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Controlling the magnetic state of the proximate quantum spin
liquid α-RuCl3 with an optical cavity
Emil Viñas Boström 1✉, Adithya Sriram2, Martin Claassen3,4 and Angel Rubio 1,4✉

Harnessing the enhanced light-matter coupling and quantum vacuum fluctuations resulting from mode volume compression in
optical cavities is a promising route towards functionalizing quantum materials and realizing exotic states of matter. Here, we
extend cavity quantum electrodynamical materials engineering to correlated magnetic systems, by demonstrating that a Fabry-
Pérot cavity can be used to control the magnetic state of the proximate quantum spin liquid α-RuCl3. Depending on specific cavity
properties such as the mode frequency, photon occupation, and strength of the light-matter coupling, any of the magnetic phases
supported by the extended Kitaev model can be stabilized. In particular, in the THz regime, we show that the cavity vacuum
fluctuations alone are sufficient to bring α-RuCl3 from a zigzag antiferromagnetic to a ferromagnetic state. By external pumping of
the cavity in the few photon limit, it is further possible to push the system into the antiferromagnetic Kitaev quantum spin liquid
state.
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INTRODUCTION
The realization of magnetic van der Waals (vdW) materials with
thicknesses down to the monolayer limit has sparked a new
interest in fundamental aspects of two-dimensional magnetism1–3.
Due to a competition of strong anisotropy, fluctuations, and spin-
orbit effects, vdW materials are prime candidates to host exotic
phenomena such as topological phase transitions, magnetic
skyrmions, and quantum spin liquids4,5. In addition, the electronic,
magnetic, and optical properties of these materials are sensitive to
a wide range of material engineering techniques such as strain6,7,
nanostructuring8, electric fields9,10, and moiré twisting11,12, allow-
ing their state to be tuned with high precision.
Recent progress has also established optical engineering

techniques as a method to functionalize quantum materials and
to reach exotic (out-of-equilibrium) topological phases13–17.
However, driving a system with lasers is associated with excessive
heating when the frequency becomes multi-photon resonant with
electronic transitions18,19. A way to circumvent this problem is to
embed the system in an optical cavity, where the effective light-
matter coupling is enhanced via mode volume compression and
the state of the material can be modified in an equilibrium
setting20–27. Due to the strong interaction between light and
charged excitations, polaritonic control of material and chemical
properties via the cavity vacuum has so far focused on electronic
and phonon mediated phase transitions28,29. Alternatively, to
address magnetic systems, optical cavities have been combined
with external drives30,31, or been used to modify a system’s
excited state properties32,33. While currently efforts are made to
extend the cavity framework to a broader class of materials, and to
construct a unified first principles description of cavity quantum
fluctuations and quantum matter20,23,34, experiments demonstrat-
ing polaritonic control of materials are scarce35,36. Therefore, to
transform this promising approach into a powerful experimental
tool, it is of key importance to identify candidate materials where
cavity engineering techniques can be explored.

Here, we extend the concept of cavity quantum electrody-
namics (c-QED) engineering into the magnetic regime and identify
such a candidate system, by demonstrating how an optical cavity
can be used to control the magnetic ground state of the
proximate quantum spin liquid α-RuCl3 via shaping the quantum
fluctuations of the cavity20,23,29,37. Depending on the cavity
frequency, photon occupation, and the strength of the effective
light-matter coupling, we find that it is possible to transform the
equilibrium zigzag antiferromagnetic order into any of the
magnetic phases supported by the extended Kitaev model (see
Eq. (1) and Fig. 2). As a key result we find that for frequencies of a
few THz and for moderate light-matter couplings, the interaction
between the magnetic system and the vacuum fluctuations of the
cavity is sufficient to transform α-RuCl3 from a zigzag antiferro-
magnet to a ferromagnet. In contrast to the meta-stable states
obtained by driving the system with classical light, the magnetic
state resulting from the interaction with the quantum fluctuations
of the cavity is a true equilibrium state denoted the photo ground
state (PGS)24. Pumping the cavity in the few photon regime, it is
further possible to push the system into the Kitaev quantum spin
liquid state and to retrieve the non-equilibrium phase diagram of
the semi-classical limit38. Our results pave the way for utilizing
c-QED to induce and control long-lived exotic states in quantum
materials.

RESULTS
Low-energy model and equilibrium magnetic order
The vdW material α-RuCl3 consists of layers of Ru atoms arranged
in an hexagonal lattice and surrounded by edge-sharing
octahedra of Cl ions (Fig. 1a). Due to the crystal field the Ru d-
orbitals are split by an energy Δcf into a lower eg and a higher t2g
manifold, and the strong spin-orbit coupling further splits the t2g
states by an energy Δsoc into a lower jeff= 3/2 quartet, fully
occupied in the ground state, and a jeff= 1/2 doublet with a single
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hole. The Cl ions are assumed to be completely filled in the
ground state, with their p-orbitals separated from the Ru d-orbitals
by a charge-transfer energy Δpd. The Ru energy level structure is
schematically shown in Fig. 1c. The local interactions of the t2g
manifold are described by a Hubbard-Kanamori Hamiltonian
HU

