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ABSTRACT: In this review, we present the theoretical foundations and first-principles
frameworks to describe quantum matter within quantum electrodynamics (QED) in the
low-energy regime, with a focus on polaritonic chemistry. By starting from fundamental
physical and mathematical principles, we first review in great detail ab initio nonrelativistic
QED. The resulting Pauli-Fierz quantum field theory serves as a cornerstone for the
development of (in principle exact but in practice) approximate computational methods
such as quantum-electrodynamical density functional theory, QED coupled cluster, or cavity
Born−Oppenheimer molecular dynamics. These methods treat light and matter on equal
footing and, at the same time, have the same level of accuracy and reliability as established
methods of computational chemistry and electronic structure theory. After an overview of
the key ideas behind those ab initio QED methods, we highlight their benefits for
understanding photon-induced changes of chemical properties and reactions. Based on
results obtained by ab initio QED methods, we identify open theoretical questions and how
a so far missing detailed understanding of polaritonic chemistry can be established. We finally give an outlook on future directions
within polaritonic chemistry and first-principles QED.
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1. INTRODUCTION

“Until the beginning of the 20th century, light and matter
have been treated as dif ferent entities, with their own
specif ic properties [...]. The development of quantum
mechanics has enabled the theoretical description of the
interaction between light-quanta and matter.”

M. Hertzog in ref 1.
Chemistry investigates, very broadly spoken, how matter
arranges itself under different conditions (temperature,
pressure, chemical environment, etc.) and how these arrange-
ments lead to various functionalities and phenomena. The
basic building blocks of chemical systems, as we understand
them today, are the various atoms of the periodic table of
elements. Combining these basic building blocks then leads to
the formation of molecules and solids, and the arrangement of
the atoms determines much of the emerging properties of
these complex matter systems. Light, or more generally, the
electromagnetic field, usually appears in this context in two
distinct capacities: First, as an external (classical) agent that
drives the matter system out of equilibrium. External driving is
then used to either spectroscopically investigate matter
properties, such as when recording an absorption or emission
spectrum,2−5 or to force the matter system into a different
(transient) state.6−10 Second, as a (quantized) part of the
system,11−13 such as in the case of the longitudinal electric field
between two charged particles, which gives rise to the
Coulomb interaction and determines how the atoms are
arranged.

Light as an external, classical probe and control field is
widely used in chemistry nowadays. However, the potential to
employ the quantized light field as part of the system to modify
and probe chemical properties has only began to be explored
in the last years14 In order to achieve control over the internal
light field one can use photonic structures, such as optical
cavities.15−18 and in this way control the local electromagnetic
field of a molecular system.19 The resulting restructuring of the
electromagnetic modes has very fundamental consequences,
since it changes the building blocks of light: the electro-
magnetic vacuum modes and with this the notion of photons
in quantum electrodynamics.20,21 Keeping in mind that the
interaction between charged particles is mediated via the
exchange of photons,11−13 it becomes clear that such
modifications can in principle influence the properties of
atomic, molecular and solid-state systems. Even more so, if we
realize that the basic building blocks of matter (electrons,
nuclei/ions, atoms,...) are themselves hybrid light−matter
systems22,23 that depend on the photonic environment (see
also discussion after eq 1).

Although optical cavities have been used in atomic physics
and quantum optics routinely since several decades to
interrogate and change the behavior of (an ensemble of)
atoms,24,25 it came as a surprise to many that cavities could
also influence complex chemical and solid-state pro-
cesses.14,26−30 The main reason being that in quantum optics,

or more precisely in cavity31−33 and circuit34,35 quantum
electrodynamics (QED), which focus on the properties of the
photons and a limited set of matter degrees of freedom, often
ultralow temperatures and ultrahigh vacuua are needed in
order to observe the influence of the changed electromagnetic
vacuum modes. Such very specific external conditions are not
often considered in chemistry and materials science, and
hence, it was assumed that there would be no observable effect
on chemical and material properties upon changing the
photonic environment at ambient conditions. Yet there is by
now a multitude of seminal experimental results that show that
indeed the restructuring of the electromagnetic environment
by optical cavities can influence chemical and material
properties at ambient conditions, even if there is no external
illumination and the effects are driven mainly by vacuum and
thermal fluctuations (for an overview, see various reviews, e.g.,
refs 1, 5, 14, 36−47). We here only highlight, as
exemplifications, changes in energy and charge transport,49−53

the appearance of exciton-polariton condensates at room
temperature,54,55 and the modification of the phases of
solids.56,57 In the following, we will focus on changes in
chemical properties of (finite) molecular systems upon
modifying the photonic environment and do not go into
detail on changes observed and induced in extended solid-state
systems.

This new flavor of chemistry, which uses the modification
of the photonic environment as an extra control knob, has
been named QED or polaritonic chemistry.38,58 The latter
notion is derived from the quasi particle polariton, which is a
mixed light−matter excitation27 (see also Figure 4), and whose
appearance in absorption or emission spectra is often assumed
to be a prerequisite for observing changes in chemical
properties. Polaritonic chemistry is a highly interdisciplinary
field with often conflicting perspectives on the same physical
concepts. From a (quantum) optics perspective, for instance,
the role of light and matter is reversed compared to chemistry.
Matter is used to either interrogate or change the properties of
the electromagnetic field. This clash of perspectives, which
arises due to the artificial subdivision into different research
fields (and their unification via QED, see also Figure 1), makes
it a scientifically very rewarding field of research since it
constantly challenges one’s basic conceptions. A plethora of
theoretical methods from (quantum) optics and (quantum)
chemistry are employed and combined to capture and
understand the emerging novel functionalities when changes
in the electromagnetic environment lead to strong coupling
between light and matter.5,43

While (quantum) optics methods are geared to capture
details of the electromagnetic field and photonic states,24,25 the
(quantum) chemical methods are naturally focused on a
detailed description of the matter system.59−61 Many currently
employed combinations of such methods are able to capture
certain effects, but fail in important situations, such as to
describe (even only qualitatively) the observed changes in
ground-state chemical reactions under vibrational strong
coupling.62−64 On a first glance, owing to the complexity of
the systems under study (a large number of complex molecules
in solvation at ambient conditions strongly coupled to an
optical cavity with many photonic modes), this might not
come as a surprise, since already the accurate theoretical
description of a single complex molecule in vacuum and at zero
temperature is highly challenging.59 Even simple working
principles of polaritonic chemistry, which single out the most
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important ingredients to control chemistry via changed
electromagnetic environments, remain elusive so far. On a
second, more careful glance, however, there might be a more
fundamental reason for why currently employed approaches,
which combine (quantum) chemistry and (quantum) optics
methods, are not able to describe some of the experimentally
observed effects. Our most fundamental description of how
light and matter interact, QED,11−13,65 does not allow for a
strict distinction between light and matter (see also Figure 1).

Indeed, if we reconsider the basic building blocks of matter
from a QED perspective, we realize that already electrons and
atoms are hybrid light−matter objects themselves, and their
properties depend on various assumptions. Take, for instance,
the hydrogen atom as described by the nonrelativistic
Schrödinger equation in Born−Oppenheimer approximation
in SI units (used throughout this review)

=
i
k
jjjjj

y
{
zzzzzr

r r
m

e
E

2 4
( ) ( )

2

e

2
2

0 (1)

where ℏ is the reduced Planck’s constant, me is the physical
mass of the electron, e is the elementary charge, and ϵ0 is the
permittivity of the free electromagnetic vacuum. However,
from a QED perspective, the electron of a hydrogen atom has a
mass that depends on the structure of the electromagnetic
vacuum surrounding the atom, and also the Coulomb
attraction depends on the form of the surrounding electro-
magnetic vacuum. Indeed, the physical mass of the electron has
two contributions

= +m m me ph (2)

where the bare mass m depends on how the electromagnetic
vacuum modes decay when going to higher and higher
frequencies (ultraviolet regularization) and the photon-
induced mass mph comes from the energy due to the
interaction of a moving electron with the photon field (see
discussion in Sections 3.2 and 3.3 for more details). In

addition, the form as well as the strength of the Coulomb
interaction is determined solely by the structure of the vacuum
modes (see the discussion in Section 3.3 for more details). In
other words, what we call a hydrogen atom is defined with
respect to a specific photonic environment, i.e., in this case the
free electromagnetic vacuum. Similarly, the photonic environ-
ment dictates how a laser or thermal radiation interacts with
matter. Hence, it becomes clear that when we restructure the
electromagnetic environment with the help of an optical cavity
or other setups,17,26,43 we might need to rethink what are the
basic building blocks of matter, which statistics they obey, how
they interact among each other and how they couple to
external perturbations.

Admittedly, having in mind the many other aspects that
might have an influence in QED chemistry66 (see also Section
5), such fundamental considerations might seem on a first
glance like a theoretical nuisance. However, it is important to
realize which assumptions are made and which theoretical
inconsistencies (at least with respect to ab initio QED, see
Appendix A for mathematical details) can arise when
combining methods from (quantum) optics and (quantum)
chemistry or electronic structure theory. Especially, since we
do not yet have simple and reliable rules for how polaritonic
chemistry operates, what are the basic factors that determine
the observed changes and how to control them. Furthermore,
in recent years, theoretical methods have been devised that
avoid the common a priori division into light and matter,
allowing approximate solutions to QED in the low-energy
regime directly.22,23 These first-principles QED methods5 have
already provided important insights into certain aspects of
polaritonic chemistry and strong light−matter coupling for
molecular and solid-state systems.

In this review, we will focus on these first-principles QED
methods and on the basic ab initio description of coupled
light−matter systems under the umbrella of QED in the low-
energy regime. We do not attempt to discuss the many
alternative theoretical methods successfully applied within
polaritonic chemistry, but refer the interested reader to various
available reviews on this topic, e.g., refs 37, 38, 45. The
considerations presented here allow us to address several
important (and often very subtle) fundamental topics that arise
in the context of describing polaritonic chemistry and materials
science and that are decisive to find the main physical
mechanisms observed in experiment. The first main question
to answer is how to devise a (physically and mathematically)
consistent theory of interacting light and matter that treats
all basic degrees of freedom of the low-energy regime, i.e.,
photons, electrons and nuclei/ions, on the same quantized and
nonperturbative footing. We will give the basic principles and a
concise derivation of such a theory in Section 2 and discuss the
resulting Hamiltonian formulation for fundamentally polari-
tonic quantum matter in Section 3. The next important topic
that arises is how the gauge choice influences what we call
light and what we call matter. This topic has a direct impact on
consistently combining methods from quantum optics and
quantum chemistry. As we discuss in more detail at the end of
Section 3.2, this topic has provoked many debates, and gauge-
inconsistencies can even predict wrong and unphysical effects.
The next main question is how to find approximations that
allow a reduction of complexity and a straightforward
combination of different theoretical methodologies without
introducing too many uncontrolled assumptions. We will
discuss this in Section 3.3 and specifically highlight the long

Figure 1. Sketch of the QED perspective on coupled light−matter
systems, e.g., a hydrogen atom. In QED the bare (pure matter) proton
(bp+) and bare electron (be−) are a reminiscence of the (mathemati-
cally necessary) smallest length scale (energetically an ultraviolet
cutoff) that can be resolved. The observed (dressed or physical)
proton (p+) and electron (e−) include contributions from the (virtual)
photon field γ, which describes the electromagnetic self-interaction of
charged particles. The photons, at the same time, describe the
electromagnetic interaction between the electron and proton and lead
to the appearance of a bound hydrogen atom. From a QED
perspective, the distinction between light and matter depends on the
energy scale that we look at, the chosen reference frame, and the
chosen gauge (see discussion in Section 2). Considering one aspect
without the other can lead to inconsistencies, and for a consistent
description always both (quantum light and quantum matter aspects)
must be treated at the same time.
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wavelength approximation and its implicit assumptions.
Sometimes the implicit assumptions of this common
approximation lead to misunderstandings and can therefore
be a barrier for new people in the field of QED chemistry and
materials sciences. A further important issue is how changing
the photonic environment leads to modified vacuum and
thermal fluctuations, specifically when considering changes of
chemical properties under ambient conditions. We highlight
under which conditions the modified vacuum or thermal
fluctuations become important in Section 5.1 and might induce
noncanonical equilibrium conditions for the matter subsystem.
A final question to address in polaritonic chemistry is then the
difference between single-molecule strong coupling, also called
local strong coupling, and collective strong coupling. We
discuss the topic of local/collective strong coupling in
Section 5.2, and we highlight how an effective single-molecule
picture suggests itself.

Despite the internal complexity and depth of this review, we
try to keep it structured modularly, and the different sections
are largely self-contained. This will help the reader, allowing
them to, for instance, skip the first few sections, which detail
the theoretical foundations of ab initio QED, and jump directly
to the later sections which focus more on polaritonic
chemistry. Yet a better understanding of many arguments (as
highlighted above) necessitate detailed discussions, and hence
we have provided many cross-links between various sections.
In Section 2, we give a concise introduction into QED with a
focus on the description of the electromagnetic field. In
Section 3, we introduce the basic Hamiltonian of ab initio
QED, discuss its many important properties, and provide its
most commonly employed approximations. In Section 4, we
discuss various first-principles QED methods. In Section 5, we
discuss polaritonic chemistry from an ab initio perspective.
Finally, in Section 6, we give a conclusion and outlook on how
to employ the photonic environment as an extra control knob to
influence chemical and material properties. We note that we
also provide an extensive appendix that addresses many subtle
mathematical details about ab initio QED, which become
important when developing computationally highly efficient ab
initio methods, such as quantum-electrodynamical density
functional theory or similar approaches.

2. A THEORY OF LIGHT AND MATTER: QUANTUM
ELECTRODYNAMICS

“In a hydrogen atom an electron and a proton are bound
together by photons (the quanta of the electromagnetic
f ield). Every photon will spend some time as a virtual
electron plus its antiparticle, the virtual positron [...]”

G. Kane in ref 67.
QED is a cornerstone of modern physics, and Feynman,
Tomonaga and Schwinger were awarded the Nobel prize in
physics in 1965 for their contributions to this theory.68 It tells
us on the most fundamental level how light and charged
particles interact and how their coupling leads to the
emergence of the observable electrons/positrons and pho-
tons.11−13 The beauty of QED is that it can be derived from a
few very basic principles. However, it is also plagued by several
mathematical issues that restrict the applicability of full QED
to perturbative high-energy scattering processes.12,13 Yet, in
certain limits, most notably when the charged particles are
treated nonrelativistically, QED allows for a beautiful and
mathematically well-defined formulation that is very similar to

standard electronic quantum mechanics.22 The resulting
nonrelativistic QED theory in Coulomb gauge will form the
foundation of ab initio QED chemistry and will be discussed in
Section 3. But before, we will briefly summarize how QED can
be derived from basic principles.
2.1. Relativistic Origins
There are different formulations of the basic equations of QED
as well as various different ways to derive them,11−13,69,70 e.g.,
in a Lagrangian description a formulation in terms of path
integrals and associated scattering amplitudes suggests itself.71

Let us follow here a Hamiltonian route that at the same time
highlights that both sectors of the theory, that is, the light and
the matter parts, follow from the same reasoning and that the
coupling between the sectors enforces a strong consistency
between the light and matter sector. As a first step, we want the
matter as well as the light sector to individually obey special
relativity in the form of the energy-momentum relation:11,12

= +E m c p c2 2 4 2 2 (3)

This relation can be derived from the assumption of a
highest possible velocity c which we call the speed of light in
vacuum. We note that eq 3 implies that we think about the flat
(Euclidean) space 3 or its extension including time, the
Minkowski space.11,12 Its homogeneity, i.e., that no point is
special, and its isotropy, i.e., that no direction is special, are
very important since these symmetries determine the basic
building blocks of our theories. These symmetries are
connected directly to the position-momentum and energy-
time uncertainty relations,11,72,73 i.e., the translations in space
are connected to momentum operators and the translations in
time to the energy operator. Thus, the basic building blocks are
(self-adjoint realizations of) the momentum−iℏ and position
r operators and the energy iℏ∂t and time t operators (see
Appendices A.1 and A.2 for more details). And the basic wave
functions describing matter and light, respectively, should obey
eq 3, but with the substitution E → iℏ∂t and p → − iℏ . Just
using the resulting second-order equation to determine the
basic wave functions leads, however, to several problems.11,13,74

A possible way out is to recast the second-order equation in
terms of a first-order Hamiltonian equation, i.e., an evolution
equation for the energy. Following Dirac’s seminal idea, we can
use for spin-1/2 particles the four-component Dirac equation

= [ · + ]r rt c mc ti ( ) i ( )t 0
2

(4)

where the vector of matrices α and α0 are the 4 × 4 Dirac
matrices.11,13,74 Applying the Dirac equation twice, we recover
the operator form of eq 3 as intended. Eq 4 is then used to
describe the matter sector of QED. If we use a vector of spin-1
matrices S instead, we find the Riemann-Silberstein
equation75−78

= ·f r S f rt c ti ( ) i ( )t (5)

for a three-component wave function f with zero mass and the
necessary side condition

· =f rt( ) 0 (6)

This side condition ensures that wave function f has only
two transverse degrees of freedom, as to be expected for free
electromagnetic fields, which have two independent polar-
izations. Eqs 5 and 6 are then used to describe the
electromagnetic sector of QED and recover the usual Maxwell
equations in the classical limit, as discussed below.
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2.2. Quantizing the Light Field
The main issue with these two relativistic equations is that,
since they are first order, they necessarily have besides positive-
also negative-energy eigenstates. That this is an issue becomes
immediately clear from the Riemann-Silberstein wave function
f, which should be a quantum version of the electromagnetic
energy expression in terms of the electric field E(rt) and
magnetic field B(rt), i.e.,

= +E r B r rE t c t
2

( ( ) ( )) dph
0 2 2 2

(7)

with strictly positive eigenenergies. To resolve this issue, we
follow a further seminal idea of Dirac. We reinterpret the
single-particle equations as actually being equations for two
particles. That is, the positive-energy states are the particles
and the negative-energy states are the corresponding
antiparticles.11,12,74 For the photon, we find that it is its own
antiparticle, where positive-energy states are associated with
positive helicity and negative-energy states with negative
helicity.12,13,13 To translate this idea into a mathematical
prescription, we perform a second quantization step. In more
detail, we use the distributional eigenstates of the respective
equations (plane waves with momentum k times the
corresponding Dirac spinors for matter, or times circular
polarization vectors for light), define creation and annihilation
field operators for particles and antiparticles, and effectively
exchange the meaning of creation and annihilation for the
antiparticles such that the energy becomes manifestly
positive.11,12,74 In the case of the electromagnetic field
quantization the respective field operators obey, due to being
spin-1 particles, the (bosonic) equal-time commutation
relations:

[ ] =†k k k ka a( , ), ( , ) ( )3 (8)

Here we interpret λ = 1 as having positive helicity and λ = 2
as having negative helicity.11−13 With this, we find the
quantized form of eq 7 to be

=
=

† k k kH a a( , ) ( , ) dkph
1

2

(9)

where ωk = kc (dispersion of the light cone) and we have
discarded the trivial and unobservable, yet infinite vacuum
contribution ∑λ = 1

2 ℏωk d k/2, i.e., we have assumed normal
ordering.11−13

In this very condensed derivation of the quantized
electromagnetic Hamiltonian (we do not give further details
of the electronic part of relativistic QED, because we will
consider nonrelativistic charged particles only) we have made
some important implicit choices that need to be highlighted.
First, we used a quantization procedure based on the vector
potential to arrive at the standard expression of eq 9. Since the
Riemann-Silberstein momentum operator is equivalent to the
curl, i.e., − i S · = × , its distributional eigenfunctions are
also distributional eigenfunctions for the static vector-potential
formulation of the homogeneous Maxwell equation (see also
eq 24):

= × × · =A r A r k A r( ) ( ) ( ) ( )2 2 (10)

Here, the left-hand side is just due to a vector identity of the
vector Laplacian and we note that the longitudinal part is zero
by construction due to the side condition of eq 6, i.e., only the
transverse part (first term) is nontrivial. The quantization in

terms of the vector potential is an important choice, since in
the context of the Riemann-Silberstein formulation one often
uses a quantization procedure based on the electric and
magnetic fields instead.20,79,80 We will comment on this and
further connections to classical electrodynamics a little below.
Furthermore, since we have only considered the transverse
eigenfunctions of eq 10, we have implicitly chosen the
Coulomb gauge, i.e., ·A (r) = 0. Consequently, the electro-
magnetic vector potential

= ·

+ · *
=

†

A r k k r k

k k r k k

c
a

a

( )
(2 )

1
2

( ( , ) exp(i ) ( , )

( , ) exp( i ) ( , )) d

k

2

0
3

1

2

(11)

given here in units of Volts, to agree with relativistic
notation,11,12,81 has only the two physical transverse
components. If we had chosen a different gauge instead, we
would have to take care of unwanted longitudinal and time-like
degrees of freedom by employing quite intricate technical
methods, such as Gupta-Bleuler or ghost-field methods.11,20,71

The main drawback of the Coulomb gauge is that it is not
explicit Lorentz covariant, i.e., if we perform a Lorentz
transformation to a new reference frame the Coulomb
condition is violated in general.11 However, since we usually
have a preferred reference frame for our considerations, i.e., the
lab frame, this is a minor restriction in practice. The second
point we want to mention is that we have so far chosen, in
accordance to the distributional eigenfunctions of eq 5,
circularly polarized vectors ϵ(k, λ).11,12,71 But for the
quantization of the electromagnetic field we can equivalently
choose any other polarization vectors that obey

· = · =k k k k( , ) ( , 1) ( , 2) 0 (12)

and are normalized, i.e., ϵ*(k, λ)·ϵ (k, λ) = 1. Indeed, in the
following, we will assume the standard choice of linearly
polarized vectors if nothing else is stated because the linearly
and the circularly polarized representation are connected by a
canonical transformation that leaves everything invariant. For
the following theoretical considerations, it is sufficient to
overload the meaning of a(̂k, λ) and ϵ(k, λ) to correspond to
the respective linearly polarized objects as well. The only
formal difference is that we can take ϵ(k,λ) outside the
brackets in eqs 11 and 25 since in this case it is a real-valued
three-dimensional vector. We note that in certain cases the
linear polarization will be important, e.g., for the derivation of
the length gauge Hamiltonian of eq 39. We will come across an
electromagnetic field given in terms of circularly polarized
(also called chiral) modes only at the very end, i.e., in the
outlook presented in Section 6.

