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ABSTRACT This study investigates how qubits of modern quantum annealers (QA) such as D-Wave can be
applied for generating truly random numbers. We show how a QA can be initialised and how the annealing
schedule can be set so that after the annealing, thousands of truly random binary numbers are measured in
parallel. Those can then be converted to uniformly distributed natural or real numbers in desired ranges,
either biased or unbiased. We discuss the observed qubits’ properties and their influence on the random
number generation and consider various physical factors that influence the performance of our generator,
i.e., digital-to-analogue quantisation errors, flux errors, temperature errors and spin bath polarisation. The
numbers generated by the proposed algorithm successfully pass various tests on randomness from the NIST
test suite. Our source code and large sets of truly random numbers are publicly available on our project web
page https://4dqv.mpi-inf.mpg.de/QRNG/.

INDEX TERMS Random numbers, true randomness test, superconducting flux qubits, quantum annealing,
QUBO.

I. INTRODUCTION
Random numbers have a wide variety of applications in
computer science ranging fromMonte Carlo simulation [46],
to randomised sampling [26], and cryptography [33], [55].

Ideal, non-deterministic generators output unpredictable
values obeying a certain (marginal or expected) probability
distribution, also known as true random numbers [54]. Unfor-
tunately, classical computers operate deterministically and
cannot be used to generate truly random numbers. Instead,
they rely on pseudo random number generators (PRNG)
that produce statistical approximations of random numbers.
A PRNG is a classical algorithm with a secret internal
state initialised from a pre-defined seed. It then produces
a sequence of numbers that emulates statistical properties
of a truly random sequence [28]. Since its internal state
evolves deterministically, it is possible to predict the number
sequence if the seed is known.

However, while some applications may tolerate replacing
truly random numbers by pseudo-random ones, others may
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lose crucial properties, e.g., true unpredictability in security
contexts [55]. Building a true random number generator
(TRNG) is therefore crucial, but is difficult because it usu-
ally relies on an external environment with non-deterministic
effects, e.g., thermal noise or radioactive decay [2]. Unlike
these classical phenomena, certain aspects of quantum sys-
tems are not just practically unpredictable but also funda-
mentally non-deterministic, providing completely random
behaviour. While specialised devices tailored to generating
random numbers based on quantum effects exist, they are
difficult to access or modify and hard to integrate into quan-
tum algorithms. We instead focus on general-purpose quan-
tum computers, whose current-generationNoisy Intermediate
State Quantum (NISQ) [51] technology can be found in quan-
tum chips by Google [5], IBM [1] and D-Wave Systems [45].
In recent years, a gate-based system (IBMQ) and an adiabatic
quantum annealer (D-Wave System) have become available
for research and commercial purposes. Both gate-based mod-
els [38], [40] and annealers [8], [23], [52], [53] have recently
been employed for pattern recognition.

In this work, we propose a newmethod for generating truly
random numbers using Radio Frequency Superconducting
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Quantum Interference Device (RF-SQUID) qubits. The avail-
ability of current-generation quantum hardware coupled with
the ease of implementation of our method allows the user to
generate truly random numbers without acquiring any special
hardware. Unlike prior work by Li et al. [39], which uses a
gate-based system to generate random numbers, our method
uses D-Wave’s quantum annealer, the only quantum annealer
that is easily accessible via the cloud at the time of writing.
Gate-based and annealing systems differ substantially from
each other. D-Wave offers a quantum processing unit (QPU)
in its quantum annealer with>5k qubits, a substantially larger
number than the 127 qubits present in IBM’s gate-based
quantum processor. We can thus measure more bits in parallel
on the quantum annealer than on the gate-based machine.
Furthermore, quantum-annealing methods are already used
to solve real-world problems (e.g., permutation synchronisa-
tion [8], RNA folding [20]), which makes it desirable to have
a directly compatible RNG.

Unfortunately, adiabatic quantum computers are lim-
ited to solving quadratic unconstrained binary optimisation
(QUBO) problems, and do not offer the flexibility to measure
qubits easily without performing an anneal. Performing an
anneal, inevitably, adds additional noise to the system which
leads to noise in the results. Still, one significant advan-
tage of the quantum annealer is its reduced sensitivity to
noise and decoherence. Taking these challenges into account,
we propose a formulation for generating random bits that
ensures independence among the qubits, while minimising
the output bias, i.e., the bias of the generated bits. Note
that the generated bits can be easily turned into uniformly
distributed integers or real numbers ∈ U(0, 1) via interval
halving, and from there into any other distribution (given
its CDF) via inverse transform sampling. To summarise, the
primary contributions of this article are as follows:
• A new generator of true random numbers based on the
D-Wave quantum annealer, crucially taking into account
the sources of error.

• A variant of our generator that allows to generate biased
random numbers.

• An analysis how different sources of hardware errors
(digital-to-analogue quantisation errors, flux errors,
integrated control errors, temperature errors and spin
batch polarisation) influence the performance of the
proposed algorithm.

This is the first comprehensive and detailed study of
the random number generation capabilities of the D-Wave
quantum annealer. We show how to initialise the QPU, set
the annealing schedule, choose a minor embedding, and
post-process the measured bit sequence. We also show how
temperature needs to be taken into account in order to
generate biased random numbers. In a broader sense, this
article explores one of the fundamental properties of quan-
tum machines: qubit randomness. How well it is realised in
hardware affects all computational steps of a quantum algo-
rithm, either on gate-based or quantum-annealing machines.
We thus investigate the scenarios in which random properties

of qubits are preserved and in which deviations from the
expected behaviour are to be expected.

We perform extensive experiments with our random num-
ber generator on D-Wave’s 2000Q and Advantage. Experi-
ments with the NIST test suite show that the D-Wave QPUs
are well suitable for the generation of truly random numbers
with the proposed algorithm. Moreover, we conclude that
the Advantage is better suited for unbiased random number
generation than the 2000Q.

