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Several recent attoclock experiments have investigated the fundamental question of a quantum mechanically
induced time delay in tunneling ionization via extremely precise photoelectron momentum spectroscopy. The
interpretations of those attoclock experimental results were controversially discussed, because the entanglement
of the laser and Coulomb field did not allow for theoretical treatments without undisputed approximations. The
method of semiclassical propagation matched with the tunneled wavefunction, the quasistatic Wigner theory,
the analytical R-matrix theory, the backpropagation method, and the under-the-barrier recollision theory are the
leading conceptual approaches put forward to treat this problem, however, with seemingly conflicting conclusions
on the existence of a tunneling time delay. To resolve the contradicting conclusions of the different approaches,
we consider a very simple tunneling scenario which is not plagued with complications stemming from the
Coulomb potential of the atomic core, avoids consequent controversial approximations and, therefore, allows us
to unequivocally identify the origin of the tunneling time delay.

Time delay in tunneling is a fascinating fundamental quan-
tum problem, most recently measured in an experiment with
cold atoms [1]. In particular, there has been intense and of-
ten controversial discussion about time delay in strong field
tunneling ionization [2–39], confirming or disputing the in-
terpretation of the experimental attoclock results [2–7]. The
main difficulty stems from the fact that in such an experiment
the photoelectron momentum distribution (PMD) is measured,
rather than directly the tunneling time. This time is retrieved
using time-to-angle mapping for photoelectrons tunnel-ionized
in a laser field of circular polarization (elliptical polarization
close to circular) [2]. This mapping straightforwardly follows
from the so-called simple man model [40]. According to this
the photoelectron emission angle is determined by the direc-
tion of the laser vector potential at the moment of the electron
appearing in the continuum. However, in a real physical situa-
tion the extraction of information on the tunneling time from
PMD is not straightforward, because the Coulomb field of the
atomic core induces a similar effect in PMD as the tunneling
time delay (with respect to the peak of the laser field) and this
effect is difficult to account for quantum mechanically with
high accuracy. For this reason a semiclassical method was
proposed [2–4], where the tunneling was treated quantum me-
chanically, but the further electron motion in the continuum
under the simultaneous action of the laser and Coulomb fields,
classically. Moreover, the Coulomb field effect essentially de-
pends on the tunnel exit coordinate, which in the quasistatic
regime of ionization was calculated including tunnel ioniza-
tion in parabolic coordinates with induced dipole and Stark
shift (TIPIS model) [4]. The semiclassical method was further
improved, deriving the initial conditions of the classical propa-
gation via the quantum mechanical Wigner trajectory emerging
from the tunneling region [6, 17]. However, nonadiabaticity of
the tunneling ionization renders the quasistatic Wigner theory
and related matched quantum-classical model inaccurate at
large Keldysh parameters [41].

The numerical solutions of the time-dependent Schrödinger
equation (TDSE) [7, 13, 42–46] for the attoclock reproduce
the experimental results, yielding confidence that the attoclock

PMD features have a single electron origin. However, the
numerical results do not contribute much to our understand-
ing of the tunneling time. Not long ago the backpropagation
method was proposed to deduce the tunneling time delay from
the numerical solution of TDSE [22–24]. In this method, the
asymptotic numerical solution of TDSE is simulated by a clas-
sical ensemble, which is backpropagated classically up to the
tunnel exit, assuming that quantum features near the tunnel
exit are unimportant. With the backpropagation method a con-
clusion was drawn that the average time delay is negligible.
However, the obtained negative time delays of several atomic
units (a.u.) were not analyzed in detail, assuming intuitively
that the origin of the negative time cannot be the tunneling. The
TDSE numerical results have been also compared to the analyt-
ical R-matrix (ARM) theory [13], which is the state-of-the-art
theory of the Coulomb-corrected strong field approximation
(SFA) [47–50]. The comparison revealed that TDSE has a
negative time delay with respect to ARM at large laser fields
which, however, has been interpreted as a consequence of the
bound state depletion and frustrated ionization [51]. The prob-
lem of the accurate description of subtle features of PMD has
been addressed in [18] within SFA. A new type of quantum
orbit was identified there, corresponding to under-the-barrier
recollisions, where interference with the direct ionization path
induces a gentle modification of the asymptotic PMD.

