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High-resolution European daily 
soil moisture derived with machine 
learning (2003–2020)
Sungmin O1 ✉, Rene Orth2, Ulrich Weber   2 & Seon Ki Park1,3,4 ✉

Machine learning (ML) has emerged as a novel tool for generating large-scale land surface data in 
recent years. ML can learn the relationship between input and target, e.g. meteorological variables 
and in-situ soil moisture, and then estimate soil moisture across space and time, independently of 
prior physics-based knowledge. Here we develop a high-resolution (0.1°) daily soil moisture dataset in 
Europe (SoMo.ml-EU) using Long Short-Term Memory trained with in-situ measurements. The resulting 
dataset covers three vertical layers and the period 2003–2020. Compared to its previous version with 
a lower spatial resolution (0.25°), it shows a closer agreement with independent in-situ data in terms 
of temporal variation, demonstrating the enhanced usefulness of in-situ observations when processed 
jointly with high-resolution meteorological data. Regional comparison with other gridded datasets 
also demonstrates the ability of SoMo.ml-EU in describing the variability of soil moisture, including 
drought conditions. As a result, our new dataset will benefit regional studies requiring high-resolution 
observation-based soil moisture, such as hydrological and agricultural analyses.

Background & Summary
Because soil moisture is a key variable in water, energy, and biogeochemical cycles1, the availability of large-scale, 
high-resolution soil moisture datasets can facilitate diverse weather and climate applications, including moni-
toring and forecasting of hydrological and ecological extreme events2–7. Soil moisture exhibits complex spatial 
and temporal dynamics, which undermines the usefulness of the direct use of sparse in-situ measurements for 
estimations or even predictions across larger areas8,9. Consequently, different approaches have been explored as a 
way of obtaining improved spatial data coverage. Physics-based land surface models have played the main role in 
providing continental-to-global scale soil moisture datasets10–12. Despite the fact that soil moisture values are not 
comparable and transferable among models13, temporally and spatially continuous data can be obtained across 
multiple soil layers. Satellite observations are another important resource, providing soil moisture estimates 
across large areas14–17, although their data are often missing due to the local retrieval conditions (e.g. presence 
of clouds or dense vegetation) or satellite revisit times. Moving beyond model and satellite-based datasets, novel 
machine learning (ML) approaches have been increasingly employed in recent years to generate large-scale soil 
moisture datasets, for instance, by filling the temporal and spatial gaps in satellite observations or by integrating 
multiple data sources18–20.

In this context, our previous study21 (hereafter O21) used ML to generate a global soil moisture dataset – 
SoMo.ml – by upscaling in-situ measurements. We trained ML with meteorological forcing and soil moisture, 
such that the ML could learn emerging input-output relationships and thereby establish its own knowledge about 
processes. In this way, ML provides an attractive avenue to provide data that are independent from traditional 
modeling or satellite-based datasets. This is particularly useful for the regions where established approaches 
can not provide reliable estimates, e.g. high latitudes or densely-vegetated areas, because with another inde-
pendent soil moisture data source, we can mitigate data uncertainty by comparing or using an ensemble of 
diverse datasets generated by different approaches22,23. Further, ML-driven datasets can foster scientific discov-
ery in the Earth and climate domain dominated by physics-based models, particularly for processes that are not 
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sufficiently well represented in the models24,25. For instance, SoMo.ml has contributed to observation-based 
analysis of drought-related ecosystem damages or heat events26–28.

Despite the availability of various data sources, acquiring high-resolution soil moisture data remains a 
challenge29,30. Various downscaling approaches have been developed to improve the spatial resolution of exist-
ing data31, however, the publicly available large-scale datasets are mostly available at coarse resolutions (25–
50 km). To better reflect the land surface heterogeneity associated with soil and vegetation characteristics and, 
thereby, improve understanding of soil moisture heterogeneity and related hydrological and meteorological 
processes, there is a need for a more detailed picture of soil moisture dynamics across a broad range of relevant 
communities30,32–34.