38,39, which takes into account the intra-orbital Hubbard
interaction U, the inter-orbital interaction U0, the Hund’s coupling
JH and the spin-orbit coupling λ (see “Methods” for a discussion of
the model). The Ru holes can either hop directly between Ru
atoms or move via the Cl ligands, as described by the kinetic
Hamiltonian Ht. In the strong coupling limit t/U≪ 1 virtual
hopping processes give rise to effective magnetic interactions
via the superexchange mechanism. Due to the orbital alignment a
Kitaev interaction arises from ligand-mediated hopping over 90∘

bond angles40, while sub-dominant exchange and anisotropy
terms arise from direct Ru–Ru interactions.
Experimentally α-RuCl3 is found to exhibit a zigzag antiferro-

magnetic order below the Néel temperature TN ≈ 7 K, as indicated
in Fig. 1. At zero temperature, first principles calculations show
that this zigzag state is approximately degenerate with a
ferromagnetic state41, and might only be stabilized by spin
quantum fluctuations42. In addition, signatures of a Kitaev
quantum spin liquid (QSL) state have been found upon applying
an external magnetic field along the out-of-plane direction43,44.
Together these results indicate that although α-RuCl3 orders at low
temperatures, its ground state is proximate to several competing
magnetic orders and the magnetic phase diagram is determined
by a delicate competition of different magnetic interactions. This
makes α-RuCl3 an excellent candidate material to explore the
competition between cavity and spin quantum fluctuations.
In the following the material will be assumed to have C3

symmetry, which is satisfied to a very good degree in α-RuCl3. All
parameters of the local and kinetic Hamiltonians HU and Ht were
calculated from first principles as discussed in the “Methods”
section, and give a zigzag antiferromagnetic ground state in line
with observations.

Light-matter coupling in a cavity
Within the low-energy description discussed above, the main
effect of the cavity is to modify the hopping amplitudes of the Ru
holes. Inside the cavity the total Hamiltonian is given by
H ¼ HU þ Ht þ

P
λ_Ωλn̂λ, where ℏΩλ is the energy of photon

mode λ and n̂λ is the corresponding number operator. The photon
field modifies the kinetic Hamiltonian Ht by introducing the
replacements ĉyiασ ĉiβσ ! eiϕij ĉyiασ ĉiβσ , where the Peierls phases ϕij

are proportional to the quantum vector potential
Â ¼Pλðgλeλâyλ þ g�λe

�
λ âλÞ. For a given mode λ the bare light-

matter coupling is defined as gλ ¼ ea=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ_ΩλV

p
, where e is the

elementary charge, ℏ the reduced Planck constant, ϵ the relative
permittivity and V the cavity mode volume. For a two-dimensional

Fabry-Pérot cavity the lowest energy photon mode has a
frequency Ω0= πc/Lz, and assuming a cavity with area Ameasured
in in units of the squared Ru–Ru distance a2, the bare light-matter
coupling of this mode is g0 ¼ e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πϵ_cA

p � 0:12=
ffiffiffi
A

p
.

Similarly we define an effective light-matter coupling g ¼
e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πϵ_cAeff

p
of a single cavity mode by introducing an effective

mode area Aeff, which accounts for dielectric properties of the
environment23,24,45–47. In addition, we consider an effective single-
mode approximation obtained by integrating over photon modes
with momenta in a disk of radius qm around q= 048,49. The light-
matter coupling of the effective mode is proportional to the
photonic density of states at q= 0, which grows as ρ � ffiffiffi

A
p

in the
macroscopic limit and cancels the 1=

ffiffiffi
A

p
scaling of the bare

coupling. This single effective mode will therefore have a coupling
geff ¼ ρg � 0:12=

ffiffiffiffiffiffiffiffiffiffi
Ac;eff

p
, where Ac,eff is the effective unit cell

mode area. Although the value of Ac,eff can in principle be fixed by
comparisons to experiment, since it is hard to estimate we will in
the following vary geff to address the effect of different light-
matter coupling strengths.

Effective coupled spin-photon model
The total Hamiltonian is down-folded to the spin sector by
eliminating Ht to fourth order in virtual ligand-mediated processes
using quasi-degenerate perturbation theory. The structure of the
perturbation expansion allows for the down-folding to be
performed separately within each given photon sector, resulting
in a coupled spin-photon Hamiltonian of the form

H ¼
X
nm

Hs;nm þ δnm
X
λ

_Ωλnλ

 !
nj i mh j: (1)

Here Hs;nm is the spin Hamiltonian in the sector connecting cavity
number states nj i and mj i, where m= {m1,m2,…,mL} for L
modes. The Hamiltonian in each photon sector is

Hs;nm ¼ P
hiji

Sαi Sβi Sγi

� � J Γ Γ0

Γ J Γ0

Γ0 Γ0 J þ K

0
B@

1
CA

nm

Sαj

Sβj
Sγj

0
BB@

1
CCA

þ Bnm
P
i
êB � Si

(2)

where the magnetic interactions J, K, Γ, and Γ0 all depend on the
light-matter coupling g= {g1, g2,…, gL} and the photon numbers
n and m. Each bond 〈ij〉 is labeled by the indexes αβ(γ)∈ {xy(z),
yz(x), zx(y)} and is denoted a γ-bond in accordance with Fig. 1d.
The induced magnetic field B points along the [111] direction of
the local spin axes, as defined by the unit vector êB.
The form of the spin-photon Hamiltonian in Eq. (2) is valid as

long as the C3 symmetry is preserved. Since a single linearly

Fig. 1 Crystal and magnetic structure of monolayer α-RuCl3. a Crystal structure of monolayer α-RuCl3, with the magnetic Ru ions (orange)
arranged in a hexagonal lattice and exhibiting a zigzag antiferromagnetic order. The surrounding octahedra of Cl ions give rise to a crystal
field splitting of the Ru d-orbitals (see panel c) b The magnetic system interacts with a strength g with a cavity electric field of frequency Ω.
c Energy level structure of the magnetic Ru ions, leading to an effective jeff= 1/2 magnetic moment in the Ru t2g manifold. d Magnetic
interactions of Ru moments, colored according to the Kitaev bonds x, y, and z.
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polarized mode breaks rotational symmetry, such a mode induces
additional terms in the spin Hamiltonian. The rotational symmetry
breaking is also reflected in a strong dependence of the cavity-
modified spin parameters on the polarization direction, as shown
in Supplementary Figure 1. However, in a Fabry-Pérot cavity the
lowest mode is doubly degenerate with two possible in-plane
polarizations, and including both these modes in the description
restores the rotational symmetry of H. The C3 symmetry can also
be maintained by considering a single circularly polarized mode in
a chiral cavity23, as will be done in the following.
We note that in principle the Hamiltonian also contains