The remainder of the paper is structured as follows: Sec. II
gives a brief literature review. The preliminaries are intro-
duced in Sec. III. We present our proposed methodology
and the design choices in Sec. IV. In Sec. V, we compare
different hardware choices for unbiased and biased RNG and
test our proposed method. Sec. VI provides an analysis of the
results, limitations and possible future work. Finally, we draw
conclusions in Sec. VII.

II. RELATED WORKS
In the literature, various random numbers generators (RNGs)
have been developed in order to obtain random binary
sequences. They fall into two categories: pseudo and true ran-
dom number generators. The TRNGs use non-deterministic
(physical systems) entropy sources as their building blocks.
TRNGs are unpredictable and non-reproducable (i.e., have
no period). However, TRNGs have significant drawbacks
such as higher computation time, high costs and usually
require special hardware. As a consequence of the high cost of
TRNGs, PRNGs are employed in everyday settings. PRNGs
are cheap, easily implemented and do not require any special
hardware. For cryptographic purposes, it is more suitable to
use a hybrid random RNG [61], where the generator consists
of a deterministic part and an additive input from a strong
TRNG. Finally, given the implications of random sequences,
it is important to gauge the performance of an RNG. A strong
RNG ideally passes several test suites such as NIST [7],
Diehard [42], or TEstUI [37].

A. PSEUDO RANDOM NUMBER GENERATORS
PNRGs are based on complex mathematical algorithms,
with the most famous and widely used being the Mersenne
Twister [43]. This PRNG is used by Python, Julia, Linux and
others. Due to the sensitivity of chaotic systems, they have
been used as PRNG for more than two decades [34], [47],
[48]. The recent advent of machine learning has led to several
neural-network-based PNRGs [17], [58], which demonstrate
a strong performance in statistical randomness testing. While
these approaches use neural networks as part of a more
complex algorithm, end-to-end neural PRNG was introduced
by Bernardi et al. [16] and has been further improved since
then [49].

B. TRUE RANDOM NUMBER GENERATORS
Research on producing truly random numbers has been
carried out for decades, with investigations into several clas-
sical entropy sources like jitter in field-programmable gate
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FIGURE 1. We use the quantum annealers D-Wave Advantage 4.1 and 2000Q to generate truly random numbers. (Top) Quantum Annealing with a Null
QUBO: We anneal from (A) the initial equal-superposition |+〉 state to (B) the target null QUBO, following (C) the annealing schedule [13]. (Bottom) To
generate random bits on (D) real quantum hardware, we perform quantum annealing. Afterwards, (E) we measure the qubits on the hardware as |0〉 or
|1〉, (F) generating a stream of truly random bits. To generate an arbitrary number of random bits, we repeat this process over multiple anneals. For an
overview of the method refer to Sec. IV-A. Niobium loop adapted from [53].

array (FGPA) integrated circuits [6], ring oscillators [18],
or metastability [59]. Non-classical quantum effects are
another source of entropy for true random number generation.
A traditional example of quantum randomness is radioactive
decay [2]: Although each atom has a certain probability of
decaying in a each time interval, the exact moment of decay
is unknowable beforehand. More recently, optical quantum
RNGs have gained immense popularity due to the inherent
randomness present inmany parameters of the quantum states
of light. This has given rise to a plethora of different imple-
mentations: One of the first implementation was proposed by
Jennewein et al. [29], which splits a beam of photons on a
beam splitter. Many other methods involving, for example,
Lazer Phase noise [24], [30] or shot-noise measurement [21],
[56] have been proposed. There is a need for quantum ran-
dom numbers to perform, for example, various cryptographic
computations. To facilitate this, Huang et al. [27] integrate
four different types of quantum RNGs on Alibaba’s cloud
services, performing an XOR operation on their output for
practical security. We also refer to a comprehensive review
of quantum RNGs [25]. Unlike these methods, our approach
does not depend on devices specialised in generating random
numbers but rather uses a general-purpose quantum com-
puter. Since this QPU is easily accessible via the cloud, our
method has the potential to democratise the usage of TRNGs.

There is only little prior work on using quantum comput-
ers to generate random numbers. Tamura and Shikano [57]
use statistical RNG tests for randomness to test the condi-
tion and stability of various qubits present in IBM’s gate-
based hardware. They ultimately find that the qubits present
in the IBM’s hardware are unsuitable for random number

generation. Recently, Li et al. [39] have proposed a protocol
that successfully generates random numbers on a gate-based
quantum computer while simulatenously accounting and esti-
mating the state preparation error present in the equal super-
position state Unlike prior works, we do not use a gate-based
model, but rather our method utilises the random nature of
RF-SQUID qubits present in the D-Wave quantum annealer,
in order to generate uniformly distributed random numbers.
This is the first systematic and in-depth study of random
number generation capabilities of modern general-purpose
quantum annealers.