Given the wide range of applications for soil moisture data, and the increasing need for high-resolution data, 
we aim to provide an updated ML-driven soil moisture dataset for Europe and document the added value of 
increased spatial resolution. To do this, we largely follow the methodology of O21 (Fig. 1); Long Short-Term 
Memory (LSTM) networks ingest meteorological forcings and static features as inputs and return estimated 
soil moisture as outputs (targets). LSTM is a special kind of recurrent neural network35, designed specifically 
to overcome the long-range temporal dependency problem of the traditional recurrent neural networks. This 
makes LSTM networks well suited to model soil moisture which, as a state variable and given the soil water 
holding capacity, integrates the meteorological forcing and thereby is driven by both concurrent and preceding 
meteorology21,36,37. We scale point-level in-situ data to grid-scale target data by adjusting the mean and standard 
deviation of the in-situ data to those of ERA5-Land reanalysis 0.1° gridded soil moisture12 within the overlap-
ping time period. In other words, the long-term mean and variation of the target data largely follow ERA5-Land, 
while daily variation is retrieved from in-situ measurements. As a result, our new dataset SoMo.ml-EU provides 
multi-layer daily soil moisture (0–10, 10–30, and 30–50 cm depths) for Europe at a 0.1° resolution. The resulting 
data show comparable performance to other widely-used gridded datasets. The most distinct feature of SoMo.
ml-EU is that, by design, it closely follows daily variations in in-situ data, even more so than the downscaled 
previous version. Consequently, SoMo.ml-EU will be useful for various studies and applications that require 
high-resolution, observation-based soil moisture information.

Methods
Training data preparation.  Target In-situ soil moisture.  We obtain daily in-situ soil moisture data from 
the International Soil Moisture Network (ISMN). ISMN is an international data hosting facility that collects, 
harmonises, and shares in-situ soil moisture measurements available around the globe38,39. We consider in-situ 
data not only from the European domain but also from the US. In this way, we are able to obtain a greater amount 
of training data, which also represents more diverse climate conditions, as shown in Fig. 2. See also Fig. S1. The 

Fig. 1  Schematic overview of the workflow. (a) Meteorological variables and static features are collected at the 
grid pixels where in-situ soil moisture measurements exist. The in-situ soil moisture data are adjusted to match 
the long-term mean and standard deviation of respective ERA5 gridded soil moisture data; note that daily 
variations are directly from the in-situ measurements. (b) Cross-validation is performed using the training data 
spatially partitioned into five subsets, and optimal hyperparameters are determined based on the performance 
mean of the five validation sets. (c) The final LSTM model with the optimal hyperparameters is trained with the 
entire training data. The trained model is then used to estimate soil moisture at every target grid pixel within the 
domain.
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LSTM-based model is trained using a combination of training data from all available locations; it is possible 
because (i) the ML model doesn’t require the geographical information of training data, but it ingests the entire 
training data jointly, and (ii) ML can transfer knowledge (the input-output relationships) across space40, which is 
often the issue to physically-based models (i.e. parameter regionalisation41). In fact, more data helps the model to 
accurately describe input-output relationships and more diverse data enables the model to represent the variation 
of these relationships across conditions. The resulting accurate relationships, and their variations across condi-
tions, form the backbone of the LSTM-based estimation of soil moisture in different time periods and regions. 
While the capacity of ML models to extrapolate input-output relationships beyond known conditions is limited, 
they can transfer knowledge between space and time at the same time40; e.g. the models learn about the input-out-
put relationships in less-sampled semi-arid sites with many training data collected during dry periods at humid 
sites. Table 1 shows a full list of the ISMN networks contributing to the training data.

The collected in-situ data are then scaled using the long-term mean and standard deviation of ERA-Land 
gridded soil moisture. This scaling is intended to eliminate systematic biases in soil moisture means and variabil-
ities among different types of sensors and calibration techniques while maintaining the daily variations observed 
directly by in-situ measurements, consequently yielding upscaled soil moisture information at the target resolu-
tion of 0.1°. It is worth noting that temporal variations in point-level data have a wider footprint than absolute 
soil moisture values42. If there are more than one scaled measurement time series for a target grid pixel, we take 
an average of them. See O21 for further details about the data preparation.

