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Abstract

The relationship between the number of cells colonizing a new environment and time for resumption of growth is a subject of long-
standing interest. In microbiology this is known as the “inoculum effect.” Its mechanistic basis is unclear with possible explanations
ranging from the independent actions of individual cells, to collective actions of populations of cells. Here, we use a millifluidic droplet
device in which the growth dynamics of hundreds of populations founded by controlled numbers of Pseudomonas fluorescens cells,
ranging from a single cell, to one thousand cells, were followed in real time. Our data show that lag phase decreases with inoculum
size. The decrease of average lag time and its variance across droplets, as well as lag time distribution shapes, follow predictions of
extreme value theory, where the inoculum lag time is determined by the minimum value sampled from the single-cell distribution.
Our experimental results show that exit from lag phase depends on strong interactions among cells, consistent with a “leader cell”
triggering end of lag phase for the entire population.
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Introduction
When bacteria encounter new environmental conditions, growth
typically follows four phases: a lag phase, during which bacte-
ria acclimate, but do not divide; an exponential phase, during
which cells multiply; a stationary phase, where nutrient exhaus-
tion causes cessation of growth; and finally a death phase, during
which cells may lyse. In a fluctuating environment, each phase
can play an important role in population persistence. The lag
phase has particular significance because of both benefits (en-
hanced growth) and eventual costs (sensitivity to external stres-
sors) associated with the resumption of growth (Moreno-Gámez et
al. 2020, Şimşek and Kim 2019). Moreover, the time to resumption
of growth—and controlling factors—has implications for the en-
tire field of microbiology (Monod 1949), but especially for infection
caused by pathogens and for food safety (Bertrand and Margolin
2019, Swinnen et al. 2004, Pérez-Rodríguez 2014).

Despite its discovery more than 100 years ago (Müller 1895),
cellular and molecular details defining the lag phase, factors trig-
gering resumption of growth, and contributions to fitness, are not
well-understood. This is largely a consequence of the difficulties
associated with experimental quantification of the dynamics of
populations founded by small numbers of cells. Nonetheless, ad-
vances over the last decade have shown that bacteria in lag phase
are transcriptionally and metabolically active (Rolfe et al. 2012),
that lag phase is a dynamic state, that single cells are heteroge-
neous in time to resume division (Julou et al. 2020, Moreno-Gámez
et al. 2020, Şimşek and Kim 2019), and that numerous factors af-
fect lag phase duration (Nikel et al. 2015, Bertrand and Margolin
2019, Basan et al. 2020).

Arguably the most intriguing aspect of lag phase biology is the
apparent inverse relationship between the number of cells in the
founding population and duration of lag phase—often referred
to as the “inoculum effect.” First reported in 1906 (Rahn 1906),
the relationship has been shown to hold for a number of differ-
ent bacteria (Penfold 1914, Lodge and Hinshelwood 1943, Lank-
ford et al. 1966, Kaprelyants and Kell 1996), although there exist
few recent quantitative investigations. In certain instances, the in-
oculum effect is observed only under specific culture conditions
(Kaprelyants and Kell 1996, Augustin et al. 2000).

Factors controlling the inoculum effect are of special interest
(Dagley et al. 1950, Lankford et al. 1966, Halmann and Mager 1967,
Augustin et al. 2000, Swinnen et al. 2004, Bertrand and Margolin
2019). Given that bacterial cells are typically variable in many of
their properties, the simplest explanation (Explanation I) posits
that population lag time is determined by the set of cells with the
shortest time to first division. Accordingly, the larger the founding
population, the more likely it is that the inoculum contains cells
on the verge of division, with these cells contributing dispropor-
tionately to the resumption of population growth.

An alternate explanation is that resumption of growth de-
pends on interaction among founding cells (Explanations II and
III), e.g. via production of an endogenous growth factor: once a
critical threshold concentration is achieved growth resumes, and
the larger the inoculum the sooner this happens. Evidence in sup-
port of such control derives from analysis of Bacillus (Lankford et
al. 1966), Francisella (formerly Pasturella) tularensis (Halmann and
Mager 1967), Micrococcus luteus (Votyakova et al. 1994), and Aerobac-
ter aerogenes (Dagley et al. 1950).
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In instances where exit from lag-phase is determined by in-
teractions among founding cells, models have assumed that all
cells are equal contributors to the production of growth activat-
ing factors (Explanation II; Lankford et al. 1966, Kaprelyants and
Kell 1996). However, an alternative possibility exists, namely, that
population lag time is set by the activity of a single “leader cell”
that triggers resumption of growth for the entire population of
cells (Explanation III). Distinguishing among competing hypothe-
ses requires precision measurements of population growth, high
levels of replication, ability to control inoculum size, and crucially,
knowledge of the distribution of lag times for single cells.

Here, we use a millifluidic droplet device in which the growth
dynamics of hundreds of populations founded by different num-
bers of Pseudomonas fluorescens cells were followed in real time. Our
data confirm that lag phase shortens with inoculum size increase
and provide a quantitative characterization of the effect on: aver-
age, variance and shape distribution of lag times values for vari-
ous controlled inoculum size. We demonstrate that these statis-
tical properties follow extreme value theory (EVT), where popula-
tion lag time is determined by the minimum value sampled from
the single cell distribution. Additionally, we show that the inocu-
lum effect cannot be explained by a sweep initiated from a small
number of cells, but rather involves the parallel growth of many
lineages. These results suggest that exit from lag phase depends
on strong interactions among cells, consistent with a leader cell
triggering end of lag phase for the entire population. And we de-
rive the scaling laws that allows prediction of bacterial population
lag time as a function of inoculum size.