There are basically two opinions in interpreting the attoclock
experiment, one claiming negligible (or zero) [7, 13, 23–26],
and other – nonnegligible asymptotic tunneling time delay
(ATD) [4–6, 17, 18]. While ATD is read out from the asymp-
totic PMD, some also considered theoretically the near exit
time delay (ETD) [15–17, 27], observable in a Gedanken ex-
periment with a so-called virtual detector near the tunnel exit
[52, 53]. These two faces of the concept of the tunneling
time delay should be clearly distinguished. ATD is defined by
the time delay of the classical trajectory, which is classically
backpropagated from the peak of the photoelectron asymptotic
wave function up to the exact point of the tunnel exit. The
classical backpropagation is physically relevant, as the electron
dynamics in the continuum is quasiclassical. However, near
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Figure 1. (a) Asymptotic PMD as function of δp ≡ p + A(0) for E0 =

0.25 a.u., where the grid line at δp = 0 shows the PMD peak with only
the direct ionization amplitude mD; (b) Tunneling time distribution
using the backpropagation method of the asymptotic PMD: (c) The
ratio of the rescattering amplitude to the direct ionization one |mR/mD|;
(d) The shift of the PMD peak (δp) due to the tunneling time delay
vs the laser field; For all panels (green-solid) via the full SFA m =

mD + mR, including sub-barrier direct and rescattered paths, (green-
dashed) via the SFA direct amplitude, (black) via the numerical TDSE
solution, (red) TDSE with the bound state depletion subtracted [54],
(brown) via the static Wigner trajectory.

the tunnel exit the quasiclassical dynamics fails, rendering the
notion of the classical trajectory inconsistent. Here the dynami-
cal information can be extracted from the quantum mechanical
wave function. In particular, the so-called Wigner trajectory is
deduced from the latter, which traces the evolution of the peak
of the laser-driven part of the electron wave function during
the tunneling ionization and defines the physical ETD. The
Wigner trajectory is in accordance with the classical backprop-
agation trajectory a few de-Broglie wavelengths away from the
tunnel exit. However, near the tunnel exit the Wigner trajectory
deviates strongly from the classical one and shows a positive
ETD [17, 38]. We note that ATD and ETD characterise the
tunneling dynamics from different perspectives: While ATD
is related to the attoclock protocol, ETD describes how the
classical trajectory emerges from the quantum dynamics of the
laser driven atomic electron.

This Letter is devoted to resolving conflicting conclusions
of theories on the tunneling time delay and clarifying the dif-
ference of ATD and ETD. We judiciously consider a very basic
tunneling scenario which is not plagued with complications
stemming from Coulomb effects and the depletion of the bound
state, is applicable in the adiabatic as well as in the nonadia-

batic regimes, avoids consequent controversial approximations
and allows for analytical results. We consider ionization of
one-dimensional (1D) atom bound with a zero-range potential
driven by an half-cycle laser field. The calculation using SFA
[41, 55, 56] is carried out fully analytically which facilitates a
qualitative comparison of all differing models. Our results are
confirmed by the numerical solutions of TDSE in 1D as well as
in 3D with linearly and circularly polarized laser pulses. The
reasons for the conclusions deviating from Refs. [7, 22–26] are
all analyzed.