Fig. 2  (a) Spatial distribution of training data; brown circles and red markers show the grid pixels where in-
situ soil moisture data are obtained in US and Europe, respectively. (b) The number of grid pixels and the total 
amount of training data for each layer. (c) Hydroclimatic diversity of origins of training data for the first layer; 
markers show the training data distribution across different climatic regimes defined by the long-term mean 
aridity and temperature of each grid pixel. Grey-scale colours represent the number of grid pixels for each 
regime across the European domain that SoMo.ml-EU covers. The same information for the second and third 
layers can be found in Fig. S1.
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Meteorological forcing variables and static features.  We use temperature, precipitation, net radiation, and skin 
temperature (land surface temperature) as meteorological forcing variables for the first layer. Each layer is com-
puted with a separate LSTM. The model first predicts surface soil moisture using the four meteorological varia-
bles as inputs. Then, the models for the second and third layers additionally use the soil moisture predicted from 
the upper layer(s). These variables were found to be the most influential variables according to our previous 
analysis in O21, which quantified the contribution of the respective variables to the LSTM model performance. 
Other relevant variables, such as specific humidity or wind, only had a marginal effect on the performance of the 
LSTM; moreover, it remains challenging to obtain reliable high-resolution gap-free and observation-based data 
for these variables over large areas.

The previous version of SoMo.ml used only ERA5 reanalysis data, whereas the meteorological data for this 
study are pulled from more diverse data sources (see Table 2) in order to reduce the dependency of the resulting 
data product on ERA5. Forcing data with a sub-daily resolution are aggregated to a daily scale, and all data are 
available at 0.1° resolution such that no spatial aggregation is applied. We examine the feature importance with 
the input variables employed in this study (Fig. S2). The results are similar to those found in O21, despite using 
different data sources. That is, precipitation and skin temperature are the most important meteorological inputs 
in surface soil moisture simulations, while the upper layer’s soil moisture is most important in deeper layer 
simulations.

We also use static features such as climatological values (long-term mean precipitation and aridity), topogra-
phy (means and standard deviations of sub-grid scale elevation values), vegetation (forest and short vegetation 
fractions), and soil properties (sand and clay fractions for surface and deep layers). These static inputs have 
proven to be particularly important in surface soil moisture simulations21 (Fig. S2). We prepare all the static 
data at the spatial resolution of the target data (i.e. 0.1° × 0.1°). For instance, we compute the mean and standard 
deviation of sub-grid scale (1 arc-minute) elevations43 within the target resolution for topography information. 
For the vegetation and soil information44, we compute the mean of sub-grid scale values. A comprehensive 
description of the meteorological forcing and static datasets is given in Table 2.

Model training and application.  We employ a modified version of LSTM architecture, Entity-Aware 
LSTM45, that can explicitly differentiate between dynamic and static inputs, i.e. meteorological forcing and static 
features in our case. The inputs are normalised by subtracting the mean and dividing by the standard deviation 
to stabilise and accelerate training46. We determine the optimal set of hyperparameter values, which govern the 