couplings to collective spin excitations, that could become
important in the macroscopic limit and in presence of long range
order. However, since the photon momentum at optical energies
is small (q ≈ 0), such a coupling would mainly involve the
ferromagnetic order parameter. In most of the phase space this
coupling is strongly suppressed, and we therefore neglect such
terms in the following. To quantitatively address their effects
would require the development of new computational techni-
ques, e.g., based on tensor network or quantum Monte Carlo
methods.

Cavity dissipation
Below we discuss how the magnetic phase diagram of α-RuCl3 is
modified both by a dark and driven cavity, by assuming a perfect
cavity limit. In any realistic cavity, photon losses will limit the
applicability of our results, since after a typical time-scale κ−1

(where κ is the cavity decay rate) a typical photon will have been
emitted. For the results obtained for the dark cavity dissipation

imposes no additional restriction, since the dark cavity is expected
to be insensitive to cavity losses. To validate this, we have checked
that the magnetic transitions in this regime arise mainly from
changes of the magnetic parameters within the 0j i 0h j photon
sector. For the results of the driven cavity, the light-induced
change in the magnetic parameters is found to be of the order
1–10 meV, and thus a κ ≈ 1 meV or smaller would be necessary to
observe the cavity-induced magnetic phase transitions. This
corresponds to a cavity quality factor of Q=Ω/κ ≈ 1000 or higher
in the optical frequency regime, which is achievable with present
technologies.

Magnetic phases of the cavity photo ground state
The photo ground state (PGS) and magnetic phase diagram of the
coupled spin-photon system was obtained by exact diagonaliza-
tion of Eq. (1) on the 24-site spin cluster shown in Fig. 2a, including
a single effective cavity mode with circular polarization. This spin
cluster is the minimal one known to respect all sub-lattice
symmetries of the magnetic system50. The calculation results in a
true equilibrium state where the cavity is close to its vacuum state
and the magnetic system is in the state favored by the photo-
induced interactions. To perform the calculations we assume a
perfect cavity, while a more quantitative description should
account for dissipation. However, as discussed above, the results
below are expected to be robust against such effects.
To find how the magnetic ground state flows through the phase

diagram of the extended Kitaev model as a function of light-
matter coupling and cavity frequency (see Fig. 2b), the magnetic
interactions are parameterized by J ¼ sin θ cosϕ, K ¼ sin θ sinϕ

Fig. 2 Magnetic phases of the photo ground state. a Spin cluster employed for the exact diagonalization studies. b Paths through the
magnetic phase diagram traced out by the system as the light-matter coupling geff increases from geff,i= 0 to geff,f= 0.5. The paths are colored
according to the cavity photon energy ℏΩ, and the small arrows show the direction of the paths. The polar coordinate denotes the angle ϕ,
while the radial coordinate denotes the azimuthal angle θ in the interval [0, π/2] in steps of π/6. c Evolution of the angles θ and ϕ as a function
of geff for ℏΩ= 10 meV. d Nearest neighbor spin–spin correlation functions hSzi Szj i. e Expectation value of the plaquette flux operator Wp.
f Average photon number nav ¼ hn̂i of the photo ground state. g Schematic of a fourth-order direct Ru− Ru process illustrating the 1/Ω
enhancement of J at low photon energies. h Schematic of a fourth-order ligand-mediated process illustrating the 1/Δpd cut-off of K in the low-
frequency limit. In all panels, the light-matter coupling refers to the effective single-mode coupling geff.
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and Γ ¼ cos θ. Here J, K , and Γ are the cavity-renormalized spin

parameters divided by the energy E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ K2 þ Γ2

p
. The spin

parameters for geff= 0 were obtained via first principles calcula-
tions as discussed in the “Methods” section, and give ϕ=−89.43∘

and θ= 69.44∘ placing the equilibrium system in a zigzag
antiferromagnetic state adjacent to the ferromagnetic Kitaev
QSL. This is in good agreement with experimental findings43,44. To
identify the magnetic state we calculate the spin–spin correlation
function hSzi Szj i and the expectation value of the plaquette flux
operator Wp ¼ 2�6Sxi S

y
j S

z
kS

x
l S

y
mS

z
n. In Wp the site indexes traverses a

given hexagon p in the positive direction, and the spin
component at a given site is determined by the bond pointing
out from the hexagon. Magnetic phase transitions are identified
by the second-order derivatives of the total energy.
Figure 2b shows the paths traced out by the magnetic ground

state as geff is increased from the initial value geff,i= 0 to the final
value geff,f= 0.5, for a number of photon energies in the range
ℏΩ ∈ [0, 20] meV. We note that parts of the magnetic phase
diagram may not be reachable in α-RuCl3, where the spin
parameters are connected via the underlying hopping amplitudes.
However, the paths traced out in Figs. 2b and 3a correspond to
physical states as they arise from a microscopic electronic
Hamiltonian. For all parameters the system flows away from the
ferromagnetic Kitaev point, and depending on ℏΩ either remain in
the zigzag state or enter the ferromagnetic domain. In particular,
for photon energies below ℏΩ ≈ 10 meV, the PGS evolves from a
zigzag antiferromagnetic state into a ferromagnetic state as the
light-matter coupling is increased (see Fig. 2d and e).
The microscopic origin of the zigzag antiferromagnetic to

