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Abstract: While Koopman-based techniques like extended Dynamic Mode Decomposition are
nowadays ubiquitous in the data-driven approximation of dynamical systems, quantitative error
estimates were only recently established. To this end, both sources of error resulting from a
finite dictionary and only finitely-many data points in the generation of the surrogate model
have to be taken into account. We generalize the rigorous analysis of the approximation error
to the control setting while simultaneously reducing the impact of the curse of dimensionality
by using a recently proposed bilinear approach. In particular, we establish uniform bounds on
the approximation error of state-dependent quantities like constraints or a performance index
enabling data-based optimal and predictive control with guarantees.
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While optimal and predictive control based on models
derived from first principles is nowadays well established,
data-driven control design is becoming more and more
popular. We present an approach via extended Dynamic
Mode Decomposition (eDMD) using the Koopman frame-
work to construct a data-driven surrogate model suitable
for optimal and predictive control.

The Koopman framework provides the theoretical founda-
tion for data-driven approximation techniques like eDMD,
see (Mauroy et al., 2020, Chapters 1 and 8): Using the
Koopman semigroup (Kt)t≥0 or, equivalently, the Koop-
man generator L, observables φ (real-valued L2-functions
of the state) can be propagated forward-in-time via

Ktφ = K0φ+ L
∫ t

0

Ksφ ds.

Propagating the observable along the linear Koopman
operator via Ktφ and evaluating the result at a state x0

provides an alternative to calculating the solution x(t;x0)
of the underlying Ordinary Differential Equation (ODE)
and then evaluating the observable as depicted in Figure 1.

In the analysis of the eDMD-based approximation (K̃t)t≥0

of the Koopman semigroup (Kt)t≥0, two sources of error
have to be taken into account: The projection and the
estimation error. First, a dictionary is chosen, which con-
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Fig. 1. Schematic sketch of the Koopman framework.

sists of finitely-many observables ψ1, . . . , ψN and, thus,
spans a finite-dimensional subspace V. Since the eDMD-
based surrogate model is constructed on V, a projection
error occurs. Second, only a finite number of data points
x1, . . . , xm is used to generate the surrogate model, which
induces an additional estimation error on V. Whereas
the convergence of the eDMD-based approximation to the
Koopman semigroup in the infinite-data limit, i.e., for N
and m tending to infinity, was shown in (Korda and Mezić,
2018b), error bounds for a finite dictionary and finite
data depending on N and m were derived in (Zhang and
Zuazua, 2021) and (Nüske et al., 2022) for identically-and-
independently distributed (i.i.d.) data for the estimation
step. While also the projection error is analyzed in the for-
mer reference, the latter covers the estimation error even
for stochastic differential equations and ergodic sampling.

We consider the nonlinear control-affine ODE

ẋ(t) = g0(x(t)) +
∑nc

i=1
gi(x(t))ui(t) (1)

Towards reliable data-based optimal and
predictive control using extended DMD ⋆

Manuel Schaller ∗, Karl Worthmann ∗, Friedrich Philipp ∗,
Sebastian Peitz ∗∗, and Feliks Nüske ∗∗,∗∗∗,
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∗ Technische Universität Ilmemau, Institute of Mathematics,
Optimization-based Control group, Germany (e-mail:

{friedrich.philipp,manuel.schaller,karl.worthmann}@tu-ilmenau.de).
∗∗ Paderborn University, Department of Computer Science, Data

Science for Engineering, Germany (e-mail: sebastian.peitz@upb.de).
∗∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,

Magdeburg, Germany (e-mail: nueske@mpi-magdeburg.mpg.de)

Abstract: While Koopman-based techniques like extended Dynamic Mode Decomposition are
nowadays ubiquitous in the data-driven approximation of dynamical systems, quantitative error
estimates were only recently established. To this end, both sources of error resulting from a
finite dictionary and only finitely-many data points in the generation of the surrogate model
have to be taken into account. We generalize the rigorous analysis of the approximation error
to the control setting while simultaneously reducing the impact of the curse of dimensionality
by using a recently proposed bilinear approach. In particular, we establish uniform bounds on
the approximation error of state-dependent quantities like constraints or a performance index
enabling data-based optimal and predictive control with guarantees.

Keywords: Approximation error, data-based, dictionary size, eDMD, estimation error, finite
data, Koopman, predicted control, projection error, optimal control

While optimal and predictive control based on models
derived from first principles is nowadays well established,
data-driven control design is becoming more and more
popular. We present an approach via extended Dynamic
Mode Decomposition (eDMD) using the Koopman frame-
work to construct a data-driven surrogate model suitable
for optimal and predictive control.

The Koopman framework provides the theoretical founda-
tion for data-driven approximation techniques like eDMD,
see (Mauroy et al., 2020, Chapters 1 and 8): Using the
Koopman semigroup (Kt)t≥0 or, equivalently, the Koop-
man generator L, observables φ (real-valued L2-functions
of the state) can be propagated forward-in-time via

Ktφ = K0φ+ L
∫ t

0

Ksφ ds.

Propagating the observable along the linear Koopman
operator via Ktφ and evaluating the result at a state x0

provides an alternative to calculating the solution x(t;x0)
of the underlying Ordinary Differential Equation (ODE)
and then evaluating the observable as depicted in Figure 1.