Network Country Data aquisition

BIEBRZA-S-161 Poland Layer1/2/3

CALABRIA Italy Layer-/2/-/

CAMPANIA62 Italy Layer-/2/-/

COSMOS63 USA Layer1/2/-/

FMI64 Finland Layer1/2/3

FR-Aqui65 France Layer1/2/3

GROW66 UK Layer1/-/-/

GTK Finland Layer1/2/3/

HOAL Austria Layer1/2/3/

HOBE67 Denmark Layer1/2/-/

HYDROL-NET-PERUGIA68 Italy Layer1/2/3/

IMA-CAN169 Italy Layer1/-/-/

IPE Spain Layer1/2/-/

METEROBS Italy Layer1/2/3/

MOL-RAO70 Germany Layer1/2/3/

REMEDHUS71 Spain Layer1/-/-/

RSMN Romania Layer1/-/-/

Ru-CFR Russia Layer1/2/3/

SCAN72 USA Layer1/2/3/

SMOSMANIA73 France Layer1/2/-/

SWEX-POLAND74 Poland Layer1/2/-/

TERENO75 Germany Layer1/2/3/

UDC-SMOS76 Germany Layer1/2/3/

UMBRIA62 Italy Layer-/2/3/

UMSUOL Italy Layer1/2/3/

USCRN77 USA Layer1/2/3/

VAS Spain Layer1/-/-/

WEGENERNET78 Austria Layer-/2/-/

WSMN79 UK Layer1/-/-/

Table 1.  List of the ISMN networks considered to collect in-situ measurements.
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model structures and training processes, through k-fold cross-validation with k = 5 (Fig. 1). The final model has 
128 hidden units in one LSTM layer with one dense layer, and the dropout rate is set to 0.4. Another important 
hyperparameter is the length of the input sequence (i.e. lookback), corresponding to the number of prior time 
steps of meteorological data, e.g. from t-365 to t-1, used to predict soil moisture at a time step t. The lookback 
is typically set to 365 days in daily hydrologic simulations with an assumption that the LSTM model can learn 
the dynamics of an entire preceding annual cycle47. In order to better specify this hyperparameter, and to study 
soil moisture memory characteristics in LSTM, we conduct an additional experiment to assess the effect of input 
sequence length on model performance as part of the model validation process (see the following section).

Finally, we train the LSTM model using the entire training dataset. The trained model with all established 
relationships between the input variables and soil moisture across concurrent and previous times is then applied 
across the entire European grid pixels. We repeat the simulations five times and take the averages of the simula-
tions to compute the final soil moisture given the random initialisation of LSTM weights (learnable parameters).

Data Records
SoMo.ml-EU provides volumetric soil moisture over the domain of longitudes 12.0 °W to 45.0 °E and latitudes 
36.0 °N to 71.5 °N. The data covers the period 2003–2020, and the spatiotemporal resolution is 0.1° and one day. 
The data files are freely available at figshare48. An example file name is ‘SoMo.ml-EU_LAYER_YYYY.nc’, with 
LAYER and YYYY standing for soil moisture layer depth and year, respectively.

Technical Validation
We report the suitability of LSTM-based model for soil moisture simulations, focusing on two aspects. First, 
we assess the impact of preceding meteorological information on modelling performance. As mentioned, it is 
a key characteristic of LSTM networks to consider the relationship of the target variable with both concurrent 
and preceding input variable estimates. Second, we evaluate the ability of LSTM to spatially extrapolate learned 
input-output relationships. This knowledge transfer between locations is critical to generating enhanced quality 
data in domains with limited training data.

Furthermore, we report the performance of the final data product of SoMo.ml-EU through intercompari-
son with multiple gridded datasets. We employ (1) SoMo.ml v1, the previous version of SoMo.ml with a lower 
spatial resolution (0.25°), (2) ERA5-Land, a replay of the land component of the ERA5 reanalysis12, (3) GLEAM 
satellite-based data; we choose v3.5.b, which is based on satellite data only and no reanalysis is used49, and (4) 
CLM-DA, high-resolution soil moisture generated from the Community Land Model with data assimilation of 
ESA CCI satellite observations11. Finally, we compare the datasets using independent in-situ soil moisture data 
obtained from the COSMOS-Europe network50. It is a newly introduced soil moisture network in Europe, which 
offers the opportunity for an independent and comparative evaluation as these measurements are not used in 
the derivation of any of the gridded products we compare here. Additionally, we compare the dataset at locations 
of around 300 grid pixels, selected from every 20 × 20 pixels segment over the entire domain, to overcome the 
limitation of the low climate diversity represented by the COSMOS-Europe data, using the average of the con-
sidered datasets as a reference.