We consider ionization of an electron bound in a 1D zero-
range potential V(x) = −κδ(x), in a half-cycle laser pulse
with electric field E(t) = −E0 cos2(ωt), where ω = 0.05 a.u.,
κ =

√
2Ip = 1 a.u. and Ip is the ionization potential. The

Keldysh parameter is γ = ω̃κ/E0, with the effective frequency
ω̃ ≡

√
2ω related to the cos2-pulse. Atomic units are used

throughout. We employ SFA, with incorporated low-frequency
approximation (LFA) for a more accurate treatment (beyond
the Born approximation) of the recollision [57–59]. The LFA
validity is justified as the laser frequency ω � εr [57], with
the recollision energy εr ∼ 1 a.u. The asymptotic momentum
distribution, w(p) = |m(p)|2 = |mD(p) + mR(p)|2, see Fig. 1, is
determined by interference of the direct ionization amplitude:

mD(p) = −i
∫

dt〈ψV
p (t)|Hi(t)|φ(t)〉, (1)

and the ionization amplitude with rescattering, described by a
second order SFA [59, 60]:

mR(p) = (2)

−

∫
dt
∫

t
ds
∫

dq〈ψV
p (s)|T (p + A(s))|ψV

q (s)〉〈ψV
q (t)|Hi(t)|φ(t)〉.

Here φ(x, t) =
√
κ exp(−κ|x| + iκ2/2t) is the bound state wave

function, ψV
p (x, t) the Volkov wave function [61], Hi(t) = xE(t)

the electron interaction Hamiltonian with the laser field, and
A(t) = −

∫ t
t f

dsE(s). In the considered half-cycle laser field the
rescattering takes place during the under-the-barrier dynamics,
which is in LFA described with the exact laser-free scattering
T -matrix: 〈p|T (p)|q〉 = −(κ/2π)/(1 − iκ/|p|) [59]. The time
integration in mR is carried out via 3D saddle-point approxima-
tion (SPA) [54]. We have also calculated asymptotic PMD via
numerical TDSE solution [54], which is in accordance with
the analytical result and shows a momentum shift with respect
to the zero-time delay case (PMD via the direct SFA amplitude
mD) corresponding to a negative ATD δt = −δp/E0, see Fig. 1.

We retrieve the distribution of ATD from the asymptotic
PMD, see Fig. 1(b), using the backpropagating method [22].
The classical backpropagation up to the tunnel exit, where the
longitudinal velocity is vanishing p + A(te) = 0, is carried out
using the photoelectron asymptotic wave function ψ(x, t) =∫

m(p) exp(ipx)dp, with the total amplitude m(p) = mD +

mR [54]. The interference of the direct and the under-the-
barrier rescattered trajectories, which is governed by the ratio
of amplitudes mR/mD, induces a visible shift in the asymptotic
PMD with respect to the case of the PMD based on the direct
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Figure 2. The electron time-dependent current density j(xe) near
the tunnel exit during tunneling ionization: (green-solid) via the
full SFA, and (green-dashed) via the first-order SFA, (black) via the
TDSE numerical solution, (red) via the TDSE numerical solution with
depletion subtracted [54]. The ETD is positive as exhibited by the
SFA curve, as well as by the TDSE with subtracted depletion.

trajectory only, although |mR/mD| ≈ 0.13. For instance, the
momentum shift is δp ∼ 0.3 a.u., which is equivalent to the
negative ATD te ∼ −1 a.u., at E0 = 0.25 a.u., see Fig. 1(b) and
(c). The exponential suppression of ATD is governed by the
parameter E0/Eth [18], with the threshold field Eth of over-the-
barrier ionization (OTBI) [54, 62]. It is larger near the OTBI
threshold [17, 63] (the shorter the barrier length, the larger is
the tunneling time [64]).