In the analysis of the eDMD-based approximation (K̃t)t≥0

of the Koopman semigroup (Kt)t≥0, two sources of error
have to be taken into account: The projection and the
estimation error. First, a dictionary is chosen, which con-

⋆ F. Philipp was funded by the Carl Zeiss Foundation within
the project DeepTurb—Deep Learning in and from Turbulence.
K. Worthmann gratefully acknowledges support by the German
Research Foundation (DFG; grants WO2056/6-1, WO2056/14-1).

observable φ Ktφ

(Ktφ)(x0)

Koopman

evaluation
initial state x0

x(t;x0) φ(x(t;x0))

ODE

evaluation

Fig. 1. Schematic sketch of the Koopman framework.

sists of finitely-many observables ψ1, . . . , ψN and, thus,
spans a finite-dimensional subspace V. Since the eDMD-
based surrogate model is constructed on V, a projection
error occurs. Second, only a finite number of data points
x1, . . . , xm is used to generate the surrogate model, which
induces an additional estimation error on V. Whereas
the convergence of the eDMD-based approximation to the
Koopman semigroup in the infinite-data limit, i.e., for N
and m tending to infinity, was shown in (Korda and Mezić,
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x1, . . . , xm is used to generate the surrogate model, which
induces an additional estimation error on V. Whereas
the convergence of the eDMD-based approximation to the
Koopman semigroup in the infinite-data limit, i.e., for N
and m tending to infinity, was shown in (Korda and Mezić,
2018b), error bounds for a finite dictionary and finite
data depending on N and m were derived in (Zhang and
Zuazua, 2021) and (Nüske et al., 2022) for identically-and-
independently distributed (i.i.d.) data for the estimation
step. While also the projection error is analyzed in the for-
mer reference, the latter covers the estimation error even
for stochastic differential equations and ergodic sampling.
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While optimal and predictive control based on models
derived from first principles is nowadays well established,
data-driven control design is becoming more and more
popular. We present an approach via extended Dynamic
Mode Decomposition (eDMD) using the Koopman frame-
work to construct a data-driven surrogate model suitable
for optimal and predictive control.

The Koopman framework provides the theoretical founda-
tion for data-driven approximation techniques like eDMD,
see (Mauroy et al., 2020, Chapters 1 and 8): Using the
Koopman semigroup (Kt)t≥0 or, equivalently, the Koop-
man generator L, observables φ (real-valued L2-functions
of the state) can be propagated forward-in-time via

Ktφ = K0φ+ L
∫ t

0

Ksφ ds.

Propagating the observable along the linear Koopman
operator via Ktφ and evaluating the result at a state x0

provides an alternative to calculating the solution x(t;x0)
of the underlying Ordinary Differential Equation (ODE)
and then evaluating the observable as depicted in Figure 1.

In the analysis of the eDMD-based approximation (K̃t)t≥0

of the Koopman semigroup (Kt)t≥0, two sources of error
have to be taken into account: The projection and the
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with initial condition x(0) = x0 and locally Lipschitz-con-
tinuous vector fields g0, g1, . . . , gnc

: Rn → Rn. Further, we
impose the control constraints u(t) ∈ U for some compact,
convex, and nonempty set U ⊂ Rnc and define, for T > 0,
the set of admissible control functions by

UT (x0) ≜

{
u : [0, T ] → Rnc

∣∣∣∣∣
u measurable
∃!x(·;x0, u)
u(t) ∈ U, t ∈ [0, T ]

}
, (2)

where x(t;x0, u) denotes the unique solution at time t ≥ 0.

Proctor et al. (2016) as well as Korda and Mezić (2018a)
proposed a method to predict control systems within the
Koopman framework. To this end, the state is augmented
by the control variable. Then, a linear surrogate model
depending on the extended state is generated using eDMD.
Other popular methods are given by, e.g., using a coordi-
nate transformation into Koopman eigenfunctions (Kaiser
et al., 2021) or a component-wise Taylor series expan-
sion (Mamakoukas et al., 2021). In this work, however,
we use the bilinear approach, exploiting the control-affine
structure of (1) as suggested, e.g., in Williams et al. (2016);
Surana (2016); Peitz et al. (2020), for which estimation
error estimates were derived in Nüske et al. (2022). The
advantages of this approach are twofold. First, one can
observe a superior performance when considering nonlin-
ear systems with a control-state coupling, which we briefly
showcase in Example 1. Second, as the state dimension is
not augmented, the data-requirements are less demanding.
In particular, the curse of dimensionality is alleviated
in the multi-input case in comparison to the previously
proposed state-augmentation.

The probabilistic bounds on the estimation error for the
propagated observable derived in Nüske et al. (2022) de-
pend on the control function. However, for optimal and
predictive control, it is essential to derive uniform esti-
mates. Hence, our first key contribution is to establish
a bound in Section 2, which uniformly holds for all con-
trol functions on the prediction horizon. Our second key
contribution is the additional estimation of the projection
error using a dictionary consisting of only finitely-many
observables using techniques well-known for finite-element
methods in Section 3, see Braess (1997); Quarteroni and
Valli (2008). The derived bound decays with increasing
size of the dictionary. In conclusion and to the best of
the authors’ knowledge, this is the first rigorous finite-
data error estimate for the eDMD-based prediction for
nonlinear control systems taking into account both sources
of errors, i.e., the projection and the approximation error.

The paper is organized as follows: In Section 1, we briefly
recap eDMD and the bilinear surrogate model obtained
for control-affine control systems. Section 2 is devoted to
rigorous error bounds on the estimation error—uniform
w.r.t. the control, while the projection error is considered
in Section 3. Then, the application of the derived bounds
in optimal and predictive control is discussed in Section 4
before conclusions are drawn in Section 5.

1. KOOPMAN GENERATOR AND EXTENDED DMD

In this section, we recap the extended Dynamic Mode
Decomposition (eDMD) as an established methodology to
generate a data-based surrogate model for the Koopman

operator or its generator to approximately describe the
dynamics of observables along the flow of the control-affine
system (1), see Brunton et al. (2021); Mezić (2005).