C. QUANTUM ANNEALING
Quantum annealing [32] has been used primarily to solve
NP-hard optimisation objectives formulated as Quadratic
Unconstrained Binary Optimisation (QUBO) problems.
Given the commercial impact of quantum annealing, sev-
eral organisations have made heavy investments into quan-
tum computers using superconducting qubits [4], [31].
Thus, the modern-day D-Wave Advantage offers more than
5000 qubits [45]. In contrast to existing works, ours is the
first comprehensive and detailed study of random number
generation on D-Wave QPUs. However, the current gener-
ation annealers are far from perfect and have several error
sources (see also Sec. III-A4). Krauss et al. [35] perform
an in-depth investigation into the single qubit biases present
in the D-Wave system. They conclude that individual qubits
show a time varying qubit bias, although the measurable bias
is insignificant when considered in a large population. Our
proposedmethod accounts for the error sources and qubit bias
by design.
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III. BACKGROUND AND NOTATIONS
A. ADIABATIC QUANTUM COMPUTING
1) PHYSICAL IMPLEMENTATION
Current generation quantum annealing hardware produced
by D-Wave is based on experimental results of condensed
matter physics. Specifically, it exploits quantum tunnelling to
search for the ground state of spin-glass systems. The spin-
glass system is implemented as a superconducting integrated
circuit made up of pair-wise coupled CCJJ rf-SQUIDs (com-
pound Josephson junction, radio frequency, superconducting
quantum interference devices), which needs to be kept cooled
at cryogenic temperatures close to absolute zero (∼15µK).
Each physical qubit in this circuit is made of niobium (Nb) in
the shape of a double ring interrupted and controlled by two
Josephson junctions [44]. An external magnetic field is used
to modify the flow of the current through the double ring. The
direction of flow is the quantum state of the qubit: clockwise,
anticlockwise, or in both directions at once when the qubit is
in quantum superposition.

2) QUANTUM ANNEALING
To specify an optimisation problem for the quantum
computer, we use the Hamiltonian operator, which outputs
the energy of the state of a quantum system. (Specifically, the
eigenstates of a time-dependent Hamiltonian are the station-
ary energy states, whose corresponding eigenvalues give the
energy of the system.) The D-Wave systemwe use is based on
the spin-glass Ising formulation for the Hamiltonian. In this
formulation, each qubit i of the system has a qubit bias hi ∈ R
towards |0〉 or |1〉. Furthermore, each qubit i can be coupled
with each other qubit jwith a strength Ji,j ∈ R, which encour-
ages (anti-)correlation of the qubits’ states if Ji,j 6= 0. Quan-
tum annealing [32] is an optimisation technique that takes as
input a problem Hamiltonian and then seeks to find the quan-
tum state that minimises that Hamiltonian. To that end, the
qubits are first initialised to a known minimum energy state
of a generic initial Hamiltonian, namely to the equal superpo-
sition state |+〉⊗n. The adiabatic theorem [3] states that, if the
Hamiltonian is changed slowly enough, a quantum system
that minimises its current Hamiltonian will evolve to stay in a
minimising state. Thus, slowly transforming (annealing) the
initial Hamiltonian into the problem Hamiltonian will put the
qubits in a state that minimises the problem Hamiltonian and
hence is the solution to our optimisation problem. The overall
runtime of the annealing process is denoted by τ and for sim-
plicity we consider the rescaled time s = t

τ
∈ [0, 1] where t

is time. Then, the Hamiltonian over the course of the anneal is
given by:

HIsing =
A(s)
2

(∑
i

σ (i)
x

)

+
B(s)
2

∑
i

hiσ (i)
z +

∑
i>j

Ji,jσ (i)
z σ

(j)
z

 , (1)

where A(s) and B(s) are the anneal schedules of the initial and
problemHamiltonian, respectively, and σx , σz are the Pauli-X
and Pauli-Z matrices.

3) SOLUTION DISTRIBUTION
Ideally, measuring the qubits at the end of the annealing
process would lead the qubits to only collapse to states that
minimise the final Hamiltonian. However, in practice, the
D-Wave system returns solutions under a distribution close
to a Boltzmann distribution of the final Hamiltonian, but at a
temperature T of the QPUmidway through the anneal, which
is called the freeze-out point. After this freez-out of the quan-
tum system, the spin-states do not change appreciably while
the Ising spin Hamiltonian finishes its evolution. The prob-
ability of obtaining a solution with energy E under the final
Hamiltonian is given by exp (−E/kBT ), where kB is Boltz-
man’s constant. For example, consider a single qubit system
with E = hi · si, where si is the Ising-spin state of the qubit.
The energy is calculated at the scaled time s of the freeze-
out, using the amplitude of the anneal function B(s). Hence,
the probability of the obtaining the state |1〉 is given by:

Pt (hi,T )|1〉 =
exp

(
B(s)·hi
kB·T

)
exp

(
B(s)·hi
kB·T

)
+ exp

(
−
B(s)·hi
kB·T

)
=

1

1+ exp
(
−

2B(s)·hi
kB·T

) . (2)

4) QPU ERROR SOURCES
The hardware of D-Wave’s QPU is bound to several
errors [10], [11]. In this section, we first describe the inte-
grated control errors (ICE), which are errors that prevent
a perfection translation of the mathematical problem (qubit
biases hi and couplings Ji,j) into the physical QPU. We also
discuss the temperature error and spin bath polarisation,
which have undesirable impacts on the optimisation.

a: BACKGROUND SUSCEPTIBILITY NOISE
Background susceptibility is one of the more prominent
errors. Physically close rf-SQUID qubits become weakly
coupled. The resulting interactions between neighbouring
qubits include undesirable hi qubit bias leakage from a qubit
to its neighbours, and spill-over coupling from qubit i to k if
i and j, and j and k are coupled via Ji,j and Jj,k .

b: FLUX ERROR
The qubit wiring causes magnetic field fluctuations called
1/f flux noise. This introduces an independent (yet time-
dependent) error term for each hi. The flux error is corrected
each hour by D-Wave in order to bound its impact. This error
leads to an approximate relative error of 1h ≈ 0.01.

c: DAC QUANTISATION ERROR
The Ising spins are analogue in nature and are regulated by
spatially local magnetic fields. There is a finite quantisation
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step that exists when converting digital to analogue, which
is the Digital-to-Analogue (DAC) quantisation error. Physi-
cally, a zero value for the qubit bias also needs to be embedded
onto the QPU using the magnetic fields, with the typical
quantisation step giving a worst case error of1h ≈ 0.008 for
h = 0 and 1J ≈ 0.002 for J = 0.

d: TEMPERATURE ERROR
As discussed earlier, the temperature T of the QPU impacts
the optimisation. T depends on the specific physical instance
of the QPU architecture and is specified in the documenta-
tion [12]. However, while running, small amounts of heat
are transferred in the QPU. Depending on the frequency of
anneals, this can raise the effective temperature of the qubits,
resulting in a fluctuation of a few mK .

e: SPIN BATH POLARISATION
In addition to the flux error, current passing through the wires
can cause polarisation of the qubit spins, which ultimately
biases the qubits. The magnitude of this effect is directly pro-
portional to the annealing time, with longer anneal schedules
resulting in increased polarisation and a change in the qubit
bias. Anneal-to-anneal correlations may occur because of the
partially polarised qubits, which can be avoided by allowing
the spin bath to depolarise between anneals.