Going back to the Riemann-Silberstein eq 5, we recognize
that there is a well-known classical equation associated with it,
in contrast to the Dirac equation. Indeed, if we reinterpret the
three-component wave function and give it the units of an
energy wave function, i.e., CV m/ 3 where C is Coulomb, V
Volts and m meters, we can associate

= +F r E r B rt t c t( )
2

( ( ) i ( ))0

(13)

Using this (classical) Riemann-Silberstein vector, eqs 5 and
6 become the four Maxwell equations without sources:75,77,78
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= ×E r B r
c

t t1
( ) ( )t2 (14)

= ×B r E rt t( ) ( )t (15)

· =E rt( ) 0 (16)

· =B rt( ) 0 (17)

In this reinterpretation of eq 5, the operator−iℏcS· no
longer refers to an energy but rather to power since we can
cancel the ℏ on both sides of eq 5. Further, the energy of eq 7
is given by the norm of the Riemann-Silberstein vector:

= * ·F r F r rE t t( ) ( ) dph (18)

To connect the classical Maxwell equations back to the
above second quantization procedure, we note that the vector
potential representation of eqs 14−17 in an arbitrary gauge is

· =r A rt
c

t( )
1

( ( )) 0t
2

(19)

+ · + =i
k
jjj y

{
zzz i

k
jjj y

{
zzzA r A r r

c
t t

c
t1

( ), ( )
1

( ) 0t t2
2 2

(20)

where the four-potential vector is given by (ϕ(rt), A(rt)) and
we have the association

=E r r A rt t
c

t( ) ( )
1

( )t (21)

= ×B r A rt
c

t( )
1

( )
(22)

Choosing now the Coulomb gauge, i.e., ·A⊥(rt) = 0, the
above equations become

=rt( ) 02 (23)

=i
k
jjj y

{
zzzA r

c
t1

( ) 0t2
2 2

(24)

The only zero solution of eq 23 is ϕ(rt) = 0, and all zero
solutions of eq 24, i.e., freely propagating Maxwell fields, can
be constructed with the help of the distributional eigenstates of
eq 10.11 The Coulomb gauge is a maximal gauge, since it
removes all gauge ambiguities (compare eqs 19 and 20) that
would still be allowed in other gauges. We further note that we
recover the classical equations from the above vector-potential-
based second-quantized formulation by using the Heisenberg
equations of motions,11 where = ×B r A r( ) ( )

c
1 and

= ·

· *
=

†

E r k k r k

k k r k k

a

a

( )
(2 )

i
2

( ( , ) exp(i ) ( , )

( , ) exp( i ) ( , )) d

k

k0
3

1

2

(25)

Finally we mention that one can also do a second
quantization based on the interpretation of eq 13 without
resorting to the vector potential formulation.82 This has the
advantage that the resulting basic objects of the theory are
gauge-independent. On the other hand, as we will see next, the
coupling between light and matter is based on the gauge
principle, and hence, at that point usually the vector potential
formulation appears again.

2.3. Coupling Light and Matter

Let us next couple the two sectors of the theory. Not
surprisingly, there are again various ways to derive how
photons and quantized charged particles couple.11,12,20,22,23,71

We will use a further symmetry argument here to couple light
and matter. The Dirac and Riemann-Silberstein equations are
intimately connected to symmetries. One specifically important
symmetry is connected to the local conservation of charge (or
probability if we do not include the elementary charge e in the
arguments below). Indeed, from eq 4 we find that the Dirac
charge density ρ(rt) = e ψ†(rt)ψ(rt) and the Dirac charge
current J(rt) = e cψ†(rt)αψ(rt), where and e is the charge
of the electron, obey the continuity equation:

+ · =r J rt t( ) ( ) 0t (26)

This equation guarantees that locally charge cannot be
destroyed or created; it can only flow from one point to
another. Since in the above equation the phase of the wave
function becomes irrelevant, we realize that this conservation
law holds even if we change the phase of the wave function
ψ(rt) → ψ(rt) exp(iχ(rt)). In order to enforce that this phase
change does not affect any physical observable, we have to
replace i∂t → i∂t + (∂t χ(rt)) and −i → −i − ( χ(rt)) in eq
4. One therefore interprets the resulting linearly coupled fields
(∂t χ, χ) as having no physical effect on the charged particle.
Indeed, if we determine the Maxwell energy that such fields
would correspond to, we find that the four vector potential

( )r rt t( ), ( )
e t

c
e

leads to zero physical fields

(compare to eqs 21 and 22) and thus to zero energy (compare
to eq 7). The phase of the wave function therefore corresponds
to the gauge freedom of the electromagnetic field. This
suggests that we should couple a general (nonzero) electro-
magnetic field in the same linear (minimal) manner, i.e.,

+ re ti i ( )t t (27)

+ A r
e
c

ti i ( )
(28)

This adapted derivative is then called a gauge-covariant
derivative.11,12,71 All of this can be formalized much more
elegantly in a Lagrangian representation of the problem, where
the gauge-covariant derivative makes the local charge
conservation explicit.11,12,71

Let us next see what that prescription entails for light. For
this we look at the (still classical) light−matter interaction
energy expression that we recover from the above prescription
which is

= · +J r A r r r r rE
c

t t t t
1

( ) ( ) d ( ) ( ) dint (29)

Varying this energy expression with respect to the four
vector potential, we can derive the corresponding contribu-
tions to the Maxwell equation.11 If we choose the Coulomb
gauge we thus find compactly

=r
r

t
t

( )
( )2

0 (30)

=i
k
jjj y

{
zzzA r J r

c
t c t1

( ) ( )t2
2 2

0 (31)
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where due to the inner product in eq 29 only the transverse
part of the charge current contributes. We have thus derived
the Maxwell equations including sources that obey the
continuity of eq 26. For completeness and later reference we
further give the inhomogeneous Maxwell equations as

× =B r E r J rt
c

t t( )
1

( ) ( )t2 0 (32)

+ × =B r E rt t( ) ( ) 0t (33)

· =E r
r

t
t

( )
( )

0 (34)

· =B rt( ) 0 (35)

If we next assume that the only sources for the electro-
magnetic fields are the (quantized) charged particles, the
longitudinal part of the fields, i.e., those corresponding to ϕ(rt)
in eq 30, can be expressed purely in terms of the charge density
itself, i.e., the Hartree potential

=r
r
r r

rt
t

( )
( )

4
d

0 (36)

If we combine this longitudinal interaction energy with the
longitudinal contribution in Eph we obtain the well-known
Coulomb interaction between the (quantized) charged
particles.11 So upon second quantization of the electro-
magnetic field, the longitudinal contributions in Coulomb
gauge are only affected by the quantization of the particles and
we are left by just replacing A⊥(rt) → A (r) (in the
Schrödinger picture11).

Before we give the basic Hamiltonian of nonrelativistic QED
in the next section, we want to highlight the intimate relation
between the geometry of (real) space, the light and the matter
sector, the gauge choice, and the interaction. Changing any of
these ingredients needs to be accompanied by a careful re-
evaluation of the basic theory. First, we highlight that if we
restrict to only a part of 3, we need to carefully re-evaluate the
basic symmetries in the theory. This is relevant for practical
implementations of nonrelativistic QED and derivation of
corresponding approximate models. For instance, a box with
periodic boundary conditions, where all three edges have the
same length, keeps all the basic symmetries intact (see also
Appendix A.2). One finds that the resulting theory, where the
plane wave solutions of the various differential operators
become normalizable eigenfunctions, converges to the free-
space formulation that we have discussed so far. One therefore
often uses these two settings interchangeably. Already just
choosing other boundary conditions, for instance, zero
boundary conditions, might imply subtle differences (see also
Section 3.3). We further note that both basic equations, i.e.,
eqs 4 and 5, are based on the same differential operators and
hence share the same (distributional) eigenfunctions. This
consistency is highlighted again in the gauge principle of eqs 27
and 28, where the differential operator and the fields obey the
same boundary conditions. Thus, changing the modes of the
light field independently from the matter can violate, for
instance, the basic gauge principle and the Maxwell equations.
We will comment on this also later in Section 3.3 (see also
Appendix A.4). Finally, the gauge choice influences what we
call matter and what we call light. This can be nicely seen from
the fact that in Coulomb gauge the longitudinal and time-like

photons are absent and subsumed in the Coulomb interaction
between the charged particles. This will be further discussed in
Section 3.2.

3. THE PAULI-FIERZ QUANTUM-FIELD THEORY

“The claimed range of validity of the Pauli-Fierz
Hamiltonian is f labbergasting. To be sure, on the high-
energy side, nuclear physics and high-energy physics are
omitted. On the long-distance side, we could phenomeno-
logically include gravity on the Newtonian level, but
anything beyond that is ignored. As the bold claim goes,
any physical phenomenon in between, including life on
Earth, is accurately described through the Pauli-Fierz
Hamiltonian [...].”

H. Spohn in ref 22.
We discussed earlier how the (quantized) electromagnetic field
can be deduced and how it can be coupled to a quantized
matter description. Yet, if we treat matter on the same
relativistic level as light, we encounter various conceptual and
mathematical issues. Performing a second quantization of also
the Dirac equation and coupling it to a second-quantized
Maxwell equation via the above gauge-coupling prescription,
leads to several divergences.12,69,71,83 Full QED treats these
divergences by regularizing and then renormalizing scattering
theory.12,13,71 The simplest realization of a regularization
introduces several energy cutoffs in the theory (largest and
smallest energy scales for the different particles and their
interactions), and it is then shown that the results of
perturbative calculations do not depend on how the cutoffs
are removed upon renormalization of the theory. In the
following, however, we go beyond perturbation theory and
consider, for instance, spatially and temporally resolved how a
molecule changes during a chemical reaction. In other words,
we solve a Schrödinger-type equation that gives us access to
such processes.
3.1. Nonrelativistic QED

Indeed, within the last decades tremendous progress has been
made to reformulate QED as a nonperturbative ab initio
quantum theory in several limits.22,84−86 The most important
situation for our purpose is the nonrelativistic limit for the
matter sector (while keeping the photon sector fully
relativistic), which allows for a mathematical formulation
that is similar to standard electronic quantum mechanics (see
also Appendix A for more details on the mathematical setting
of ab initio quantum physics).72,73 So instead of the Dirac
equation, we are mainly interested in the electronic part of
matter and assume that the electrons have small momenta
(with respect to relativistic scales). In other words, we discard
the positrons and replace the Dirac momentum by the
nonrelativistic momentum and hence assume that the electrons
are well described by the Schrödinger equation. Because this
also implies matter particle conservation (no electron-
positron pair creation is possible anymore) we do not need
to second-quantize the matter sector. This avoids many of the
pitfalls of full QED that arise from working with mathemati-
cally problematic field operators (see Appendix A.3).83,87 The
resulting Hamiltonian, where light and matter couple via the
exact minimal coupling prescription from above, is the
generalized Pauli-Fierz Hamiltonian22,81
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Here, the first line describes the electronic sector of the
theory and its interaction induced by the Coulomb-gauged
photon field, where σ is a vector of spin-1/2 Pauli matrices and

l m
Ne is a double sum excluding l = m. The second line is an

addition to QED, which would only consider electrons,
positrons, and photons. We include the nuclei (or more
generally ions) as effective quantum particles with an effective
mass Ml, an effective charge Zl e and an effective spin S, which
gives rise to a vector of spin matrices Sl. We do, however, not
consider the internal structure of nuclei, which consist of
protons and neutrons. The last line describes the longitudinal
interaction between the nuclei/ions and the electrons as well as
the energy of the free electromagnetic field. We note that the
Pauli-Fierz Hamiltonian is well-known since at least 193888

and has been considered as the basis of nonrelativistic QED by
many authors.65,89 The recent advances that we highlighted at
the beginning of this section are with respect to making this
Hamiltonian a well-defined object within an ab initio quantum
physics framework (see Appendix A and Section 3.2). It is
commonly assumed that this generalized (including also the
nuclei/ions) Pauli-Fierz Hamiltonian should be enough to
capture most of the physics that happens at nonrelativistic
energies. Specifically it should be able to describe the situations
that arise in QED chemistry and cavity materials engineering.
We note, however, that in contrast to the introductory quote
by Herbert Spohn, already for simple problems the non-
relativistic matter description might not be sufficient. For
instance, the color of gold would be much less appealing
without relativistic corrections, in many cases spin−orbit
interactions can be decisive and often core electrons need to be
treated relativistically to find accurate results.90,91 Semi-
relativistic extensions of eq 38 exist84,85,92 and adding further
corrections seems possible within an ab initio QED setting. We
will disregard these important details in the following, since
they will not lead to qualitative changes in the low-energy
regime, and just want to mention that investigating which extra
terms need to be included might give indications on how to
approach the high-energy problem nonperturbatively. Work
along those lines, based on relativistic ab initio QED
formulations,93−95 is already in progress.
3.2. Mathematical Properties of the Theory

Before we go on, we need to make some comments with regard
to this Hamiltonian and discuss some mathematical details that
are important for a better understanding of nonrelativistic
QED. First, while the Hilbert space of the electrons and
nuclei/ions are the usual anti/symmetric tensor products of
square-integrable Hilbert spaces as in quantum mechan-

ics,22,72,73 the space of the photons is a symmetric Fock
space.22 It is built by defining first a single-photon momentum
space; i.e., a photon wave function is defined by k and the two
polarization directions λ, and from this all symmetric
combinations are constructed. This Fock space is different to
the very common way of constructing the space of photons,
where for each point in momentum or real space a quantum
harmonic oscillator is introduced. Such a construction leads to
a nonseparable Hilbert space87 and thus to a formally different
theory (see also the discussion in Appendix A.1). Next, for the
Hamiltonian to be well-defined, the contributions of the
photon modes need to be regularized when approaching very
high momenta and frequencies. That is, one needs to introduce
a form function φ(k ) → 0 for k → ∞ with which to
regularize the field operators a(̂k, λ) and a†̂(k, λ).22 The
simplest way to do so is to introduce a sharp cutoff, which is
also called an ultraviolet cutoff, in the mode integrals. Since we
have assumed that the particles have nonrelativistic momenta,
a common choice for the cutoff is the rest mass energy of the
particles. An infrared cutoff, as needed in relativistic QED, is,
however, no longer necessary.22 The interaction between
charged particles and photons leads to a stable theory with a
finite amount of soft (ωk → 0) photons (at least for the ground
state).22 The explicit interaction with the photons, on the other
hand, makes it necessary in general to work with bare
electronic and nuclear/ionic masses m and Ml, respectively.
That is, the masses in eq 37 are not the observable masses that
one uses in quantum mechanics. The physical masses of the
particles in quantum mechanics are recovered from non-
relativistic QED by tracing out the photon part which leads,
e.g., for the electronic mass to me = m + mph

22,96,97 as also
highlighted in the introduction. Here the photon contribution,
mph is due to the electromagnetic energy that is created by the
charged particle itself. When considering the dispersion of a
free particle in nonrelativistic QED, we realize that the bare
mass is necessarily smaller than in quantum mechanics, i.e., mph
> 0. This is because the free charged particle generates extra
energy due to coupling to the photons when having nonzero
momentum and is thus effectively slowed down, i.e., the
electron is dressed by the photon field (see also Figure 1 for an
artistic view on dressed particles in QED). We will give an
explicit expression for the photonic mass (of single particles in
the dipole approximation) and comment on further
implications of this mass renormalization in Section 3.3.
Irrespective of the specific choice of (the positive and finite)
bare mass, however, the Pauli-Fierz Hamiltonian has some very
nice properties. It is self-adjoint,22,98 which guarantees that we
can uniquely solve the corresponding static and time-
dependent Schro ̈dinger-type equations

=t H ti ( ) ( )t PF (38)

and hence we have access to all possible observables. By this
we mean that we can calculate the expectation value of all
operators, e.g., positions, momenta, kinetic or potential
energies (or distribution-valued operators,87 e.g. densities,
current densities or kinetic-energy densities) that share the
same domain as the Pauli-Fierz Hamiltonian (see also
Appendices A.1 and A.3 for further details). Furthermore,
the Pauli-Fierz Hamiltonian is bounded from below, and thus
we can use the usual energy minimization principle to find a
possible ground state of the coupled light−matter system.
Indeed, it can be shown that any system that has a ground state
in quantum mechanics, i.e., without coupling to the quantized
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electromagnetic field, also has a ground state in nonrelativistic
QED.99−104 This is exactly the property we need in order to
discuss the equilibrium properties of a coupled light−matter
system. An important difference, however, is that all excited
states turn into resonances in nonrelativistic QED, i.e., excited
states are no longer eigenstates but have a finite life-
time.99,101,105,106 This feature, which is also termed sponta-
neous emission, is missing in standard ab initio electronic
structure theory, where excited states have the unphysical
property of being infinitely long-lived. Indeed, if one just looks
at the spectrum of the Pauli-Fierz Hamiltonian, one will usually
just find one eigenstate, i.e., the ground state and then a
continuum above the ground state. Thus, the spectrum alone
does not provide much insight into the properties of the
coupled light−matter system.22,101,105 On the other hand, due
to the inclusion of the continuum of photon modes and all the
nuclear/ionic degrees of freedom, we have included all
dissipation and decoherence channels that are physically
present for the subsystems of the total light−matter system,
and no external baths or non-Hermitian terms need to be
added to mimic those processes. In other words, despite the
theory being self-adjoint, i.e., closed, the infinite amount of
degrees of freedom includes also the physical bath degrees of
freedom by radiating light from the molecules to the far field
and hence being lost to the molecular subsystem. So we can
conclude that we have found a fully nonperturbative and
mathematically consistent ab initio quantum theory of light
and matter (see Appendix A for further details on ab initio
quantum physics), which answers the first fundamental
question from the introduction.