1.1 eDMD for autonomous systems

In this subsection, we introduce the data-based finite-
dimensional approximation of the Koopman generator
and the corresponding Koopman operator for autonomous
systems using eDMD, i.e., setting u(t) ≡ ū ∈ U, see,
e.g., Williams et al. (2015) and defining ẋ(t) = f(x(t)) by
f(x) = g0(x) +

∑nc

i=1 gi(x)ūi. We consider this dynamical
system on a compact set X ⊊ Rn. For initial value x0 ∈
X, the Koopman semigroup acting on square-integrable
measurable functions φ ∈ L2(X) is defined by (Ktφ)(x0) =
φ(x(t;x0)) on the maximal interval of existence of x(·;x0).
The corresponding Koopman generator L : D(L) ⊂
L2(X) → L2(X) is defined as

Lφ := lim
t→0

(Kt − Id)φ

t
. (3)

Hence, z(t) = Ktφ ∈ L2(X) solves the Cauchy problem
ż(t) = Lz(t), z(0) = φ ∈ D(L).
For a dictionary of observables ψ1, . . . , ψN ∈ D(L), we
consider the finite-dimensional subspace

V := span{ψj , j = 1, . . . , N} ⊂ D(L).
The orthogonal projection onto V and the Galerkin pro-
jection of the Koopman generator are denoted by PV and
LV := PVL|V, resp. Along the lines of Klus et al. (2020), we
have the representation LV = C−1A with C,A ∈ RN×N ,

Ci,j = ⟨ψi, ψj⟩L2(X) and Ai,j = ⟨ψi,Lψj⟩L2(X).

For data points x1, . . . , xm ∈ X and the matrices

Ψ(X) :=

((
ψ1(x1)

:
ψN (x1)

)∣∣∣∣ . . .
∣∣∣∣
(

ψ1(xm)
:

ψN (xm)

))

LΨ(X) :=

((
(Lψ1)(x1)

:
(LψN )(x1)

)∣∣∣∣ . . .
∣∣∣∣
(

(Lψ1)(xm)
:

(LψN )(xm)

))
,

(Lψj)(xi) = ⟨f(xi),∇ψj(xi)⟩, define C̃m, Ãm ∈ RN×N by

C̃m = 1
mΨ(X)Ψ(X)⊤ and Ãm = 1

mΨ(X)LΨ(X)⊤

to obtain the empirical, i.e., purely data-based, estimator
L̃m = C̃−1

m Ãm for the Galerkin projection LV.

1.2 Bilinear surrogate control system

We briefly sketch the main steps of the bilinear surrogate
modeling approach as presented in Williams et al. (2016);
Surana (2016); Peitz et al. (2020), for which a finite-data
bound on the estimation error was given in Nüske et al.
(2022). Since control affinity of the system is inherited by
the Koopman generator, for u ∈ L∞([0, T ],Rnc), we set

Lu(t) = L0 +

nc∑
i=1

ui(t)
(
Lei − L0

)
, (4)

where Lei , i ∈ {0, . . . , nc}, is the Koopman generator for
the autonomous system with constant control ū = ei,
where e0 = 0. Then, we can describe the time evolution of
an observable function φ ∈ L2(X) via the bilinear system

ż(t) = Lu(t)z(t), z(0) = φ, (5)

where we omitted the control argument in z(t) = z(t;u) for
the sake of brevity. The propagated observable can then
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bound on the estimation error was given in Nüske et al.
(2022). Since control affinity of the system is inherited by
the Koopman generator, for u ∈ L∞([0, T ],Rnc), we set

Lu(t) = L0 +

nc∑
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(
Lei − L0
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, (4)

where Lei , i ∈ {0, . . . , nc}, is the Koopman generator for
the autonomous system with constant control ū = ei,
where e0 = 0. Then, we can describe the time evolution of
an observable function φ ∈ L2(X) via the bilinear system

ż(t) = Lu(t)z(t), z(0) = φ, (5)

where we omitted the control argument in z(t) = z(t;u) for
the sake of brevity. The propagated observable can then

be evaluated for an initial state x0 via z(t;u)(x0), cp. Fig-
ure 1. The projection of (4) onto V, spanned by a finite
dictionary, is given by Lu

V(t) := L0
V+

∑nc

i=1 ui(t)
(
Lei
V −L0

V
)
;

analogously to Subsection 1.1. Hence, the propagation of
an observable φ ∈ L2(X) projected onto V is given by

żV(t) = Lu
V(t)zV(t), z(0) = PVφ. (6)

The corresponding approximation by means of eDMD
using m data points is defined analogously via

L̃u
m(t) := L̃0

m +

nc∑
i=1

ui(t)
(
L̃ei
m − L̃0

m

)
, (7)

where L̃ei
m are eDMD-based approximations of Lei

V . Then,
the corresponding data-based surrogate model reads

˙̃zm(t) = L̃u
m(t)z̃m(t), z̃m(0) = PVφ. (8)

Let us highlight that, contrary to the popular DMD with
control (DMDc) approach (Proctor et al., 2016; Korda and
Mezić, 2018a), which yields linear surrogate models of the
form Ax+Bu, numerical simulation studies indicate that
bilinear surrogate models are better suited if control and
state are coupled, see Example 1. Another key feature of
the bilinear approach is that the state-space dimension is
not augmented by the number of inputs, which alleviates
the curse of dimensionality in comparison to DMDc.