ferromagnetic phase transition can be traced back to an
enhancement of the ratio J/K of the Heisenberg exchange to

the Kitaev interaction (see the normalized spin parameters of the
zero photon sector displayed in Supplementary Figure 3). In
particular, the Kitaev interaction changes sign as a function of
light-matter coupling at a point coinciding with the magnetic
phase transition, and is thus small in the surrounding region. The
increase in J arises from a class of fourth-order electronic
processes where a single charge excitation moves between Ru
ions while simultaneously emitting or absorbing a virtual cavity
photon. One such process is illustrated in Fig. 2g, where the steps
(2)→ (3) and (3)→ (4) both preserve the charge state and thereby
lead to an energy difference ~Ω between the virtual states. Since
the magnetic interactions are inversely proportional to the energy
difference between subsequent virtual states, this leads to an
enhancement J ~ 1/Ω in the low-frequency limit. This behavior has
been validated in small electron-photon clusters (see Supplemen-
tary Figure 2), which show good qualitative agreement with the
larger-scale spin-photon model simulations.
The situation is different for the Kitaev interaction, for which the

dominant contribution comes from virtual electronic processes
proceeding over the ligands. For such processes, there is no way
to fourth order in the hoppings to preserve the charge state
between two subsequent virtual states (see Fig. 2h). Therefore, the
energy difference between participating virtual states has a lower
cut-off ~ Δpd+Ω. In the low-frequency limit Ω→ 0 this leads to a
divergence in the ratio J/K ~ (Δpd+Ω)/Ω driving the transition to
the ferromagnetic state. We note that although the divergence in
J will be cut off in any realistic system, such that for Ω < κ (with κ
the cavity decay rate) we should have J ~ 1/(Ω+ κ), for a cavity
with quality factor Q ~ 1000 this still allows for an enhancement of
J down to frequencies of at least κ ~ 0.1 meV.
The mechanism driving the magnetic transition is thus

consistent with a simultaneous suppression of the effective

Fig. 3 Magnetic phases in a seeded cavity. a Paths through the magnetic phase diagram traced out by the spin system as the light-matter
coupling geff increases from geff;i ¼ 0 to geff;f ¼ 0:5. The paths are colored according to the cavity photon energy ℏΩ, and the small arrows
show the direction of the paths. The polar coordinate denotes the angle ϕ, while the radial coordinate denotes the azimuthal angle θ in the
interval [0, π/2] in steps of π/6. b Evolution of the angles θ and ϕ as a function of g for ℏΩ= 3 eV. c Spin–spin correlation function hSzi Szj i as a
function of photon energy and light-matter coupling. d Average of the plaquette flux operator Wp as a function of photon energy and light-
matter coupling. e Schematic of a third-order process where electrons accumulate a net phase around isosceles triangles, leading to an
induced magnetic field. In all panels, the light-matter coupling refers to the effective single-mode coupling geff ¼ 2geff

ffiffiffiffiffiffiffi
nav

p
with nav= 1.
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ligand-mediated hopping and an increase of direct Ru–Ru
hopping. However, on physical grounds we also speculate that
large-scale fluctuation of the photon field, enhanced in the low-
frequency limit, couple indirectly to the ferromagnetic order
parameter 〈M〉= ∑ij〈Si ⋅ Sj〉. Such a coupling could potentially be
even further enhanced in the macroscopic limit, and could
possibly be investigated with quantum Monte Carlo methods51.

Magnetic phase diagram of a pumped cavity
The results of Fig. 2 show that quantum fluctuations of the cavity
vacuum are sufficient to bring about a change in the magnetic
ground state of α-RuCl3 in the THz regime. In contrast, for photon
energies large compared to the magnetic energy scale (K/ℏΩ≪ 1),
photon fluctuations are strongly suppressed and the effects of the
cavity vacuum are negligible. As will be illustrated below, the
situation is radically different when the cavity contains real
photons. Due to the suppression of fluctuations the Hamiltonian
in the high-frequency regime is well approximated by projecting it
onto definite photon sectors, resulting in the diagonal approxima-
tion H �PnHs;nn nj i nh j. For large photon energies spin and
photon fluctuations therefore decouple, and the magnetic ground
state can be obtained by solving the pure spin model H ¼ Hs;nn in
each photon sector with effective cavity-renormalized parameters.
The description of the bright cavity in terms of an effective spin

model corresponds to a non-equilibrium experimental situation,
since the cavity contains real photons, and is therefore referred to
as a driven cavity. Assuming that the photon state is quasi-
stationary, this approach allows to address the effects of having
real photons in the cavity without performing an explicit time
evolution. This approximate description of the driven cavity will be
valid on short time-scales compared to the inverse cavity decay
rate κ−1, and for a cavity quality factor on the order of Q= ℏΩ/
κ ~ 1000 or larger the magnetic phase transitions predicted at
optical frequencies should be observable. A more detailed
discussion of the relation to explicit pumping protocols is
provided in the “Methods” section below.
The magnetic phase diagram of α-RuCl3, interacting with a

single effective cavity mode with average photon occupation
nav= 1 and circular polarization, is shown in Fig. 3. The results are
displayed as a function of the effective light-matter coupling
geff ¼ 2geff

ffiffiffiffiffiffiffi
nav

p
, obtained by varying geff over the interval [0, 0.5]