One final important comment addresses the possibility of
working with a different gauge, which relates to the second
fundamental question of the introduction. Performing a gauge
transformation on the Pauli-Fierz Hamiltonian is far from
trivial, since the choice of gauge alters the structure of the
underlying Hilbert spaces. This becomes even more problem-
atic because the introduced ultraviolet cutoff does not
commute in general with the gauge fixing; i.e., exact gauge
equivalence is usually lost once a cutoff has been introduced.
We will find one notable exception in the case of the dipole
approximation of the Pauli-Fierz Hamiltonian below in Section
3.3. Furthermore, to the best of our knowledge, only the Pauli-
Fierz Hamiltonian in the Coulomb gauge has been shown to
have all the above desirable mathematical properties within an
ab initio QED framework. Using other gauges to quantize the
theory needs careful considerations, as novel problematic terms
and divergences arise.107,108 In addition, one has to note that
for other gauges, e.g., the Lorentz gauge, the Coulomb
interaction is mediated directly via the (time-like and
longitudinal) photons. Consequently even a ”quantum-
mechanical calculation” that takes into account only the
longitudinal Coulomb interaction needs infinitely many
quantized modes that need to fulfill certain consistency
conditions, such as enforced by the Gupta-Bleuler method.11,20

Therefore, the Coulomb gauge seems to be the most relevant
and practical gauge on a nonperturbative Hamiltonian level,
and it connects seamlessly with standard quantum mechanics,
which is implicitly always assuming the Coulomb gauge.11,12,22

Consequently it is important to choose the Coulomb gauge if
combining theoretical methods for the quantized light field
with standard theoretical approaches to quantum matter. This
avoids implicit gauge inconsistencies such as double counting
the longitudinal interactions between charged particles.

3.3. Approximations

Nonrelativistic QED allows to work with (polaritonic) wave
functions of the fully coupled light−matter system,5,22,81

which makes it very similar to standard quantum mechanics.
However, the corresponding wave function depends not only
on Ne electronic and Nn nuclear/ionic coordinates anymore
but also on a full continuum of photon modes as well. Thus,
even for a single particle in free space, a wave function solution
of eq 38 is practically unfeasible. Note furthermore that we
might need to describe the photonic structure as part of the
quantum system in minimal coupling; e.g., the mirrors of an
optical cavity are described with the Pauli-Fierz Hamiltonian as
well. As will be discussed below, just approximating the cavity
structure with a different level of theory runs the risk of
introducing severe inconsistencies. Thus, on this highest level
of theory, for any calculation, we first need to fix a cutoff for
the free-space continuum of modes, adjust the bare mass of the
particles to agree with their experimentally observed free-space
dispersions, and describe the photonic structure as well as the
matter system that is coupled to this structure with the same
Pauli-Fierz Hamiltonian. To date it remains unknown whether
the results of the Pauli-Fierz theory depend on the specific
choice of the cutoff and the corresponding bare mass or
whether, similar to its scalar counterpart,109 taking the cutoff to
infinity corresponds to a mere infinite energy shift, i.e., that the
theory is nonperturbatively renormalizable. Irrespective of
these details, this level of theory on the wave function level is
impractical. So, how can we make the Pauli-Fierz theory
applicable? A first slight simplification is found by realizing that
we can discretize the photon continuum, and consider then a
continuum limit.110,111 A good enough discretization (for our
setup, a very large quantization box with periodic boundary
conditions) is virtually indistinguishable from a real continu-
um. However, this does not really resolve the problem of the
still humongous amount of coordinates in the wave function.
One way is to reformulate the Pauli-Fierz theory as a density
functional theory (see discussion in Section 4.1), which allows
minimal-coupling simulations in practice (for examples see
Section 5.1). Yet, before we discuss potential first-principles
approaches in Section 4, we want to focus on the linear
formulation of the problem in terms of wave functions.
Therefore, one has to cut back drastically on the amount of
coordinates if one is interested in a nonperturbative solution of
the Pauli-Fierz Hamiltonian. For perturbative approaches
many alternative strategies exist such as to subsume the
continuum of modes in a mass-renormalization from the start,
i.e., one works with the physical masses of the particles, and
everything else is taken into account by, e.g., Wigner-
Weisskopf theory.89 We will focus here on the nonperturbative
ab intio QED approaches that are beneficial for the strong-
coupling regime of polaritonic chemistry, which we are
interested in in the following.

One feasible approximation is to use conditional-wave
function approaches112−114,114 to disentangle the different
degrees of freedom. In other words, we could apply a Born−
Oppenheimer-type of approach, i.e., evolve the nuclei/ions
quantum mechanically on a potential-energy surface that is
provided by the electrons and/or photons.112,113 One then
needs to choose whether to group the photons with the
electrons or nuclei/ions (see also Section 4.4) and ensure that
there is no double-counting due to the coupling of the photons
to both matter degrees of freedom. Further, one needs to take
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into account that the photons also mediate new couplings
between the electrons, the nuclei/ions and between the
electrons and the nuclei/ions. In the dipole approximation (see
discussion in Sections 3.3 and 4.4) such extended Born−
Oppenheimer approaches have already been investigated and
employed in practice. An even further simplification would
then be to treat the nuclei/ions classically, which leads to a
coupled Ehrenfest-Pauli-Fierz problem.81,115,116 This option is
discussed in a little more detail in Section 4.4. Another
possibility to reduce our problem size is to disentangle
different parts of the problem by position, which employs the
real-space nature of the Pauli-Fierz Hamiltonian. For instance,
we can imaging a common cavity setup, where metallic surfaces
constitute the optical cavity and we have the matter system of
interest in the middle of this cavity (such as in Figure 2).

If the surfaces are far enough from the molecular system of
interest, the mirrors of the cavity can be described with an
effective theory that accounts for changes in the local mode
structure of the electromagnetic field instead of describing the
(macroscopic) cavity as part of the (cavity+molecular) system.
Such a procedure is commonly done, for instance, in
macroscopic QED, where the modes of some photonic
structures are quantized based on linear-response theory.21,117

Such an approximation procedure can lead, however, to
problems. Keeping in mind our discussion about the necessary
consistency between light and matter in Section 2, where we
saw that the mode structures of both sectors are the same, we
can break various exact relations, such as energy and
momentum conservation, if we change the (Fourier) mode
structure of light and matter independently. An instructive
example is found if we take periodic boundary conditions for
matter but perfect-conductor boundary conditions for light21

to simulate a cavity structure. In this case the gauge principle of

eq 28 tells us that just adding ( )xexp i
L

2 to the wave function
on x ∈ [0, L] corresponds to a pure gauge, and the resulting
pure gauge field is proportional to

L
2 , i.e., a constant field. The

Maxwell energy with the perfect-conductor boundary con-
ditions of a constant field is, however, infinite. This can be seen
either by a basis expansion or by realizing that a self-adjoint
differential operator always knows about the boundary
conditions and hence interprets that the constant field drops
instantaneously to zero at the boundary, which is not
differentiable118,119 (for more details see Appendix A.4).
Such issues are avoided once we make the dipole-coupling
approximation, where the mode consistency between light and
matter becomes irrelevant and we can indeed replace the cavity
by a local modification of the electromagnetic modes. We
discuss this in more detail below in Section 3.3.1.

A different type of simplification follows from a clever basis
choice, such as the eigenfunctions of the uncoupled problem,
and then to assume that only a few such matter and light states
contribute significantly to the solution of the Pauli-Fierz
equation. This is a very common way in quantum optics,19,24

but it clearly needs already a very detailed understanding or
intuition of the subsystems and the physics involved in the
light−matter coupling. Moreover, one also needs knowledge
about the representation of these states in the original basis of
the Pauli-Fierz Hamiltonian to model the proper coupling
among the new (many-body) states and the potentially
complex photonic states. This knowledge is commonly not
available. The many-body methods needed for large systems
do not provide the states directly. We will also discuss this
issue below in the context of first-principle methods of the
Pauli-Fierz Hamiltonian (see Section 4). To circumvent the
issues of having the many-body states available, again the
dipole approximation comes in handy since dipole transition
moments are readily available for many different systems from
various theoretical ab initio methodologies.
3.3.1. Cavity as Modification of Local Mode Structure:

Dipole Approximation. For a straightforward simplification
of the Pauli-Fierz problem, one usually goes directly to the
dipole approximation thanks to its many desirable properties.
The basic assumption implies that all relevant modes of the
electromagnetic field have a wavelength 2π/|k| that is much
larger than the extent of the localized matter system. This
clearly requires that we need to adjust the cutoff to low enough
frequencies. Indeed, for most calculations one usually reduces
the number of modes to only a few effective ones.120 We will
discuss the resulting implications below. Following the above
assumption, we replace A r A A( ) (0) in eq 37, where
we have also assumed implicitly that the matter system is
localized (center of charge) at the origin of the coordinate
system. An alternative way to arrive at the same approximation
is to assume exp(ik·r) ≈ 1 in eq 11. Besides becoming
problematic when the wavelength of the considered modes
becomes comparable with the size of the matter system or
when retardation effects become important, we also discard in
the dipole approximation any direct influence due to the
magnetic part of the quantized photon field on the spin
degrees of freedom. We further note that we do not use a
multicenter dipole approximation, as often assumed in
perturbative or model approaches, where different particles
see different fields,23 since this would a priori violate the
fundamental indistinguishability criterion of quantum particles.

Figure 2. Common Fabry-Peŕot cavity setup. If we assume that the
molecules of interest are far removed from the cavity mirrors and
localized around the center, one can approximate the main cavity
frequencies due to the mirror distance L by = c nn L

, where we
have subsummed the effect of the continuum of free-space modes
(perpendicular to L) in the effective/observed mass of the particles.
The coupling strength gn,λ for the two independent polarization
directions λ then increases with L1/ if we keep the low-energy
(continuous free-space) modes fixed and take their effect into account
by the physical mass of the particles (see Section 3.3.1).
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Only upon interacting with an environment can we attain
distinguishability and classicality, which is discussed in Section
5.3. The resulting (single-center) Hamiltonian is then often
also called to be in velocity gauge, which is just the dipole-
approximated Coulomb-gauged Pauli-Fierz Hamiltonian. Its
form highlights a few important properties that make the
dipole approximation so versatile. While eq 37 is translation-
ally and rotationally invariant only in the full configuration
space of light and matter,22 in the dipole approximation the
Hamiltonian is translationally and rotationally invariant also
with respect to the matter subsystem.108,121 Thus, we find the
nice and practical feature that the Pauli-Fierz Hamiltonian can
be efficiently expanded in the usual matter-only Bloch states in
dipole approximation,113,122 in contrast to the full minimal
coupling Hamiltonian. Hence, one usually works in the dipole
approximation for solid-state systems. How to properly include
beyond dipole contributions for extended systems remains an
active topic of research.122,123

Specifically in the context of symmetries, it is important to
highlight that there is a second, unitarily equivalent form of the
dipole-approximated Pauli-Fierz Hamiltonian. In more detail,
upon performing a unitary transformation ·( )A Rexp

c
i , where

R = −∑l = 1
Ne e rl + ∑l = 1

Nn Zl e Rl is the total dipole operator, and a
swapping of conjugate photon variables,108,121,124 one finds the
length gauge Pauli-Fierz Hamiltonian23,81,107,108,121,124
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(39)

Here we have already assumed a discretized continuum of
Mp modes (given in terms of displacement coordinates qα in
units of J s) labeled by α, where each α is associated with a
specific frequency ωα, coupling strength gα, and polarization ϵα.
In the free space case with a quantization volume L3, these
quantities would be associated with kn = 2πn/L, α ≡ (kn, λ),
ωα = kc ,n and =g L1/ 0

3 , where n 0
3. However, now

we can adapt the frequencies, coupling strengths, and
polarizations to match a given cavity structure without
breaking fundamental symmetries since the actual spatial
mode structure and the momentum matching (no momentum
is transferred in the dipole approximation) are no longer
important. For a simple example see Figure 2.

Upon first glance, the form of eq 39 seems to break the
above-discussed symmetries and has an unusual self-interaction
term proportional to ( ·R)2. This seeming conundrum can be
resolved by carefully analyzing the unitary transforma-
tion108,121 and realizing that one has changed explicitly the
conjugate variables of the photonic theory and mixed light and
matter. Indeed, qα does not correspond to a pure photonic
quantity anymore but is connected to the auxiliary displace-
ment field of the macroscopic Maxwell equations. The
macroscopic Maxwell equations are equivalent to the micro-

socopic Maxwell equations discussed in Section 2, yet they use
the auxiliary displacement and magnetization fields that stem
from a division of the charge currents and densities into bound
and free ones. For completeness and for later reference let us
briefly consider how these auxiliary quantities arise. We thus
first define

= +r r rt t t( ) ( ) ( )bound free (40)

= +J r J r J rt t t( ) ( ) ( )bound free (41)

and then introduce the polarization P(rt) and magnetization
M(rt) due to the bound matter by

= × +J r M r
P r

t t
t

t
( ) ( )

( )
bound (42)

= ·r P rt t( ) ( )bound (43)

We note that these equations are equivalent to those in eqs
32 and 34. If we then make a corresponding division in the
electromagnetic fields

=E r D r P rt t t( ) ( ) ( )0 (44)

= +B r
H r M r

t
t t

( )
( ) ( )

0 (45)

and apply these definitions to eqs 32 and 34, we find

× =H r
D r

J rt
t

t
t( )

( )
( )free (46)

· =D r rt t( ) ( )free (47)

Consequently, displacement D(rt) and magnetization fields
H(rt) describe only the free part of the charges. We note that
homogeneous eqs 33 and (35) are usually obeyed by the
bound and free auxiliary fields individually. This formal
reshuffling is useful in connecting Maxwell theory to a theory
that describes a bound system and its reaction to electro-
magnetic fields. Thus, this formulation is often used in
conjunction with approximate (matter-only) linear response
theory in terms of constitutive relations.125−127 In our case,
where light and matter are treated self-consistently and we
have captured the reaction due to (bound) longitudinal fields
exactly by using the Coulomb gauge, we are only left with
transverse displacement and polarization fields. In the dipole
coupling limit, where the magnetization is disregarded, we
therefore find108,121,128 that ∑α ϵ0 gα

2 (ϵα·R)ϵα = P̂⊥ and
∑α ϵ0ωαgαqα ϵα = D̂⊥, such that

=E D P0 (48)

is the transverse electric field operator. Thus, the last line in eq
39 corresponds to the mode-resolved Ê⊥

2 + c2B̂2, and quadratic
self-interaction terms naturally arise when coupling to light in
terms of displacement and magnetization fields. Notice that
also the matter coordinates have now a different meaning,
since we have mixed light and matter (as we originally defined
with respect to the Coulomb gauge). For instance, the
translational symmetry is now found along a combined
coordinate, i.e., one shifts not only rl and Rl but at the same
time also all qα.

121 In addition, other observables, e.g., the
number of photons,108,121 have now a different representation
too. This issue has spawned a lot of misunderstandings, mainly
in connection with what is called a superradiant phase
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transition.129−136 In more detail, the transverse electric field is
by construction zero for any eigenstate, which follows from eq
21 in the Coulomb gauge. Yet the displacement field
expectation value can be nonzero for an eigenstate. This
merely means that one has a nonzero polarization, i.e., a
nonzero total dipole of the system. However, the nonzero
displacement field has been often misinterpreted as being the
electric field, which led to the wrong conclusion that one can
find radiating ground states, i.e., a photonic instability. Due to
the symmetries of the Pauli-Fierz Hamiltonian we know that
any ground state of atoms, molecules or solids has, by
construction, in total zero transverse electric field expectation
value. Nevertheless, one could still have a macroscopic amount
of virtual photons in the ground state. A macroscopic amount
of virtual photons in the ground state, e.g., in form of a
constant macroscopic magnetic field, could alternatively be
interpreted as a superradiant phase.

Let us note for completeness that the length gauge form of
the Pauli-Fierz Hamiltonian of eq 39 can also be derived from
the Power-Zienau-Woolley gauge in dipole approximation,
assuming that this gauge had the same longitudinal Coulomb
interaction.23,107,137 Yet beyond the dipole situation, both
gauges are, as discussed above, formally different theories. A
further reason for this discrepancy can be found in the fact that
no multipole expansion exists for unbounded operators. That
is, the common argument that a Coulomb-gauged field can be
multipole expanded and in this way connected to the Power-
Zienau-Woolley gauge only holds perturbatively and not on
the level of operators in ab initio QED108 (see also Appendix
A.3 for further details). In the context of working with
operators instead of with perturbation theory we note that we
have implicitly assumed that we are on 3 and instead of
boundary conditions on the matter wave functions we have
imposed normalizability to have self-adjoint operators.22,73

This is the standard setting of ab initio quantum physics72,74

(see also Appendix A.2). If we would restrict the matter
domain, e.g., choose genuine periodic boundary conditions in
the velocity gauge, the length gauge transformation changes
these boundary conditions as well in a nontrivial manner,121,122

again highlighting subtle differences when working with
different gauges.

After these important technical details, let us return to the
main advantage of the dipole approximation. That is, we can
treat the photonic environment implicitly by changing the
mode structure of the electromagnetic field at the position
of the matter subsystem. In our case, we chose the origin as
the center of charge. Therefore, one can take now the mode
structure of a photonic environment, e.g., from a Maxwell
calculation or from experiment, and adapt the ωα, ϵα, and gα in
eq 39 accordingly. We note that one needs to use the
corresponding displacement modes instead of the electric
modes in the length gauge, i.e., in eq 39. A further important
detail is that, in principle, when changing the mode structure,
also the induced longitudinal interaction would change. For a
better understanding of this aspect, let us first highlight how
the usual Coulomb interaction arises based on the free-space
mode structure. The Coulomb kernel in eq 36 is connected to
the inverse of the longitudinal modes of the electromagnetic
field, i.e., the (distributional) eigenfunctions of · from eq
10.11 Due to the high consistency between light an matter (see
also Section 3.3 and Appendix A.4), we can express the
longitudinal interaction simply in terms of the scalar

(distributional) eigenfunctions and hence find for eq 36 the
usual Coulomb kernel

=
= ·r r

r k k r kc1
4

d
k k r r

2

2
exp( i ( ))/(2 )3

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(49)

Now changing the mode structure will also affect the
longitudinal eigenfunctions and with this lead to a modified
Coulomb interaction. Thus, in eq 39, we might need to replace
the Coulomb kernels by a modified kernel that takes into
account this change of interaction. In certain cases it is argued
that this modification would be the main difference to free
space.134,138 Alternatively, especially for nanoplasmonic cav-
ities, one might instead take into account just one or a few
quantized longitudinal modes of the photonic structure
explicitly. We will comment on this a little later below.

Changing the mode structure in the dipole approximation,
however, has a few further subtle consequences. First, if we
have a (discretized) continuum of modes we will have to work
with bare masses as already discussed in Section 3.2. In dipole
approximation, the connection between the (single-particle)
bare mass m and physical mass me is known nonperturbatively
as97,139

= +
i
k
jjjjj

y
{
zzzzzm m

e
c c

4
3 4e

2

0 (50)

where the term in the parentheses is the fine structure constant
and Λ is the ultraviolet cutoff wavenumber. This already
implies that the cutoff should not be chosen too large since else
we would need an unphysical negative bare mass, i.e., in dipole
approximation nonrelativistic QED is not fully renormalizable
(for a single electron the energy where this happens is,
however, gigantic139).22 If we change the mode structure, the
connection between bare and physical mass will change, in
general. In most cases of polaritonic chemistry, it is, however,
tacitly assumed that the changes in the mode structures are not
so severe as to modify this completely. Hence one usually
subsumes the continuum of modes in the physical mass and
only keeps a few ”enhanced” modes explicitly in the
calculations. Indeed, usually just one mode is kept.31,32,43 On
the other hand, if we use a discretized continuum, we have
included radiative dissipation and decoherence. In other words,
since we have very many photonic degrees of freedom, the
quantum revival time tends to infinity119,140,141 and hence we
have effectively irreversible processes. This is broken once we
use the physical mass of the particles and merely keep a few
effective modes. To reintroduce the irreversibility, often
artificial baths are included in a few mode calculation. But in
principle such open-system approaches are not needed in
nonrelativistic QED as it would contain all dissipation channels
explicitly.