In Fig. 1(d) the dependence of the momentum shift δp due to
the tunneling time delay on the laser field amplitude is shown.
Thus, the calculations with our basic tunneling scenario show
that the peak of asymptotic PMD can have a time delay up to
the order of 1 a.u., see Fig. 1(d), due to interference of the direct
and rescattered paths. The averaging over PMD decreases the
time delay. We can give a simple estimation of the latter
property. From [18], the negative time delay is proportional
to the Keldysh-exponent te(t) ≈ t0 exp{−2κ3/(3F(t))}, with
the maximum of the time delay tmax = t0 exp{−2κ3/(3E0)}, and
t0 ∼ 1/κ2, such that the averaged time delay can be estimated as
〈te〉 ∼

∫ t f

−t f
te(t)w(t)dt/

∫ t f

−t f
P(t)dt ∼ 0.7tmax, with the tunneling

ionization probability w(t) ∼ exp{−2κ3/(3F(t))}.
The time delay calculated from the second-order SFA in

the adiabatic regime γ � 1 is closely related to the static
Wigner time delay. This is illustrated in Fig. 1(d), (see brown
line), where the estimation of the static Wigner time delay is
used, see [18, 54]. In strong fields, the regime of ionization
is adiabatic and the quasistatic Wigner theory is relevant (in
Fig. 1(d) at γ . 0.5). Note that in Ref. [6], the deviation of the
experimental data from the quasistatic estimation takes place
at γ & 0.6.

In Ref. [23] the average tunneling time delay is calculated
for helium (κ = 1.345). In this case the time delay is by a
factor of κ2

He/κ
2 ≈ 1.8 smaller than in our κ = 1 a.u. case, since

te ∼ 1/κ2 [65]. We may compare qualitatively our 1D case of
Fig. 1(d) (Ip = 0.5) with the helium result of Ref. [23] at the

same ratio of E0/E1D
th = E0/EHe

th , using for helium EHe
th = 0.24

a.u. [54]. The scaled data of Ref. [23] provide the average
negative tunneling time delay of the order up to 1 a.u. (E0 .
0.25 a.u.), which qualitatively is in accordance with our model.

With the SFA time-dependent amplitude m(p, t), we retrieve
the time-dependent SFA wave function Ψ(x, t) for the ionized
electron, and derive ETD from the latter as the peak of the
electron current density j(xe) at the tunnel exit xe:

Ψ(x, t) = φ(x, t) +

∫ ∞
−∞

dp
∫ t

−∞

dt′ψV
p (x, t′)m(p, t′), (3)

see also [17, 65, 66]. The quantum mechanical description
allows to find the physical time delay at the exit which is read
out as the peak of the time-dependent electron current density
near the tunnel exit, see the current density distribution in
Fig. 2, which shows that the most probable ETD is positive.
This is also observed in the static tunneling case via the Wigner
trajectory tW

e ∼ 1/E2/3
0 , yielding also a nonvanishing group

velocity at the tunnel exit vW ∼ E1/3
0 [17, 65]. The SFA wave

function in Fig. 2 is calculated via the direct ionization path.
The difference between the TDSE and SFA results is due to the
contribution of the recolliding trajectory. Thus, Fig. 2 shows
that ETD is mostly determined by the direct ionization path.
The inclusion of the recollision path disturbs ETD only slightly.
Thus, the following picture of tunneling ionization emerges:
the Wigner trajectory (the peak of the laser-driven part of the
wave function) inside the barrier and near the tunnel exit, where
bound and free parts of the wave function are inseparable,
shows a positive ETD. A few de-Broglie wavelengths away
from the tunnel exit the most probable classical trajectory
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Figure 3. The time-integrand of the ionization amplitude via SFA
in the complex plane in the case of the most probable momentum
p = pmax for the total amplitude m = mD + mR. The saddle-point
of the total amplitude (see the cross) is vanishing: Re{ts} = 0, while
Re{ts} < 0 for mD and mR. The total amplitude has a shifted peak in
momentum due to interference, however, still the same vanishing real
parts of the saddle-point at the peak momentum.
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Figure 4. Time delay calculated by the classical backpropagation (BP)
of 3D TDSE results with a Yukawa potential V(r) = −(Z/r) exp(−r),
with Z = 1.908 in a circularly polarized laser pulse: (black circles)
total time shift δttotal(BP), and (red squares) final time shift δtAT D(BP)
with the depletion subtracted. The field strengths, E0, are shown up
to EYukawa

th .

emerges from the Wigner one. The classical trajectory shows a
negative ATD, which is vanishing in the deep tunneling regime
E0 � Eth, however, ETD is largest in this regime.