B. INPUT FORMULATION
The optimisation problem described by the final Hamiltonian
can be formulated as a Quadratic Unconstrained Binary Opti-
misation problem (QUBO) [22]:

QUBO: argmin
x∈{0,1}n

x tQx, (3)

where x ∈ {0, 1}n are the decision variables and Q ∈
Rn×n, i.e., a square matrix whose diagonal accounts for
per-qubit biases and whose off-diagonals are inter-qubit
coupling weights. QUBO problems belong to the class of
NP-hard problems, see Lucas et al. [41] for examples.
D-Wave provides an API for its QPU, which takes as input a
QUBO and then applies the corresponding Hamiltonian to the
physical qubits of the QPU. The mapping from the decision
variables to the physical qubits is called an embedding. To
embed a problem on the QPU is to initialise the physical
qubits according to a QUBO and its embedding.

C. RANDOM NUMBER GENERATORS
1) χ2 TEST
The χ2 test is used as the most simple statistical hypothesis
test to check for randomness in a bit sequence. It assumes
that n random samples are divided into k mutually exclusive
classes—in our case of random bit sequences, there are two
classes: 0 and 1 bits. The null hypothesis gives a theoreti-
cally expected value Ei for each class. Pearson [50] proposed
that for validating the hypothesis, as n → ∞, the fol-
lowing quantity follows a χ2 distribution with k−1 degrees

of freedom:

χ2
c =

∑ (Oi − Ei)2

Ei
. (4)

In the context of random numbers, it tests whether there are
statistically significant differences between the expected and
observed frequencies.

2) NATIONAL INSTITUTE OF STANDARDS AND
TECHNOLOGY (NIST) TEST SUITE
The NIST statistical test suite for random number genera-
tors [7] is the most popular application to test the randomness
of sequences of bits. It is designed to probe three main
properties of a random number generator:

1) Investigate the distribution of 0s and 1s (independent
of the order);

2) Analyse harmonics of the sequence using spectral
methods;

3) Detect patterns based on probability theory.
To test these properties, the suite uses the χ2 test and 14 other
tests. For example, the serial test is based on the fact that every
bit pattern of length m has the same probability of occur-
rence in the sequence, while the Discrete Fourier Transform
(DFT) test is designed to identify any periodic features in the
sequence. Each test produces a p-value, i.e., the probability
of obtaining the measured result if the null hypothesis is true.
The null hypothesis we seek to test is perfect randomness,
i.e., P(bi = 1|{bj}j6=i) = 0.5. It is rejected with a confidence
of 1 − α if the p-value lies below a significance level of
α = 0.01. (The confidence level for randomness has been
adapted from the NIST Test Suite [7].) Otherwise, we fail to
reject the null hypothesis. Since the random excursions and
the random excursion variant test produce several p-values,
we combine these into a single p-value for each of these tests
using Fisher’s method (discussed next).

3) FISHER’s METHOD
Fisher’s combined probability test [19] is designed to aggre-
gate results from several independent tests while performing
hypothesis testing. The test combines k p-values into a test
statistic, X2, which follows a χ2 distribution with 2k degrees
of freedom:

X2
= −2

k∑
i=1

log(pi), (5)

where pi is the p-value for the ith statistical test. The final
p-value is obtained for the X2 test statistic.

IV. METHOD
We present a true random number generator based on non-
deterministic quantum effects. We first provide an overview
of the algorithm and then move to describing the algorithm
in Sec. IV-B and the post-processing in Sec. IV-C. We then
discuss how errors propagate from the physical qubits to
the final measurements in Sec. IV-D. Finally, we turn to
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generating biased random numbers in Sec. IV-E and discuss
expected errors in Sec. IV-F.

A. OVERVIEW
We use the quantum annealers D-Wave Advantage 4.1 and
2000Q to generate truly random numbers. We initialise the
annealer to the equal superposition (|+〉 state), which has,
in theory, an equal probability for each qubit being measured
as |0〉 or |1〉. The qubits that are implemented in hardware as
niobium loops cannot be directlymeasured; rather, we have to
anneal them first. During an anneal, the initial state, minimis-
ing the initial Hamiltonian (weighted byA(s)), is slowly trans-
formed into a state that minimises the problem Hamiltonian
(weighted by B(s)). A(s) and B(s) are parameters of the anneal
schedule and are varied as depicted in Fig. 1 The Hamiltonian
varies during the anneal following (1). To prevent the qubits
from leaving their initial |+〉 state, we use the null QUBO,
which the API turns into the problem Hamiltonian. Crucially,
we take into account and mitigate several sources of errors
that occur when embedding the problem Hamiltonian on the
physical qubits and during the anneal. After the anneal, the
physical qubits on the QPU are measured as either |0〉 or |1〉,
generating a stream of truly random bits. This entire process
is repeated over multiple anneals, re-initialising the QPU and
generating a new embedding before each anneal. A single
anneal generates random bits (scaling with the size of the
QPU) and multiple anneals allow us to generate multiplica-
tively many random bits.