One last subtle but very important point concerns the self-
polarization term (ϵα·R)2. While often one might hope that
this term, which causes the difference between the electric and
the displacement field, is not very important, it turns out that
without this term the ab initio theory becomes unstable and
leads to unphysical results.58,108,121 Indeed, no basis-set limit
exists without self-polarization, i.e., the theory has no
eigenstates that could be approximated by a finite basis
expansion, and an unphysical coordinate- and gauge-depend-
ence is introduced. Thus, the results can become highly
unphysical for a finite number of basis states, such as having
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alleged ground states with nonzero transverse (propagating)
electric fields. Physically that is easy to understand, since one
could only discard this term if one had a perfectly localized
system of the form δ3(r), which is impossible in quantum
mechanics73,142 (see Appendix A.4 for further details).
Therefore, this assumption is equivalent to that of a classical
particle at the origin of the coordinate system with some
internal structure. Consequently, the self-interaction term must
be included for a physical ab initio quantum theory in the
length gauge. This statement holds true, of course, also if the
mode structure is changed, as discussed above. We note that
the effect of the dipole self-energy term is often not to change
the result of a purely dipolar (perturbative or few-level)
calculation but to stabilize it and guarantee a unique basis-set
limit. Yet it depends on the specific setup and the quantities
under investigation whether a decisive difference between a
perturbative/few-level and a full ab initio calculation can be
observed.108 Importantly, for longitudinal modes that are
potentially due to, e.g., a nanoplasmonic cavity, self-polar-
ization terms also need to be taken into account in an ab initio
description. This becomes clear from the fact that in principle
also longitudinal interactions can be treated in terms of the
auxiliary displacement and magnetization fields (see eqs 42 and
43). However, this leads to several mathematical issues for a
full continuum of modes and one therefore usually assumes
that such terms can be replaced by the usual Coulomb
interaction in free space.107 Yet for individual longitudinal
modes, which are changed, e.g., due to a nanocavity, such a
procedure is straightforward. Because of the manifest positive
energy of the photon field, we must include a self-polarization
term, otherwise one could lower the energy indefinitely and no
basis set limit is possible108,121 (see also Appendix B for a
simple proof of this fact). In practice, this issue can often be
circumvented by restricting space to a finite simulation box
with certain boundary conditions, which then serves the same
purpose as a self-interaction term. The size of the box,
however, then becomes a parameter of the ab initio theory and
must be chosen with care. Which way we ever turn it, a stable
ab initio quantum theory dictates to include quadratic (beyond
linear) terms and the only difference with respect to the
transverse case of eq 39 is that the quadratic contribution
might be different (since nonzero longitudinal fields are
physically possible even for static eigenstates). The same
condition appears in any other coupled ab initio quantum
systems, such as electron−phonon systems.143,144

To conclude this extensive part of the discussion: For a
practical first-principles calculation on the level of the dipole-
approximated Pauli-Fierz theory one needs to choose the
mode structure of the photonic environment at the position of
the matter system (obtained from experiment, a separate
simulation, or other theories) and choose a cutoff for these
modes and the corresponding bare mass. We note again that,
in contrast to the full minimal-coupling theory, dipole-
approximated Pauli-Fierz theory is known to be not fully
renormalizable.22 This is, however, simple to understand on
physical grounds: Infinitely high photon momenta directly
contradict the basic assumption that the wavelength of these
modes is large compared to that of the matter subsystem.

Finally, after having assumed the dipole approximation,
subsuming the continuum of modes in the physical masses of
the particles and keeping only one effective mode (this means
integrating over the part of the continuum that has been
enhanced and thus deducing an effective single-mode

coupling), we arrive at the starting point of most currently
employed theoretical models in polaritonic chemistry. Upon
reducing the matter state to just two states, i.e., a ground and
excited state irrespective of whether one considers electronic,
rotational or vibrational excitations, one reaches the Rabi
model.43 With these approximations, the dipole self-energy
term becomes a constant offset and is therefore often
discarded. Making then the rotating-wave approximation one
finds the famous Jaynes-Cummings model that is virtually
a lways invoked when discuss ing QED chemis -
try.1,5,14,39,40,43,45−47 If one wants to consider an ensemble of
two-level systems, one then often employs the further
approximated Dicke or Tavis-Cummings models. The latter
becomes equivalent to an effectively scaled Jaynes-Cummings
model.37,38,45,48 The Dicke or Tavis-Cummings models assume
that the individual physical systems, e.g., molecules, are so far
apart that they do not interact with each other directly but only
couple via the cavity mode. Yet in the model, the dipole self-
energy term, which necessarily arises in an ab initio theory in
the length gauge beyond only two levels, is discarded (perfect
localization of the whole ensemble is assumed), and no spatial
information on the individual systems is kept. We note that
also on this level of approximation, the choice and knowledge
of the gauge is crucial. If the Dicke or Tavis-Cummings model
is interpreted in terms of the length gauge without the dipole
self-energy, it is possible to find the unphysical case of nonzero
transverse electric field in the ground state. If the Dicke or
Tavis-Cummings model is interpreted in terms of the
Coulomb gauge, then such unphysical results are avoided.

Of course, there are many more advanced models and
alternative theoretical approaches, and they are discussed in
many of the available reviews highlighted throughout this
work. Yet to keep the amount of theoretical approaches to be
covered in detail tractable, we in the following focus on ab
initio approaches (based on the mathematical nomenclature
defined in Appendix A.5) and only highlight more advanced
models and other theoretical approaches where necessary.

4. FIRST-PRINCIPLES APPROACHES TO
NONRELATIVISTIC QED

“To better understand the properties of the hybrid states,
further development of QED chemistry calculation methods,
akin to those in quantum chemistry, would be extremely
valuable.”

T.W. Ebbesen in ref 14.
If we do not want to rely on the many (potentially) restrictive
assumptions underlying many of the currently employed
models, as introduced at the end of the previous section,
then we need to find alternative approaches to handle the
extreme complexity of the Pauli-Fierz Hamiltonian. For this
purpose, we will rewrite the problem of nonrelativistic QED in
convenient ways that allow (in practice approximate) solutions
of the general Pauli-Fierz Hamiltonian numerically. This
means that we want to solve eq 38 either for the Hamiltonian
of eq 37 or of eq 39 without using too much apriori knowledge
or assumptions, e.g., which matter or light states are assumed
to be the most important ones. However, before we continue,
we generalize the Pauli-Fierz Hamiltonians even further. This
is helpful for several reasons: First, for density functional
methods (see Section 4.1) we need to include external fields to
establish the necessary mappings.94,145 Second, external fields
are natural to calculate, e.g., absorption spectra or to
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investigate how a laser would induce nonequilibrium dynamics.
Third, in various approximations, e.g., the cavity Born−
Oppenheimer approach (see Section 4.4), internal degrees of
freedom become effective external fields and hence it is helpful
to see how (and which) external fields are included in the
Pauli-Fierz Hamiltonian. Therefore, in the full minimal-
coupling eq 37 we replace

+A r A r A rt( ) ( ) ( )ext (51)

and add the terms

+
= =

r Re t Z e t( ) ( )
l

N

l
l

N

l l
1

ext
1

ext

e n

(52)

and

·J r A r
c

t
1

( ) ( )ext (53)

This means we now include external classical electro-
magnetic fields (ϕext(rt), Aext(rt)) to act directly on the matter
subsystem, and an external classical current Jext (rt) to act
directly on the photons. In the Pauli-Fierz Hamiltonian we can
even define the (fully quantized) laser pulse by the chosen
initial state of the photon subsystem. This ambiguity raises
interesting questions about how to best describe, for instance, a
laser pulse and what are the differences in the descriptions.146

We further note that we have here subsumed the zero
component of the external charge current, i.e., ρext(rt), in
ϕext(rt) since in Coulomb gauge we can just use eq 36 to
connect both. Further, due to the Coulomb gauge we could
even restrict to only the transverse part of Jext(rt) in accordance
to the quantized field being only transverse81,94 (compare also
to eq 31). We note in passing that the moment we consider
also external fields, we effectively gain a second gauge freedom.
The physical results will not depend on the choice of the gauge
of the external field, and we do not necessarily need to choose
the internal and the external fields to have the same gauge. In
contrast to the gauge choice of the internal fields (see Section
3.2 for further details), it is straightforward to change the gauge
of the classical external fields. Having included such general
external time-dependent fields leads to an explicitly time-
dependent Hamiltonian ĤPF(t).

For the dipole-approximated theory of eq 39 in length gauge
we add merely

+
= =

r Re t Z e t( ) ( )
l

N

l
l

N

l l
1

ext
1

ext

e n

(54)

and

=
q j t( )

M

1

p

(55)

where the last term corresponds to eq 53. There are, however,
several transformations in between94,124 and so jα(t) is
proportional to the mode-resolved time-derivative of Jext(rt).
And accordingly we find in this case an explicit time-dependent
dipole-approximated Pauli-Fierz Hamiltonian ĤPF′ (t).

In the following we want to present different first-principles
methods for nonrelativistic QED. Similarly to ab initio
methods in quantum mechanics, every approach has certain
advantages and drawbacks. Which one to use will depend not
only on the system under study or the investigated effects but

also on the level of detail, e.g., whether the full wave function
should be accessible (at least approximately) or whether
reduced physical quantities suffice. The good thing is that
many of these methods have overlapping fields of application
and can hence be used to validate results obtained with a
different ab initio QED approach.147,148 All of these
approaches are extensions of quantum-mechanical methods
that have been applied successfully in theoretical chemistry and
electronic structure theory for many decades. These
approaches therefore aim at describing molecular systems
coupled to photons on the same level of detail as their
quantum-mechanical (matter-only) counterparts. We note that
there are many advanced models and alternative theoretical
methods for molecular polaritons (see, e.g., refs 149−163) that
have a more quantum-optical background and hence are
geared more toward photonic observables. They are discussed
in detail in various reviews on QED chemistry, e.g., refs.37,38,45

Notice that although the focus of this review is on ab initio
QED, the authors do not imply that first-principles QED
approaches are scientifically superior to other theoretical
methods applied in polaritonic chemistry. On the contrary, as
also discussed in the introduction, any of those methods serves
its purpose with different intrinsic advantages and disadvan-
tages. Indeed, an important goal of theoretical polaritonic
chemistry is to develop a comprehensive picture of the
underlying mechanisms that subsumes the different theoretical
viewpoints and encompasses (quantum) optics, (quantum)
chemistry, and electronic structure theory (see also discussion
in Appendix A.5).
4.1. Quantum-Electrodyamical Density Functional theory

Quantum-electrodynamical density functional theory
(QEDFT) follows the seminal ideas originally developed by
Kohn, Hohenberg, and Sham for the electronic ground
state164,165 and later by Runge and Gross for the time-
dependent situation of electronic quantum mechanics.166,167

While the fundamental theorems for the static and the time-
dependent situation use different quantities we want to follow
here the more general time-dependent perspective which
encompasses the static case as well.168−170

The basic idea is to replace the high dimensional wave
function as a descriptor of the system with a reduced/collective
physical variable. This is a ubiquitous idea in physics. For
instance, in classical mechanics, the description of a fluid is not
based on the humongous phase space of all the individual
particles but on density and velocity fields such as in the
Navier−Stokes equations. A different example is the use of
reduced Green’s functions in many-body quantum physics.9,171

The main advantage of a density-functional reformulation is
that we can do this reformulation in an exact manner. That is,
we want to guarantee that we can recover the exact results of
the wave function formulation, at least in principle. In more
technical terms, we want to have a bijective mapping between
the set of all physical wave functions and the set of collective
variables.118,164,166 In this way, once we know the values of the
collective variables, we can uniquely identify the corresponding
wave function and determine all observables from it (see
Appendix C for details on the basic QEDFT mappings). The
existence of such a mapping can be recast into the question of
whether one can find a closed set of equations that are
deduced from the Hamiltonian description in terms of wave
functions and that only include the collective variables. In the
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case of eq 37 we find these two equations that form a closed
set to be81,94
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where J rt( ) is the total charge current density operator that is
explicitly time-dependent even in the Schrödinger picture if we
have a time-dependent external vector potential. Eq 56 is a
local force equation, and eq 57 is the Maxwell equation in the
Coulomb gauge of the internal fields induced by the
(transverse part of the) charge current density.

Of course, the problem is that we do not know all the terms
on the right-hand side of eq 56 explicitly in terms of (J(rt),
A⊥(rt)). So in practice we have to resort to approximations,
similar to the case of standard electronic density functional
theories.165 Note, however, that for eqs 56 and 57 gauge and
relativistic invariance become much easier to enforce then for
the wave function formulation, and indeed on a QEDFT level
it might be beneficial to employ these facts for more accurate
approximation strategies in the future. Yet here we stay in
Coulomb gauge and follow the seminal ideas of Kohn and
Sham, who proposed that in order to approximate such
complicated momentum-stress and interaction-stress terms we
should use an auxiliary system, which is as close as possible to
the original problem, yet is still numerically tractable.118,164,166

So in practice a system of noninteracting electrons, nuclei/
ions, and photons is usually solved that generate the same
current density and vector potential as the original problem.
The resulting (single-particle) polaritonic Pauli-Kohn−Sham
equations
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are nonlinearly and self-consistently coupled to eq 57, where

=J r J rt t t t( ) ( ) ( ) ( ) (59)

= +A r A r A rt t t( ) ( ) ( )KS Mxc (60)

= + +r r r rt t t t( ) ( ) ( ) ( )KS Hxc pxc (61)

Here the Pauli-Kohn-Sham wave function Φ(t) is a tensor
product of Slater determinants and permanents (of electrons,
nuclei/ions and photons81) of the orbitals φk(rst), where s is
the corresponding spin coordinate for particle k with mass Mk,
charge Zk e and spin matrix Sk. That is, for electrons we have s
∈ {1, 2}, Mk = m, Zk = −1, and Sk = σ. If we also treat the
nuclei/ions quantum-mechanically we then have further
species of (massive) particles.81 The Kohn−Sham magnetic
field is given by = ×B r A rt t( ) ( )

cKS
1

KS and the Kohn−
Sham vector potential contains the mean-field exchange-
correlation potential AMxc(rt). Further, the Kohn−Sham
(scalar) potential contains now besides the usual Hartree-
exchange-correlation potential ϕHxc(rt) also a photon-ex-

change-correlation potential ϕpxc(rt) (see also Appendix C
for further details). An accurate approximation of these fields is
much easier to establish and one can beneficially use the direct
connection of density-functional methods to reduced-density
matrix and Green’s function theories.172−177 We note,
however, that due to having also the photonic contributions
in the effective fields, we now have to consider the consistency
of approximations to the longitudinal (Coulombic) and the
transverse (photonic) interactions (see Appendix C for more
details). As can be seen from eqs 58−61, in general we work
with current-density functionals in QEDFT. However, for the
static case or the dipole-approximated version (see also the
discussion below), functionals in terms of the density are
sufficient. We therefore refrain here from explicitly indicating
the functional dependencies since they hinge on the specific
realization of QEDFT (see Appendix C for more details).
Further we note that while new terms appear that generate
novel contributions to the exchange-correlation potentials, e.g.,
ϕpxc(rt) in eq 61 that is explicitly due to the photon-matter
coupling,81,94,124 in principle also the usual density functionals
are implicitly modified since they are now generated by light−
matter coupled (polaritonic) wave functions.178−180 Let us also
note that solving these noninteracting yet nonlinearly coupled
equations is far from trivial. This has to do, on the one hand,
with the fact that we still have to solve (for the matter
subsystems) many nonlinearly coupled single-particle Pauli
equations and, on the other hand, that the subsystems
(electrons, nuclei/ions, and photons) have vastly different
energy/time and length/momentum scales. This makes the
development of special multisystem and multiscale methods
necessary.81,181 An important technical aspect, that connects
back to the introduction of the Riemann-Silberstein
formulation of classical electrodynamics (see Section 2), is to
recast everything as first-order equations in time such as to (re)
use the same numerical propagation routines.81,181 The first-
order equations of the different particle species then need to be
solved self-consistently, i.e., the full feedback between the
different subsystems (electrons, nuclei/ions, and photons) is
included. Another technical aspect, specifically with respect to
the Maxwell’s equation, is to simulate free space by working in
a finite simulation box and to use perfectly matched
layers.81,181 This gives rise to radiative dissipation and
decoherence from first-principles; i.e., if the system of interest
and its photonic environment are enclosed within the Maxwell
simulation box, photons that reach the boundary of this
simulation box are emitted (lost) to the far field. In this way
the transient nature of of photonic excitations in realistic
nanophotonic environments can be captured (see Section 5.1
for further details). Finally, owing to the difference in mass
between the nuclei/ions and electrons, one often makes a
further approximation and simulates the nuclei/ions by
classical statistical methods, e.g., multitrajectory Ehrenfest
methods.115 It is within this approximation for the nuclei/ions
that QEDFT for eq 37 has been successfully applied.81

Of course, in many practical situations, especially in the case
of molecular systems, a full minimal-coupling description is not
always needed (although it is still desirable to have such high-
level solutions even in such cases in order to justify
approximations). So one often uses QEDFT in the long-
wavelength (dipole) approximation, where eqs 56 and 57
reduce to the corresponding equations for the Hamiltonian of
eq 39.81,94,124 QEDFT can indeed seamlessly connect to this
and various other limiting cases.170 Before we discuss

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00788
Chem. Rev. 2023, 123, 11191−11229

11205

pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


specifically QEDFT in the dipole-coupling limit, we want to
highlight a related methodology that can be applied in an
intermediate regime. For two-dimensional materials, one can
approximate the in-plane and out-of-plane coupling differently.
Such an ansatz was considered by the authors of ref.182 which
investigated two-dimensional materials weakly coupled to a
cavity and the arising Purcell effect, i.e., the cavity-induced
faster spontaneous emission of photons. They employed
macroscopic QED to quantize the field of the cavity and
then coupled it with the help of Wigner-Weisskopf theory
(only zero or a single photon in each mode and effective
particle masses) to (electron-only) density functional Kohn−
Sham wave functions. Since in this approach light and matter
are treated separately, e.g., matter is described in Coulomb-
gauged density-functional theory while the Maxwell field is
quantized in Weyl gauge, extra care has to be taken to not
generate unphysical effects. We note, however, that with the
help of the fundamental mapping theorems of QEDFT (see
also Appendix C), one could unambiguously connect macro-
scopic QED with a Pauli-Kohn−Sham wave function and
provide advanced light−matter interaction functionals.

The separate quantization of light and matter becomes less
error prone if we consider the interaction with the transverse
electromagnetic modes in the dipole approximation (see
Section 3.3 for details). Within dipole-approximated
QEDFT124,145,183−186 dissipation and decoherence is still
included184,186,187 if the discretized continuum of photon
modes is kept, and one can thus investigate, e.g., the super-
radiance of a collection of molecules, mass-renormalization
effects and changes in the spontaneous emission.184 To reduce
the numerical costs even further, one can either reduce the
mode number to a few (or merely one) effective modes or one
can, for example, approximate the photon modes by an
instantaneous radiation-reaction potential.188,189 Most of the
results in polaritonic chemistry obtained with QEDFT-related
methods employ one of these limits (see Section 5). The
radiation-reaction approach is specifically efficient in including
simple Markovian dissipation and allows, in combination with
linear-response theory, to reach the macroscopic collective-
coupling limit and explore its implications for real molecules in
the dilute gas limit.190 For plasmonic situations one can either
include the plasmonic structure itself or (more approximately)
some quantized effective (potentially longitudinal) modes (see
also Appendix B) or even just modify the Coulomb interaction
(see also Section 3.3). We finally note that once we take the
coupling to the (now only few) transverse modes of the
photonic structure to zero, QEDFT recovers standard (time-
dependent) density-functional theory.81,118 Time-dependent
density-functional theory is then often sufficient to capture
strong-coupling effects to longitudinal modes of plasmonic
cavities if the plasmonic nanostructure is treated explic-
itly.191−195

All in all, QEDFT is highly versatile and allows access to
electronic, photonic, and nuclear/ionic quantities and their
self-consistent interplay on various levels of approximation.
The main disadvantages involve that it is not easy to assess the
error of an approximate density-functional for a given level of
theory, and it is not straightforward to access observables that
are not trivially given by the auxiliary Pauli-Kohn−Sham wave
functions.

4.2. Exact Results

While QEDFT is able to treat the different forms of the Pauli-
Fierz Hamiltonian efficiently, in one way or another, the results
are usually approximate. For validation purposes and
elementary insights, it would be good to have exact results.
However, for coupled light−matter systems, not many exact
results (analytic or numerical) are available. To the best of our
knowledge, only for dipole coupling some exact reference
results are known, whose main insights are summarized in the
following.

First, we assume the dipole approximated light−matter
coupling of eq 39 and consider a single particle trapped in a
harmonic potential. It can be shown22 that the time-dependent
dipole moment of this particle can be computed by just solving
the classical equation of motion of the harmonically trapped
particle coupled to the Maxwell’s equation, instead of solving
the full quantum field problem. This example is also a good
rationalization of QEDFT, where the coupled eqs 56 and 57
are directly reduced to these classical equations for this case.
The computed time evolution of the dipole moment allows to
access, e.g., the lifetimes of the excited states and absorption/
emission spectra.

