼= ωj ⊕ωj+1 (“twists
of E2”) for convenience. These are precisely the Galois representations modulo
p that contribute to torsion in H2

c ’s, which creates complications. However, the
complications are luckily limited to exposition. The actual result, that low weight
calculations for ρ and all its twists will determine ρ-multiplicities in all weights, are
still valid for twists of E2.

So, while omitting more specific details, we used this principle in order to carry
out the numerical testing explained in the next section, regardless of whether ρ is
a twist of E2 or not. (But still, p ≥ 5.) For the interested reader, we also created
computer code that implements the natural process to calculate d(k, ρ) from low
weight values. See [4].

3.2. Numerical evidence. In [6, Section 7.2], we gave significant numerical ev-
idence for Conjecture 3.1. Here we report more numerical evidence, especially
highlighting the following two cases:

(1) Representations ρ : GQ → GL2(Fp) with (ρ|D)ss a twist of unramified with
non-zero Frobenius trace (Examples 3.4-3.5).

(2) Twists of 1⊕ ω (Example 3.6).

The latter was a case not numerically tested in [6], and the former is meant to ensure
the issue with the counter-examples in Section 1.2 has been accurately diagnosed.

In each example, we describe a single ρ and explain why it is regular. Then, when
we write that we “verified Conjecture 3.1 in this case for weights k...” we mean:
for each ρ′ = ρ ⊗ ωi we calculated the Tp-slopes on Sk(ρ

′) and checked that they
matched the first d(k, ρ′)-many slopes on Gρ′(wk, t). That is, we checked (using
the code referenced in Remark 1.2) the ghost series accurately predicts the classical
slopes for ρ and each of its twists (for a range of weights).

Example 3.4. Let χ denote the quadratic character of conductor N thought of
as taking values in F×

p and let ρ = 1 ⊕ χ. If p ∤ N then ρ is unramified at p and
it is regular if and only if χ(p) = 1. For each of N = 3, 7, 11 and for all primes
5 ≤ p ≤ 97 for which ρ is regular, we verified Conjecture 3.1 in this case for weights
k ≤ 385, 173, 191 respectively.
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Example 3.5. Let p = 5, N = 23, and χ be the quadratic character modulo 23.
Then, S5(Γ1(23), χ) supports a unique ρ whose Frobenius trace at ℓ = 2 is equal to
2. Specifically, if f is a member of the newform orbit [22, Newform 23.5.b.b] and p

is the unique prime above 5 with inertia degree 2 for the number field generated by
f ’s Hecke eigenvalues, then ρ is the Galois representation associated with f modulo
p. The eigenform f is p-ordinary and ρ⊗ ω arises from a weight 7 form with slope
1. By Theorem 2.5, ρ is regular. Unlike the previous example, this ρ is globally
irreducible. We verified Conjecture 3.1 in this case for weights k ≤ 155.

Example 3.6. Let ρ = 1⊕ ω which is regular. For both of N = 1 and 11 and for
all primes p with 5 ≤ p ≤ 97, we verified Conjecture 3.1 in this case for weights
k ≤ 750, 172 respectively.

Remark 3.7. Gouvêa and Mazur once conjectured that if h is a rational number
and k, k′ ≥ 2h + 2, then the multiplicity of the (Tp-)slope h in weight k will be

the same as the multiplicity in weight k′ provided k ≡ k′ mod (p− 1)p⌈h⌉ (see [17,
Conjecture 1]). Buzzard and Calegari found many counter-examples, all occuring
in situations where ρ is locally irreducible at p ([12]). Those ρ are, in particular,
irregular. In the final paragraphs of loc. cit., however, it is mentioned that Clay
noticed issues in a globally reducible, and in fact regular, situation.

Specifically, let ρ = ω + ωχ where χ is the quadratic character modulo 4, which
is regular for p = 5 because χ(5) = χ(1) = 1 (compare with Example 3.4). The
violation of Gouvêa–Mazur, which Clay noticed, occurs because the 5-adic ρ-slopes
in weight k = 7 at level Γ1(4) are {1, 1} (two times), whereas in weight k = 27
they are {1, 1, 1, 1} (four times). We highlight this because this violation of the
Gouvêa–Mazur conjecture is consistent with Conjecture 3.1. That is, the ghost
series predicts exactly the same slope pattern.