B. ALGORITHM
We design the following method to generate random num-
bers, while taking into account the error sources described
earlier. We consider N qubits on the QPU and perform A
anneals to generate a bit sequence of length AN .

1) RNG INITIALISATION
At the core of our method lies the measurement of an equal
superposition quantum state 1

√
2
(|0〉 + |1〉). The probability

of measuring |0〉 or |1〉 as the outcome is equal, i.e., =
0.5. D-Wave’s QPU allows to put the physical qubits into
this quantum state by initialising the quantum annealer with
any embedding. Ideally, we would then directly measure the
qubits. Unfortunately, this is infeasible on D-Wave’s QPU
because a minimum annealing time before measurement
always exists. We seek to circumvent this issue by keeping
the system in its initial quantum state for the duration of the
anneal time. We choose the minimum anneal time both for
higher throughput and to reduce the undesirable effects of
spin bath polarisation. However, naïvely providing an empty
QUBO to the QPU’s API would result in an empty embed-
ding, which would not invoke any physical qubits. Instead,
we pass a null QUBO to the API:

N∑
i=0

xi −
N∑
i=0

xi, (6)

where x is a vector representing the states of the QUBO
variables.

2) CHOOSING PROBLEM SIZE
The number of qubits considered per anneal greatly affects
the parallel nature of our RNG and, subsequently, the
throughput. On an ideal (hypothetical) QPU, taking many
anneals—each with a small number of qubits and with inde-
pendent embeddings—would be equivalent to taking only a
few anneals but with a larger number of qubits per anneal.
However, the D-Wave QPU has several error sources (see
Sec. III-A4 for details) that could potentially make the two
settings not equivalent.

In particular, the DAC quantisation errors are distributed
over all physical qubits. While the magnitude of their influ-
ence on any specific hi or Ji,j is independent of the overall
number of qubits that are used in the embedding, the DAC
quantisation error can cause (undesirable) residual couplings
Ji,j 6= 0 between qubits. When a higher number of qubits
per anneal is used, each qubit i has a higher number of other
qubits j with which residual couplings can happen. This then
would lead to more (anti-)correlations between qubits and
hence between generated bits, when more qubits are used.

The other error sources do not depend on the problem size.
We perform experiments (see e.g., Fig. 2 and Sec. V) to

understand the variation of bias in the output sequence due
to these disturbing effects. Surprisingly, we empirically find
that the output bias is independent of the number of qubits
used in the anneal. Hence, we use all 4950 qubits at once
which allows us to measure thousands of truly random binary
numbers in parallel. This, in turn, leads to a high throughput
of our RNG.

3) CHOOSING EMBEDDINGS
Due to the nature of our generator, our problem Hamiltonian
does not have any qubit bias or coupling present, which
implies minuscule levels of bias leakage and hence negligible
background susceptibility noise. However, the impact of the
DAC quantisation and ‘‘1/f flux’’ errors depend on whether
the problem gets re-embedded on the QPU. If we do not
re-embed the problem for every anneal, the value of the DAC
quantisation error of a physical qubit would remain the same
across anneals. Further, there are fluctuations in the flux noise
that have lower frequency than the typical inverse annealing
time, so problems solved in quick succession have highly
correlated contributions from flux noise. Since re-embedding
takes time, we can circumvent the negative impact of the flux
noise. Note that, in the literature, designing the right embed-
ding has an influence on the optimisation and the optimality
of the empirical solutions in problems which show high graph
connectivity [9]. Since our QUBO does not have couplings,
this is not an issue for our problem.

C. POST-PROCESSING
The previous section addressed the issue of correlations
in sequences of generated bits, where the unconditional
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probability of the next bit, P(bI+1 = 1), can differ from
the probability conditioned on the previously generated bits,
P(bI+1 = 1|{bi}Ii=1). As an additional issue, the raw out-
put, i.e., before post-processing, of most truly random num-
ber generators [25], including ours, tends to be slightly
biased towards 0 or 1: P(bi = 1) 6= 0.5. To address
this problem, we employ a naive post-processing technique
by von Neumann [60] for improving the entropy of our
produced bits by eliminating any output bias present in
the non-post-processed bit sequence. Note that although the
post-processing removes any bias present in the sequence,
it does not convert a non-random sequence into a random
sequence, i.e., it does not eliminate potential already present
patterns in the sequence. The von Neumann corrector splits
the bit stream {bi}i∈[0,1,2,...,K−1] of length K into successive
pairs {(bi, bi+1}i∈[0,2,4,...,K−1] and discards pairs that contain
identical bits (bi = bi+1). For pairs where the bits are distinct,
the corrector keeps the first bit and discards the second bit.
For an RNG, whose output is biased by e, i.e., the probability
of getting |0〉 is 0.5 + e, this scheme reduces the number of
bits to (25− 100e2)% of the unprocessed number of bits.

D. PROPAGATION OF ERROR IN PROBABILITY
For our later analysis, we need to understand how the prob-
ability of obtaining 0 or 1 varies with the error δh of the
qubit bias h (due to the ICE errors). Specifically, the error
propagation δP into the probability P defined in (2) is:

δP = ±

(
2B(s)
kBT

·
e−β·2B(s)h(

1+ e−β·2B(s)h
)2
)
δh, (7)

whereβ = 1/(kBT ) is the inverse Boltzmann temperature and
the value of B(s) at freezeout temperature remains constant.
Unfortunately, the QPU does not allow us to measure the
exact experimental value of the qubit bias h that has been
embedded onto the QPU, but D-Wave provides a range of
δh values depending on the various errors (see Sec. III-A4).
This is sufficient for us to use this equation to develop an
empirical understanding when comparing the errors present
in two different D-Wave architectures in the experiments
(Sec. V-A).