Staying with a harmonic potential, recently analytically
exact results of the influence of the photon field with many
(identical) interacting particles have been presented and
implications discussed, e.g., that even for a ground state
resonant behavior can be observed.196 Furthermore, exact
analytical results are available for free particles (electrons),139

which have been used to devise approximations within
QEDFT.170 Besides others, interesting effects on the linear
response of the system have been highlighted (e.g., the
appearance of plasmon-polariton resonances and a decrease of
the Drude peak), and mass renormalization effects due to the
thermodynamic limit of the photon field have been shown. In
both cases, the authors have used that in velocity gauge the
photon field couples only to the center of charge of the total
system directly and that this then leads to only an indirect
modification of the relative degrees of freedom.

A different example concerns the one-mode approximation.
In this case, numerically exact results are available for a
quantum three-body system coupled to this effective mode.
For He, HD+ and H2

+ one can reformulate the 10 dimensional
problem in a problem-specific coordinate system and solve for
the lowest lying eigenstates.197,198 This seemingly simple
problem already provides many new insights and effects that
we will highlight in Section 5. Suffice it to say that already for
the simple one-mode case, the eigenvalues of the problem,
without any further knowledge, lose the simple interpretation
they have in standard quantum mechanics (see also the
discussion in Section 3.2 concerning the loss of excited states
in QED). Because one has access to the lowest-lying
eigenstates in this numerically exact approach, one can also
calculate the exact thermal (canonical) ensemble and deduce
cavity-modified thermal properties, which will be discussed in
Section 5.

The main drawback of either analytically or numerically
exact ab initio results is that they are only available for very
specific situations and cannot be applied to different,
chemically more relevant cases.
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4.3. Quantum Electrodynamics Coupled Cluster Theory for
Electronic Strong Coupling
A compromise between generality and accuracy can be found if
we restrict to eq 39 in the static case from the start and
additionally treat the nuclei as external (clamped) quantities.
Afterward quantum electrodynamics coupled cluster (QED-
CC) theory199,200 can be employed for electronic strong
coupling conditions, which has become another important
first-principle QED method. In contrast to many-body
methods, such as QEDFT, QED-CC theory tries to
approximate the many-body wave function of electrons and
photons directly. We note that alternative wave function-based
methods are available (see e.g. refs 201, 202), but we will not
elaborate further on those in this review. The exact electron−
photon wave function in QED-CC is re-expressed by applying
a cluster (excitation) operator T̂ on a reference wave function

= T Rexp( ) (62)

where R is usually the tensor product of the electronic
Hartree−Fock wave function with the vacuum states of the
modes α. In addition to standard coupled cluster theory the
cluster operator now also contains photonic contributions and
reads for a single cavity mode as

= †T t b a( )
n

n
n

,
,

(63)

Here b̂μ∈{b̂i
a,b̂ij

ab,...} are the electronic excitation operators of
rank μ, n is the number of photons in the mode, and the
unknown parameters (amplitudes) tμ,n are to be determined.
Also, when comparing to standard coupled cluster theory, one
might wonder whether the bosonic nature of the photons
imply some sort of symmetrization of the mode wave
functions. Yet in eq 39 the bosonic nature of the photons is
made explicit by the quantum harmonic oscillators α. This
happens because the excitations of a quantum harmonic
oscillator α are connected to the number of photons (note
that, as discussed in Section 3.3, the ”length gauge photons”
are not the physically observed photons) in this mode α; i.e.,
we can have infinitely many photons (bosons) in one mode.
The expression of eq 62 for the wave function leads to an
expansion in the number of electronic and photonic excitations
that, even if truncated early, gives very accurate results

provided that the exact ground state is dominated by the
single reference wave function R .

The choice of truncation is important and in practice the
number of electronic excitations is chosen as two (with
potentially perturbative triples) and the mixed electronic-
photonic and pure photon excitations in each mode is either
one or two.148,203,204 This truncation allows us to perform
practical calculations for relatively large systems. Embedding
approaches allow to reach larger systems,205 where only part of
the problem is treated on the QED-CC level and other parts
with, e.g., a Hartree−Fock-type approximation. Ultrastrong
and deep-strong coupling,43 where many more than just one
excitation per mode arise, need a truncation at higher
excitations. Here reformulations of the problem in an adapted
basis170,206 might prove helpful. Further, as can be inferred
from eq 63, treating many different photon modes can become
numerically costly, and no extension to full minimal-coupling
(see eq 38 with the nuclei/ions treated classically) has been
devised as of yet. However, the reformulation of our QED
eigenvalue problem in terms of (unitary) coupled cluster
theory allows for a relatively straightforward implementation207

on noisy intermediate scale quantum devices208,209 employing
variational quantum eigensolvers.209,210 The representation on
a quantum computer has the appealing feature that in
principle, many (entangled) photon modes could efficiently
be represented in contrast to classical devices.
4.4. Nuclear/Ionic Dynamics in the Generalized
Born-Huang Picture
If we want to investigate properties of the nuclear/ionic
degrees of freedom when strongly coupled to a cavity, we
usually take the dipole-coupling approximation and hence start
from eq 39. In this case we first perform a generalization of
the Born-Huang expansion.58,112,113 That is, we re-express the
fully correlated wave function of electrons, nuclei/ions and
photons

=_ =_ =_

r r R RS S q q( , ..., , , ..., , , ..., )
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(64)

in terms of conditional wave functions. There are now several
ways of how to perform this expansion, i.e., which subsystem
depends conditionally on the others. While the generalized
Born-Huang expansion is exact irrespective of partitioning, the

Figure 3. Two main forms of the generalized Born-Huang expansion for coupled light−matter systems discussed in the main text. While the cavity
Born−Oppenheimer partitioning is geared toward ground-state chemical reactions, the polaritonic energy surface partitioning is more geared
toward photochemical processes.
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choice of partitioning is important when performing
approximations.58,113 We will here focus on the two most
relevant choices for investigating the nuclear and ionic degrees
of freedom (see Figure 3). Which choice is more appropriate
for approximating the problem at hand depends on the
physical setup and is thus determined by the chemical system
inside the photonic environment and the properties of the
photonic environment itself, i.e., how do the matter excitations
compare to the modes of the cavity structure. We will discuss
this in more detail below. We note that there are also
alternative schemes, such as exact factorization ap-
proaches,114,211−214 that we will not go into further detail here.

The first choice, which we call the cavity Born−
Oppenheimer approach,58,112 is to group the photons with
the nuclei/ions and to make the electrons depend parametri-
cally on R and q. In this case, in order to find the exact solution
for

=r R r RE q H q( , , ) ( , , )PF (65)

via the generalized Born-Huang expansion, we have to solve
the equations

{ } = { }R r R R r RE q q H q q( , ) ( ; , ) ( , ) ( ; , )i i iPF (66)

where ĤPF′ (R, q) is the Hamiltonian of eq 39 parametrically
dependent on R and q and the kinetic nuclear/ionic and
photonic parts are set to zero (treated classically), together
with
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We note that the last term in eq 67 contains all derivatives
and thus also all non-adiabatic couplings between the
polaritonic nuclear/ionic wave functions χi (R, q). We note
that in the original work of ref 58, the off-diagonal
nonadiabatic couplings were discarded. Furthermore, with
respect to the usual case without photonic degrees of freedom,
also the electronic potential-energy surfaces Ei(R, q) are now
changed, since they depend explicitly on q. Thus, to distinguish
them, we call them cavity (Born−Oppenheimer) potential
energy surfaces. The cavity Born−Oppenheimer expansion is
specifically efficient if we are interested in ground-state
chemical reactions under vibrational strong coupling.66 If
the ground-state cavity potential energy surface is well-
separated from the first excited cavity potential energy surface
(usually if the relevant bare cavity frequencies are much lower
than the bare first electronic excitation), we can make the
cavity Born−Oppenheimer approximation Ψ(r, R, q) ≈
χ0(R, q)ψ0(r;{R, q}).

112 However, even the resulting simplified
equations are far from trivial215 and we discuss various first-
principles approaches to approximately solve them below.

A second important partitioning is to choose the electrons
grouped with the photons (see Figure 3), such that the
resulting potential energy surfaces Ei

pol(R) are polaritonic
energy surfaces.113 If we partition also the electron-photon
conditional wave function, we can solve the photonic part
analytically. We therefore still have only two coupled
equations, one for nuclei/ions on polaritonic energy surfaces

and one for electrons, yet the analytic solution of the photons
leads to novel (analytically known) nonadiabatic coupling
elements among electronic states as well as among nuclear/
ionic states. These new analytically known nonadiabatic
coupling elements are akin to the couplings in Floquet theory,
i.e., they connect states with different number of excited
photons.113,216 The partitioning chosen here, which leads to
the polaritonic potential energy surfaces, is now specifically
efficient if one is interested in photochemistry, where the
cavity modes are in resonance with electronic excitations and
we consider the influence of electronic strong coupling on
chemistry. In this case, if we assume that the novel
nonadiabatic couplings in the nuclear/ionic sector are
negligible and the photons only couple efficiently to the
electronic sector, we find the explicit polariton approxima-
tion.113 In this case, the nuclear/ionic degrees of freedom are
only indirectly modified by the photon degrees of freedom due
to changes in the potential energy surfaces. If we further
assume that in the electronic sector the coupling to the cavity
modes acts only perturbatively, we recover polaritonic
potential energy surfaces as originally introduced in ref 217.

Either way, in order to determine the influence of the cavity
modes on the nuclear/ionic subsystem, we, in principle, need
to solve high-dimensional coupled ab initio quantum
equations. A similar problem appears also for the usual
electron−nucleus/ion dynamics, and various approaches have
been developed to approximately solve such situations.
However, when compared to the traditional electron−
nucleus/ion-only problem, the inclusion of the photonic
modes implies novel nonadiabatic coupling terms which
might become important to faithfully describe certain
effects.218−221

If we assume only a very few nuclear/ionic degrees of
freedom to be relevant, one can cut back on the dimensionality
of the problem and perform numerically exact simula-
tions.217,218,220−222 We note, however, that a priori it is not
clear whether the same nuclear/ionic degrees of freedom are
relevant as outside a photonic structure, e.g., that the cavity can
correlate nuclear/ionic degrees of freedom that are largely
uncorrelated outside the cavity. Hints toward this issue are
highlighted in Section 5.3. For this often an adiabatic to quasi-
diabatic basis transformation is performed,223−225 which makes
the treatment of nonadiabatic couplings and (potentially
cavity-induced219,223,226) conical intersections simpler. Such
simulations show that the influence of the cavity also on the
electronic (nonadiabatic couplings) degrees and a consistent
treatment of the dipole self-energy terms (see Section 3.3.1)
can be decisive.58,220,221 If a strong a priori reduction to merely
a few nuclear/ionic degrees of freedom is not possible then one
can, for instance, extend the multiconfigurational Hartree
approach to polaritonic problems.219,227−230 Alternatively, the
use of path-integral methods231,232 and ring-polymer quantiza-
tion233,234 of light and the nuclear/ionic degrees of freedom
allows to investigate higher-dimensional (in terms of photonic
and nuclear-ionic degrees of freedom) cases. Simplifying even
further, especially in the case of thermally driven chemical
reactions, extensions of a semiclassical methods or surface-
hopping approaches to coupled nucleus/ion-photon systems
are possible.115,116,235−239 Here the use of cavity Born−
Oppenheimer potential energy surfaces as introduced in eqs 66
and 67 seems the best choice to formulate a generalization of
molecular-dynamics simulations for coupled cavity-nuclei/ions
systems.240,241 One should, however, be careful regarding the
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treatment of the nuclear/ionic and photonic degrees of
freedom. The displacement field dynamics in eq 67 can be
orders of magnitude faster then the nuclear/ionic dynamics
and hence might necessitate the use of adapted Langevin/
open-system approaches.66 We will comment in more detail on
the physically relevant implications later in Section 5.

Notice that commonly the free-space electronic surfaces or
force fields are employed instead of cavity potential energy
surfaces. This implies a further approximation since in
principle the displacement coordinates also influence the
reduced energy eigenvalues. Aside from this, it is important to
note that (not only for nuclear/ion-photon dynamics) a basis
truncation has to be performed in practice, which can
introduce an artificial gauge dependence in such calculations.
That is, if we performed a simulation in velocity gauge and one
in length gauge (see Section 3.3 for details) then at the same
level of truncation we might find different results.242,243 Only
for converged results we should compare different gauges (see
also Appendix A for the importance of basis-set considerations
in ab initio quantum physics). While one can mitigate such
effects between the two relevant (length and velocity) dipole-
coupled gauges,244,245 we recall (see Secs. 3.2 and 3.3) that for
the original minimal coupling Hamiltonian mainly the
Coulomb gauge seems practically relevant for ab initio QED.
If we finally make further assumptions, e.g., that only zero- or
one-photon states can be occupied and that we are in a
perturbative limit such that we can discard the dipole self-
energy terms (see also Section 3.3), then we recover common
Dicke-type interaction models.246,247

Overall we can conclude that to accurately describe the
influence of a strongly coupled photon mode on the nuclear/
ionic degrees of freedom, we need access to cavity Born−
Oppenheimer or polaritonic potential energy surfaces and
potentially their nonadiabatic couplings. Which one of those to
use is dictated by the details of the cavity and the matter
system to which the cavity modes couple to. The usage of
potential energy surfaces from a bare matter problem
(accessible with standard quantum chemistry software) is a
widely applied approximation, which neglects the modifica-
tions of the electrons by the photon field entirely, and
important effects might be missing. Let us finally note that in
quantum chemistry (outside of cavities) the potential energy
surfaces are always with respect to a single system undergoing a
chemical reaction, and the full ensemble of reacting molecules
is treated statistically (as is also assumed in transition-state and
Marcus theory). However, this approach is no longer
straightforward to apply, considering that many molecules
are collectively coupled via cavity modes. In polaritonic
chemistry sometimes the concept of a ”supermolecule” is
invoked, with a potential energy surface that now encompasses
the full ensemble. We will comment on this controversial
concept that commonly assumes (quantum) coherence among
a macroscopic amount of molecules later in Section 5.3.

5. POLARITONIC CHEMISTRY FROM
FIRST-PRINCIPLES

“It has been argued that the Rabi splitting experienced by
each molecule involved in the collective coupling is not ℏΩR

but N/R . If this were the case, the splitting would be
tiny, and it is unlikely that any molecular or material
property would be modif ied as observed experimentally.”
T.W. Ebbesen in ref 14.

Let us now turn to the main focus of this review: the
modification of chemical and material properties by strong
light−matter coupling. As already highlighted in the
introduction, we will present here a perspective on QED
chemistry, which is based on first-principles results. For more
traditional perspectives on polaritonic chemistry based on
various model considerations or alternative theoretical
methods, we refer the reader to the many reviews available,
e.g., refs 37, 38, 45 and references therein. In the following, we
assume that we can capture the observed effects by employing
either the Hamiltonian of eq 37, where we describe also the
cavity as part of the system, or we can use the approximate
Hamiltonian of eq 39, where the cavity is taken into account by
modifying the mode structure of the electromagnetic field. The
presented results are then obtained by solving the Schrödinger-
type equations with one of the above-described first-principles
methods (see Section 4 and Appendix A for the mathematical
framework of ab initio QED). We want to relate the various
results with each other but at the same time also highlight
explicitly the underlying assumptions. Such questions of
consistent assumptions turn out to be very important for
various reasons, as will become clear in the next sections. First
of all, QED chemistry is a novel research discipline, and many
assumptions are still under debate and not yet generally
accepted. Moreover, the strong coupling between light and
matter can potentially invalidate accepted assumptions of
theoretical chemistry, which have been successfully applied for
decades outside of photonic structures. In addition, the
increased theoretical complexity of polaritonic chemistry
includes many additional ingredients, which makes the choice
of reasonable assumptions even more delicate. For example, in
most applications we have to account for

1. The chemical complexity of the (individual) molecular
system under study.

2. The effect of nonzero temperature.
3. Potential chemical effects from the solvent in which the

molecular system under study is contained.
4. The self-consistent interaction with the restructured

(quantized) electromagnetic field.
5. The collective/cooperative effects due to an ensemble/

solvent or by the photonic structure itself.
Already without a photonic structure, when only points 1−3

are relevant, the complexity is staggering. Combining the first
three points encompasses most issues describing reactivity in
theoretical chemistry.59−61 Adding the last two points is the
origin of the observed changes in chemical properties, but also
the origin of even more theoretical complexity. In more detail,
they can potentially change the basic ingredients of chemistry,
as has been highlighted already in the introduction, which in
turn also affects how points 1−3 combine. Let us try to unravel
these aspects and their connections a little more from an ab
initio perspective in the following.
5.1. Restructuring the Electromagnetic Field Modes
The first fundamentally new ingredient is that a photonic
structure, e.g., an optical cavity or some plasmonic
structure,15−17,26 will modify locally the modes of the
electromagnetic field from simple plane waves (see also
Sections 2 and 3.3) to more complex forms. Of course, this
restructuring is automatically contained in nonrelativistic QED
if we explicitly include the photonic structure as part of the
physical system.
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A nice demonstration of this fact is found in, e.g., ref 81
where the time-resolved field structure between plasmonic
nanospheres is considered (each nanosphere contains 297
sodium atoms and their dynamics self-consistently coupled to
the Maxwell field upon irradiation with an external short laser
pulse is simulated up to 40 fs). It is also shown how
longitudinal and transverse electromagnetic modes are
modified at the same time for such very small cavities that
are explicitly treated as part of the system (see also Section 2.2
for the usual free-space distinction). It is no surprise that such
near-field effects can have a strong influence on the properties
and dynamics of molecules. Physically it is quite simple to
understand that the (large) charge densities and currents of the
nanospheres lead to a modified electromagnetic mode
structure and that the fluctuations of these charge densities
and currents are connected to the fluctuations of the
electromagnetic field inside the cavity. Abstracting further,
the photon-field fluctuations can be understood as current−
current correlators between the charged particles of the cavity
and the molecules inside the cavity, in analogy to the
arguments that can be made for the Casimir forces.21,248

This idea also underlies the theory of macroscopic QED,
where the photon field fluctuations are expressed in terms of
currents obtained from linear-response functions of the cavity
material.21,249 Furthermore, it is nice to observe that the local
photon modes lead to strong radiative dissipation, since
exciting them transfers energy from the near to the far field and
this energy is effectively lost from the localized (cavity-
molecule) system.81,184 One should, however, be aware that
strictly speaking the photonic structure does not really
generate new photon modes, but the transient nature of the
excitation in the cavity material rather leads to quasi
modes.21,249−251 So it is a theoretical abstraction/simplification
to denote the cavity-induced local changes in the electro-
magnetic field as new modes.

Keeping this cautionary note in mind, we will still use the
(approximate) picture of changed electromagnetic modes due
to a photonic structure in the following. This becomes
specifically handy when we want to unite various different
physical situations where strong light−matter coupling
appears. For instance, often strong coupling is not considered
in a nanocavity but rather on a surface and the molecules
couple to an evanescent wave, a surface plasmon-polariton,
which itself is actually a light−matter hybrid state.26 Overall
the strong-coupling effects in these different physical situations
are quite similar,21,81,191 at least in a coarse-grained view (see
also Section 3.3.1). Now, putting one or a few molecules in
contact with these modified local electromagnetic modes can
have strong effects on the molecules. Such situations are
commonly called single-molecule or local strong coupling. It
is simple to accept that, for instance, plasmonic near-field
modes, which (if excited) can generate very strong local fields,
can transiently affect molecular properties or change chemical
reactions.252−255 An important point is that one does not need
to excite these modes externally but also at equilibrium they
can have a strong influence. Indeed, the main interest in the
following, as already highlighted as one of the main questions
in polaritonic chemistry in the introduction, lies in the
equilibrium fluctuations of these modes and their impact on
the molecular properties. These fluctuations can be either of
quantum nature or of thermal nature, as we will discuss in the
next section.