The data collected in Example 3.4 gives rather systematic counter-examples to
the Gouvêa–Mazur conjecture (on ρ-subspaces), all of which are consistent with
Conjecture 3.1. The issue is also a local one, as opposed to a global one, it seems.
We found the same phenomenon in the setting of Example 3.5, which is globally
irreducible. Specifically, in that example, in weight 7 the slope sequence is {1}, in
weight 27 it is {1, 1}. Conjecture 3.1 predicts these slopes.

3.3. Theoretical evidence. For theoretical evidence, we show that ρ must be
regular if the ghost series correctly calculates slopes of modular forms.

Proposition 3.8. Let p ≥ 5. If ρ is irregular, then the ghost series of some twist of
ρ does not correctly compute slopes of modular forms. That is, there is some j and
some weight κ ∈ Wb(ρ⊗ωj) such the slopes of the Newton polygon of Gρ⊗ωj(wκ, t)

do not match the slopes of Up acting on S†
κ(ρ⊗ ωj).

Proof. First assume that ρ|D is irreducible. By Theorem 2.5, after replacing ρ by
a twist, we may assume that ρ arises from a non-ordinary cuspform of weight k
between 2 and p+3

2 . We will show that the ghost series for ρ does not correctly
compute the slopes of Up in weight k = b(ρ).

To this end, write Gρ(w, t) = 1 + g1(w)t + g2(w)t
2 + · · · . The smallest k such

that wk is possibly a zero of any gi(w) is k = b(ρ). From the definition of the ghost
series, if wb(ρ) is a zero is for gi(w) then

i > d = d(b(ρ), ρ) = dimSb(ρ)(ρ).
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Since p ≥ 5, we have that n 7→ d(b(ρ) + n(p− 1), ρ) is increasing by [6, Proposition
6.12]. So, Gρ(w, t) = 1 + · · · + td + · · · and thus the first d slopes of the Newton
polygon of this ghost series (at any weight!) are all 0. In particular, if the slopes
attached to this series equaled the true slopes of Up, then the (Tp-)slopes in Sb(ρ)(ρ)
would be all be 0. But this contradicts the fact that ρ arises from a non-ordinary
form of weight b(ρ).

Now we consider the case where ρ|D is reducible (but still irregular). By part (b)
of Theorem 2.5, after replacing ρ by a twist, we may assume that Sp+2(ρ) 6= {0}
and vp(ap(g)) > 1 for all g ∈ Sp+2(ρ). We will show that the ghost series for ρ does
not correctly compute slopes in weight p+ 2.

To this end, again write Gρ(w, t) = 1 + g1(w)t+ g2(w)t
2 + · · · . Since Sp+2(ρ) is

non-zero, we have that g1(wp+2) 6= 0. Thus, as argued above, g1(w) = (w − w3)
m,

andm ≤ 1 because the multiplicity pattern described on pg. 2 begins 1, 2, . . . . Thus,
the lowest slope of the Newton polygon of Gρ(wp+2, t) is at most 1. But we’ve also
assumed every slope in Sp+2(ρ) is larger than one. This is a contradiction. �

4. Conclusion

We have presented a new, salvaged, ghost conjecture for Galois representations
modulo p, along with theoretical and computational evidence. We end by briefly
describing two questions raised by our work (separate from whether or not the
conjecture is true).

4.1. Small primes. Let p = 2. According to the definitions given here, the trivial
representation ρ = 1⊕ 1 is irregular. This is rather confouding. The 2-adic slopes
at level SL2(Z), where the only Galois representation modulo 2 is the trivial one,
are the most carefully studied of all examples. It is a major motivating example for
both Buzzard’s work and the work of the authors. The ghost formalism is believed
to predict the 2-adic slopes at level SL2(Z), yet it does not (nor does Buzzard’s
work) correctly predict the 2-adic ρ-slopes at level Γ0(5) where ρ is still the trivial
representation.