Methods
The strain
The ancestral strain of P. fluorescens SBW25 was isolated from
the leaf of a sugar beet plant at the University of Oxford farm
(Wytham, Oxford, UK; Silby et al. 2009). The strain was modified
to incorporate, via chromosomally integrated Tn7, the gene GFP-
mut3B controlled by an inducible Ptac promoter.

Preparation of cells
Pseudomonas fluorescens SWB25 was grown in casamino acid
medium (CAA). CAA for 1 l: 5g of Bacto Casamino Acids Techni-
cal (BD ref 223120), 0.25 g MgSO4·7H2O (Sigma CAS 10034-99-8),
and 0.9 g KH2PO4 (Melford CAS 7758-11-4). Prior to generation of
droplets, SBW25 was grown from a glycerol stock for 19 h in 5 ml
of CAA incubated at 28◦C and shaken at 180 rpm. At 19 h, this sta-
tionary phase culture was centrifuged at 3743 RCF for 4 min and
the supernatant removed from the pellet. The pellet was then re-
supended in 5 ml of sterile CAA. It was then centrifuged and re-
suspended one further time in order to prevent any interference
of a growth-activator that may come from the supernatant of the
overnight culture. The washed culture was then adjusted to OD
0.8 with CAA and mixed 1:1 in volume with autoclaved 30% v/v
glycerol. A volume of 100 μl aliquots were pipetted in 1 ml eppen-
dorf and frozen at −80

◦
C. After freezing, one aliquot was taken to

measure viable cells by plating on agar. We found 1.62 × 108 cell
ml−1.

Generation of droplets with a range of inoculum
sizes
Each experiment, with a range of inoculum sizes was prepared as
follows. One frozen aliquot was thawed and diluted in 6 Falcon C©

tubes with a final volume of 4 ml of sterile CAA. The frozen aliquot

was diluted, with appropriate intermediate dilutions, in the tubes
respectively by 7.04 × 104, 1.76 × 104, 4.4 × 103, 1.1 × 103, 2.75 ×
102, and 6.875 × 101 to obtain, respectively, 1, 4, 16, 64, 256, and
1024 cells per droplet (on average). We completed the dilutions
from frozen stock by adding 29.1 μl, 29 μl, 28.6 μl, 27.3 μl, 21.8
μl, and 0 μl, respectively, of sterile 60% v/v glycerol. This step is
very important to balance the glycerol coming from the frozen
stock and ensure that all the tubes have precisely the same com-
position of medium (Figure S2, Supporting Information). We then
added 50 μl of sterile IPTG (100 mM) to each sample. Each dilution
was then pipetted in wells (250 μl per well) of a 96-well microtitre
plate before proceeding to generate droplets using the Millidrop
Azur device. Droplets have a volume of 0.4 μl, which yields, with
our dilutions, a range of inoculum sizes as follows: 1, 4, 16, 64, 256,
and 1024 cells per droplet. We generated 40 replicate droplets for
each population of a given founding inoculum size, except for pop-
ulations founded by 1024 cells, which for technical reasons were
restricted to 30 replicates.

The inoculum of droplets follows a Poisson
distribution
Importantly, the inoculum size in each droplet is controlled by the
Poisson process intrinsic to the formation of droplets from the 96-
well plates. The inoculum size that we report is, thus the average
of the corresponding Poisson distribution. In particular, the vari-
ance of the number of cells between the droplets is equal to the
average inoculum.

Generation of droplets founded by a single cell
To generate droplets with an inoculum of a single cell per droplet,
we diluted in sterile CAA a frozen aliquot by 7.04 × 104, added 29.1
μl of sterile 60% v/v glycerol, and 50 μl of sterile IPTG (100 mM). We
generated 230 droplets in the Millidrop Azur device, which yielded
156 droplets that grew due to the Poisson process inherent to the
sampling process.

Log-normality of single-cell lag times
The cumulative distribution function (CDF) for single-cell lag
times is displayed in Fig. 2(B), and is described by a lognormal
fit. To quantify the goodness of fit, we used the Shapiro–Wilk test
with the null hypothesis that a sample log θ1,..., log θn is derived
from a normal distribution. The null hypothesis was tested with
significance level alpha 5% and gave a P-value of 0.840 indicating
that we can not reject the lognormality of the single-cell lag time
distribution. In addition, a quantile-to-quantile plot of single-cell
lag time against a lognormal distribution is shown in Figure S11
(Supporting Information).