while keeping nav= 1 fixed, and again the cavity is seen to make
the magnetic ground state flow towards the antiferromagnetic
Kitaev point (Fig. 3a). The cavity has a drastic effect on the spin
parameters as the photon energy is tuned through the charge
resonances of the underlying electronic system, as illustrated by
the sharp variations of the spin–spin correlation function and
plaquette flux around ℏΩ= 2 eV (see Fig. 3c and d as well as
Supplementary Figure 4). For a given light-matter coupling this
leads to a series of magnetic phase transitions as a function of
frequency, stabilizing quasi-stationary states with either ferromag-
netic, antiferromagnetic, or spiral order depending on the
parameters.
In addition, there is a large region of light-matter couplings

geff ¼ 0:2� 0:6 and photon energies ℏΩ= 2.8− 3.2 eV where the
system enters the antiferromagnetic Kitaev QSL state. The
presence of a Kitaev QSL has been verified by calculations of
the spin–spin correlation function as well as the plaquette flux
operator Wp, which takes on a quantized value Wp= ± 1 in the
QSL phase5. To ascertain our identification of the QSL phase we
also calculated the ground state degeneracy (see Supplementary
Figure 5) of the magnetic system, which is forced to be four in the
gapped QSL phase in the macroscopic limit52. In line with previous
work53 we find a robust ground state degeneracy over the whole
region identified as the QSL, strongly suggesting that the region
identified as the QSL is a gapped and topological quantum spin
liquid.

Although the equilibrium system is found to have a ferromag-
netic Kitaev interaction, the QSL state appears in a region of
antiferromagnetic Kitaev interaction implying a cavity-mediated
sign inversion of K. The sign change of K is likely driven by the
cavity frequency becoming larger than some charge excitations of
the electronic system, which would change the sign of energy
denominators of the form ~(E−ℏΩ)−1. In addition, a magnetic field
is found to arise from third-order processes involving two Ru–Cl
and one Ru–Ru hoppings, leading to a net accumulated flux
through the Ru–Cl–Ru triangles (see Fig. 3e). In equilibrium the
two fluxes ϕR and ϕL, arising from right-handed and left-handed
hopping paths respectively, are equal and opposite in sign leading
to a net cancellation and a resulting zero magnetic field. However,
in presence of the chiral cavity field the degeneracy between the
right-handed and left-handed hopping paths is broken, and B is in
general non-zero.
The QSL is found to be stabilized in a region corresponding to a

cavity-induced increase in the magnetic parameters K and B, as
well as a simultaneous decrease of J and Γ. A likely explanation for
these trends is that in this parameter region the cavity produces a
relative enhancement of ligand-mediated hopping as compared
to direct Ru–Ru hopping, which would increase K and B relative to
the other magnetic parameters. This in consistent with ℏΩ
becoming larger than the Ru charge excitations with energies
E= 1.8–2.2 eV and approaching the Cl charge-transfer excitations
at around 4 eV.
As seen from Fig. 3, α-RuCl3 also enters the QSL phase in a

narrow region of cavity mode frequencies around ℏΩ= 2.1 eV.
This coincides with a region where the effective exchange
interaction J changes sign, and therefore is very small. More
specifically, since the photo-modified magnetic exchange is given
close to a resonance by J ~ 1/(E−Ω), and two Ru charge
resonances appear close together at about ℏΩ= 2.0 eV and
ℏΩ= 2.2 eV, the different sign of J above the lower and below the
upper resonance implies a sign reversal between the resonances.
This gives a relative amplification of the Kitaev interaction K
resulting in a QSL state.

DISCUSSION
The magnetic state of α-RuCl3 as modified by an optical cavity can
be interrogated by various optical techniques. In particular, Kerr
and Faraday rotation measurements probe a non-zero magnetiza-
tion (and therefore the ferromagnetic state)1,2,9, while linear
dichroism measurements are sensitive to the zigzag antiferro-
magnetic order54. While for the QSL state there unfortunately do
not exist any direct probes, indirect evidence can be gather via the
quasi-particle excitation spectrum as measure by Raman spectro-
scopy55, or measurements of the quantized transverse thermal
conductivity56.
The results of Figs. 2 and 3 show that the magnetic state of α-

RuCl3 is sensitive to the interaction with a cavity field, and
depending on the photon frequency, average cavity occupation
and strength of the light-matter coupling, the (quasi-) equilibrium
magnetic order can be transformed into any of the magnetic
states supported by the extended Kitaev model of Eq. (1). In
particular, our results show that the cavity vacuum fluctuations
alone are indeed sufficient to change the magnetic order of the
photo ground state when the light-matter coupling is sufficiently
strong (but within the range of present experimental light-matter
couplings). However, as the value of the light-matter coupling is
strongly dependent on the cavity size, and scales as g � 1=

ffiffiffi
A

p
with the area of the system, it seems as though the effect of the
cavity vanishes quickly in the thermodynamic limit. This naive
scaling argument might fail for several reasons, the most
important being the neglect of additional cavity modes with
momenta q ≈ 0. In fact, the density of modes with momenta
smaller than some given cut-off qm scales as ρ � ffiffiffi