E. GENERATING BIASED RANDOM NUMBERS
Biased random bits have a different probability of getting |1〉
than getting |0〉. Ideally, to generate qubits that are biased
to a certain amount, we would be able to specify the right
non-zero qubit bias value h for all qubits using the probabil-
ity transformation given by (2). But Eq (2) depends on the
effective temperatures T of the qubits, which can fluctuate
depending on the programming cycles. We thus need to first
determine the current temperature of the QPU before we
can generate random numbers with a certain probability P
of obtaining |0〉. Ultimately, if we know the empirical bias
towards 0 for some h, we can use (2) to determine T . Since
each physical qubit i can react slightly differently to a specific
qubit bias h, we first fix an embedding. We seek a robust

estimate of T and thus determine the empirical probabilities
Pi,h of obtaining |0〉 for H equally spaced qubit bias values
h ∈ [−1,+1]. (Note that we use the same qubit bias for all
physical qubits.) However, applying a qubit bias h naively
would lead the QPU to automatically rescale the biases of all
qubits into the range [−2,+2] before applying them to the
physical qubits, which makes it impossible to apply different
values of h to them. Thus, we crucially remove the automatic
scaling and stay within the physically implementable range of
qubit bias values, namely [−1,+1]. Over any such qubit bias,
we perform A reads1 to determine Pi,h. We next remove any
per-qubit imperfection. Specifically, for qubit i, the average
probability of obtaining |0〉 across all considered qubit bias
values (ui = 1

H

∑
h Pi,h) should be 50%.We thus correct Pi,h:

P′i,h = Pi,h − (ui − 0.5). Next, we average across qubits to
obtain the probability Ph = 1

N

∑
i P
′
i,h for a qubit bias h and

fit the probability curve given by (2) to {Ph}h by minimising
the mean squared error. We thus obtain the temperature T .
Knowing T finally enables us to compute the qubit bias h

for a desired probability P via the probability transformation
given in (2). The QUBO to generate biased random numbers
is then:

QUBO : min
∑

hxi. (8)

F. ERROR ACROSS PHYSICAL QUBITS
Due to errors (Sec. III-A4), annealing with a certain qubit
bias h will result in varying empirical probabilities P′i,h.
We investigate how this variation in P′i,h differs from the
theoretically expected variation and how it differs between
QPU architectures. We consider the standard deviation σ =
σ ({P′i,h}i). Since QPU time is expensive, the number of bits
generated per qubit is quite small. This results in a theoretical
standard deviation σt whichwould be present even on an ideal
QPU. The probability of obtaining |1〉 from an ideal qubit
with a qubit bias h at temperature T is denoted by Pt (h,T ).
Then, the probability of getting the state |1〉 s times when
annealing an ideal qubit A times is given by:

Pfreq(s) =
Pt (h,T )s(1− Pt (h,T ))A−s

(A
s

)∑A
s′=0 Pt (h,T )s

′ (1− Pt (h,T ))A−s
′
(A
s′
) (9)

We get the theoretically expected number of ideal qubits that
have probability s

A as N ·Pfreq(s), from which we compute σt .

V. RESULTS
This section describes the experimental results. All exper-
iments are done on an Intel Core i7-8565U CPU with
8GB RAM using Python 3.9. The QPUs, namely the
Advantage System 4.1 (Pegasus architecture [15]) and the
DW_2000Q_6 (Chimera architecture [15]), were accessed
using Leap 2 [14].

1We use read to refer to an anneal in a series of anneals where the
embedding and biases remain the same across anneals, and the QPU is not
properly reset in between anneals.
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A. HARDWARE COMPARISON
We first determine which D-Wave architecture is more suit-
able for our random number generator: the Advantage or the
2000Q. The Advantage is the newer QPU, having more than
5000 qubits, but the 2000Q, which has 2000 qubits, is the
system with less noise in δh [45]. To compare between them,
we analyse sequences of length A′N ′ with A′ = 200 anneals
of N ′ = 4950 (2000) qubits for the Advantage (2000Q),
without post-processing. We generate ten sequences on each
architecture. First, we calculate each sequence’s output bias e.
Fig. 2b shows the results. We see that the output bias present
in the 2000Q is greater than in the Advantage. This is surpris-
ing as the 2000Q is considered to have less errors. We next
compute the standard deviation of the output bias across
the physical qubits, following the methodology detailed in
Sec. IV-F. The results are in Fig. 7. As we are currently con-
sidering unbiased random numbers, the standard deviation
at a qubit bias of 0 is of importance, which is higher for
the 2000Q than for the Advantage. This is again unexpected,
as the 2000Q is considered the less noisy system.

In order to understand these counter-intuitive results,
we use the propagation of error in the probability,
see Sec. IV-D. For our special case of an unbiased qubit
(hi = 0) and no couplings (Ji,j = 0), the propagation of
error is δP = 2B(s)

kBT
δh. This depends on B(s) and T , which we

determine next before we can proceed with our analysis. The
2000Q and the Advantage have different single qubit freeze-
outs: The single qubit freezeout of the 2000Q is at 0.719µs
with B(s) = 6.54GHz, while the Advantage has a single
qubit freezeout time of 0.612µs, giving B(s) = 3.92GHz.
As mentioned in Sec. III-A4, depending on the frequency
of anneals on the QPU, the temperature T may vary by a
few mK . To calculate the operational temperature, we follow
Sec. IV-E and use 4950 (2000) qubits for the Advantage
(2000Q) over A = 1000 anneals each for H = 101 equally
spaced qubit bias values h ∈ [−1,+1]. The temperature of
the Advantage and the 2000Q are 18.9 mK and 11.9 mK ,
respectively, which gives the graph in Fig. 3. Overall, for our
case of unbiased qubits without couplings, we thus find a
higher value of B(s)

kbT
for the 2000Q than for the Advantage.