Calculation of the uncertainty of measurement
for populations founded by a single cell
Nth = 1.6 × 108 cells ml−1 is the y-coordinate of the point taken in
the exponential phase of growth to calculate the population lag
time (see Fig. 1). �Nth is uncertainty surrounding the y-coordinate,
i.e. derived from uncertainty on the calibration of cell concentra-
tion versus fluorescent signal (Figure S8, Supporting Information).
The uncertainty of the calibration Figure S8 (Supporting Informa-
tion) gives �Nth = 0.7 × 108 cells ml−1 for this value as depicted by
the gray area. �tth is the uncertainty of the time when the popula-
tion reaches beyond the threshold Nth. We take its value as equal
to the sampling frequency of the machine �tth = 18 min. λ is the
average growth rate of populations in droplets and �λ is the un-
certainty. These quantities are estimated with the distribution of
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the growth rate shown in Figure S6 (Supporting Information): λ =
0.84 h−1 and �λ = 0.02 h−1. �N0 is the uncertainty on the inocu-
lum size. In the experiment with populations founded by a single
cell shown in Fig. 2(B), 230 − 156 = 74 droplets were empty despite
being generated from the same seed culture. This is due to the ran-
domness of the pipetting process that fills droplets of bacteria ac-
cording to a Poisson process. The randomness of the process gives
intrinsically an uncertainty on N0. In the following, we explain
how this was estimated. Knowing the number of empty droplets
allows calculation of the precise average inoculum of the experi-
ment which correspond to the α parameter of a Poisson distribu-
tion having its first value p(0) = exp(−α) =74/230 : α = 1.134 cells
per droplet. This average takes into account the empty droplets
with zero bacteria but we only measure the nonempty droplets.
To estimate the average inoculum of the nonempty droplets we
draw numerically a large series of random numbers with a Pois-
son probability of parameter α = 1.134 and calculate the average
and standard deviation (SD) of the nonzero values. This yielded an
average of 1.7 and a SD of 0.9. Therefore, we consider that for our
experiment in an ideal case with an infinite number of droplets
the uncertainty on the inoculum of the droplets will be intrinsi-
cally �N0 = 0.9 cells per droplet and that the average inoculum
(of the filled droplets) is N0 = 1.7 cells per droplet. All together
these values allow calculation of the uncertainty of the lag time
estimated by Equation (1). The expression of uncertainty is given
by Equation (2) and numerical application gives �θ = 0.88 h.

Results
High-throughput quantification of bacterial
population dynamics with millifluidic technology
To investigate the relationship between inoculum size and dura-
tion of lag phase, we used a millifluidic device to quantify the dy-
namics of bacterial population growth across time (Baraban et
al. 2011, Boitard et al. 2015, Cottinet et al. 2016). The device al-
lows the monitoring of 230 bacterial populations compartmental-
ized in droplets contained within a tube. Figure 1(A) shows a por-
tion of the tube with two droplets filled with cells. The statistical
power of the experiment comes from precise control of large num-
bers of droplets, in terms of both inoculum size and homogeneity
of culture conditions: Fig. 1(B) shows the growth dynamics of 40
replicate populations. Exponential growth and stationary phase
are clearly seen, while lag time is concealed behind the detection
threshold (gray area). Figure 1(C) shows the growth dynamics of a
population contained within a single droplet.

Population density in the droplet is reported by fluorescence
intensity from GFP-labeled bacteria with parameters describing
the phases of growth being estimated from these time series (see
Fig. 1C). Exponential growth rate, λ, is the maximum slope of the
time series on a y-semi-logscale (we use a Gaussian processes
method that makes no a priori assumption about the shape of
the growth curve (Swain et al. 2016)). Final population size is es-
timated directly from measurements; death phase is not signif-
icant in our experiment and is ignored. Lag phase τ , is the time
cells spend in a nondividing phase prior to onset of exponential
growth. Hardware limitations mean that fluorescence data are un-
obtainable for cell densities below 1600 cells per droplet (4 × 106

cells ml−1) and, thus τ must be estimated indirectly. This indirect
measurements allows also to circumvent to classical caveat for lag
time measurement related to variation of the fluorescence per cell
during lag phase. This is done by firstly taking an arbitrary point
(tth, Nth) in exponential phase where cell density is Nth = 1.6 × 108

Figure 1. Bacterial population growth in droplets. Subfigure (A) shows
two droplets of 0.4 μl are separated by an air spacer (to prevent droplet
coalescence) inside the tube of a millifluidic machine. Droplets are
prepared by “sipping” samples from a 96-well plate. Typically, 230
droplets are produced from six seed cultures that differ solely in the
number of founding cells (the inoculum). Each seed culture delivers 40
replicate droplets, but for technical reasons that last delivers 30
replicates. Droplets move back-and-forth, via changes in pressure,
passing in front of a fluorescence detector every ∼18 min. Pseudomonas
fluorescens SBW25 cells express GFP from a chromosomally integrated
reporter, allowing changes in biomass to be determined based on
intensity of the fluorescent signal (excitation at 497 nm emission at
527 nm). Signal intensity is calibrated to cell density by plate counting
(Figure S8, Supporting Information). The range of detection extends
from 4 × 106 to 5 × 109 cells ml−1 (1.6 × 103 to 2 × 106 cells per droplet).
The gray area in subfigures (B) and (C) denotes the region where
bacterial density is below the threshold of detection. (B) Fluorescent
signal across time from 40 replicate populations (in semi-logscale) in
droplets prepared from the same seed culture. The average inoculum in
each droplet is N0 = 1.6 × 105 cell ml−1, or 64 cells per droplet (this
concentration is marked by the purple dashed line that goes across (B)
and (C)). In this example, the signal exceeds the detection threshold at
∼7 h, by which populations are in exponential growth phase. At ∼20 h,
stationary phase is reached, marked by cessation of growth. (C) A single
time series showing population growth within a single droplet coming
from the set of replicates shown in (B). The left y-axis is shared between
these two plots. The blue line depicts cell density derived using
DropSignal (Doulcier 2019) and the shaded area represents the standard
deviation (SD). Population lag time is inferred as described in text. The
purple dotted line crossing Nth = 1.6 × 108 cells ml−1 (64 000 cells per
droplet) extrapolates the exponential growth back to its intersection
with the inoculum density (purple horizontal dotted line), giving τ ≈ 5 h.
The red line gives the derivative of the time series, with shaded SD, and
corresponding right y-axis in red.

cells ml−1. By rearranging the equation for exponential growth:
Nth = N0eλ(tth−τ ), and making τ the subject

τ = tth − log(Nth/N0 )/λ. (1)

A geometrical counterpart of Equation (1) gives the population
lag time as the time point at which exponential growth (line in
semi-log scale) intersects the horizontal line, which depicts inocu-
lum density (see Fig. 1C). These measurements of lag-times pro-
vide a wealth of quantitative information on the inoculum effect,
as described and interpreted in the following.