Example 1. We briefly present an example with a Duffing
oscillator, cf. (Nüske et al., 2022, Section 4.2.1) for more
details, using the bilinear approach to showcase its supe-
rior performance compared to DMDc if state and control
are coupled. To this end, consider the dynamics

ẋ =

(
x2

−δx2 − αx1 − 2βx3
1u

)
, x(0) = x0, (9)

with α = −1, β = 1, δ = 0. Figure 2 shows the prediction
accuracy for m = 100 and the dictionary {ψj}Nj=1 consist-
ing of monomials with maximal degree five. We observe
an excellent agreement for the bilinear surrogate model
for more than one second, whereas eDMDc yields a large
error of approximately 10% from the start and becomes
unstable almost immediately.
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Fig. 2. Comparison of the bilinear and the DMDc approach
for (9) and a sinusoidal control input.

2. ESTIMATION ERROR: UNIFORM BOUNDS

In this section, we derive an error bound that is uniform in
the control u with values in the compact set U and, thus,
refine the error bound of Nüske et al. (2022). To this end,
we require the following standard assumption.

Assumption 2. Assume that the data, for each autonomous
system with constant control u ≡ ei, i ∈ {0, . . . , nc}, is
sampled i.i.d. on X w.r.t. the Lebesgue measure.

We combine error bounds on the autonomous systems
corresponding to u ≡ ei, i ∈ {0, . . . , nc}, and exploit
the control-affine structure of (1) to derive the following
error bound, which is an extension of our previous work by
incorporating control constraints and providing a uniform
bound independently of the chosen control function.

Theorem 3. Suppose that Assumption 2 holds and U ⊂
Rnc is bounded. Then, for error bound ε > 0 and proba-
bilistic tolerance δ ∈ (0, 1), the probabilistic error bound

P
(
∥Lu

V(t)− L̃u
m(t)∥F ≤ ε

)
≥ 1− δ ∀ t ≥ 0 (10)

holds for all measurable control functions u : [0,∞) → U
if m ≥ m = O(N

2
/ε2δ) holds for the number of data points,

where ∥ · ∥F denotes the Frobenius norm.

Proof. Invoking boundedness of U, we define δ̃ and ε̄ by
δ/3(nc+1) and ε/(nc+1)(1+maxu∈U

∑nc

i=1
|ui|) > 0, respectively.

For k ∈ {0, . . . , nc}, let the matrix A(k) ∈ RN×N be
defined by

(
A(k)

)
i,j

= ⟨ψi,Lekψj⟩L2(X) and set

ε̃k = min

{
1,

1

∥A(k)∥∥C−1∥

}
· ∥A(k)∥ε̄
2∥A(k)∥∥C−1∥+ ε̄

.

Then, choose a number of data points m ∈ N such that

m ≥ max
k=0,...,nc

N2

δ̃ε̃2k
max

{
∥ΣA(k)∥2F , ∥ΣC∥2F

}
(11)

where ΣA(k) and ΣC are variance matrices defined via

(ΣA(k))
2
i,j =

∫

X
ψ2
i (x)⟨g0(x) + gk(x),∇ψj(x)⟩2 dx

−
(∫

X
ψi(x)⟨g0(x) + gk(x),∇ψj(x)⟩ dx

)2

,

(ΣC)
2
i,j =

∫

X
ψ2
i (x)ψ

2
j (x) dx−

(∫

X
ψi(x)ψj(x) dx

)2

.

Using m ≥ m data points, cp. (11), we obtain probabilistic

error estimates for the generators L̃ei
m, i ∈ {0, . . . , nc}, via

(Nüske et al., 2022, Theorem 12):

P
(
∥Lei

V − L̃ei
m∥ ≤ ε̄

)
≥ 1− δ

nc+1 . (12)

Rewriting Lu
V(t)− L̃u

m(t) as
(
1−

nc∑
i=1

ui(t)
)(

L0
V − L̃0

m

)
+

nc∑
i=1

ui(t)
(
Lei
V − L̃ei

m

)
,

the desired error bound (10) can straightforwardly be
derived based on the error bounds for the individual
generators (12) analogously to (Nüske et al., 2022, Proof
of Theorem 17). �

Having a probabilistic bound for the estimation error on
the projected non-autonomous generator at hand, a bound
on the resulting trajectories of observables can be derived
using Gronwall’s inequality.

Corollary 4. Suppose that Assumption 2 holds and U ⊂
Rnc is bounded. Let T, ε > 0, δ ∈ (0, 1), and z0 ∈ V
be given. Then, there is a number m = O(N/ε2δ) of data
points such that, for any m ≥ m, the solutions z, z̃m of

ż(t) = Lu
V(t)z(t), z(0) = z0

˙̃zm(t) = L̃u
m(t)z̃m(t), z̃m(0) = z0

satisfy

P
(
∥z(t)(x0)− z̃m(t)(x0)∥ ≤ ε

)
≥ 1− δ
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for all x0 ∈ X, measurable control functions u : [0, T ] → U
and t ≥ 0 such that x(s;x0, u) ∈ X holds for all s ∈ [0, t].

Proof. The proof follows by straightforward modifica-
tions of (Nüske et al., 2022, Proof of Corollary 18) using
the uniform data requirements of Proposition 3. �

Note that our approach to approximate the generator
only requires the state to be contained in X up to any
arbitrary small time t > 0 to be able to define the
generator as in (3). Then, in order to obtain error estimates
for arbitrary long time horizons when going to a control
setting, we have to ensure that the state trajectories
remain in the set X by means of our chosen control
function. Besides a controlled forward-invariance of the
set X, this can be ensured by choosing an initial condition
contained in a suitable sub-level set of the optimal value
function of a respective optimal control problem, see, e.g.,
Boccia et al. (2014) or Esterhuizen et al. (2020) for an
illustrative application of such a technique in showing
recursive stability of Model Predictive Control (MPC)
without stabilizing terminal constraints for discrete- and
continuous-time systems, respectively.