This increases the impact of errors δh on the output for the
2000Q, which leads to a higher standard deviation across the
qubits and a higher bias in the output sequence for the 2000Q
than for the Advantage.We thus focus more on the Advantage
rather than the 2000Q for our RNG.

B. TESTING UNBIASED RANDOM NUMBER GENERATION
1) EVALUATION METHODOLOGY
We use the NIST Test Suite [7] (Sec. III-C2) to evaluate the
generated bit sequences. It contains 15 tests. However, for
sequences shorter than 387, 840 bits, the universal test cannot
be performed, and for sequences shorter than 106 bits, the
random excursions, variational random excursions, linear
complexity, and overlapping patterns tests cannot be per-
formed. Unfortunately, quantum compute remains expensive

and the hardware has limited number of qubits, which makes
generating multiple sufficiently long sequences for these
tests not computationally feasible within a reasonable budget.
We hence omit these tests from the results. We consider
the log-sum of the p-values according to Fisher’s method as
summary statistic over the different tests.

2) GENERATING TEST SEQUENCES
Since the NIST test suite is usually evaluated on multiple
sequences, we generate several sequences of random bits.
Although the Advantage has more than 5000 qubits, the
number of qubits that can be utilised is limited due to the
need to run the QPU at cryogenic temperatures in a low–
magnetic-field environment. Hence, at any given point only a
subset of them are available to the users. For our experiments,
we were able to consistently utilise 4950 qubits, allowing us
to produce 4950 bits in parallel. To test our RNG for stastical
properties of randomness, we generate ten sequences using
4950 qubits for 200 anneals. This results in sequences of
length 990k bits before post-processing and approximately
247k after post-processing.

3) RESULTS
As Fig. 2b shows, the sequences exhibits output biases if no
post-processing is applied. This leads to several tests failing
on almost all of the ten sequences, as the left side of Table 1
shows. The raw bit sequences are thus not random. However,
the post-processing eliminates the output bias and hence
increases the p-value on average (see Fig. 4 and right side
of Table 1), which lets the post-processed sequences pass all
applicable tests.

4) SINGLE LONG SEQUENCE
Since we pass the NIST test suite for multiple, shorter
sequences but lack the computational resources to generate
multiple large sequences, we next evaluate a single long
sequence. This allows us to run several additional tests
that require long inputs. We anneal 2000 times to obtain
a sequence containing 9.9 million bits, which reduces to
2, 474, 434 bits after post-processing. The p-values for each
test in the NIST test suite is given in Fig. 5, with a cumulative
Fisher value of 0.18. The long sequence passes all tests.

C. TESTING BIASED RANDOM NUMBER GENERATION
We finally evaluate how well our method generates biased
numbers. Since the NIST test suite only works for unbiased
numbers, we use the χ2 test (Sec. III-C1) to assess the results.
Note that we do not apply von Neuman-post-processing since
it would eliminate the bias.

We first determine which architecture is better suited. For
unbiased numbers, we found the Advantage to be preferable
due to, among other reasons, its lower standard deviation of
probabilities across physical qubits (see Fig. 7). In fact, the
Advantage exhibits smaller standard deviations for all qubit
biases close to 0. However, we want to also obtain bits that
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FIGURE 2. Output Bias Variation. We investigate the output bias e (without post-processing). The output bias is the value by which 0.5 is exceed in
the probability of a given quantum state. a) First, we vary the number of qubits, perform 200 anneals each, and plot the output bias. The Advantage
has consistently lower bias. b) Next, we generate 10 sequences by using the maximum number of usable qubits per architecture (2000 and
4950 respectively) for 200 anneals each giving us sequences of length 400k and 990k bits. The mean output bias for the 2000Q is 0.0199 with
standard deviation 0.0015. Similarly, the mean output bias for the Advantage is 0.010 with standard deviation 0.0036. The Advantage again has
consistently lower bias. Note that the higher standard deviation of the Advantage is due to an outlier having significantly lower output bias.

FIGURE 3. QPU Temperature Determination. We follow Sec. IV-E to determine the experimental QPU temperature T . For equally spaced qubit biases
h ∈ [−1,+1], we anneal the QUBO given in (8) and compute the corresponding average output biases over all qubits (4950 for the Advantage, 2000 for
the 2000Q). The cyan plot shows these average probabilities. Least-squares fitting to the probability curve (2) yields the blue plot, allowing us to
compute the average QPU temperature of 18.9mK . The red line shows the expected probabilities under the ideal temperature, which is specified in the
QPU-specific properties documentation [12]. Using the experimental temperature instead of the ideal one fits the observations significantly better.
The mean squared error after least-squares fitting for the Advantage and the 2000Q are 1.5 · 10−4 and 6.9 · 10−5 respectively. We thus find that the
2000Q follows the error model better, which makes it easier to use (2) for biased RNG than the advantage.

are more than just slightly biased. For these cases, we require
larger qubit biases. The 2000Q has lower standard deviations
for such larger qubit biases and is thus preferable. In addition,
Fig. 3a shows that, when using the determined temperature,
the 2000Q has a lower mean-squared error to the empirical
output biases than the Advantage. That means that the 2000Q
follows (2) (which we use to determine the appropriate qubit
bias from the desired output bias) more closely than the
Advantage. The 2000Q is thus more fit for generating biased
random numbers than the Advantage, which is also supported

by the Advantage failing the χ2 tests. We thus focus on the
2000Q for biased number generation.