Duration of lag phase depends on the number of
founding cells
In Fig. 2(A), the average lag time from three independent experi-
ments (colors) is shown as a function of inoculum size (diamonds).
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Figure 2. Quantitative data on lag-times are consistent with a strongly
cooperative exit from lag phase. (A) Population lag time τ as a function
of inoculum size for three independent experiments (colors). Symbols
are the mean lag times over droplets with a given inoculum size, with
error bars denoting the standard deviation (SD). The data are compared
to two models (blue lines—average, shaded blue—SD). (B) Cumulative
distribution (CDF) of single-cell lag times (θ ) from 156 droplets
inoculated with a single bacterium on average (dark line). The y-value
gives the probability that cell lag times assume a value less than or
equal to the x-value. The measured distribution is fitted to a log-normal
distribution (red dotted line) with a mean of 6.8 h and a SD of 1.3 h. A
Gaussian “de-blurring” applied to these data generates the true
distribution of cell lag times (blue dotted line). Both models in (A)
simulate populations founded by bacteria with lag times drawn at
random from this corrected distribution: cells growing independently in
droplets (dashed blue) and cells dividing according to a signal from the
leader cell (solid blue).

Lag time decreases monotonically from 6.4 ± 1.1 h for droplets
inoculated with a single cell, to 4.4 ± 0.3 h for an inoculum size
of 1024 cells. The SD, represented by the error-bars in the figure,
decreases monotonically and slowly with increasing inoculum
size.

We also examined the dependence of other growth parameters
on inoculum size. Initial experiments showed an effect on final
cell density, however, this was found to be a consequence of sub-
tle differences in glycerol concentrations arising from dilutions
of frozen glycerol–saline stock cultures used to prepare founding
inocula. When corrected, no effect of inoculum size on final cell
density was observed. This technical, but important experimen-
tal observation is explained in Figure S2 (Supporting Information).
Additionally, no effect of inoculum size on mean growth rate was
detected, although the variance across droplets decreased. Details
are provided in Figure S3 (Supporting Information).

What might be the basis of the decrease in mean lag time with
inoculum size? There are three mutually exclusive explanations,
all recognize that populations of cells are heterogeneous with re-
gard to individual cell lag times as a consequence of innate pheno-
typic variability. Explanation I posits no interaction among cells,
with population lag time being set by an event equivalent to a se-
lective sweep, i.e. initiated by the cell (or cells) with the shortest
cell lag time.

Explanations II and III involve interactions among cells and can
be thought of in terms of two extremes of a continuum. Expla-
nation II posits that all cells contribute equally to the produc-
tion of some growth-stimulatory factor. Explanation III recognizes
that population lag time could be set by the cell with the short-
est lag time and whose activity triggers division of other cells. We
demonstrate below that distinguishing between these alternate
explanations is possible via quantitative data obtained from the
millifluidic droplet device. Making this distinction requires knowl-
edge of the lag time distribution of populations founded by single
cells.

Precise estimation of the distribution of cell lag
times from inocula containing a single bacterium
To quantify the lag time of individual bacteria, 230 droplets
were inoculated by—on average—a single bacterium, resulting in
growth in 156 droplets (the inoculation of droplets follows a Pois-
son process). For each droplet, the lag time was estimated as in
Fig. 1(C). The resulting distribution of lag times is shown in Fig. 2(B)
(blue dots). In this case, the lag time of each population is clearly
equal to that of the founding cell. We denote the single-cell lag by
θ to distinguish it from τ of larger inoculum size that may be af-
fected by cooperative effects. The heterogeneity of cell lag times is
broad, ranging from ∼4 to ∼12 h, with a mean value of m = 6.8 h
and SD σ = 1.3 h. A Shapiro–Wilk test applied on the logarithm
of the data reveals the underlying distribution can be log-normal
(see also the quantile-to-quantile plot shown in Figure S7, Sup-
porting Information). Fitting a log-normal function (green dashed
line in Fig. 2) yields parameters μ = 1.9 and s = 0.2.

Although the fit is good, there is uncertainty in the estimation
of lag times due to measurement errors that propagate to the ex-
trapolation of Equation (1). This equation expresses the depen-
dence of lag time on parameters tth, N0, Nth, and λ for droplet pop-
ulations, including the special case of a population being founded
by a single cell. Expanding it to a Taylor series and assuming in-
dependent variables allows the uncertainty �θ to be calculated
as

�θ =
√

(�tth )2 +
(

�Nth

λNth

)2

+
(

�N0

λN0

)2

+
(

�λ

λ2

)2

, (2)

where �tth, �Nth, �N0, and �λ correspond to the uncertainty of tth,
Nth, N0, and λ, respectively. Given the values of these uncertainties,
we estimate �θ = 0.88 h (see “Materials and Methods” for details
of calculations).