Role of preceding meteorological information.  First, we train the LSTM with input data covering the 
preceding 365 days and define its prediction performance as ‘reference performance’. Next, we randomly per-
muted a part of the sequences except for the last n time steps, i.e. from t-365 to t-(n + 1) days, where t is the pre-
diction time step. Consequently, only the later subsequent part of the time series, i.e. from t-n to t-1 days, keeps 

Variable Source Description

Dynamic

Air temperature MSWX-Past80
Bias-corrected and downscaled 
Climatic Research Unit Time Series 
data

Precipitation MSWEP81 Gauge, satellite, and reanalysis 
merged data

Net surface radiation ERA5-Land12 ECMWF land reanalysis

Skin temperature ERA5-Land12 ECMWF land reanalysis

Soil moisture from upper layer(s) SoMo.ml-EU ML-based soil moisture produced 
in this study

Static

Mean precipitation MSWEP81 Long-term mean precipitation

Aridity MSWEP81, ERA5-Land12 Ratio of net radiation (unit 
converted to mm) to precipitation

Topography ETOPO143 Mean and standard deviation of sub-
grid scale elevations

Land cover Harmonized World Soil Database v1.282
Forest and short vegetation fraction 
computed based on six geographic 
datasets

Soil type Harmonized World Soil Database v1.2 (regridded)44
Clay and sand fraction based on 
regional and national updates of soil 
information

Table 2.  Description of meteorological forcing variables and static features.
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its original information. Figure 3 shows the model performance for the surface soil moisture simulation using the 
partially permuted input sequences. The model performance significantly decreases when the unperturbed por-
tion of the input time series becomes shorter than 30 to 60 days. On the other hand, the meteorological data prior 
to the preceding two months show a small contribution to the LSTM performance. This matches well with previ-
ous studies quantifying soil moisture memory time scales around several weeks to months, albeit with seasonal 
and regional variations51,52. We repeat the simulations for the deeper layers and find a weaker model performance 
for the same degree of input data perturbation such that a similar model performance requires more preceding 
input information compared to the first layer simulations. This implies longer soil moisture memory in the deeper 
layers, which is consistent with the findings from analyses that used physics-based model data53.

For the final model simulation, we keep the input sequence length (lookback) to 365 days to exploit the 
full potential of the meteorological information, i.e. giving the model the flexibility to account for potentially 
longer memory time scales occurring in specific regions and times. At the same time, these results reported in 
Fig. 3 have important implications. First, LSTM effectively extracts useful information from prior time steps and 
this explicitly contributes to more accurate soil moisture simulations. Therefore, a sufficient lookback period 
should always be considered. Second, we show the delayed effect of meteorological input on soil moisture and, 
therefore, the usefulness of LSTM to quantify soil moisture memory. Future research can focus on determining 
seasonal and regional variations of the soil moisture memory, potentially offering new insights into the conven-
tional methods, e.g. using autocorrelation-based metrics52,54.

Model performance across continents.  We train the model with training data from the US domain 
only and validate the model performance over the European domain. In this way, we can evaluate the model 
with an emphasis on its capability to transfer knowledge across continents, and significantly minimise the risk 
of overfitting due to spatial autocorrelation between closely located training and validation data. The simulated 
soil moisture here is referred to as SoMo.ml* (Fig. 4), because they are different from the final SoMo.ml-EU data 
generated from the model trained with the entire training data from the US and Europe both. We also report the 
model validation results from the five-fold cross-validation in Fig. S3 in the Supplementary material. Note that 
we split the entire training data spatially to prepare the training and validation subsets. It is because the spatial 
extrapolation capacity of ML is more critical for our data generation, i.e. estimating soil moisture over grid pixels 
with no training data. Nonetheless, we split the training data temporally and again examine the performance of 
ML with the selected hyperparameters. The results confirm that the temporal predictability of ML is comparable 
to the spatial extrapolation performance of ML (Fig. S4).

Overall, the model shows satisfactory performance (Fig. 4). The results clearly show how efficiently ML can 
transfer knowledge between locations, although relatively poorer performance is observed in Layer 1 (0–10 cm 
depth), which is mainly due to outliers, i.e. target soil moisture from the five grid pixels with a very humid cli-
mate where the average soil moisture is above 0.5 m3/m3. This illustrates the main limitation of ML approaches. 
They can hardly extrapolate beyond the conditions covered by the training data. The US data are mostly sampled 
from arid and warm regions, so training data for humid and cold regions are lacking (see Fig. 2(c)). The model 
shows a better performance for Layer 2 and Layer 3 (10–30 cm and 30–50 cm depths, respectively), which could 
be related to the lower temporal variability or to the relatively simple input-output relationships (deeper layer 
soil moisture is mainly determined by the upper layer soil moisture than dynamic meteorological information21) 