3. FINITE-DATA ERROR BOUND FOR THE
APPROXIMATION ERROR

In this section, we present our main result—a novel finite-
data error bound for the full approximation error taking
both estimation and projection error into account and,
thus, generalizing (Zhang and Zuazua, 2021, Proposition
5.1) to non-autonomous and control systems.

If the dictionary V forms a Koopman-invariant subspace,
Corollary 4 directly yields an estimate for the observables,
as the original system (5) and the projected system (6)
coincide. If this is not the case, one further has to analyze
the error resulting from projection onto the dictionary V.
To this end, we choose a dictionary of finite elements.

Assumption 5. Suppose that the set X is compact and
has a Lipschitz boundary ∂X. Further, let a regular,
uniform triangulation of X with meshsize ∆x > 0 be given.
Further, let ψi denote the (usual) linear hat function for
the node xi, i ∈ {1, . . . , N}, such that ψi(xj) = δij holds,
where the latter is the Kronecker symbol.

The meshsize ∆x might, e.g., be the incircle diameter
of each cell. We point out that the size of the dictio-
nary of finite elements is proportional to 1

∆xd and re-
fer to (Quarteroni and Valli, 2008) and the references
therein for details on finite elements. Furthermore, we
emphasize that the dictionary V consisting of the finite-
elements functions may be further enriched by additional
observables representing quantities of particular interest
like state constraints or state-dependent stage costs.

Theorem 6. Suppose that Assumption 2 holds and that
U ⊂ Rnc is bounded. Let an observable φ ∈ C2(X,R),
an error bound ε > 0, a probabilistic tolerance δ ∈
(0, 1), and a time horizon T > 0 be given. Then, if the
dictionary consists of finite elements in accordance with
Assumption 5, there is a mesh size ∆x = O(ε) and a
required amount of data m = O(1/ε2+2dδ) such that, for
z̃m(0) = PVφ, the probabilistic error bound

P
(
∥φ(x(t; ·, u))− z̃m(t; ·, u)∥L2(A(t)) ≤ ε

)
≥ 1− δ

holds for all measurable control functions u : [0, T ] → U
and the data-based prediction using the bilinear surrogate
dynamics (8) generated with m ≥ m data points, where
A(t) = {x0 ∈ X |x(s;x0, u) ∈ X ∀s ∈ [0, t]}.

Proof. First, we have φ(x(t;x0, u)) = z(t;u)(x0), where
z solves (5), i.e., using L0φ = g0 ·∇φ, Leiφ = (g0+gi) ·∇φ
and abbreviating z(t) = z(t;u),

ż(t) = Lu(t)z(t) =
(
L0 +

nc∑
i=0

ui(t)
(
Lei − L0

) )
z(t)

=
(
g0 +

nc∑
i=0

ui(t)gi

)
· ∇z(t).

This can be viewed as a linear transport equation
d
dtz(t) = a(t, ·) · ∇z(t), z(0) = φ, (13)

along the time- and space-dependent vector field

a(t, x) := g0(x) +

nc∑
i=0

ui(t) (gi(x)− g0(x)) .

Since X is compact, U is bounded, and gi, i ∈ {0, . . . , nc},
are continuous, there are a, a ∈ R such that a ≤ a(t, x) ≤ a
for a.e. t ∈ [0, T ] and all x ∈ X. Correspondingly, we define
the inflow boundary (depending on u) of the PDE via

∂ Xin(t) := {x ∈ ∂ X | a(t, x) · ν(x) > 0}.
We now formulate two auxiliary variational problems to
analyze the projection error. First, we consider for all
(w, v) ∈ L2(X)× L2(∂ X) and t ∈ (0, T ),

d
dt ⟨Φ(t), w⟩L2(X) = ⟨a(t, ·) · ∇Φ(t), w⟩L2(X)

⟨Φ(t), v⟩L2(∂ Xin(t)) = ⟨φ, v⟩L2(∂ Xin(t))

⟨Φ(0), w⟩L2(X) = ⟨φ,w⟩L2(X).

(14)

As the boundary values on the inflow boundary ∂ Xin(t)
are prescribed, this transport equation is well-posed
(Quarteroni and Valli, 2008, Chapter 14). Moreover, it
can be straightforwardly verified that Φ ∈ C(0, T ;H1(X))
defined by

Φ(t)(x0) =

{
φ(x(t;x0, u)) if x(s;x0, u) ∈ X ∀s ∈ [0, t]

φ(xexit) otherwise
,

solves (14), where xexit ∈ ∂ Xin(t) is the point at which
x(t;x0, u) leaves X.

Similarly, we consider the projected system such that for
all test functions (wV, vV) ∈ V× V∂ , where V∂ consists of
the traces of the observable functions in V, and t ∈ (0, T ),

d
dt ⟨ΦV(t), wV⟩L2(X) = ⟨a(t, ·) · ∇ΦV(t), wV⟩L2(X)

⟨ΦV(t), vV⟩L2(∂ Xin(t)) = ⟨φ, vV⟩L2(∂ Xin(t))

⟨ΦV(0), wV⟩L2(X) = ⟨φ,wV⟩L2(X),

(15)

whose solution ΦV is given by the projection of its coun-
terpart for the variational problem (14) onto V.