5.1.1. Modified Fluctuations and Fields. Assuming that
our coupled cavity-molecule system is completely isolated and
we consider the coupled ground state (see also Section 3.2
about the existence of ground states in ab initio nonrelativistic
QED), the fluctuations of these quasi modes inside the cavity
are purely quantum in nature. If we then focus on the
equilibrium molecule inside our photonic structure, any
changes with respect to free-space equilibrium can then be
attributed to the changed mode structure and its changed
vacuum fluctuations. Instead, if we start from an excited state,
which then can decay due to (radiative and potentially also
vibronic/phononic) dissipation, we expect to observe different
dynamics due to the changed mode structure. Nevertheless, in
this case the main driving force will be the induced nonzero
electromagnetic (near) fields and not so much the coupling to
the fluctuations.146,178,184,195 Certainly, the dominant mecha-
nism will depend on the amount of energy transferred from the
molecular system to the cavity modes. If we now bring our
cavity-molecule system in contact with a thermal reservoir, the
mode fluctuations will additionally get a thermal component.
Depending on the temperature and the energy range of the
cavity coupling, e.g., ro-vibrational, vibrational, or electronic,
the thermal fluctuations can dominate over the vacuum
contributions. There is now, however, a simple but important
point to be highlighted. While the thermal state of the total
system is canonical, this is not necessarily the case anymore for
the (nuclear/ionic) dynamics of the strongly coupled
molecular system inside the cavity. Similarly, the thermal
cavity mode fluctuations can also be very different to the
empty-cavity thermal fluctuations. Only in the limit of weak
coupling between light and matter can we expect to reach a
canonical state for the molecular subsystem. Such effects have
been observed for simple molecular systems coupled to a single
cavity mode.198

A different way to quantify cavity induced modifications is to
measure the impact on the basic molecular building blocks, i.e.,
on the electrons or on the nuclei/ions. For example, by
measuring the dispersion relation and determining its
curvature at zero momentum, one can determine the mass of
the free particles.22,97,139 If the same measurement is
performed inside a cavity, then the photonic environment
will alter the dispersion. In addition, the loss of isotropy in the
cavity (think about mirrors that restrict the x direction, as
displayed in Figure 2) will imply that one has (slightly)
different masses in different directions.22 An example of such a
mass renormalization can be found, e.g., in ref 139. Notice
that the mode restructuring can not only affect particle masses
but also imply that the longitudinal (Coulomb) interaction
between the charged particles of the molecules gets modified
(see also Section 3.3).
5.1.2. Chemical Consequences of Cavity-Restruc-

tured Modes. What are the chemical consequences of the
restructured photonic modes? Considering the impact on the
electronic sector first, where (room) temperature effects are
usually assumed negligible, one finds that the electronic
ground state can get modified appreciably only for quite
strong coupling, i.e., when the relevant modes correspond to
large local fields if excited58,200,256 (This does, however, not
mean that perturbative/few-level calculations are correct
within ab initio QED for small changes, since these changes
can strongly vary locally113,174). In the common dipole
approximation of eq 39 this happens very roughly when for
some modes α (or the sum of all the enhanced modes) we
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have gα
2Δl2 e 2 comparable to the free-space Coulomb

interaction, where Δl is the relevant (microscopic) length
scale of the localized quantum system.108 It has to be
highlighted (see also Section 3.3) that for the combined
ground state of the cavity-molecule system no real (propagat-
ing) fields are generated but the mode occupation is virtual;
i.e., it is the vacuum fluctuations of these modes that lead to
changes. The hybridized nature of the ground state in a cavity
can not only modify the energy or the ionization
potential204,257 but also the electronic density of the ground
state.174,176,200,256 For a fixed coupling strength, the magnitude
of these effects also depends on the position of the (clamped)
nuclei/ions, i.e., since the relevant length scale Δl from above
is also modified. For instance, if dissociating molecules are
considered, a cavity mode can lead to strong effects due to
novel long-range correlations258 and it can modify van der
Waals interactions substantially.148

For time-dependent and excited state properties mod-
ifications can be observed already for much smaller couplings
compared to ground state effects. Notice that (time-depend-
ent) excitations typically also imply further delocalization with
respect to the ground state. For example, electronic (usually
vacuum) Rabi splitting, the hallmark of strong coupling (see
Figure 4), can usually already be observed for coupling regimes
where the electronic ground state still remains unaf-
fected.43,58,184 In most cases, the calculated Rabi splitting
shows an asymmetric behavior184−186 and one also recovers
the super/sub-radiant features (radiative lifetime is shorter/
longer than free-space counterpart) of these polaritonic

states.184,186,187 This is a nice consistency check with respect
to experimental evidence. To include the radiative losses these
time-dependent simulations either need to take into account
the continuum of modes for a specific environment184,186,187

(see also Section 3.3), consider time-propagation that are
shorter than the dephasing times146,258 or explicitly include
dissipation phenomenologically.188,239,259,260 Specifically inter-
esting for chemistry is the appearance of new nonadiabatic
couplings between (excited) electronic surfaces and novel
conical intersections219,223,226,261 (see also Section 4.4).

For the rotational and vibrational degrees of freedom, the
effects of (room) temperature can become decisive to describe
chemistry. In this case the (energetically) relevant modes of
the photonic structure might have a non-negligible thermal
occupation. For photochemical reactions these modified
thermal fluctuations might typically be less important then
the new cavity-induced nonadiabatic couplings and conical
intersections, but in general the interplay of these cavity-
i n d u c e d e ff e c t s w i l l a l t e r c h em i c a l p r o p e r -
ties.197,198,240,241,262−264 Notice, however, that one can observe
already very interesting changes in simple photochemical
reactions, even when disregarding these thermal contribu-
tions.190,203,218,220,228,239,265,266 On the other hand, the
modification of the thermal fluctuations are expected to be
specifically important for ground-state chemical reactions14,66

and many other phenomena of materials in cavities (e.g.,
quantum phase transitions267,268). We will discuss this issue in
Section 5.3 in more detail for a specific case. For the generic
situation, we want to highlight that the common simplification
to describe classically the thermal fluctuations of the (relatively
heavy) nuclei/ions is not necessarily appropriate for the
fluctuations of the modes even at ambient conditions
(depending on the chosen cavity frequency). The mode
fluctuations can still have strong nonclassical contributions of
vacuum and quantum thermal nature198 (see also Figure 5).
5.2. Collectivity and Cooperativity

The second fundamentally novel aspect (as also highlighted in
the introduction) that becomes decisive inside a photonic
structure is that the cavity can facilitate strong collective or
cooperative effects. ”Collective” here means that similar
physical entities, e.g., the same type of molecules, start to
interact with each other via the cavity and potentially
synchronize, while ”cooperative” means that such cross talking
happens between different physical entities, e.g., solute and
solvent. Strictly speaking, any effect that we observe is
cooperative, due to the cavity being a different physical entity
than the material inside, but this distinction inside the
photonic structure is common.44,47

In order to construct cavities that have a particular strong
coupling to molecules, it is often helpful to further fill the
cavity with a highly polarizable medium.14,36,41,45,48 Indeed, in
many cases of QED chemistry one simply employs the
molecules of interest themselves to increase the coupling
effect.14,36,45,48 Clearly this cannot be done ad infinitum, since
even in the gas phase the molecules get densely packed at one
point and lose their individual character and hence will
respond very differently. Ab initio QED simulations can nicely
reproduce this behavior and recover the well-known Nmol
increase of the vacuum Rabi-splitting by the number of
coupled molecules Nmol

188,240,269 (see also Figure 4). As we will
also highlight later, this does not necessitate quantum
coherence between the different molecules though. Such

Figure 4. A free-space molecule (a) has specific electronic transitions
of frequency ω from its ground state g to some excited state e .
These transitions show up in an absorption (or emission) spectrum
where some external probe pulse γ interacts with the free-space
molecule. If the molecule is placed inside a Fabry-Peŕot cavity (b)
with the same resonance frequency ω, one observes that the two
degenerate (matter and photon) excitations turn into an avoided
crossing. This is due to the coupling between light and matter, and
instead of one peak one finds now two peaks, i.e., the upper up and
lower lp polaritons, which are split by the Rabi frequency ΩR. From
the simple Jaynes-Cummings (for a single molecule) or the Tavis-
Cummings (many identical molecules) model (see the end of Section
3.3) one infers that the vacuum Rabi splitting depends inversely on
the volume of the Fabry-Peŕot cavity, is proportional to the dipole
matrix element of the individual molecules, and scales with the square
root of the number of molecules as well as photons. Reproduced with
permission from ref 5. Copyright 2018 Springer Nature.
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collective effects are not only observed for the excited states
but also for the collective ground state of molecules.148 One of
the interesting aspect of the collective coupling situation is the
appearance of dark states. That is, the ensemble of molecules
can attain a collective state which does not couple to external
(dipole) radiation and hence is ”dark” for absorption
spectra.37,269,270 These states will only be thermally populated
and can modify the relaxation dynamics or they can also act as
a thermal reservoir for the coupled ”bright” collective
states.229,230,270,271 An alternative approach to modify chem-
istry collectively is by resonantly tuning on the solvent (or
highly polarizable plasmonic structures) which yields a density-
dependent Rabi splitting with respect to the solvent
concentration.47,262,272 The difference is that one hopes that
the strongly coupled solvent either induces strong single-
molecule coupling to the solute269,272,273 or that the
cooperative behavior of the solvent leads in some other way
to observable changes in the solute. To describe theoretically
the mesoscopic amount of molecules that is present in
experimental ensembles, one usually needs to make some
further approximations, e.g., that the molecules (assumed in
gas phase) only couple with each other via the cavity in a
semiclassical way.184,269 In this way, first-principle simulations
are able to also consider the macroscopic limit.188

There are now two important observations to be made
regarding collective and cooperative effects. First, once a
molecule out of the ensemble is slightly modified, e.g., due to
the onset of a chemical reaction, the distinction between
collectivity and cooperativity even inside the cavity becomes
fuzzy again. Indeed, ab initio simulations have shown that a
collectively coupled ensemble induces strong single-molecule
effects on a modified molecule similar to cooperative strong
coupling.269 Second, for phenomenological models it is often
argued that the collective effects are quantum in nature and
that a robust and collectively delocalized (over a mesoscopic
amount of molecules) polaritonic quantum state is gener-
ated37,38 (see Section 5.3 for more details). From an ab initio
perspective, a mesoscopic quantum collective mechanism does
not seem to be necessary, and in certain cases it even becomes
problematic. For instance, the response of the collective
system, together with the dark state configurations, can be
captured purely semiclassically.45,184,269 Therefore, the term

“state of the ensemble” does not need to imply a quantum
state, since also the response of classical dipoles will show such
configurations. Furthermore, it has been shown that the
quantum entanglement between light and matter vanishes
rapidly above zero degrees Kelvin even for simple molecular
systems.198 On the other hand, at least for the common long
wavelength approximations, the light−matter Hamiltonian is
not size-extensive (where in the length gauge the main
contribution comes from the dipole self-energy term).148,258

That is, the more molecules are fully quantum coherently
coupled, the stronger the effect of the modes becomes (even if
these molecules are arbitrarily far apart). As a simple
consequence of this, the cavity modes would be strongly
blue-shifted from the alleged mesoscopic amount of quantum-
coherently coupled molecules, which is, however, not observed
in experiment66 (see also Section 5.3 for an example).

To conclude, ab initio approaches provide access to
collective and cooperative coupling regimes, and they
reproduce the well-known effects from commonly applied
models and alternative theoretical methods. However, at the
same time, ab initio results suggest rather a semiclassical
mechanism than a fully quantum collective/cooperative origin
of the experimentally observed effects at ambient conditions.
5.2.1. Chemical Consequences of Collective Cou-

pling. With these caveats in mind, we can ask what chemical
consequences can be expected that originate from collectivity
or cooperativity? First of all, essentially all previously
mentioned effects in Section 5.1 can in principle arise (and
even be collectively enhanced), since the coupled ensembles
can mediate single-molecule strong coupling. However, we can
now find additional, nontrivial modifications that emerge
specifically due to having ensembles with a large number of
molecules. Such effects include, for instance, ensemble-induced
changes in lifetimes,247,271,274 dark-state-influenced relaxation
dynamics,262,270 modified intermolecular interactions148,275

and enhanced transport properties.276−278 In addition, how
an ensemble changes local molecular properties can have a
nontrivial dependence on the number of molecules in the
ensemble.188 Of course, the probably most relevant effect for
chemical applications will be the site/bond selective mod-
ifications and control of chemical reactions in an ensemble of
molecules without external driving, i.e. in thermal equili-

Figure 5. Pictorial sketch of distinguishable thermal (non)equilibrium regimes emergent under different molecular strong coupling conditions in a
cavity. They are inferred from exact quantum thermal equilibrium simulations for one HD+ molecule coupled to a single cavity mode.198 In more
detail, the exact results suggest three different regimes for the dynamics of the nuclei: First, light and matter remain quantum entangled at low
cryogenic temperatures (red). Second, the light−matter entanglement is quickly lost with increasing temperature; however, the field fluctuations
remain governed by quantum laws (vacuum and thermal fluctuations), which can drive the nuclei out of classical canonical equilibrium. Third,
either at very high temperatures or for electronic strong coupling, no direct impact on the nuclear dynamics is expected, which implies that standard
canonical equilibrium conditions are preserved (blue). Reproduced with permission from ref 198.
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brium.14,66 We note that chemistry is local, i.e. the electronic
and nuclear structure is modified on a single-molecule or
nearest-neighbor level. However, in the case of collective/
cooperative strong coupling, this prevalent paradigm is
challenged, since chemical reactions seemingly become
dependent on the total ensemble. For example, a priori it is
unclear if the reaction mechanism in a cavity is altered due to a
quantum-collective state, cavity-mediated intermolecular inter-
actions, cavity-modified thermal fluctuations or single-molecule
strong-coupling effects. To quantify the extent and origin of
these modifications is currently one of the main goals of QED
chemistry. This understanding will allow reaching a qualitative
and quantitative theoretical understanding, and accurate
predictions become feasible that can significantly advance
experiments and applications of polaritonic chemistry.
5.3. Cavity-Modified Chemical Reactions

As pointed out before, the cavity induced contributions to the
chemical complexity offer many tantalizing opportunities yet
make a detailed understanding even more challenging. Their
additional interplay with (single-molecule) symmetries47,279

and external probes262 is just getting explored and might lead
to further very interesting effects. Let us next focus on a
specific experiment to reduce the immense amount of
possibilities and thus complexity. This paradigmatic example
highlights how ab initio theory can help to unravel the main
mechanisms of cavity-modified chemistry.

The seminal experiment that we consider in the following is
the ground-state deprotection reaction of 1-phenyl-2-
trimethylsilylacetylene (PTA) under vibrational strong cou-
pling.281 The PTA molecules are mixed with tetra-n-
butylammonium fluoride (TBAF) in methanol. In the ensuing
deprotection reaction, fluoride ions released from TBAF

interact with PTA, forming an intermediate complex, which
makes the breaking of the Si−C bond in the PTA molecule
more likely (see Figure 6). The Fabry-Peŕot cavity is then set
on resonance with Si−C stretching modes at roughly 856
cm−1. It is important to note that the cavity is not pumped
except of the thermal effects due to ambient conditions. To
verify the vibrational strong coupling condition, the trans-
mission spectrum is observed and shows a large Rabi splitting.
Eventually, one finds that the deprotection reaction rate is
strongly suppressed for the nonpumped resonantly coupled
system, when compared to free-space or off-resonant coupling.
The measured suppression is also strongly dependent on the
temperature of the total system, such that from fitting simple
equilibrium rate models even a qualitative change in the
transitions state would be predicted. This observation was
interpreted as potential evidence for cavity-induced non-
equilibrium effects. For the further interpretation of this
experiment one important remark has to be made: The
vacuum Rabi splitting of the mixture of molecules, which is the
usual way to identify strong coupling situations, depends on
the density of PTA molecules and their products alike, since
both contain the same Si−C stretching modes. Therefore, the
Rabi splitting stays constant throughout the minutes-long
reaction and is a self-adapting mixture of collectivity and
cooperativity.

Most of the interpretations of this experimental result follow
a two-step procedure. First, a perfect ensemble of aligned PTA
molecules in the gas phase with a small single-molecule
coupling constant (obtained from the coupling constant of the
empty Fabry−Perot cavity) is assumed. Then, by assuming
zero temperature, the Dicke or Tavis-Cummings model (see
Section 3.3 for all the other assumptions that go into this
model) is used to determine the number of (two-level)

Figure 6. (a) Resonant vibrational strong-coupling can inhibit chemical reactions. (b) Illustration of the reaction mechanism for the deprotection
of 1-phenyl-2-trimethylsilylacetylene (PTA), with tetra-n-butylammonium fluoride (TBAF) and (c) energetic of the reaction in (b) in free-space.
The successful reaction involves breaking the Si−C bond and thus overcoming a transition-state barrier of 0.35 eV. (d) Vibrational absorption
spectrum along the cavity polarization direction illustrating the strong-coupling of the vibrational eigenmode at 856 cm−1 with the cavity polarized
along for PTAF- (magenta) and the isolated PTA complex (black). The insets show the coupled vibrational mode of PTA and the light−matter
hybridization under vibrational strong-coupling. Reproduced with permission from ref 280.
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molecules that are quantum-collectively coupled to the vacuum
of the cavity mode. Based on these assumptions, a fit suggests a
mesoscopic number of quantum-collectively coupled two-level
molecules on the order of 109 molecules.64,217 In a second step,
concepts of quantum chemistry are applied on this quantum
collective state, i.e., assuming that a single collective ”super-
molecule” is formed with many dark states.37,38 In contrast to
usual quantum chemistry, where only a single molecule and its
potential energy surface is considered, the ”supermolecule” has
now a potential energy surface that is formed by the 109

molecules (for each molecule reduced to the main free-space
reaction-coordinate) plus the single-excitation subspace of the
cavity mode.38,217 This new humongous potential energy
surface is then assumed to change the chemistry, since now all
molecules move in a concerted motion and no longer
statistically independently.282 However, this common combi-
nation of quantum optics and quantum chemistry concepts
cannot explain (even qualitatively) the experimentally
observed findings.62−64 Moreover, from a rigorous theoretical
perspective even a single quantum-mechanical molecule would
never attain, e.g., a permanent dipole moment or specific
internal structures without coupling to the environment.283 It
is the interaction with the environment that leads to a specific
realization of the molecular structure, e.g., a certain orientation
of the pyramid of the NH3 molecule. In a ”supermolecule”, all
these (exactly similar) realization of the individual molecular
structures are assumed to happen simultaneously and fully
quantum-coherently due to coupling to the cavity even at
ambient conditions.

Can ab initio polaritonic chemistry now help to understand
this stark discrepancy between theory (based on a simplified
model calculation) and experiment and maybe hint at a
potential mechanism? Let us first fix the basic level of theory
that we deem sufficient and computationally feasible to
investigate the PTA experiment theoretically. We assume
that the dipole-coupled Hamiltonian of eq 39 with one
effective mode and the physical masses of the particles (see
Section 3.3 for more details) is a sufficient framework for
describing polaritonic chemistry in a Fabry-Peŕot cavity. From
the chosen Hamiltonian, the standard Hamiltonian of quantum
chemistry can be directly recovered for zero coupling strength.
In addition, the quantum-optical Dicke and Tavis-Cummings
model can also be deduced from it. After having made this
theory choice, we immediately realize that a fundamental
inconsistency arises with the alleged number of quantum-
collectively coupled molecules, which are suggested by the
Dicke or Tavis-Cummings model (see also ref 192 for related
problems with phenomenological models in plasmonic
cavities). Not surprisingly, the matter inside the cavity modifies
the frequency of the cavity mode, which will be accounted for
in Pauli-Fierz theory. This means the enhanced refractive index
of the filled cavity will shift the bare (empty cavity) frequency
toward smaller wave numbers.66,280,281 However, the assump-
tion of 109 quantum-collectively coupled molecules would lead
to a diamagnetic shift of the cavity frequencies, which is an
order of magnitude larger than the experimentally observed
frequency of 856 cm−1. This discrepancy suggests that at the
Pauli-Fierz level of theory, we need to restrict quantum
coherence to a much smaller length scale (closer to the
common understanding of chemistry as being local) and
potential collectivity/cooperativity effects on a macroscopic
scale will rather be semiclassical in nature. This seems
reasonable since the amount of degrees of freedom (transla-

tional, rotational, vibrational, and electronic) which can lead to
decoherence in a real chemical system in solvation is so
breathtaking that a quantum coherence at ambient conditions
over large distances seems implausible in practice.