Fig. 3  Importance of preceding meteorological information for the performance of the resulting soil moisture 
simulation. This is expressed as performance reduction when perturbing part of the preceding meteorological 
information, compared with the reference model performance using unchanged meteorological information. 
For example, results for 30 days are obtained with meteorological input data left unchanged for the last 30 days 
while being permuted for the first 365-30 = 335 days. Nash–Sutcliffe efficiency and correlation coefficient are 
considered for performance evaluation. We repeat the simulations with different hyperparameters related to 
model architecture, e.g. the number of layers or hidden units. The shaded area shows the 0.2 to 0.8 quantiles of 
the metrics across model architectures. Note that x-axes use a logarithmic scale.
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in the deeper layers that can be relatively easily reproducible by the model. Note that the model performance for 
wet regions is better (r = 0.8 for correlation between pixels in Layer 1) according to the five-fold cross-validation 
in which the training data from Europe are included (Fig. S3). The final model is trained with the entire training 
data and, therefore, the performance of the actual SoMo.ml-EU over humid regions (similar to the training 
conditions at high latitudes of Europe) is expected to be reasonable.

Comparison against independent in-situ measurements.  In Fig. 5a, we compare SoMo.ml-EU, 
including multiple gridded datasets, against in-situ data obtained from the COSMOS-Europe network50. We 
select validation grid pixels that are not already included in our training data, although the COSMOS-Europe 
data only cover a relatively narrow range of climatic regimes. Note that COSMOS-EU does not include consistent 
data from all depths at all sites (see Fig. S1). The datasets with different native spatial resolutions are regridded 
to 0.1° using bilinear interpolation. We find that SoMo.ml-EU agrees closer with the in-situ data than the other 
gridded datasets including the previous SoMo.ml version, confirming the benefit of constructing high-resolution 
data rather than simply using interpolated data.

In terms of unbiased root mean square difference (uRMSD), SoMo.ml-EU shows smaller deviations from 
the in-situ data, while the median range of uRMSD across the datasets stays narrow between 0.04 to 0.05. SoMo.
ml-EU and the other datasets all exhibit lower performance in Layer 2 than Layer 1, because the in-situ refer-
ence data are collected from more diverse climate conditions (see Fig. S1); reliable soil moisture derivations for 
extreme regimes are challenging to all approaches. In Fig. 5b, the data are furthermore compared against the 
average of all the gridded datasets over the randomly selected grid pixels (Fig. S5) from which we do not have 
independent in-situ reference data. SoMo.ml-EU gives a reasonable performance within the range of the other 
datasets. Interestingly, ERA5-Land shows the highest agreement with the averages, which might be attributable 
to the dependency of the other datasets on ERA reanalyses. For instance, SoMo.ml used ERA5 meteorological 
data as the input and, for CLM-DA, ERA-Interim data is involved in the process of forcing data generation.

Comparison of soil moisture variability.  In this section, we assess the ability of SoMo.ml-EU to capture 
soil moisture variability, focusing on drought events. Figure 6(a) presents the spatial distribution of the average 
surface soil moisture from SoMo-EU and the other gridded datasets during summer season (JJA). Overall, the 
spatial soil moisture patterns are similar across all datasets, with southwest to northeast gradients from dry to wet. 
Nonetheless, regional differences are observed, such as in mountain areas or high latitudes where observational 
data are typically lacking or highly uncertain due to, for instance, soil freezing. Therefore, high uncertainty is 
expected both for data-driven and observation-assimilated models. The spatial correlation (Pearson’s r) between 
SoMo.ml-EU and the other datasets ranges from 0.48 to 0.56 for the entire domain, whereas the correlation 
increases to 0.63–0.75 when the latitudinal domain higher than 60 °N is excluded. Even though we find good 
agreement, in terms of the spatial patterns, large deviations in the absolute values exist with the soil moisture from 
CLM-DA being especially generally underestimated. This dry bias can be due to a discrepancy in the definitions 

Fig. 4  Transfer learning capacity of the LSTM network. The model performance is validated in Europe after 
training with data from the US only. We compare pixel-averaged soil moisture (top) and daily soil moisture 
from all grid pixels (bottom) in Europe between target soil moisture and SoMo.ml* at each layer. See Figs. S3 
and S4 for model performance evaluated through the k-fold cross-validation.
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of the surface layer11, e.g. 10 cm for SoMo.ml versus 3 cm for CLM-DA, or the use of observational data, e.g. 
in-situ measurements in SoMo.ml, while satellite data in CLM-DA.