A
p

24,36,57, and
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can potentially cancel the volume scaling of g. For the effective
single-mode approximation employed here, the mode volume
appearing in the light-matter coupling should therefore be
interpreted as an effective unit cell mode volume to be fixed
either by additional calculations or by comparison to
experiment23,24,45.
An additional subtlety of the thermodynamic limit is the

potential coupling of the cavity modes to collective fluctuations of
the magnetic system. In particular, close to a magnetic phase
boundary, collective fluctuations with a correlation length ξ ~ L
(where L is the linear size of the system) are expected to appear.
Such collective modes can be expected to play a crucial role in
stabilizing the magnetic order, and to couple more strongly to the
cavity field51. However, an explicit treatment of such macroscopic
effects, while simultaneously retaining an exact description of spin
and photon quantum fluctuations, requires a more advanced
methodology going beyond the current work.
For practical purposes, we note that for a given light-matter

coupling geff the effective coupling geff can be enhanced by
increasing the photon occupation of the cavity. In particular, since
geff ¼ 2g

ffiffiffiffiffiffiffi
nav

p
, a substantial effective coupling (and corresponding

modification of the magnetic interactions in the spin-photon
Hamiltonian of Eq. (1)) can be obtained with relatively few
photons. Although the present work only includes cavity
dissipation on a phenomenological level, the qualitative conclu-
sions are expected to be robust against such effects on time scales
short compared to the inverse cavity decay rate κ−1. This includes
in particular the identification of a zigzag antiferromagnetic to
ferromagnetic transition induced by the cavity vacuum fluctua-
tions, and the presence of a large Kitaev QSL domain in the
magnetic phase diagram in the few photon regime. Together
these results demonstrate the feasibility of c-QED engineering of
the magnetic state of the proximate spin liquid α-RuCl3 in the few
photon limit. Looking ahead, we note that the cavity photon
momentum constitutes a tuning parameter in addition to the
light-matter coupling, and we therefore envisage that c-QED can
be used to also modify phases with finite-q ordering vectors (such
as charge density waves). Our work thereby paves the way for
utilizing c-QED to control exotic magnetic states in real cavity-
embedded quantum materials20,23.

METHODS
Effective low-energy lattice electron Hamiltonian
The crystal structure of a single layer α-RuCl3 consists of a
hexagonal lattice of Ru atoms, surrounded by edge-sharing
octahedra of Cl atoms. Due to the strong octahedral crystal field
the Ru3+d-orbitals are split into a lower eg and a higher t2g
manifold, the latter consisting of the orbitals dxy, dxz, and dyz. Due
to the strong spin-orbit coupling the t2g states are further split into
a lower jeff= 3/2 quartet, fully occupied in the ground state, and a
jeff= 1/2 doublet with a single hole. The Cl− ions are assumed to
be completely filled in the ground state, with their px, py, and pz
orbitals separated from the d-orbitals by a charge-transfer energy
Δpd.
The local part of the Hamiltonian is given by38,39

HU ¼ U
P
iα
n̂iα"n̂iα# þ

P
iσσ0;α<β

ðU0 � JHδσσ0 Þn̂iασn̂iβσ0

þ JH
P
i;α≠β

ðĉyiα"ĉyiα#ĉiβ#ĉiβ" � ĉyiα"ĉiα#ĉ
y
iβ#ĉiβ"Þ

þΔpd
P
i0σ

n̂piσ þ λ
2

P
i
ĉyi ðL � sÞĉi:

(3)

Here U is the intra-orbital Hubbard interaction, U0 the inter-orbital
interaction, and JH the Hund’s coupling between the Ru d-orbitals
α, β∈ {yz, xz, xy}. Further, Δpd is the single-particle charge transfer
energy to add a hole to the Cl ligands, λ is the strength of the spin-

orbit coupling (SOC), and the vector of operators is
ĉyi ¼ ðĉyiyz"; ĉyiyz#; ĉyixz"; ĉyixz#; ĉyixy"; ĉyixy#Þ. In this basis, the inner pro-
duct of orbital and spin angular momentum may be written

L � s ¼
0 �iσz iσy

iσz 0 �iσx

�iσy iσx 0

0
B@

1
CA: (4)

To account for hopping processes between the Ru d-orbitals and
Cl p-orbitals, we assume the system has C3 symmetry. The
hopping processes along a Z-bond are described by

H0
t ¼ P

hijiσ
ĉyiyzσ ĉ

y
ixzσ ĉ

y
ixyσ

� � t1 t2 t4
t2 t1 t4
t4 t4 t3

0
B@

1
CA

2
64

ĉjyzσ
ĉjxzσ
ĉjxyσ

0
B@

1
CA

þ tpd p̂yi0σ ĉixzσ þ ĉyjyzσp̂i0σ
�

þ p̂yj0σ ĉiyzσ þ ĉyjxzσp̂j0σ
�
þ H:c:

i
:

(5)

Here, ti with i∈ {1, 2, 3, 4} parameterize direct d–d hopping
processes, while tpd determines the strength of ligand-mediated
hopping via the Cl pz-orbitals.

Light-matter coupling
In presence of the cavity the total Hamiltonian in the dipole
approximation is given by H ¼ HU þ Ht þ

P
λ_Ωλn̂λ. Here, ℏΩλ is

the photon energy of a mode described by the label λ and n̂λ is
the corresponding number operator. Inside the cavity the
Hamiltonian Ht is modified by the replacements
ĉyiασ ĉiβσ ! eiϕij ĉyiασ ĉiβσ , where the Peierls phases are
ϕij ¼ ðea=_Þdij � Â, dij= rj− ri is the vector between atomic sites
i and j measured in units of the Ru–Ru distance a, and the
quantum vector potential is

Â ¼
X
λ

ðAλeλâ
y
λ þ A�

λe
�
λ âλÞ: (6)

For a given mode λ this defines the light-matter coupling
gλ ¼ ðea=_ÞAλ ¼ ea=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ0_ΩλV

p
. Thus, the Peierls phases can be

written as ϕij ¼ dij � Â with

Â ¼
X
λ

ðgλeλâyλ þ g�λe
�
λ âλÞ; (7)

and the modified hopping Hamiltonian is

Ht ¼ P
hijiσ

ĉyiyzσ ĉ
y
ixzσ ĉ

y
ixyσ

� �
eiϕij

t1 t2 t4
t2 t1 t4
t4 t4 t3

0
B@

1
CA

ĉjyzσ
ĉjxzσ
ĉjxyσ

0
B@

1
CA

2
64

þ tpd eiϕi0 i p̂yi0σ ĉixzσ þ eiϕji0 ĉyjyzσp̂i0σ
�

þ eiϕj0 i p̂yj0σ ĉiyzσ þ eiϕjj0 ĉyjxzσp̂j0σ
�
þ H:c:

i
:

(8)

Hamiltonian in the photon number basis
The Hamiltonian is expanded in the photon number basis nj i ¼
n1; n2; ¼ ; nNj i according to30,58,59

H ¼ P
nm

ð1e � nj i nh jÞHð1e � mj i mh jÞ
¼ P

nm
Hnm � nj i mh j: (9)

Here 1e is the identity operator in the electronic Hilbert space, and
the Hamiltonian Hnm is given by

Hnm ¼ HU þ
X
λ

_Ωλnλ

 !
δnm þ Ht;nm: (10)
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The matrix elements nh jeidij �Â mj i are obtained by noting that since
½âyλ; âλ0 � ¼ 0, the Peierls phases factorize over different modes and

nh jeidij �Â mj i ¼
Y
λ

nλh jeidij �Âλ mλj i; (11)

where Âλ ¼ gλeλâ
y
λ þ g�λe

�
λ âλ.

The single-mode expressions are calculated by introducing the
variables ηijλ= gλ(dij ⋅ eλ). Using the Baker-Hausdorff formula to
expand the exponential, the matrix elements are nλh jeidij �Âλ mλj i ¼
ijnλ�mλjjijnλ ;mλ

where

jijnλ;mλ
¼ e�jηijλj2=2 if nλ 	 mλ

´
Pmλ

k¼0

ð�1Þk jηijλ j2kðηijλÞnλ�mλ

k!ðkþ nλ �mλÞ!
ffiffiffiffiffi
nλ!
mλ!

q
mλ !

ðmλ � kÞ!
(12)

jijnλ ;mλ
¼ e�jηijλ j2=2 ifmλ 	 nλ

´
Pnλ
k¼0

ð�1Þk jηijλ j2kðη�ijλÞmλ�nλ

k!ðkþmλ � nλÞ!
ffiffiffiffiffi
mλ!
nλ!

q
nλ !

ðnλ � kÞ! :
(13)

Using the notation g= {g1, g2,…, gN} to denote the full set of
light-matter couplings, the light-matter coupling is described by
the function

JijnmðgÞ ¼ nh jeidij �Â mj i ¼
Y
λ

jijnλ;mλ
: (14)

With this function, the hopping Hamiltonian in presence of the
cavity can be written as

Ht;nm ¼ P
hijiσ

ĉyiyzσ ĉ
y
ixzσ ĉ

y
ixyσ

� �h

´ JijnmðgÞ
t1 t2 t4
t2 t1 t4
t4 t4 t3

0
B@

1
CA

ĉiyzσ
ĉixzσ
ĉixyσ

0
B@

1
CA

þ tpd Ji
0 i
nmðgÞp̂yi0σ ĉixzσ þ Jji

0
nmðgÞĉyjyzσp̂i0σ

�

þ Jj
0 i
nmðgÞp̂yj0σ ĉiyzσ þ Jjj

0
nmðgÞĉyjxzσp̂j0σ

�
þ H:c:

i
:

(15)

Single-mode light-matter coupling and polarization
dependence
For a single photon mode the index λ can be dropped, and the
function JijnmðgÞ ¼ JijnmðgÞ ¼ jijn;m. Writing the intersite vector on a
given bond as dij ¼ dðcos θijx̂þ sin θij ŷÞ, the parameter ηij is given
for a circularly polarized field by ηij ¼ gðdij � eÞ ¼ gde± iθij , where ±
denotes a left-handed/right-handed polarization. Noting that
∣ηij∣= ∣η∣= gd so that the spatial dependence of the function
jijn;m factorizes, we have jijn;m ¼ jn;me

± iðn�mÞθij with

jn;m ¼ e�jηj2=2Xm
k¼0

jηj2kþn�m

k!ðk þ n�mÞ!

ffiffiffiffiffiffi
n!
m!

r
m!

ðm� kÞ! (16)

for n ≥m and similarly but with n↔m for m ≥ n.
For linear polarization the polarization vector can be written as

e ¼ cosϕx̂þ sinϕŷ, and we have ηij ¼ gd cosðθij � ϕÞ.

Connection to Floquet Hamiltonian
As a consistency check, the Hamiltonian Ht,nm for a single circularly
polarized photon mode is shown to reduce to the Floquet
Hamiltonian of ref. 38 in the semi-classical limit. For a single
photon mode, we can drop the mode index, and the function
JijnmðgÞ ¼ JijnmðgÞ ¼ jijn;m. Taking the polarization vector of the
photon mode to be e ¼ ðx̂± iŷÞ= ffiffiffi

2
p

, and writing
dij ¼ dðcos θij x̂þ sin θijŷÞ, we have ηij ¼ gðdij � eÞ ¼ gde± iθij .
To establish the connection to the Floquet Hamiltonian, what

remains is now to show that the function jn,m(g) reduces to the

Bessel function Jn−m(A) in the semi-classical limit. To do this, we
write n=m+ l and take the limit m→∞ and g→ 0 while keeping
A ¼ 2gd

ffiffiffiffi
m

p
constant. Noting that

jmþl;m ¼ e�jηj2=2 Pm
k¼0

jηj2kþl

k!ðkþ lÞ!

ffiffiffiffiffiffiffiffiffiffiffi
ðmþ lÞ!

m!

q
m!

ðm� kÞ!

¼ e�A2=8n Pm
k¼0

A
2ð Þ2kþl

k!ðkþ lÞ!

ffiffiffiffiffiffiffiffiffiffiffi
ðmþ lÞ!
m!ml

q
m!