We next ablate whether determining the experimental tem-
perature is necessary or if the ideal temperature could be
used instead.We find that directly using the ideal temperature
results in the failure of the χ2 test.
Using the experimental temperature, we perform

200 anneals for each qubit bias. All of the resulting sequences
pass the χ2 test, which depict the capability of the 2000Q to
produce biased random numbers.
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TABLE 1. P-values for Each Test. We compare NIST test suite results of ten different sequences generated by the Advantage, before and after
post-processing. For each test, we report the average and worst value across the sequences, as well as the number of sequences that pass each test.

FIGURE 4. Fisher p-values Combined Fisher’s values for ten sequences
that are generated via 200 anneals of the maximum number of usable
qubits on the Advantage and the 2000Q, 4950 and 2000, respectively.
Both architectures pass the test suite and we find no significant
difference in terms of summary p-values.

VI. DISCUSSION
As expected, there are discrepancies between the theoret-
ically predicted behaviour and the empirical observations.
The presence of noise prevents the quantum annealer from
producing perfectly unbiased random numbers. In general,
the 2000Q is the lower-noise system compared to the Advan-
tage. However, our experiments (unbiased qubits without any
couplings) show that differences in the annealing parameters
and QPU temperature lead errors (δh) to have a stronger
impact on outcomes (δP) on the 2000Q than the Advantage.
Because of that, we find that the quantum annealer’s ability
to generate random numbers is not entirely reflective of the
errors (δh) on the QPU and, hence, should not be used as
a metric of the quality of the physical qubits. For example,
Fig. 7 shows that the standard deviations on the Advantage

FIGURE 5. P-values for Each Test. A single long sequence is generated by
using 4950 qubits for 2000 anneals, which gives 2.47 million bits after
post-processing. The plot shows the p-values of each test, which are all
passed. The cumulative Fisher value of the sequence is 0.18.

are less symmetric about h = 0 than the 2000Q. Still,
we recommend to use the Advantage for our method, which
also offers higher parallelisation due to having more qubits.

Careful method design and post-processing enables unbi-
ased random number generation on a quantum annealer. Even
though the Advantage is more suited for unbiased random
number generation, its deviation from the ideal probability
curve diminishes its ability to generate biased random num-
bers. However, the 2000Q is able to produce biased numbers.

Following the proposed methodology, we can use
4950 qubits to generate 4950 bits in parallel. While the
annealing time is only 1µs per anneal, there are overheads
involved which lead to the substantially higher QPU time
of approximately 8.7ms per anneal (also called QPU access
time). The latter gives our RNG a QPU throughput of
0.56 megabits per second. We find the QPU access time to be
independent of the number of qubits used. The throughput of
our RNG is therefore limited by the current overheads present
in the QPU.

A. SOCIAL IMPACT
As mentioned in Sec. I, random numbers have many appli-
cations, and a way to generate and access provably true ran-
dom numbers can influence many areas. Thus, cryptographic
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FIGURE 6. P-values of All Tests. Each of the ten sequences generated on the Advantage gives a p-value for each test. Here, we show a histogram over the
p-values before and after post-processing, with coarse (bright green) and fine (dark green) binning. The frequencies in the plot are log10-scaled. We see
that all sequences pass all tests after post-processing.

FIGURE 7. Standard Deviation of Probabilities Across Physical Qubits. When computing the temperature (Fig. 3), we anneal with several, equally
spaced qubit biases (x-axis). For each such bias, we plot the standard deviation (across the physical qubits) of the per-qubit probabilities.
In particular, the experimentally determined standard deviation for each qubit bias is shown in red. In addition, the expected standard deviation,
derived from (9), is shown for the measured QPU temperature (in blue) and for the ideal QPU temperature (in cyan).

systems can be made more resilient to attacks if they use truly
random numbers, improving security and privacy.

B. LIMITATIONS
Note that the tests in the test suite are not necessarily indepen-
dent (a requirement for Fisher’s method) since failing one test
might increase the conditional likelihood of failing another
one as well. However, using Fisher’s method as a summary
statistic makes comparison between different bit sequences
more intuitive than only considering the worst p-value.

The von Neumann post-processing is simple but has a
fairly low output rate. If higher output rates are desired, other
post-processing methods can be used in future [36].

Directly generating biased random numbers is time-
consuming due to the need to determine the QPU temperature
beforehand. It also follows that any change in temperature
or high flux errors might lead to negative results. Hence,
we recommend generating unbiased random numbers on the

QPU and then applying a subsequent inverse transformation
using the CDF.

Although the 2000Q can generate biased random numbers,
the Advantage is unable to do so sufficiently well to pass the
χ2 test.

C. FUTURE DIRECTIONS
D-Wave continues to add qubits and to improve their connec-
tivity patterns. This comes at the cost of a more erroneous
system, which amplifies the effect of external noise on the
annealer. Hence, instead of trying to mitigate the influence of
noise as we do, a method could try to harness the random dis-
tribution of noise in the hardware as a source of randomness
for generating bit streams of random numbers. Unfortunately,
the internal sensors of the QPU are not publicly accessible.

We focused on single bits in this first work of using
a quantum annealer as an RNG. Directly generating more
complicated distributions on the QPU with dependencies
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between multiple bits might be possible by finding appropri-
ate QUBOs that make certain bit patterns more likely than
others.

VII. CONCLUSION
For the first time in the literature, our work exploits random
properties of a quantum annealer for the construction of an
RNG. Our experiments show that the proposed method can
extract truly random numbers from the Advantage quantum
annealer. Counter-intuitively, our experiments indicate that
the Advantage is better suited for this task than the less noisy
2000Q. We would like to stress that this does not imply that
the Advantage possesses superior or less erroneous physical
qubits than the 2000Q. Our discussion rather shows how
this is a consequence of how qubit bias errors propagate
into the output bias. Furthermore, the 2000Q is better suited
than the Advantage for generating biased random numbers.
We hope that our work inspires follow-ups on exploiting
general-purpose quantum computers for randomness.
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