We further compare the normalised soil moisture anomalies as depicted in Fig. 6(b) during 2015 when 
large parts of Europe were affected by drought55,56. The normalised anomalies are calculated by subtracting the 
long-term seasonal mean and then dividing by the standard deviation (z-score). The datasets show high agree-
ment with similar patterns of positive and negative anomalies. The spatial correlation values range from 0.74 
to 0.91. The spatial extent of the affected area described by SoMo.ml-EU, i.e. pronounced negative anomalies 
over Central and Eastern Europe, matches well with the other datasets, except for the CLM-DA, which shows 
relatively weaker anomalies.

We also compare seasonal anomalies over the entire overlapping years for different parts of Europe. The 
results show (Fig. S6) consistent temporal variations between SoMo.ml-EU and the other datasets, particularly 
for Southern Europe. On the other hand, for Northern Europe, we find relatively large deviations across the 
datasets, probably because of the high uncertainty in both observational data and physical model representation 
relating to freeze-thaw processes. More specific examples of temporal variability of SoMo.ml-EU can be found 
in Fig. 7. We randomly select three different pixels, where training data are available for all three layers, and com-
pare time series of soil moisture between the training (target) and predicted data. The predicted SoMo.ml-EU 
(dotted lines in the figure) closely follows the temporal pattern of the target soil moisture (solid lines), although 
data discrepancies are observed, especially when soil moisture gradually decreases. Overall temporal behaviour 
of SoMo.ml-EU seems reasonable with respect to the temporal variations of precipitation and skin temperature 
(two most important inputs), even if there are insufficient training data from the same grid pixel (e.g. Pixel 3), 
which is enabled through the ML’s spatial extrapolation.

In general, the soil moisture in SoMo.ml-EU shows similar spatial patterns and absolute values to those of 
ERA5-Land, which is no surprise given that ERA5-Land data are involved in the training data adjustment (Sect. 
Training data preparation). The interesting point here is, however, that despite the absence of training data 
for most of the grid pixels, SoMo.ml-EU shows reasonable spatial patterns and is in general agreement with 
the other datasets. This demonstrates how efficiently LSTM can spatially extrapolate target variables over large 
regions, which is enabled by our training strategy of using a combination of training data obtained from diverse 
climate regimes. This way, these results illustrate the usefulness of using in-situ soil moisture data from outside 
the European target domain to increase the amount and diversity of training data while benefiting from the 
transfer learning ability of the LSTM networks.

Fig. 5  (a) Comparison of soil moisture datasets against reference in-situ data over 6 and 22 grid pixels for 
Layers 1 and 2, respectively, and (b) against the average of all datasets at 287 randomly selected grid pixels from 
across the domain. Gridded soil moisture fields from SoMo.ml-EU, SoMo.ml v1, ERA-Land, CLM-DA, and 
GLEAM are considered. The climate diversity represented by the reference data used here is shown in Figs. S1 
and S5. Correlation coefficient and unbiased root mean square difference are computed for the comparison. 
Triangles show means and box plot whiskers indicate the 0.2 to 0.8 quantiles of the metrics across grid pixels. 
See Fig. S7 for results for Layer 3.
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Usage Notes
Despite the availability of large-scale soil moisture datasets from diverse sources, soil moisture information is 
mostly provided at coarse spatial resolutions (25–50 km), which limits the consideration of land surface het-
erogeneity and corresponding physical processes related to, for example, land-climate coupling. To meet the 
increasing requirement for high-resolution data30,33, we apply our distinctive approach, using ML trained with 
in-situ data, and deliver the high-resolution soil moisture over Europe. Consequently, SoMo.ml-EU offers daily 
soil moisture data at the spatial resolution of 0.1° over the period 2003–2020.