The uncertainty associated with direct measurements blurs
the “true” distribution of single-cell lag times, which is less dis-
persed, i.e. has a smaller SD. We assume a Gaussian noise of zero
mean and a SD equal to the measurement uncertainty σ noise =
�θ . Deconvolution of the Gaussian noise from the measured dis-
tribution (Blackwood 1995) amounts to subtracting its mean and
variance from that of the measurements

〈θ〉 = m − mnoise ≈ 6.8h, (3)

σ 2 = σ 2 − σ 2
noise ≈ 1.0h2. (4)

The corrected distribution remains lognormal, with parameters

μ = log
(
〈θ〉2/

√
σ 2 + 〈θ〉2

)
= 1.9 and s2 = log(σ 2/〈θ〉2 + 1) = 0.14.

Expression of the true probability density of lag time is thus

f (θ ) = 1

θs
√

2π
e− (ln(θ )−μ)2

2s2 . (5)

The red dotted line in Fig. 2(B) depicts the corresponding CDF af-
ter correction for measurement noise; it is narrower than that ob-
tained by direct measurement. This distribution can now be used
to examine the previously proposed explanations for the depen-
dence of population lag time on inoculum size.

A sweep initiated by cells with the shortest lag
time is inconsistent with the data
Intuitively, one might imagine that the large variability in single-
cell lag-times is sufficient to account for the observed inoculum
effect, even for independently growing cells: larger inocula con-
tain outlier cells that are fast to resume growth; these could in
principle take over the population and reach maximal cell num-
ber faster, causing the observed inoculum effect. Having a precise
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estimate of the single-cell lag time distribution, it is now possible
to put this hypothesis (Explanation I) to quantitative testing.

To this end, growth of populations within droplets established
from different numbers of founding cells were simulated and the
match with experimental data determined. Virtual droplets were
founded by cells with lag times drawn from the true distribu-
tion (shown in Fig. 2B) and with exponential growth rates drawn
from the measured distribution (see Figure S6, Supporting Infor-
mation). Note that addition or not of the weak correlation between
lag time and growth rate seen Figure S6 (Supporting Information)
does not affect the conclusion of the simulation (code provided
in Appendix, Supporting Information). Cells were then allowed to
replicate within droplets. To mimic the experimental protocol, the
time tth at which populations reach Nth = 64 000 cells (equal to a
density of 1.6 × 108 cells ml−1) was determined. Equation (1) was
then used to calculate the lag time of each population with known
N0 and with known mean growth rate λ. The blue dotted line in
Fig. 2(A) shows the results of these simulations.

In marked contrast to the experimental results, these simula-
tions of independent (non-interacting) cells show almost no de-
pendence of the mean population lag time on inoculum size. In
addition, the decrease in variation across droplets, represented
by the SD of lag time (shaded blue region around dotted line),
decreases rapidly, whereas in the experimental data the SD de-
creases much slower.

Failure of Explanation I to account for the data can also be un-
derstood by a simple calculation based on the growth character-
istics. The corrected CDF of the single-cell lag times, Fig. 2(B), has
a value of 0.025 for lag time 5 h. In other words, in a droplet inoc-
ulated by 1024 cells, ≈25 cells (0.025 × 1024) have a lag time equal
to or shorter than 5 h. Similarly, the number of cells exiting lag
phase between 5.8 and 7.8 h (around the mean 6.8 ± 1 h) is: (0.86
− 0.14) × 1024 ≈ 737 cells. Given the single-cell growth rate λ =
0.84 h−1 (Figure S6, Supporting Information), the generation time
is g = 0.83 h. Thus, the 25 cells that start dividing before 5 h go
through roughly (6.8 − 5.0)/g ∼ 2 generations before the 737 cells
around the mean start dividing. A total of two generations of 25
cells yields 100 offspring; therefore, clearly cells with a short cell
lag time do not exert a dominant sweep effect on the population.

The above estimate implies that, during the time of the mea-
sured growth, many lineages within droplets grow simultaneously
and produce offspring. Therefore, if cells are independent, the
population lag time is expected to be roughly equal to the mean
of the single-cell lag time distribution, which is independent of
inoculum size as the simulation shows. Moreover, as an average
over many cells, the lag time variability across droplets should
decrease as 1/

√
N0 with inoculum size. Indeed, the SD of the sim-

ulation shown in Fig. 2(A) decreases rapidly with inoculum size,
in marked contrast to the experimental data—which decrease
slowly. This discrepancy of the variance behavior with inoculum
size indicates that population lag time does not arise as an aver-
age over independent cells in the inoculum. Alternative scenarios
where cells are not independent are considered below.

A leader cell triggering end of lag time for the
population is consistent with the data
We now turn to test Explanations II and III that involve interac-
tions among cells within the founding inoculum. At one extreme
case (Explanation III), collective growth is governed by a single
event that synchronizes population growth to the cell with the
shortest lag time. This would happen if the cell that divides first
signals this event to other cells, such that the entire population

exits lag phase almost simultaneously. We first examine the con-
sequences of this assumption and compare it to the data, and then
consider the alternative scenario, namely, Explanation II, in which
interactions among cells involve all cells contributing equally to
the production of a growth-stimulating factor.

In statistical terms, we assume that an inoculum of N0 cells is
a random sample from the single-cell lag time distribution f(θ ).
If there is a leader cell that triggers growth for all other cells, the
measured population lag time will be equal to the shortest cell lag
time in the sample, θmin. EVT provides a framework for statistical
analysis of the extreme value of a sample, such as the shortest
lag time θmin among N0 cells (Embrechts et al. 2013). In the limit of
large samples, EVT predicts the dependence of the mean and vari-
ance of a collection of θmin coming from samples of size N0. It also
predicts that the distribution of θmin from populations founded by
cells of a given inoculum size will approach a limiting fixed shape
after appropriate normalization as the sample size increases; the
precise shape is determined by global properties of the single-cell
distribution f(θ ).