The solutions of the variational problems (14) and (15)
coincide with the flow of the Koopman resp. the Koopman
surrogate model on the set of initial values, such that
the flow is contained in X. More precisely, for z(t) =
φ(x(t, ·;u)) satisfying (5) and zV(t) solving the surrogate
dynamics (6), we have

Φ(t)(x0) = z(t)(x0) and ΦV(t)(x0) = zV(t)(x0) (16)

for all x0 ∈ A(t) and t ∈ [0, T ]. As φ ∈ C2(X,R),
the projection error between the auxiliary problems (14)
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for all x0 ∈ X, measurable control functions u : [0, T ] → U
and t ≥ 0 such that x(s;x0, u) ∈ X holds for all s ∈ [0, t].

Proof. The proof follows by straightforward modifica-
tions of (Nüske et al., 2022, Proof of Corollary 18) using
the uniform data requirements of Proposition 3. �

Note that our approach to approximate the generator
only requires the state to be contained in X up to any
arbitrary small time t > 0 to be able to define the
generator as in (3). Then, in order to obtain error estimates
for arbitrary long time horizons when going to a control
setting, we have to ensure that the state trajectories
remain in the set X by means of our chosen control
function. Besides a controlled forward-invariance of the
set X, this can be ensured by choosing an initial condition
contained in a suitable sub-level set of the optimal value
function of a respective optimal control problem, see, e.g.,
Boccia et al. (2014) or Esterhuizen et al. (2020) for an
illustrative application of such a technique in showing
recursive stability of Model Predictive Control (MPC)
without stabilizing terminal constraints for discrete- and
continuous-time systems, respectively.

3. FINITE-DATA ERROR BOUND FOR THE
APPROXIMATION ERROR

In this section, we present our main result—a novel finite-
data error bound for the full approximation error taking
both estimation and projection error into account and,
thus, generalizing (Zhang and Zuazua, 2021, Proposition
5.1) to non-autonomous and control systems.

If the dictionary V forms a Koopman-invariant subspace,
Corollary 4 directly yields an estimate for the observables,
as the original system (5) and the projected system (6)
coincide. If this is not the case, one further has to analyze
the error resulting from projection onto the dictionary V.
To this end, we choose a dictionary of finite elements.

Assumption 5. Suppose that the set X is compact and
has a Lipschitz boundary ∂X. Further, let a regular,
uniform triangulation of X with meshsize ∆x > 0 be given.
Further, let ψi denote the (usual) linear hat function for
the node xi, i ∈ {1, . . . , N}, such that ψi(xj) = δij holds,
where the latter is the Kronecker symbol.

The meshsize ∆x might, e.g., be the incircle diameter
of each cell. We point out that the size of the dictio-
nary of finite elements is proportional to 1

∆xd and re-
fer to (Quarteroni and Valli, 2008) and the references
therein for details on finite elements. Furthermore, we
emphasize that the dictionary V consisting of the finite-
elements functions may be further enriched by additional
observables representing quantities of particular interest
like state constraints or state-dependent stage costs.

Theorem 6. Suppose that Assumption 2 holds and that
U ⊂ Rnc is bounded. Let an observable φ ∈ C2(X,R),
an error bound ε > 0, a probabilistic tolerance δ ∈
(0, 1), and a time horizon T > 0 be given. Then, if the
dictionary consists of finite elements in accordance with
Assumption 5, there is a mesh size ∆x = O(ε) and a
required amount of data m = O(1/ε2+2dδ) such that, for
z̃m(0) = PVφ, the probabilistic error bound

P
(
∥φ(x(t; ·, u))− z̃m(t; ·, u)∥L2(A(t)) ≤ ε

)
≥ 1− δ

holds for all measurable control functions u : [0, T ] → U
and the data-based prediction using the bilinear surrogate
dynamics (8) generated with m ≥ m data points, where
A(t) = {x0 ∈ X |x(s;x0, u) ∈ X ∀s ∈ [0, t]}.

Proof. First, we have φ(x(t;x0, u)) = z(t;u)(x0), where
z solves (5), i.e., using L0φ = g0 ·∇φ, Leiφ = (g0+gi) ·∇φ
and abbreviating z(t) = z(t;u),

ż(t) = Lu(t)z(t) =
(
L0 +

nc∑
i=0

ui(t)
(
Lei − L0

) )
z(t)

=
(
g0 +

nc∑
i=0

ui(t)gi

)
· ∇z(t).

This can be viewed as a linear transport equation
d
dtz(t) = a(t, ·) · ∇z(t), z(0) = φ, (13)

along the time- and space-dependent vector field

a(t, x) := g0(x) +

nc∑
i=0

ui(t) (gi(x)− g0(x)) .

Since X is compact, U is bounded, and gi, i ∈ {0, . . . , nc},
are continuous, there are a, a ∈ R such that a ≤ a(t, x) ≤ a
for a.e. t ∈ [0, T ] and all x ∈ X. Correspondingly, we define
the inflow boundary (depending on u) of the PDE via

∂ Xin(t) := {x ∈ ∂ X | a(t, x) · ν(x) > 0}.
We now formulate two auxiliary variational problems to
analyze the projection error. First, we consider for all
(w, v) ∈ L2(X)× L2(∂ X) and t ∈ (0, T ),

d
dt ⟨Φ(t), w⟩L2(X) = ⟨a(t, ·) · ∇Φ(t), w⟩L2(X)

⟨Φ(t), v⟩L2(∂ Xin(t)) = ⟨φ, v⟩L2(∂ Xin(t))

⟨Φ(0), w⟩L2(X) = ⟨φ,w⟩L2(X).