Of course, the second condition of Theorem 2.5 holds for the trivial representa-
tion when p = 2 and N = 1, so perhaps that condition is the correct one for which
the ghost series will predict slopes (regardless of p being small). This is in-line with
Buzzard’s ad hoc definition of Γ0(N)-regular when p = 2 in [11]. Note however
that even in the Γ0(N)-regular situation, the 2-adic ghost conjecture requires a
modification as in [5, Section 5].

The authors have not seen a reason to exclude p = 3 from Conjecture 3.1. Yet,
we want to be careful. We have not done extensive testing for p = 3 because the
derivations of Galois multiplicities in Section 3.1 relies on [3], which assumes that
p ≥ 5. The same methods work immediately when p = 2, 3 as long as Γ1(N) is a
group without p-torsion, but stating a conjecture for p = 3 under such a restriction
would be rather prosaic.

4.2. Integral slopes and local Galois representations. It is conjectured that
if p is odd, k is even, and vp(ap) 6∈ N then V k,ap

is irreducible. See [14, Conjecture
4.1.1]. The possibility of such a result was discussed “in emails between Breuil,
Buzzard, and Emerton” in the early 2000’s according to loc. cit. To give it a neu-
tral name we’ll call it the integral slope conjecture. We’ve been told by Breuil and
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Buzzard that the inspiration for discussing the integral slope conjecture was nu-
merical calculations of global slopes and explicit local calculations in small weights.
In light of this article’s emphasis on reducibility being a faulty lens through which
to predict global slopes, we offer the following comments.

When p is odd and k is even, the irregular V k,ap
in the sense of Definition

2.1 are all irreducible. So, the integral slope conjecture might as well say if k
is even and vp(ap) 6∈ N then V k,ap

is irregular. This re-phrasing opens up the
possibility of stating a more full conjecture. For instance, p = 2 is not included
in the original integral slope conjecture because when p = 2 and k ≡ 4 mod 6,
then V k,0 is reducible and hence so is V k,ap

for any vp(ap) ≫ 0 (see [14, Remark
4.1.6]). Yet, these examples are in fact all irregular. Separate objections are raised
when k is odd (see [14, Remark 4.1.5]), each of which is rendered moot if instead
the conjecture begins with the assumption that vp(ap) 6∈ 1

2N and ends with the

conclusion that V k,ap
is irregular. (One might also note that in Proposition 2.2 we

could additionally add the condition (d): r is a twist of V k,0 for some k.)
So, we know no counter-examples or counter-arguments for the statement:

(⋆)
“For any prime p, if k is even and vp(ap) 6∈ N or if k is odd

and vp(ap) 6∈ 1
2N, then V k,ap

is irregular.”

In fact, (⋆) is supported by theorems of Buzzard and Gee [13, Theorem 1.6] and
Bhattacharya and Ghate [8, Theorem 1.1]. An example theorem derived from the
latter work is that V k,ap

⊗ ω−1 ∼= ind(1), as long as p ≥ 5 and 1 < vp(ap) < 2 and

k ≡ p + 2 mod p2(p − 1). This nicely complements the discussion in the previous
paragraph, further illustrating why “irregular” replacing “irreducible” is necessary
for any generalization of the integral slope conjecture. We note, finally, that (⋆) is
also consistent with a theorem of Nagel and Pande [20, Theorem 0.1] focused on
2 < vp(ap) < 3, and work of Arsovski [2, Theorem 1], which covers a more sporadic
range of slopes.

This article began by correcting a false conjecture. So, here, it is best to wait
for a more conceptual explanation before declaring (⋆) as an outright conjecture.
Even the integral slope conjecture, limited to even weights and odd p, is based
on a combination of computational evidence and theoretical evidence restricted
to low weights and slopes. It has not, for instance, been contextualized within
a wider context of all local Galois representations modulo p nor, except in the
above paragraphs, have issues with odd k or p = 2 been really confronted. Does
replacing reducibility by regularity offer any conceptual clarity? There’s certainly
a fascinating opportunity here for further explanation.
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