In Ref. [26] a “trajectory-free” method is proposed to ad-
dress the tunneling time problem. It is based on the assumption
that the (real part of the) saddle-point of the time-integrand of
the ionization amplitude determines the ionization time (ATD).
We question this assumption. Our line of reasoning is the
following. From one side, with our simple SFA model we
show that in the near OTBI regime the asymptotic momentum
distribution is shifted with respect to the zero ATD case, i.e.,
demonstrating a nonvanishing ATD. From another side, we
apply the “trajectory-free” method to the SFA wave function
[54], i.e., represent the SFA wave function as a time integral,
calculate the time saddle-point, and obtain that the saddle-point
of the ionization wave function is zero in the same case, which
shows a shift in the momentum distribution corresponding to
the nonzero ATD, see Fig. 3. This demonstrates that the time
saddle-point and ATD are not equivalent. We interpret it as fol-
lows. The time saddle-point indicates the complex time when
the electron ionization path starts at the atomic core. Both
amplitudes mD and mR start at Re{ts} = 0 at the core, and each
amplitude generates a momentum distribution with the peak
corresponding to vanishing ATD. However, their interference
causes a deviation of the momentum distribution peak from
the no-time-delay model. In short, the time saddle-point is
the ionization starting point at the core and it does not coin-
cide with the time-delay because the origin of the latter is the
interference of two paths.

Finally, we have to comment on the numerically calcu-

lated vanishing ATD in [7] for an attoclock in the case of
a short-range Yukawa potential V(r) = −(Z/r) exp(−r), with
Z = 1.908. The result of vanishing ATD is due to the fact that
the range of the field strength of the calculation is not high
enough E0 . 0.075. The threshold field of the applied Yukawa
potential is EYukawa

th ≈ 0.185, it is smaller than that of the 1D
short-range potential EYukawa

th /E1D
th ∼ 0.7. From the latter it is

expectable to have a sizable ATD, for instance of the order of 1
a.u., near the threshold at E0 = 0.175, while in the short-range
potential it is observed at larger value E0 = 0.23, see Fig. 1(d).
More detailed E0/Eth-scaling is different in 1D and 3D cases,
which stems from the wave packet spreading factor in the
transverse direction [18]. Furthermore, with the given high
charge Z ≈ 2, the momentum transfer at the tunnel exit due
to the atomic potential is not negligible at high field strengths,
when the tunnel exit is close to the core [54]. The attoclock
angular shift due to the atomic potential corresponds to the
positive time delay, which counteracts the negative ATD. We
have carried out calculations of the ATD for the given Yukawa
potential in a large range of field strengths using numerical
3D TDSE solutions for attoclock scenarios [54]. In Fig. 4 we
show the total time delay calculated via the backpropagation
from the 3D TDSE wave function, as well as the time delay
after the subtraction of the depletion contribution. The atto-
clock offset angle is vanishingly small when the field is not
large E0 . 0.075 (up to the laser intensity 4 × 1014 W/cm2),
in agreement with the calculation of [7], but increases at high
field strengths showing a negative time delay up to 1.75 a.u.

Concluding, we have analyzed the tunneling time delay in
strong field ionization employing a simple tunneling scenario
where leading theoretical approaches with seemingly conflict-
ing conclusions could be compared without critical approx-
imations. This way we have demonstrated that the peak of
the tunneling wave packet emerging from the barrier around
the tunnel exit significantly deviates from the most probable
classical backpropagated trajectory, featuring a positive ETD.
It however asymptotically merges with the backpropagated
trajectory, which itself shows negative ATD, originating from
the interference of the direct and recolliding sub-barrier paths.
Finally, in explaining the absence of tunneling times from re-
maining other methods, we have clarified that there are indeed
no conflicts among the various approaches.
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