(14)

As the boundary values on the inflow boundary ∂ Xin(t)
are prescribed, this transport equation is well-posed
(Quarteroni and Valli, 2008, Chapter 14). Moreover, it
can be straightforwardly verified that Φ ∈ C(0, T ;H1(X))
defined by

Φ(t)(x0) =

{
φ(x(t;x0, u)) if x(s;x0, u) ∈ X ∀s ∈ [0, t]

φ(xexit) otherwise
,

solves (14), where xexit ∈ ∂ Xin(t) is the point at which
x(t;x0, u) leaves X.

Similarly, we consider the projected system such that for
all test functions (wV, vV) ∈ V× V∂ , where V∂ consists of
the traces of the observable functions in V, and t ∈ (0, T ),

d
dt ⟨ΦV(t), wV⟩L2(X) = ⟨a(t, ·) · ∇ΦV(t), wV⟩L2(X)

⟨ΦV(t), vV⟩L2(∂ Xin(t)) = ⟨φ, vV⟩L2(∂ Xin(t))

⟨ΦV(0), wV⟩L2(X) = ⟨φ,wV⟩L2(X),

(15)

whose solution ΦV is given by the projection of its coun-
terpart for the variational problem (14) onto V.

The solutions of the variational problems (14) and (15)
coincide with the flow of the Koopman resp. the Koopman
surrogate model on the set of initial values, such that
the flow is contained in X. More precisely, for z(t) =
φ(x(t, ·;u)) satisfying (5) and zV(t) solving the surrogate
dynamics (6), we have

Φ(t)(x0) = z(t)(x0) and ΦV(t)(x0) = zV(t)(x0) (16)

for all x0 ∈ A(t) and t ∈ [0, T ]. As φ ∈ C2(X,R),
the projection error between the auxiliary problems (14)

and (15), i.e., the difference between Φ and ΦV, can
be bounded using finite element convergence results, cf.
(Quarteroni and Valli, 2008, Section 14.3). In our case of
linear finite elements, an application of (Quarteroni and
Valli, 2008, Inequality (14.3.16)) reads

(∫

X
(Φ(t)(x)− ΦV(t)(x))

2 dx

)1/2

≤ c∆x (17)

for a constant c = c(∥φ∥H2(X), |X|, a, a) ≥ 0 and all
t ∈ [0, T ]. Thus,∫

A(t)

(φ(x(t; x̂, u))︸ ︷︷ ︸
=z(t)(x̂)

−z̃m(t)(x̂))2 dx̂

≤2

∫

A(t)

(z(t)(x̂)− zV(t)(x̂)︸ ︷︷ ︸
(16)
= Φ(t)(x̂)−ΦV(t)(x̂)

)2+(zV(t)(x̂)− z̃m(t)(x̂))2 dx̂.

Taking square roots, the first term is bounded by ε/2 for a
mesh width ∆x = O(ε) using (17). The second term can
be estimated by ε/2 with probabilistic tolerance δ using
Corollary 4 with m = O

(
N2
/ε2δ

)
. Then, the result follows

for dictionary size N = O (1/∆xd) = O (1/εd). �

Remark 7. On a d-dimensional domain X, Theorem 6
yields data requirements m = O(ε−2(d+1)) to approxi-
mate the generator and, thus, suffers from the curse of
dimensionality, see also Zhang and Zuazua (2021) for a
comparison of eDMD for system identification to other
methods. Thus, augmenting the state by the control would
exponentially scale the data requirements w.r.t. the input
dimension, that is, m = O(ε−2(d+2+nc)). In contrast, the
proof of Corollary 3 reveals that the data requirements
satisfy m = O((nc + 1)ε−(2(d+1))), i.e., linear scaling.

4. OPTIMAL AND MODEL PREDICTIVE CONTROL

In this section, we show the usefulness of the derived
uniform error bound in data-based optimal and predictive
control.

To this end, we consider the Optimal Control Problem

Minimizeu∈UT (x0)

∫ T

0

ℓ(x(t;x0, u), u(t)) dt (OCP)

subject to the initial condition x(0) = x0, the control-affine
system dynamics (1), and the state constraints

hj(x(t;x0, u)) ≤ 0 ∀ j ∈ {1, 2, . . . , p} (18)

for t ∈ [0, T ], where the set UT (x0) of admissible control
functions is given by (2). Further, we assume, that the set
X is chosen such that it contains the state constraint set
in its interior, that is,

{x ∈ Rn |hj(x) ≤ 0 for all j ∈ {1, 2, . . . , p}} ⊊ int(X).
The key challenge is to properly predict the performance
index of (OCP) and ensure satisfaction of the state con-
straints (18) using the data-based surrogate model instead
of propagating the state dynamics and then evaluating the
observables of interest, cp. Figure 1 and recall the identity

(Kt
uφ)(x0) = φ(x(t;x0, u)). (19)

Since the Koopman operator Kt
u is, in general, not known

analytically, we resort to eDMD as outlined in Section 1 to
derive a data-based finite-dimensional approximation K̃t

u.

All central quantities, i.e., the stage cost ℓ and the con-
straint functions hj , j ∈ {1, . . . , p}, are evaluated along

the system dynamics (1). Hence, we use the observables
φ = hj , j ∈ {1, 2, . . . , p}, to ensure satisfaction of the
state constraints. Assuming separability of the stage cost

ℓ(x, u) = ℓ1(x) + ℓ2(u), (20)

we choose φ = ℓ1 as an observable while ℓ2 is at our
disposal anyway. We point out that the assumed separa-
bility is typically the case. Otherwise, one can consider
the coordinate functions as observables, i.e., φ(x) = xi for
i ∈ {1, . . . , d}, to evaluate ℓ.