Fig. 6  Comparison of mean and extreme soil moisture from SoMo.ml-Eu with other state-of-the-art 
datasets; spatial distribution of (a) the average summer (JJA) soil moisture between 2003 and 2015 and (b) the 
normalised summer soil moisture anomaly in 2015. Pearson’s correlation of the spatial patterns (r) is computed 
between SoMo.ml-EU and the other data. All datasets are regridded to 0.1 degrees. Results for Layers 2 and 3 
are provided in Fig. S8.

Fig. 7  Temporal behaviour of SoMo.ml-EU. Time series of soil moisture between the training data and SoMo.
ml-EU (solid and dotted lines, respectively) at three selected pixels, where training soil moisture data are 
available for all three layers, are compared for the period from 2009 to 2012. Time series of precipitation and 
skin temperature inputs are also shown. All data are shown in 7-daily averages.
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During the training-validation process, we confirm that ML can efficiently transfer knowledge from gauged 
to ungauged locations, even across continents. In our case, this is particularly useful for the simulations over 
arid regions because, in Europe, most in-situ data come from moderate climatic regions. Therefore, observa-
tional data covering more extreme conditions (e.g. arid regions) is only available from US networks. On the 
other hand, it remains challenging to obtain reliable soil moisture data for cold and humid regions, which could 
potentially introduce relatively high uncertainty in the final dataset in these regions. Performance of ML is 
known to be relatively poor in the conditions or locations that are not covered during training;40,57 therefore, 
collecting more diverse and representative training data is imperative to improve the model performance. Over 
several years, more and more in-situ networks have been participating in the ISMN, and this study also utilises 
the in-situ data from the new network COSMOS-Europe. While those new data could be used in model training, 
we decided to keep them as independent data for validation purposes. Nonetheless, it is worth paying attention 
to publicly available big data because more diverse observational data is the key to reliable ML performance.

With the growing Earth observation data, ML has become a powerful tool for modelling the Earth system 
processes and has been widely used as a data-driven model to predict various hydrologic variables such as run-
off58 or evapotranspiration fluxes59. When using our soil moisture data in combination with other hydrological 
datasets that ML generates, water balance may not close due to biases in individual datasets. This is because ML 
does not explicitly take into account the balance between input and output water of a hydrological system, poten-
tially introducing biases in the resulting data. Recently, hybrid modelling that combines physically-based (e.g. 
mass conservation) and ML approaches deriving water variables jointly is proposed to address this limitation60.

Our new dataset SoMo.ml-EU will benefit meteorological and hydrological applications that require 
higher-resolution soil moisture data, e.g. evaluation of up/downscaled products, analyses of the spatial varia-
bility of hydrological processes within catchments, investigation of regional drought events and the role of soil 
moisture for hydrological dynamics and land-climate interactions. The high temporal correlation between the 
SoMo.ml-EU and in-situ data is mainly due to the uniqueness of our approach in directly using in-situ measure-
ments (i.e. daily anomalies) to inform the model. More importantly, we process the training data and operate the 
model at a higher spatial resolution than in the previous version, which better mirrors the spatial footprint of the 
in-situ measurements. Consequently, more efficient use is made of the information content of these measure-
ments to the reproduce soil moisture dynamics over ungauged locations. The closer agreement with the in-situ 
data revealed in our specific evaluation does not necessarily mean that SoMo.ml-EU generally outperforms the 
other datasets, given the discrepancies among the datasets in terms of spatial scales or soil layer depths. Rather, 
it indicates the distinctive characteristic of our data. Consequently, SoMo.ml-EU can serve as a independent 
reference against which to evaluate other high-resolution datasets. At the same time thanks to its ML-based 
derivation it could be used jointly with other established datasets to form an ensemble of independent gridded 
state-of-the-art soil moisture datasets with potentially increased robustness in data sparse regions.

Code availability
The code for the LSTM-based soil simulations can be downloaded at https://github.com/osungmin/SciData2022_
SoMo_EU.
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