The unique features of our experiment create an ensemble of
droplets with controlled inoculum size, and a measurement of the
population lag time for each, labeled τ . These data provide the sta-
tistical properties required to test the hypothesis that τ = θmin(N0),
namely that the population lag time is equal to the minimum cell
lag time among the N0 single cells of the inoculum. For this, we
use predictions given by EVT on the distribution of θmin and ask
whether they are consistent with the statistical properties of τ as
measured in the droplets.

The first prediction is that both the average and the SD of θmin

from populations decrease slowly with inoculum size N0. The pre-
cise scaling is derived from the single-cell distribution f(θ ) (see Ap-
pendix, Supporting Information); for a lognormal distribution we
find the scaling to be

〈θmin〉∼ A−
√

ln N0, (6)

σ (θmin ) ∼ B/
√

ln N0, (7)

where A and B are constants. Both predictions agree well with
the population lag time τ . Fitting the curve of Equation (6) to the
experimental relationship between mean population lag time (〈τ 〉)
and inoculum size, reveals a close match (Fig. 3A). The same holds
for the SD fitted to Equation (7) (Fig. 3B). We note that although
testing this prediction involves fitting constants, the dependence
on sample size N0 through

√
ln (N0) is nontrivial and unique to the

predictions of EVT.
A further prediction is that the distribution of minimal val-

ues (θmin), drawn from different sample sizes, tends to a universal
shape in the limit of large samples. Although, strictly speaking,
this holds in the limit N0 → ∞, in practice it may be expected
to hold also for finite samples—even as small as several dozen.
For each sample size N0, our experiment provides a distribution
of population lag times (τ ), estimated over all droplets with the
same inoculum size. These CDFs are depicted in Fig. 3(C) for all
inoculum sizes of at least four cells. To test whether the predic-
tion on θmin holds for the population lag time τ , we normalize each
CDF of τ by subtracting its mean and dividing its SD. Figure 3(D)
shows the result of this normalization and demonstrates that the
distributions of τ collapse on one another, consistent with our hy-
pothesis τ = θmin. The lightest shaded curve, corresponding to in-
oculum N0 = 4, deviates from the rest—possibly indicating that
this sample size is too small to acquire the limiting shape.
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Figure 3. Statistical properties of lag times. For three independent
experiments (colored symbols), mean lag times (A) over populations and
their SD (B) are depicted as a function of inoculum size. Each point is
calculated over 40 replicate populations (droplets). Inset: variance as a
function of mean. The scaling relations predicted by EVT are shown in
dashed lines: y = 6.84−0.86

√
ln N0 for the mean and y = 1/

√
ln N0 for the

SD. (C) Cumulative Distributions of population lag times for different
inoculum sizes [N0, colors; legend in (D)]. The curves derive from the
pooled data of three independent experiments yielding at least 120
population lag times for each. (D) Same data as in (C), scaled by
subtraction of empirical mean and division by SD. The white dashed line
depicts the fit by the universal distribution predicted by the EVT. The
y-axis is shared between (C) and (D).

The universal distribution itself is also predicted by EVT
(Wikipédia 2018). Its CDF has the form

F(θmin ) = e−(1+kz)−1/k
, z= (θmin− θ0)/γ , (8)

with location and scale parameters θ0, γ , and a shape parameter k
that reflects properties of the parent distribution f(θ ), specifically
the decay at its tails. Fitting the normalized data with this formula
reveals an excellent match between the universal distribution for-
mula (white dashed line in Fig. 3B) and the normalized measured
distributions of τ (green lines), at least for inoculum sizes above
four cells per droplet. The analytical formula for the distribution
justifies the empirical procedure of normalizing by sample mean
and SD used above as a test for the universal shape (see Appendix,
Supporting Information).

As a corollary of the predictions in Equations (6) and (7), the
variance and mean of the distributions of extreme values drawn
from different sample sizes follow a well-defined relationship (see
Appendix). The agreement of this relationship with the population
lag time data is shown in the inset of Fig. 3(B).

Taken together, the scaling of the mean and SD of τ according
to the inoculum size [Equations (6) and (7)], the resulting relation-
ship between variance and mean of τ , the collapse of normalized
distributions of τ at different sample (inoculum) sizes, and the
fit of the normalized distribution to the theoretical formula Equa-
tion (8), are consistent with population lag time being equal to the
shortest cell lag time in the inoculum: τ = θmin. With our under-
standing that growth involves multiple simultaneous lineages, we

conclude that, at the time of the shortest lag time in the inoculum,
many cells must start growing in parallel.

A single leader cell determines population lag
time
The agreement of statistical properties with predictions from EVT
suggest that exit from lag phase is triggered by a single event—
possibly a single leader cell—that signals the exit from lag to all
other cells. To test this hypothesis, we performed a set of sim-
ulations where cells are not independent. As for previous simu-
lations, at each inoculum size thousands of virtual populations
were generated (see simulation code in the Appendix). For each
inoculum, the cell lag time of each founder cell was drawn at
random from the experimental single-cell lag time distribution
(Fig. 2B) and then set to the shortest cell lag time in the sample.
This means that all founder cells begin to proliferate at the same
time as the leader cell with population lag time τ = θmin. As in
the previous simulation, the numerical population was allowed
to grow exponentially with population lag time being estimated
as per the experiments.