Theorem 6 allows to rigorously ensure constraint satis-
faction and a bound ε > 0 on the approximation error
w.r.t. the stage cost provided that the amount of data is
sufficiently large and the finite-element dictionary is suffi-
ciently rich. Consequently, the following result allows us to
approximately solve the problem (OCP) using the derived
eDMD-based, bilinear surrogate model with guaranteed
constraint satisfaction and performance.

Proposition 8. (State constraint and stage cost). Let As-
sumptions 2 and 5 hold. Further, suppose that ℓ1, hi ∈
C2(X,R), i ∈ {1, 2, . . . , p}. Then, for error bound ε > 0,
probabilistic tolerance δ ∈ (0, 1), optimization horizon
T > 0, and all measurable control functions u : [0, T ] → U
the following estimates hold:

(1) Averaged probabilistic performance bound, i.e.,

P
(
∥ℓ(x(t; ·, u), u(t))− ℓ̃m(t; ·, u)∥L2(A(t)) ≤ ε

)
≥ 1− δ.

(2) Averaged probabilistic state-constraint satisfaction, if
1√

|A(t)|

∫
A(t)

h̃i,m(t;x0, u) dx0 ≤ −ε holds, i.e.,

P
(

1√
|A(t)|

∫

A(t)

hi(x(t; x̂, u)) dx̂ ≤ 0
)
≥ 1− δ

for ℓ̃m(t;x0, u) = ℓ̃1,m(t;x0, u) + ℓ2(u(t)) and all i ∈
{1, . . . , p}, where ℓ̃1,m, h̃i,m, i ∈ {1, 2, . . . , p}, are pre-
dicted along the bilinear surrogate dynamics (8) with

ℓ̃1,m(0;x0, u) = PVℓ1 and h̃i,m(0;x0, u) = PVhi, re-
spectively, provided that the number of data points
m ≥ m(ε, δ) and the mesh size ∆x ≤ ε/c, with c =
c(∥ℓ1∥H2(X), ∥h∥H2(X,Rp)) are chosen in according to The-
orem 6. In particular m and ∆x can be determined inde-
pendently of the chosen control u.

Proof. For the first assertion, i.e., the claim w.r.t. the
stage cost, we invoke the assumed separability to compute

ℓ(x(t;x0, u), u(t))− ℓ̃m(t;x0, u)

= ℓ1(x(t;x0, u))− ℓ̃1,m(t;x0, u).

Hence, the claim follows by setting φ = ℓ1 in Theorem 6.

Next, we show the second claim. To this end, we set φ = hi,
i ∈ {1, . . . , p}, in Theorem 6 and use the Cauchy-Schwarz
inequality to get

1√
|A(t)|

∫

A(t)

hi(x(t; x̂, u))− h̃i,m(t; x̂, u) dx̂

≤ ∥hi(x(t; ·, u))− h̃i,m(t; ·, u)∥L2(A(t)) ≤ ε.

Then, invoking the assumption completes the proof by∫

A(t)

h̃i,m(t; x̂, u) + (hi(x(t; x̂, u))− h̃i,m(t; x̂, u)) dx̂

≤
∫

A(t)

hi(x(t; x̂, u))− h̃i,m(t; x̂, u) dx̂−
√
|A(t)|ε ≤ 0. �
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The error bound of Proposition 8 is given in an average
sense due to the L2-bound in the projection error estimate
(17) of Theorem 6. The projection error vanishes if the
dictionary V is invariant under the Koopman semigroup
or equivalently the generator, e.g., if it is spanned by
eigenfunctions, cf. (Kaiser et al., 2021). In this case,
Proposition 8 can be straightforwardly refined to ensure a
pointwise bound w.r.t. the initial value due to Corollary 4.

In view of Proposition 8 bounding the stage cost error and
yielding chance constraint satisfaction, we briefly provide
an outlook with respect to predictive control.

Towards Model Predictive Control: OCPs also play
a predominant role in optimization-based control tech-
niques like Model Predictive Control (MPC), where Prob-
lem (OCP) on an infinite-time horizon, i.e., T = ∞, is
approximately solved by solving (OCP) at successive time
instants iδ, i ∈ N0, on the prediction horizon [iδ, iδ + T ]
subject to the current state as initial value, see, e.g., the
monographs (Grüne and Pannek, 2017) and (Coron et al.,
2020) w.r.t. MPC for continuous-time systems. Having ob-
tained rigorous error estimates in view of optimal control,
this paves the way of analyzing data-driven MPC schemes
as proposed in Peitz et al. (2020) and Korda and Mezić
(2018a) w.r.t. recursive feasibility or stability.

5. CONCLUSION AND OUTLOOK

Motivated by data-based surrogate modeling for optimal
control problems with state constraints, we derived quanti-
tative error estimates for eDMD-approximations of control
systems. In this context, we provided a novel bound for the
estimation uniform in the control and generalized the error
analysis of the projection error to control systems. Further,
using these probabilistic bounds, we derived error bounds
on the performance and satisfaction of state constraints in
data-based optimal and predicted control.

In future work, we further elaborate the presented re-
sults towards optimal control to derive suboptimality esti-
mates Coron et al. (2020) depending on both data and
dictionary size. Moreover, a sensitivity analysis of the
OCP could reveal robustness of optimal solutions w.r.t.
approximation errors, that can be further exploited by
numerical techniques, cf. Grüne et al. (2022). Furthermore,
a comparison to other approximation techniques for the
Koopman operator, e.g., based on neural networks as pro-
posed by (Wang et al., 2022), might be of interest.
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