An alternative interpretation arises if one keeps in mind that
the observed Rabi splitting is not an absolute, but rather a
statistical quantity, i.e., not all molecules contribute with the
same amount.14 Therefore, there is no reason to assume that
all molecules experience coupling to the cavity mode in the
same way. Indeed, as discussed above, single molecules can
experience strong local coupling effects in a collectively/
cooperatively coupled environment.269,272 Note again that in
the experiment, the (constant) Rabi splitting is by construction
a mixture of collectivity and cooperativity. Consequently, it
seems plausible that a fraction of the PTA molecules in the
cavity could feel strong single-molecule effects, specifically in
the case that they undergo a chemical reaction. Taking into
account that chemical reactions are rare events and that the
likelihood of these events is determined by the temperature,
this fraction can become decisive for the observed rate change.
This setting suggests that the cooperative/collective coupling
can effectively be interpreted in terms of a highly polarizable
and strongly frequency-dependent medium in the vicinity of a
reacting PTA molecule. Based on this (simplified) ab initio
picture, recent QEDFT simulations were able to reproduce the
experimental PTA results qualitatively280 and they could also
reproduce other predictions in connection to solvent effects.284

Overall, these simulations suggest that the cavity can correlate
various intramolecular vibrational modes and hence can
transfer energy from the bond-breaking stretching modes to
other internal motions, thus effectively strengthening the Si−C
bond in the PTA experiment. This indicates that restricting to
the main cavity-free degree of freedom of a potential energy
surface in vibrational strong coupling simulations could miss
important contributions (see the discussion in Section 4.4).

Of course, this simple local model, which infers a frequency-
dependent polarizable environment from the collective/
cooperative ensemble, is not the end of the story. The ab
initio simulations also suggest−again in agreement with the
original interpretation of the experiment−that the cavity might
induce nonequilibrium effects. In the context of chemical
reactions, this means that the nuclear/ionic system might
follow a noncanonical (classical) thermal distribution. In
contrast, for the uncoupled, bare matter system, the thermal
state is usually well-described by a classical canonical
distribution. Nonequilibrium dynamics for the coupled matter
system is not surprising, since it is a strongly coupled
subsystem; i.e., tracing out the cavity degrees of freedom will
usually induce a noncanonical/nonstationary distribution for
the subsystem. However, what might be more exceptional is
that even for ambient conditions it is not correct to treat the
cavity degrees of freedom (particularly the fluctuations) purely
classically and assume that the thermal fluctuations are
uncorrelated66,198 (see also Figure 5). Furthermore, it has
been argued that such noncanonical dynamics of classical
particles (nuclei/ions) can lead to stochastic resonances,66

which could explain on the ensemble level, why the experiment
sees a strong frequency dependence (resonance effect) in the
polaritonic reaction rates, without any external periodic
driving. At the same time, stochastic resonances are quite
delicate and they seem to arise only under very special
conditions.285,286 This could also rationalize why in many
experimental situations of strong coupling no changes in
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chemical properties could be observed.287,288 Therefore, it
might not only be intramolecular redistribution of vibrational
energy that stiffens the Si−C bond, but on resonance one
might also find effective intermolecular energy redistribution.
Indeed, recent ab initio results suggest that intermolecular
forces could be efficiently altered by a cavity.148,258

All in all, ab initio QED suggests a more nuanced
interpretation of the seminal PTA experiment under vibra-
tional strong coupling, i.e., a delicate interplay of local
(potentially quantum) effects with collective/cooperative
semiclassical effects, which lead to noncanonical thermal
distributions. The advantage of this perspective is that it
naturally connects to the usual understanding of chemical
reactions as a macroscopically statistical process whose
parameters are determined by the microscopic quantum
description on the single-molecule level. We note that a
similar perspective as originally proposed based on ab initio
results (effective local theory, noncanonical equilibrium and
intra/intermolecular energy redsitribution)66 has recently also
been promoted based on experimental289,290 and quantum-
optical results.291 At the same time, ab initio QED also
connects directly to the quantum-optical perspective for
photonic quantities. Therefore, if indeed subtle details of the
light field, such as the exact spatial form of the cavity modes
and their intrinsic lifetimes, are important, these details can be
reintroduced in a straightforward way.

6. CONCLUSION AND OUTLOOK

“As more researchers enter the f ield, inf lux of new
viewpoints will ensure rapid development of polaritonic
chemistry concepts and further pioneering cross-disciplinary
breakthroughs.”

K. Hirai in ref 44.
If you followed this review chronologically, then it has been a
real tour-deforce. It encompasses very basic considerations of
relativistic quantum physics (how relativity, symmetries and
spin lead to the Maxwell equations and their coupling to
matter) in Section 2, the basic Hamiltonian of nonrelativistic
QED (properties and potential approximations) in Section 3,
ab initio QED methods in Section 4, and their applications on
relevant research questions of polaritonic chemistry in Section
5. Clearly, many of the details that were highlighted might not
be relevant for a specific experiment in QED chemistry, where
the restructuring of the local electromagnetic modes can
modify chemical properties. However, as highlighted in the
introduction, in the absence of established simple mechanistic
rules for polaritonic chemistry, which challenges the locality
assumption prevalent in common chemistry, a re-evaluation of
all the intrinsic assumptions in our theoretical modeling is
needed. This hopefully helps to select among the existing
models and combinations of (quantum) optics and (quantum)
chemistry approaches the most reliable ones and allows the
development of more accurate models in the future, in order to
get an intuitive understanding of the relevant mechanisms in
polaritonic chemistry.

Let us repeat in this context the main aspects of the different
sections and their answers to the main questions raised in the
introduction, i.e., the basic Hamiltonian, the choice of gauge,
the implications of the dipole approximation, cavity-induced
changes in vacuum and thermal fluctuations, and the interplay
of local and collective strong coupling. In Section 2 we have
shown how the light and matter sectors follow from the same

basic principles and need to be treated consistently, especially
when they interact. On the most basic level, one cannot even
distinguish between light and matter degrees. Changing one
sector can have a strong influence on the other and might even
break basic physical principles. This should serve as a guidance
on how to carefully recombing theoretical methods describing
matter, e.g., quantum chemistry methods, and theoretical tools
for photons, e.g., quantum optics methods. In Section 3 we
have presented the basic Hamiltonians of nonrelativistic QED,
which form the basis of a consistent and nonperturbative ab
initio theory of light and matter. We highlighted that the Pauli-
Fierz Hamiltonian guarantees the stability of matter, that
excited states turn into resonances with finite lifetimes, and
that we have to work with the bare masses of the charged
particles. Furthermore, we have discussed that the Coulomb
gauge is the natural gauge to work in (at least on the wave
function level), because it guarantees internal consistency
between quantum mechanics and quantum optics and that
only in the dipole-coupling limit can we easily replace a
photonic structure by a local modification of modes. We have
also spelled out the various assumptions (extension of localized
matter small when compared to the cavity wavelengths, single
charge center to have indistinguishability, small enough
frequency cutoff to avoid nonrenormalizability, linear and
quadratic coupling terms to have stable theory) that go into
the dipole approximation. In Section 4 we have highlighted the
necessity of first principle methods to be able to cope in an
unambiguous way with the humongous amount of degrees of
freedom (photonic, electronic and nuclear/ionic) of a realistic
coupled light−matter system. Depending on the specific
question and/or coupled systems, different theoretical
methods become more appropriate than others (e.g.,
QEDFT as a general-purpose approach, QED-CC methods
for electronic strong coupling, or the cavity Born−
Oppenheimer partitioning for cavity-modified ground state
chemical reactions). In Section 5 we have discussed polaritonic
chemistry from an ab initio QED perspective. We have
highlighted the two main differences to chemistry outside of
cavities, i.e., the self-consistent interaction with the restruc-
tured (quantized) electromagnetic field and collective/
cooperative effects due to an ensemble/solvent, and presented
several results obtained with various ab initio QED methods.
Based on these results, we have argued for the importance of
modified quantum/thermal fluctuations that can induce
noncanonical equilibrium conditions for the matter subsystem.
Furthermore, simulations suggest that collective ensemble/
solvent effects are mainly semiclassical and can be approxi-
mated as a frequency-dependent modification of the local
polarizable medium. We have then scrutinized a paradigmatic
experiment in polaritonic chemistry and found that an
interplay of single-molecule coupling with semiclassical
nonequilibrium effects is indeed a natural explanation for the
observed changes in chemical reactions.

Clearly, we cannot yet provide a general and universally
accepted answer for all of the microscopic mechanisms at work
when chemical properties are changed by a photonic structure.
Many other possible effects, which have not been taken into
account in the different ab initio simulations, might be
important as well. The most obvious shortcoming is that a
macroscopic ensemble of molecules inside a cavity cannot be
simulated at a full ab initio level. However, several recent
developments188 make it possible to also get approximate
results for the macroscopic case. Yet we believe that statistical
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and thermal effects dominate on a macroscopic scale at
ambient conditions, in analogy to chemistry outside of cavities.
Therefore, a semiclassical description should be appropriate to
recover the observed effects. This suggests that it will be
paramount to develop adapted statistical methods in the future
that can faithfully include the contributions of the (quantized)
cavity mode. A further issue that is often disregarded for
simplicity is the effect of the solvent on chemical properties.
Indeed, there are recent experiments44,47 which show that
strongly coupled solvents can have different effects on chemical
processes than their uncoupled counterparts. Although this fits
into the simplified picture of collective/cooperative coupling as
a frequency dependent polarizable surrounding for molecules,
actual solvent effects can be much more intricate. Another
obvious shortcoming of most considerations so far is the
simplified treatment of the cavity as an effective single- or few-
mode structure. Specifically for nanocavities, where a few
molecules couple to plasmonic excitations, a detailed treatment
of the cavity as an active physical entity, which can efficiently
dissipate energy, might become crucial. A further aspect that
might become important for the specific design of chemical
properties is to go beyond the dipole-coupling approximation
in our theoretical description. Dipole coupling implies that no
momentum is transferred between light and matter and also
that we lose locality (at least approximate for nonrelativistic
particles) and no retardation effects are included. Beyond-
dipole contributions can become specifically important once
we take into account the exact structure of the modes of a
cavity, e.g., when we couple strongly to chiral (circularly
polarized) light modes. To disentangle which details are
important, we call for a combined theoretical and experimental
effort. Besides theoretical developments on the ab initio and
model side, new experimental setups and observables need to
be identified to unravel the influence of the above highlighted
issues. It is clear that merely considering the Rabi splitting is
not enough to understand the mechanisms at work, and
spatially as well as temporally resolved experimental inves-
tigations are key for the future development of QED chemistry.

While this list of extra complications might seem like
spelling doom for a comprehensive understanding of strongly
coupled light−matter systems, it at the same time opens the
door for many still to be discovered chemical effects. We hope
that this review does highlight where seemingly small changes
in the photonic environment might lead to novel effects. Take,
for example, the quantization of the electromagnetic degrees of
freedom in Section 2. By following the Riemann-Silberstein
approach, we saw that it is quite natural to quantize the free
vacuum in terms of chiral modes. Based on this perspective it
seems possible to use photonic structures to suppress one of
the two naturally occurring chiralities such that one can
manufacture chiral optical cavities.216,292,293 Indeed, recent
experimental efforts have demonstrated that the engineering of
chiral photonic structures is possible, which brings enantio-
meric polaritonic chemistry within reach. Hence, one can hope
for enantiomer-selective catalysis controlled by optical cavities.
Such enantiomeric reactors would, for example, be great assets
for the efficient synthesis of drug molecules. Thinking one step
further: Being able to engineer symmetries of the electro-
magnetic modes inside a cavity might allow one to circumvent
common excitation selection rules and steer chemical reactions
into completely new directions based on breaking or enhancing
intrinsic molecular symmetries. Even more fundamentally, we
might be able to engineer the properties of basic molecular

building blocks directly. As we have seen, the vacuum
determines the physical masses of electrons and ions (and if
we consider full QED also other basic properties11−13) and
thus how atoms and molecules form and combine. Until now,
the influence of the resulting (not necessarily scalar22)
photonic mass on chemical properties and the potential of
inducing relativistic effects remains largely unexplored for
molecules. In contrast, such engineering of the photon vacuum
is actively being explored in solid-state physics, as a way to
influence fundamental properties of matter, e.g., the quantiza-
tion rule of the quantum Hall effect.123,294 Eventually, we note
that what we call atoms and molecules and their interactions is
always defined with respect to a given photonic environment,
and this is exactly what we want to engineer in order to
understand, control, and develop polaritonic chemistry.

APPENDIX A: AB INITIO QUANTUM PHYSICS
In this appendix, we want to define the notion of ab initio
quantum physics as we employ it throughout this review. We
will highlight important mathematical subtleties that arise in ab
initio quantum theories involving light and matter, which are
often absent in models and alternative theoretical methods.
However, those subtleties become important for the
formulation of computationally efficient, nonperturbative
first-principles theories such as quantum-electrodynamical
density functional theory (QEDFT).

Nevertheless, we will also clarify that neither ab initio nor
alternative approaches are scientifically superior, instead they
serve complementary purposes and hence necessarily rely on
each other.
A.1. Mathematical Setting
Let us start by setting the mathematical stage of ab initio
quantum physics. Quantum theories are commonly formulated
on infinite-dimensional complex Hilbert spaces.72,73 The
necessity for infinite dimensions in quantum physics is
relatively easy to understand. If we assumed that the
Heisenberg uncertainty principle (up to ℏ),

=xp px i (68)

should hold on a finite dimensional complex Hilbert space,
which is equivalent to N , then we would find by the cyclic
property of the trace the contradiction

= = =xp px N0 tr( ) tr( ) itr( ) i (69)

This contradiction leads to the conclusion that we cannot
represent the basic commutation relations in finite dimen-
sions.73 Commonly one further assumes in ab initio quantum
physics and constructive quantum field theory separable
infinite-dimensional Hilbert spaces,69,72 i.e., they allow for a
countably infinite basis, such that all of these Hilbert spaces are
isometrically isomorphic to the fundamental sequence space
l ( )2 ,73 which contains all infinite sequences {ψ1, ψ2, ...} with

n that have finite square norm, i.e., ∑n = 1
∞

n
2 < ∞. We

can thus consider this relatively simple space as a universal
representative of the infinite-dimensional case of quantum
physics. An element/state in that vector space is denoted by

=∑n = 1
∞ ψn n . We next note that the above argument of the

commutation relations is part of the Lemma of Wielandt,
which states that the commutation relation can only be fulfilled
if at least one of the linear operators is unbounded.73

Unbounded operator means that we can always find a
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normalized state in the Hilbert space which will attain an
arbitrarily large norm after applying the operator on it. Take, as
an example, the unbounded linear operator

=
=

N n n n
n 1 (70)

If we consider the normalized state = = nn n
6

1
1

2 then

we find N N . Thus, the action of the operator N̂
on is ill-defined and we need to exclude such elements
when we work with N̂. The set of states for which the operator
is defined is called its domain, and the domain is decisive for
the properties of the operator.72,73,87 Thus, an operator is
actually not just the rule, i.e., how it maps states to other states,
such as in eq 70, but it also contains its domain in its
definition.72,73 For certain operators we can instead, of
explicitly stating the domain, encode the domain in an
alternative representation: its diagonal representation. Indeed,
eq 70 is the diagonal representation of the number operator
and hence it implicitly defines its unique maximal domain. The
most important of such operators in quantum physics, which
allow a diagonal representation, are self-adjoint operators. In
contrast to finite-dimensional problems, self-adjointness is not
the same as symmetric (we will give some relevant examples
later), but it also is a statement about the properties of its
domain.72,73 Yet in the diagonal representation, self-adjointness
becomes conveniently equivalent to the fact that the
(generalized) eigenvalues of an operator are real.72,73

A.2. Mathematical Realization
After the general mathematical setting, we next need to find an
explicit realization of an ab initio quantum theory. This is done
by first choosing the physical space Ω in which the basic
entities, i.e., particles or fields, should be described. The
physical space should be compatible with the basic symmetries
of the theory that we want to turn into a quantum theory
(compare with Section 2.1). The basic symmetries of the
physical space can then be turned with the help of the Stone-
Von Neumann theorem73 into uniquely defined self-adjoint
operators (generators of these symmetries). For instance, in
the case of the physical space Ω being a flat torus, i.e., a finite
volume L3 3 with periodic boundary conditions, trans-
lations are a basic symmetry and the (componentwise) self-
adjoint operator is then (up to ℏ) the momentum operator

=
L

n n ni :
2

, per , per
n

per

0
3 (71)

with = ·( )r n n r, per exp i
L L
1 2

3
. It is important to note here

that while in quantum physics we commonly just write “ i ”,
when we consider this derivative as a self-adjoint operator, we
implicitly mean its diagonal representation. Hence without
stating either domain or the diagonal representation, the
symbol “ i ” remains ambiguous. This can have severe
consequences. As an example we change our physical space
and assume L3 3 but use zero boundary conditions, i.e.,
we consider a hard-wall box. While a derivative “ i ” is of
course defined on that space, there exists no self-adjoint
realization of the momentum operator, and thus the concept of
momentum is ill-defined with zero boundary conditions.

This is quite easy to understand since a box with hard walls
does not have translations as a basic symmetry operation. A

further problem appears once we choose a physical space that
itself does not have a positive definite metric, i.e., that the only
vector of length zero is the zero vector. This is, for instance, the
case for the Minkowski space. Indeed, the space of square-
integrable functions on the Minkowski space is only a pre-
Hilbert space and hence concepts like self-adjointness are no
longer easy to define. The standard way to avoid these
mathematical issues is to restrict to appropriate subspaces.
Hence in Section 2.1 the choice of subspace restriction dictates
which quantities can be chosen as self-adjoint operators. While
different choices are possible, e.g., the light-cone,12,71 in this
work we single out a unique time frame and restrict the
quantization to the spacial subspace, which has a positive
definite metric. This choice goes hand in hand with a
Hamiltonian description (energy and time are physically
conjugate objects), the Coulomb gauge (since it relies also
on a global time) and hence time emerges as a parameter,
similar to non-relativistic quantum mechanics. From the
perspective of ab initio QED this is the most convenient
choice, since we want to have compatibility with ab initio non-
relativistic quantum mechanics. We further note that
commonly, as also followed in this review, one considers

= 3. The reason is that for this case the basic symmetry
operators have one and only one self-adjoint realization (which
also makes the representation of the commutation relations
unique) and there are no mathematical ambiguities that can
arise by not stating domains.72,73

A.3. Mathematical Subtleties
Self-adjoint operators, which correspond to basic symmetries,
are then the building blocks of a specific realization of a
quantum theory. As is easy to see from the diagonal
representation, the momentum operator of eq 71 is
unbounded from above and below, i.e., it does not have a
smallest or highest eigenvalue. This complicates things, since
for unbounded operators addition and multiplication are
not universally defined, i.e., there is no algebra for unbounded
operators. A simple example, which becomes relevant for
consistency conditions between light and matter, is the case of
a box with hard-wall boundary conditions. In contrast to the
momentum operator, the Laplacian has a self-adjoint
realization of the form

= i
k
jjj y

{
zzz n n n

L
: , zero , zero

n
zero
2

2
2

0
3 (72)

where = = ( )r n n r, zero sin
L k L k k
2

1
33

3 . For periodic boun-

dary conditions we find, however, the consistency that “ 2” is
just applying eq 71 twice in diagonal representation and thus
we have

= i
k
jjj y

{
zzz n n n

L
:

2
, per , per

n
per
2

2
2

0
3 (73)

The issue of a missing algebra is also the reason why no
Taylor-expansion exists for unbounded operators. That is, if we
consider a multiplications operator on 3 of the form v(r),
even if the function v(r) might be well approximated by a
Taylor expansion, for the operator this is wrong. Implications of
this fact for ab initio QED are discussed towards the end of
Section 3.3.1 and in Appendix B. Note further, that the self-
adjointness of a specific Hamiltonian is important to have
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unique solvability of the corresponding time-dependent
Schrödinger equation. Using the Stone-Von Neumann
theorem, the Hamiltonian then becomes the generator of an
evolution (semi-) group73,118,295−297 and hence we have a
unique solution for any initial state (where the type of solution,
however, depends on the properties of the initial
state118,295−297). For explicitly time-dependent Hamiltonians
the more general concept of evolution systems is em-
ployed.118,295−297