The results are depicted by the solid blue line in Fig. 2(A) and are
a close match to the experimental data over three orders of mag-
nitude in inoculum size. Note that this is not a fit: the only input
is the true single-cell lag distribution measured for populations
founded by a single cell (Fig. 2B). Additionally, results from the
simulations match the slow decrease of lag time variability among
droplets observed in the experiments (shaded area Fig. 2A). Our
results, thus provide an explanation for the relationship between
size of the founding inoculum and population lag time, which are
fully consistent with resumption of growth of all cells in the in-
oculum being triggered by a leader cell.

Thus far, there remains uncertainty as to whether population
growth is triggered by a single cell, or a small group of cells. To
investigate, we performed further simulations (see code in Ap-
pendix) in which cells produce a growth activator after exit from
lag phase. The activator triggers end of lag phase for all cells in
the inoculum upon passing a threshold. To have an effect, leader
cells must activate growth of neighboring cells. The time to reach
the threshold is driven by two parameters related to the activa-
tor: the concentration threshold and rate of production. The ratio
of the concentration threshold over the rate of production scales
with time to reach the concentration threshold. For an effect to
be evident, time to reach the threshold must be less than the lag
time of neighboring cells (here 6.8 h on average). Thus, to study
the influence of the time to reach the threshold it is necessary to
fix the production rate and vary the concentration threshold (or
the other way around). In the following simulation, we chose to
fix the production rate and vary the concentration threshold.

Given lack of knowledge concerning the nature of the activa-
tor, we assume that the rate of production is equal to the popu-
lation growth rate. Here, the concentration threshold determines
the fraction of cells in the inoculum that affects exit from lag
phase. If the threshold is low, then production of growth activator
by a single cell is sufficient to trigger end of lag phase for the entire
population. If the threshold is high, then it is likely that multiple
cells contribute to production of the growth activator. The dura-
tion of lag phase for every cell was derived from experimental data
as above, and set by drawing a random value from the single-cell
lag distribution Fig. 2(B).

We performed simulations for a range of activator thresholds
at different inoculum sizes. The results are depicted in Fig. 4. First,
it is seen in Fig. 4(A) that a strong dependence of population lag
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Figure 4. How many leader cells? Results of simulation in which each cell produces a growth activator as it exits lag phase, drawn from the
experimental distribution. The activator accumulates to a critical threshold and triggers end of lag phase for the entire population. (A) Population lag
time as a function of inoculum size (x-axis) and threshold of growth activator (y-axis). (B) Number of leader cells that have exited lag phase before the
critical activating threshold was reached. Note that the color-bar corresponds to a narrow range of between 1 and 5 cells.

time on inoculum size appears only when the threshold concen-
tration of growth activator is low. Given the significant inoculum
effect observed in our experiments, we conclude that this result
is consistent with our data only in the region of a low activa-
tion threshold. Second, Fig. 4(B) shows the effective number of
cells that “lead” the population to exit from lag phase. This num-
ber is defined by those cells, which had already reached the end
of their individual lag time as drawn from the single-cell distri-
bution, before the threshold was reached. Strikingly, we see that
for a large range of activator concentrations, only a single cell
has time to exit lag phase before the critical concentration of
activator is reached. These simulations support the conclusion
that our experimental observations are consistent with Explana-
tion III, where a single leader cell ends lag phase for the entire
population.

Discussion
An inverse relationship between the number of bacterial cells
founding a new environment and the time to exit lag phase was
first noted more than 100 years ago (Rahn 1906, Penfold 1914). De-
spite its significance, rigorous validation has been lacking, and un-
derstanding of the causes and controlling factors remains incom-
plete. Paucity of progress has stemmed largely from difficulties
associated with experimental analysis of populations founded by
few cells.

Here, taking advantage of new opportunities presented by mil-
lifluidic technologies (Baraban et al. 2011, Boitard et al. 2015, Cot-
tinet et al. 2016) we have obtained quantitative evidence from
highly replicated populations founded by controlled numbers of
cells, that in populations of P. fluorescens SBW25, the time to re-
sume growth after transfer to a new environment is strongly in-
fluenced by size of the founding inoculum. Moreover, the same
technology has allowed determination of the duration of lag phase
for a sample of individual cells. The average decrease in time
to growth resumption, variance across droplets, and distribution
shapes, follow predictions of EVT, consistent with the inoculum
lag-time being determined by the minimum value sampled from

the single-cell distribution. At the same time, within droplets,
growth of multiple cell lineages in parallel contribute to popula-
tion expansion with no single lineage providing a disproportionate
effect on duration of lag time. Our experimental results, thus show
that exit from lag phase depends on strong interactions among
cells, suggesting that a “leader cell” triggers end of lag phase for
the entire population.

This finding builds on recent work in which the time to first divi-
sion of single bacteria maintained in isolated cavities of microflu-
idic devices has been measured (Julou et al. 2020, Moreno-Gámez
et al. 2020, Şimşek and Kim 2019). From such studies, it is clear
that there is substantial variation in cell-level lag time with evi-
dence that this variance can have profound fitness consequences
for population growth. For example, in fluctuating environments,
heterogeneity in the time for individual cells to resume growth,
can facilitate survival in the face of environmental change (Julou
et al. 2020), especially that wrought by periodic antibiotic stress
(Fridman et al. 2014, Şimşek and Kim 2019, Moreno-Gámez et al.
2020).

Although microfluidic chambers used for analysis of isolated
cells allow precision measures of the distribution of lag times
for single cells, such experimental devices do not allow for in-
teractions among cells, thus making problematic any attempt to
connect the distribution of single-cell lag times to population lag
times. In fact, extrapolation of population lag times from knowl-
edge of the distribution of single-cell lag times would be justified
only in the case of independent cells.