ðm� kÞ!mk ;

(17)

and that (m+ l)!/m!→ml and m/(m− k)!→mk as m→∞, we have

lim
m!1 jmþl;m ¼

X1
k¼0

ð�1Þk A
2

� �2kþl

k!ðk þ lÞ! ¼ JlðAÞ: (18)

Since l= n−m the Hamiltonian Ht,nm reproduces the correct
Floquet Hamiltonian in the semi-classical limit.

Cavity-modified spin Hamiltonian
The total Hamiltonian H is down-folded to the spin sector by using
quasi-degenerate perturbation theory to eliminate Ht order by
order60. This perturbation expansion is performed numerically up
to fourth order in t/U using exact diagonalization of the Ru2Cl2
cluster shown in Fig. 3e. This allows to extract the nearest-
neighbor magnetic interactions and their dependence on the
light-matter coupling, cavity frequency and polarization. The
structure of the perturbation expansion allows the down-folding
to be performed separately within each photon sector, giving a
coupled spin-photon Hamiltonian of the form

H ¼
X
nm

Hs;nm þ δnm
X
λ

_Ωλnλ

 !
nj i mh j: (19)

Here Hs;nm is the spin Hamiltonian in the photon sector
connecting photon numbers n and m, and is given by

Hs;nm ¼ P
hiji

Sαi Sβi Sγi

� � J Γ Γ0

Γ J Γ0

Γ0 Γ0 J þ K

0
B@

1
CA

nm

Sαj

Sβj
Sγj

0
BB@

1
CCA

þ Bnm
P
i
êB � Si

(20)

where each bond (ij) is labeled by the indexes αβ(γ)∈ {xy(z), yz(x),
zx(y)}. In this Hamiltonian, the magnetic parameters J, K, and Γ all
depend on the light-matter coupling g and the photon numbers n
and m.

Exact diagonalization
The ground state of the coupled spin-photon system was
obtained by exact diagonalization of a 24-site spin cluster
interacting with a single photon mode. To perform the calcula-
tions we used to open-source Python package QuSpin61,62.

Number and coherent states in the driven cavity
In the discussions above the driven cavity is approximately
described by projecting the full spin-photon Hamiltonian onto a
definite photon number sector. Here, we provide additional details
of the relation between this approach and an explicit cavity
driving protocol.
The cavity can be driven to a finite photon population through

a laser-cavity interaction Hpump ¼ f ðtÞ sinðΩtÞðay þ aÞ, where f is
some envelope function. Assuming that the driving is performed
in a time T short compared to the characteristic magnetic time
scale K−1, the photons will at time T be in a coherent state with
some average occupation nav. Since the cavity contains real
photons, the coupled spin-photon problem now corresponds to a
non-equilibrium situation, and should be explicitly treated using
open quantum systems methods. Since this is computationally
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unfeasible if an exact description of the correlated spins is to be
retained, we assume that the photon state is quasi-stationary
(which will hold over some time-scale κ−1 set by the cavity decay
rate) and study the effects of having real photons in the cavity in
this quasi-equilibrium setting.
The difference between having photons in a coherent state or

in a number state is expected to have a negligible influence on
the magnetic properties, and we therefore choose the later
approach for computational convenience. This can be understood
by recalling that in the high-frequency limit we neglect the
coupling between different photon number sectors (i.e., there is
no cross-coupling), which implies that the expectation value
calculated in a coherent state can be obtained by weighting the
expectation values 〈A〉n obtained in different photon number
sectors by their projection on the coherent state. More precisely,
we have that the expectation value of an operator A evaluated in
the coherent state is related to the expectation values in the
number states by

hAi ¼
X
n

e�jαj2 α
2n

n!
hAin: (21)

Since 〈A〉n has a much weaker dependence on n than the
prefactor, we can write hAi � ð const Þ ´ hAinav showing that these
expectation values are proportional.

Model parameters from first principles
To determine the parameters of the electronic Hamiltonians HU

and Ht, we performed first principles simulations of monolayer α-
RuCl3 with the OCTOPUS electronic structure code63,64. The single
particle parameters where obtained from a Wannierization of the
Ru 4d and Cl 3p orbitals in the paramagnetic state using
Wannier9065,66, while the interaction parameters where deter-
mined using the hybrid DFT+U functional ACBN0 in the zigzag
state63. We have checked that the single particle parameters differ
by less than one percent between the paramagnetic and zigzag
states. The resulting electronic parameters are given in Table 1,
the equilibrium spin parameters in Table 2, and the electronic
band structure is shown in Fig. 4.
The calculations were performed in a 1 ´

ffiffiffi
3

p
supercell to

account for the zigzag magnetic structure, using the experimental
lattice parameters a= 5.98 Å and b= 10.35 Å. Mixed boundary
conditions, periodic in the in-plane direction and open in the out-
of-plane direction, where used together with a vacuum region of
15 Å to ensure convergence in the out-of-plane direction. A
8 × 8k-point grid and a real-space grid spacing of 0.3 Bohr were
employed. Using the ACBN0 functional a self-consistent effective
interaction Ueff= U− JH was determined on both the Ru and Cl

ions, and the Kanamori parameters U and JH where calculated in
the final states after convergence had been reached.
For a two-dimensional cavity the lowest energy photon mode

has a frequency Ω= πc/Lz, where Lz is the extent of the cavity in
the z-direction. Therefore, the light-matter coupling is indepen-
dent of the photon frequency, and is given by

g ¼ eaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ0_ΩaxayLz

p ¼ eaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πϵ0_caxay

p ¼ 0:12 (22)

assuming axay= a2.
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