Linking cell and population level behaviors necessarily requires
measures of lag times both for individual cells and for popula-
tions in precisely the same environment. Moreover, the environ-
ment should be well-mixed (spatially homogeneous and devoid of
surface effects) so that should emergent population-level behav-
iors be relevant, mediated via, e.g. production of diffusible growth
factors (Lankford et al. 1966, Kaprelyants and Kell 1996), then ef-
fects can be observed. In this regard, the millifluidic device has
proven fit for purpose.

In seeking an explanation for the observed inoculum effect, we
considered three mutually exclusive explanations. Central to Ex-
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planation I was absence of interactions among cells with the in-
oculum effect being explained by disproportionate growth of a
subset of cells with the shortest time to first cell division. Both
simulations and simple calculations led to unequivocal rejection
of this hypothesis.

Explanations II and III recognized the possibility of interactions
among cells. Because of the power of EVT, combined with well-
understood statistical properties, we chose to focus on whether
population lag times were determined by the minimum value
sampled from the single-cell distribution (Explanation III). EVT
makes predictions as to the distribution of minimal cell lag times
across droplets, which surprisingly, hold for the distribution of
population lag times measured in experiments, leading to the con-
clusion that population lag time is equal to the minimal cell lag
time present in the inoculum. Simulations of population growth in
droplets based on this evidence delivered an almost perfect match
to experimental data. While conformity to Explanation III means
that Explanation II in a strict sense (in which all cells contribute
equally to exit from lag phase) cannot hold, the fact that there is
a continuum of possibilities led us to perform additional simula-
tions to address whether our data are consistent with resumption
of growth being triggered by just a single leader cell. In these sim-
ulations, a growth activator was assumed to be produced by all
cells as they exited lag phase, but was required to accumulate to
a threshold before all other cells started growing; this interpolates
between a single leader cell and a contribution from all cells, de-
pending on the threshold level. We found that a strong decrease
of population lag with increasing inoculum size was reproduced
in simulations, but only when the threshold was low. In the rel-
evant parameter region where the inoculum effect matched the
experiment, we found that only a single cell contributes to the
production of growth activator.

In our simulations, it was assumed that droplets are well-mixed
(see also Figure S13, Supporting Information) so that the time for
transport of growth activating molecules is negligible. In reality,
three times scale are relevant: the time it takes for single cells to
exit lag phase (reported in Fig. 2B at 6.8 h on average), the rate
of production of the growth activating molecule, and the time
it takes for the activator to propagate through the population.
Transport is dominated either by diffusion or convection, with the
former generally slower than the latter. In our droplet-based sys-
tem, continual movement of droplets (and thus stirring of con-
tents) points to convection as the primary mechanism of signal
propagation; thus, as soon as the signal is produced, it is likely
to spread in the droplet and be sensed by all other cells. Convec-
tion is relevant in many cases, including stirred reactors, mois-
ture droplets on food, local environments within eukaryotic hosts,
moving water bodies, and even undisturbed culture flasks (Ardré
et al . 2019). In the absence of convection—and in environments
where the time to transport effector molecules is longer than the
intrinsic lag time of cells—the inoculum effect may be of less sig-
nificance.

The rate at which the signaling molecule is produced is a key
factor especially in environments of large volume. For instance,
if the rate of production is low, then the leader cell will fail
to produce sufficient signaling molecule to trigger neighboring
cells. Under such circumstances, no inoculum effect will be ob-
served and resumption of population growth will be determined
by the intrinsic lag time of each cell. In our simulations (Fig. 4),
we assumed that the production rate is equal to the population
growth rate (Figure S3, Supporting Information), which while a
reasonable assumption, lacks, at the present time, a mechanistic
basis.

An obvious next question concerns identity of the growth ac-
tivator. While detailed investigations are beyond the scope of this
study, we nonetheless, considered the possibility that iron chela-
tion might trigger the effect. Such a possibility has been previ-
ously suggested (Kaprelyants and Kell 1996). To this end, we re-
peated the initial experiment in which the time to resumption
of growth was determined in replicate populations founded by
different numbers of cells as in Fig. 2(A). Instead of SBW25, a
mutant deficient in production of the iron-chelating compound
pyoverdin was used: P. fluorescens SBW25 pvdSG229A (Zhang and
Rainey 2013). No change in the inoculum effect was observed (see
Figure S4, Supporting Information), thus ruling out pyoverdin as
the activating molecule. We next asked whether the inoculum ef-
fect might be eliminated by addition of culture supernatant, de-
rived from an overnight culture of SBW25 grown in CAA, to pop-
ulations of cells in droplets. The ensuing data show that indeed
culture supernatant significantly dampens the inoculum effect
(Figure S11, Supporting Information). This is consistent with Lank-
ford et al. (1966) and Kaprelyants and Kell (1996), who observed
an inoculum effect in flasks that could be abolished by addition
of culture supernatant.

A further set of factors that stand to influence the inoculum
effect, stem from the environment. The effect of differences in
chemical composition of growth media, growth stage of cells, and
external stressors are presently unknown, but the subject of cur-
rent investigation.

The relationship between the number of cells founding growth
in a new environment and duration of lag phase has profound
implications for microbiology. While much remains to be un-
derstood, including generality and molecular bases, the rigorous
quantification achieved here provides unequivocal evidence of an
inoculum effect in P. fluorescens SBW25. Moreover, we show that
the effect is best understood in terms of interactions among cells
with statistical analysis of the distribution of population lag times
indicating that a single leader cell is sufficient to trigger simulta-
neous growth of all cells in the founding population.
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