Let us also highlight that the mathematical subtleties
become even more once we employ field operators to setup
a quantum theory. Field operators, despite their name, are not
operators in the sense discussed above. Indeed, a(̂k, λ) and
a†̂(k, λ) are not each others adjoint, and a†̂(k, λ) is rather an
operator-valued distribution.87 As the name suggests, one can
turn the operator-valued distributions into unbounded
operators in the above sense, by integrating over a square-
integrable form function φ(k ). The simplest version is a step
function that becomes zero after a certain wave number cutoff.
This is also discussed in Section 3.2. This mathematical
necessity for any well-defined ab initio quantum field theory is
the origin of regularization and renormalization procedures.
And also for field operators, or their regularized unbounded
operator versions, addition and multiplication is not universally
defined.
A.4. Operator and Boundary-Value Consistency

As we have seen, the operators “ i ” and “ 2” depend on
the chosen boundary conditions, which are encoded in the
diagonal representation by the behaviour of the corresponding
eigenstates at the boundaries. It is important to note that
quantum physics is mathematically designed in such a way that
this behaviour, i.e., the domain of momentum or kinetic-energy
operators, are kept when we add external fields and
interactions.72,73 Indeed, it can be shown that any eigenstate
in quantum mechanics is non-zero almost everywhere on the
physical space Ω,297,298 which also explains that disregarding
the dipole self-energy operator is equivalent to assuming
classical, perfectly localized distributional eigenstates of this
unbounded operator. That is, any eigenstate knows about its
boundary conditions, which is consistent with the fact that ab
initio quantum physics is equivalent to solving high-
dimensional linear partial-differential equations with chosen

boundary conditions.299 This is, of course, also true for the
Maxwell equation and its subsequent quantization. As is often
done in practice, one can quantize the light field and the matter
system independently. Yet, due to being fundamentally defined
on the same physical space Ω, based on the same symmetries
(see Section 2.1 for details of QED), and also due to the
coupling scheme based on the gauge principle (see Section
2.3), there is a high consistency between the boundary
conditions of light and matter. If we enforce the local gauge
principle, only phases of the matter wave functions are allowed
that are consistent with the realizations of “ i ” or “ 2”.
This in turn determines the gauge freedom of the vector
potentials of the Maxwell field, and hence the boundary
conditions for the light field. On the other hand, the
eigenmodes of the Maxwell field are due to the diagonal
representation of the vector Laplacian, which in contrast to the
scalar Laplacian from, e.g., eq 72, maps from vector-valued
square-integrable wave functions to vector-valued square-
integrable wave functions (see eq 10). For the case of periodic
boundary conditions on matter, the corresponding vector
Laplacian of the Maxwell field is then given as

=
=

i
k
jjj y

{
zzz n n

L
n:

2
, ,

n
vec,per
2

1

3 2
2

0
3 (74)

where r n , = ϵ(n, λ) r n , per and ϵ(n, λ) are the three
orthonormal polarization vectors of n.11 Thus, the diagonal
representations of the vector Laplacian of the Maxwell field
(and also the divergence and curl or, equivalently, the
Helmholtz decomposition for periodic vector fields, see
discussion around eq 10), the scalar Laplacian and the
momentum operator of matter are all built upon the same
scalar (matter) eigenfunctions r n , per . If we now choose
different boundary conditions for the matter system and the
light system, these consistencies can be broken. This is alluded
to in the example of Section 3.3, where the basic zero-energy
mode of the Maxwell field due to the gauge freedom of the
periodic matter system is a constant function 2π/L, yet for
perfect-conductor boundary conditions such a field is ill-
defined. In more detail, the perfect-conductor boundary
conditions for the Maxwell field implies that the self-adjoint
vector Laplacian becomes

= i
k
jjj y

{
zzz

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzL

n n n n n n

n n n n n n

n n n n n n

n:

, zerod , zero , zero , zero , zero , zerod

, zero , zerod , zero , zero , zerod , zero

, zero , zero , zerod , zerod , zero , zeron
vec,pcond
2

2
2

1 2 3 3 2 1

1 2 3 3 2 1

1 2 3 3 2 1
0
3

(75)

where the scalar zero-boundary eigenfunctions are

= ( )x n n x, zero sin
L L1
2

1 , the zero-derivative boundary

eigenfunctions are = ( )x n n x, zerod cos
L L1
2

1 and accord-

ingly for y ↔ n2 and z ↔ n3. To show that a constant 2π/L
mode is not in the domain of the vector Laplacian of eq 75 and
hence ill-defined for the corresponding Maxwell equation, we

first consider the expansion of a constant function L1/ in
z e r o - b o u n d a r y e i g e n f u n c t i o n s , i . e . ,

=L n1/ , zero (1 ( 1) )
n

n2 .118 Applying the Lapla-

cian, e.g., the second derivative with respect to y, leads to an
ill-defined expression, i.e.,

=
=L y L L

1 1 2
(1 ( 1) )

n

n
2

2 2
0

2

2

2

(76)

Consequently, the constant gauge field that arises from the
periodic matter subsystem (see also Section 2.3), e.g., A(r) ∝
ϵ1, corresponds to infinite energies for the Maxwell equation
with perfect-conductor boundary conditions. In more detail,
using the expansion of the constant function in zero-derivative
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boundary conditions for x (only n1 = 0 contributes), and the
zero boundary conditions for y and z we find
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The corresponding magnetic field is then proportional to
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Thus, we then have due to eq 7 that
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A further problem can be the violation of energy and
momentum conservation in such a case. Take, for instance, an
allowed single-particle matter wave function of the form

= ( )r k xexp ix L L
1 2

3
, which has a momentum propor-

tional to =kx L
2

1. If we have as initial state k , 0x = kx ⊗ 0
⊗ 0 ⊗..., i.e., we have zero photons in all modes, then the
linear coupling Âpcond(r)·( i per) generates photons of
arbitrary high energy and momentum without any loss of
energy or momentum from the matter subsystem. Let us focus
on the transverse modes with n1 = 0, i.e., n2 and n3 are non-
zero such that only the x-component of the vector-potential is
non-zero, as also discussed above. If we then consider
transition-matrix elements of the form

| ·k A r k, 1 ( ) ( i ) , 0x n n x, pcond per2 3 (81)

where 1n d2,n d3
indicates that we have one photon in the mode (0,

n2, n3) and zero else, then for any such mode we have
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Contrast this with A r( )per ·( i )per , where only those
transition-matrix elements are non-zero for which energy and
momentum is conserved for the total physical system. On the
other hand, we have also consequences for the matter
subsystem. Since, for instance, fields that obey perfect-
conductor boundary conditions are not necessarily compatible
with periodic boundary conditions, e.g., due to x n, zerod ,

those fields lie outside the domain of the momentum operator
of eq 71. One could ignore this issue and merely consider the
consistency with the domain of the scalar Laplacian, as
commonly done to establish self-adjointness of the Hamil-
tonian.22,73,118,297 In this case, however, the regularity of
eigenstates will become too low to be able to fulfill local charge
conservation and similar local conservation laws.118,297 This is
quite intuitive for the diamagnetic current density, which is
proportional to ρ(rt)A(rt),81,94 such that this current
contribution can inherit the violation of the corresponding
boundary conditions of the matter system.
A.5. Ab Initio and Alternative Approaches

Let us next give our working definitions for what we call ab
initio methods. We will do so first in an abstract manner based
on the proceeding discussions and then provide details on why
such a formal definition is reasonable from a natural-science
point of view.

We abstractly identify a theoretical approach as ab initio, if
the approach is formulated on infinite-dimensional Hilbert
spaces for all subsystems and that tests its (in practice) finite-
dimensional approximate results with respect to the infinite
basis set limit. That is, the stability of the obtained results are
tested with respect to including more and more states and with
respect to changing the basis set. Alternatively, we can state
that an ab initio approach solves partial differential equations
for given boundary conditions using some form of a Galerkin
method.299 The later definition is most easily connected with
the common statement that ab initio methods only rely on
fundamental constants of nature, such as in the case of the
Schrödinger equation or of the Pauli-Fierz Hamiltonian of eq
37. Using the connection between the basic symmetries of
space-time and self-adjoint operators (see Section A.2) we only
need a few fundamental constants to make predictions. In
practice, though, such as in the case of the dipole-
approximated Pauli-Fierz Hamiltonian of eq 39, we often use
further information from experiment or other theories, e.g., the
mode structure of a given cavity.

Clearly, the above definition is not precise in practice. There
are many models or alternative theoretical methods that
employ specific infinite-dimensional spaces, such as coupled
quantum harmonic oscillators. Yet for most models and
alternative theoretical methods the previously discussed issues
(see Appendices A.1−A.4) related to infinite dimensions and
unbounded operators are not considered nor encountered. In
contrast, in ab initio theories these issues are omnipresent. As
an example we highlight that in a finite-dimensional problem
all symmetric linear operators are matrices and thus always
have eigenstates with real eigenvalue. Yet for infinite-
dimensional problems (as also discussed in Appendix A.1)
this is not the case, and in an ab initio approach one has to test
how the eigenstates change upon changing the basis set. In this
way one finds that in the case of non-self-adjointness real
eigenvalues might cease to exist in the basis set limit, like the
ground state in the atomic Dirac equation for nuclear charge Z
> 138, or that complex eigenvalues arise such as in the case of
the atomic Dirac equation for nuclear charge Z > 118.300 In ab
initio QED, for instance, such investigations allow to identify
the onset of the dissociation continuum.197 A further point of
difference is the accuracy/applicability of perturbation theory.
Since for finite dimensions we always have a largest eigenvalue,
we can safely assume that perturbation theory captures the
resulting changes accurately if we add a further linear operator
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(matrix) with a small pre-factor ϵ ≪ 1. Yet for infinite
dimensions, where we can add unbounded operators that have
arbitrarily large (generalized) eigenvalues, this is not
necessarily the case. Examples within ab initio QED are
discussed in Secs. 3.3 and Appendix B below. Perturbation
theory with unbounded operators does usually not converge
and hence often only gives reasonable results for low orders.
For this reason we focus in this work on nonperturbative
solutions to infinite-dimensional problems.

Up until now we have discussed a definition based on
mathematical considerations, which are only of concern to
theoretical chemists and physicists. But are there more general
scientific reasons why we differentiate between ab initio
methods and alternative theoretical approaches? Indeed, from
the mathematical perspective a first obvious difference is that
ab initio methods are designed to test the predictability/
accuracy of a realization of quantum physics, as discussed in
Appendix A.2. This is also alluded to in the main text, e.g., at
the end of Section 3.1. Therefore, one might say that ab initio
methods are more general in their applicability than
alterantive approaches that model specific setups or observ-
ables. Yet, even if we disregard the problem of accuracy of ab
initio methods in practice, the main drawback of ab initio
methods is that they do not directly provide any intuitive
insight. They are, for all intents and purposes, numerical
experiments. To provide insights and an understanding of a
chemical/physical effect it is in practice necessary to develop
specific models and alternative theoretical approaches. This
distinction is also nicely reflected in the demand of quantitative
results for ab initio methods, e.g., ”chemical accuracy” in
quantum chemistry, while for models qualitative results are the
main goal.

For the authors of this review it goes without saying that
different theoretical approaches are needed since they
supplement each other. Because their purposes are comple-
mentary, it does not make sense to consider one or the other
to be scientifically superior. If we attain in polaritonic
chemistry a similar level of agreement between ab initio
methods and alternative approaches, as is the case in quantum
chemistry or solid-state physics, we will at the same time have
attained a detailed understanding of the basic mechanisms that
make this field so exciting.

Let us finally also clarify that, of course, also a realization of
quantum physics as defined in Section A.2 is just a model of
reality. It is merely an infinite-dimensional model and hence
more flexible. On the long run it should be our goal as
scientists to refine this types of models to, for instance, get a
better connection with general relativity. Thus, irrespective of
whether one works with ab initio or alternative approaches,
fundamentally we should all keep in mind that

“All models are wrong but some are useful”

G. Box in ref 301.

APPENDIX B: NECESSITY OF LONGITUDINAL DIPOLE
SELF-ENERGY TERM
Let us for simplicity and without restriction of generality treat
the nuclei/ions clamped and consider (as commonly done)
only the electronic interaction between a plasmonic and a
molecular system of interest. In this case the longitudinal
modes due to a plasmon-molecule interaction are all mediated
in Coulomb gauge via

=
r r

W
e1

2 4l m

N

l m
ee

2

0

e

(83)

as can immediately be inferred from the Pauli-Fierz
Hamiltonian of eq 37. It is obvious that for all possible
square-integrable wave functions Ψ in the domain of the
operator (see Appendix A.1 for further details), irrespective of
statistics and indistinguishability, we have

>W 0ee (84)

That is, Ŵee is a positive operator. Assume now that we
choose instead of Ŵee an operator of the form203,302

=
=

W g r r g
1
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N

l l m mdip
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(85)

where rm
μ are the different Euclidean coordinates of particle m

and gm
μ are some arbitrary real constants such that we even

allow to break the symmetry of the original Coulomb operator.
Obviously this operator is not positive and it can be made
arbitrarily negative, i.e., Ŵdip is not bounded from below and
we can find Ψ such that

Wdip (86)

Not surprisingly, with similar arguments as for the transverse
case,108,121 we find that an Hamiltonian with purely dipolar
interaction has no eigenstates and hence does not have an
equilibrium solution.

The reason for this unphysical behavior within ab initio
quantum physics is quite obvious since we have broken the
very basic condition that the longitudinal electromagnetic
energy is positive. As discussed in Section 3.3, we have two
options that amount to the same physics: We either keep also
quadratic contributions of the form = g r( )1

3 2 that counter
the purely linear coupling, or we restrict to a finite area (finite
simulation box with chosen boundary conditions). In both
cases the approximate interaction becomes bounded from
below and can be made manifestly positive by a finite energy
shift. We have thus shown, in yet a different way, that
quadratic/counter terms are necessary to have a stable ab initio
quantum theory and claims to the contrary in the literature
arise from a basic misunderstanding of the difference between
perturbative/few-level calculations and solving a (necessarily
infinite-dimensional) Schrödinger-type quantum equa-
tion.108,121 Let us finally note that in the long-wavelength or
dipole limit we can, strictly speaking, no longer distinguish
between transverse and longitudinal modes.81 Only the
physical context of the dipolar approximation provides us
with the information which type of field we consider.

APPENDIX C: QEDFT MAPPINGS AND THE EFFECTIVE
FIELDS
Let us first note that QEDFT and its basic mapping theorems
are distinct from using (time-dependent) density functional
theory and approximately taking into account the interaction
with a quantized light field. Indeed, QEDFT is the exact
reformulation of the Pauli-Fierz quantum field theory in terms
of current densities and vector potentials,81,94,145 in analogy to
electronic density functional theory being the exact reformu-
lation of the static Schrödinger theory with scalar external
potentials.164,165 Further we note that the term ”QEDFT” is
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used synonymously for the ground-state, the real-time or
linear-response time-dependent, minimal-coupling or dipole-
coupling density-functional reformulation of the (generalized)
Pauli-Fierz field theory.81,94,145,183,184,186 The context unam-
biguously identifies which specific realization/implementation
of QEDFT is meant/used. We use the same convention when
referring to “density functional theory”118,169

To highlight these details let us compare the basic mappings
of density functional theory and QEDFT. For simplicity we
assume clamped nuclei to connect to the standard case of
density functional theories and avoid issues due to localizing
finite systems in free space.303,304 In this case, we have either
due to the Hohenberg−Kohn,164 the Runge-Gross166 (where
we for simplicity assume the ground state as initial state305), or
van Leeuwen Laplace-transform306 theorems, the mappings
(note the notation convention from eq 64):

r r rv t t n t( ) ( ) ( )
1:1 1:1

(87)

For the static case the parameter t (time) is redundant. This
mapping shows that instead of the electronic wave function
Ψ(rt) we can express everything in terms of n(rt), the particle-
number density, since we can perform a functional-variable
transformation within electronic quantum mechanics of the
form118,164,166

= [ ] [ ] = [ ]t O t n t O n t O n t( ) ( ) ( , ) ( , ) ( , )
(88)

for any observable O. Here the notation O[n] means that the
object O is uniquely determined by n. We have thus replaced
the usual quadratic-form structure of quantum physics in terms
of wave functions by exact nonlinear functionals in terms of the
density. But this reformulation has so far no practical relevance,
since we do not know how to determine from a given v(rt) the
corresponding n(rt) without going through the wave function
Ψ(rt) first. In the ground-state case the obvious way would be
reformulate the minimization over all wave functions in terms
of densities.164,165 Yet it is very hard to express the various
contributions in terms of the density only. Alternatively one
can consider the local ground-state force equilibrium.118,168 In
practice (also for the time-dependent case) one tries to

approximate the mapping r rv t n t( ) ( )
1:1

for interacting
electrons with the help of an auxiliary mapping that is
physically close yet numerically still tractable. The standard
choice is to consider the mapping of noninteracting electrons

r r rv t t n t( ) ( ) ( )s
1:1 1:1

s (89)

where Φ(rt) is then (usually) a Slater determinant of single-
particle orbitals φk(rσt), ns(rt) = r t( )k k

2 and the
subindex “s” refers to “single particle” indicating that the
noninteracting many-body Schrödinger equation can be recast
as single-particle Schrödinger equations.118 Assuming now that
interacting and noninteracting systems generate the same set of
densities, we can thus combine both maps and find118

r rv t v t( ) ( )
1:1

s (90)

Thus, we have mapped the interacting problem to a
noninteracting problem that generates the same density. This
new effective potential is then called the Kohn−Sham potential
and is denoted as vKS([v], rt) = vs([v], rt). Still we did not gain
anything, because the mapping from interacting to non-

interacting potentials is even harder to approximate. The final
step is to once again use the bijectivity between densities and
potentials to re-express the Kohn−Sham potential as118

[ ] = + [ ]

= + [ ] [ ]
= [ ]

r r r r

r r r

v v t v t v v t v t

v t v n t v n t

( , ) ( ) ( , ) ( , )

( ) ( , ) ( , )
rv n t

KS KS

s
( , )Hxc

Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(91)

This turns the linear single-particle Schrödinger equations in
terms of vKS([v], rt) into the well-known nonlinear Kohn−
Sham single-particle equations in terms of the Hartree-
exchange-correlation potential vHxc([n], rt). To approximate
the difference between interacting and noninteracting maps in
terms of densities, many different highly successful strategies
exist.

In the case of QEDFT we have instead of the Schrödinger
Hamiltonian the Pauli-Fierz Hamiltonian that does not only
dependent on the electronic degrees but also on the
(continuum of) photonic degrees of freedom. Since there are
some subtle differences in the minimal-coupling QEDFT case
between the ground-state and the time-dependent case with
respect to the suitable functional variables (although these
differences allow to cure old issues of ground-state current-
density functional theory),145 we in the following restrict for
simplicity to the dipole-coupled Pauli-Fierz Hamiltonian of eq
39 with the external fields of the form of eqs 54 and 53. In this
case, we have with the identification of v(rt) = e ext(rt), the
interacting mapping in analogy to the density-functional
case94,124,145,184

r r rv t j t q t n t q t( ( ), ( )) ( , , ) ( ( ), ( ))
1:1 1:1

(92)

where j(t) and q(t) indicates that we have Mp-long vectors of
mode-resolved external currents and displacement coordinates,
respectively. The reason why we have now a pair of functional
variables (n(rt), q(t)) is that we can change not only v(rt) to
consider different physical situations but also adapt j(t) to
influence the full system of light and matter. Obviously, even if
the electronic Schrödinger equation and the dipole-approxi-
mated Pauli-Fierz Hamiltonian have the same external fields,
the expectation values of the same operators give different
answers in general and we have access in QEDFT to all
photonic observables since we have re-expressed everything in
terms of

= [ ] [ ] = [ ]t O t n, q t O n, q t O n, q t( ) ( ) ( , ) ( , ) ( , )
(93)

In analogy, we then find adapted effective fields

r rv t j t v t j t( ( ), ( )) ( ( ), ( ))
1:1

s s (94)

if we choose as auxiliary system noninteracting electrons and
photons to generate the same density and displacement
field.94,124,145 Accordingly, we find with the definition of the
Maxwell-Kohn−Sham fields vMKS ([v, j], rt) = vs([v, j], rt) and
jMKS ([v, j], t) = js ([v, j], t) that we have

[ ] = + [ ]r r rv v, j t v t v n, q t( , ) ( ) ( , )MKS Mxc (95)

[ ] = + [ ]j v, j t j t j n, q t( , ) ( ) ( , )
MKS Mxc (96)

Here we have denoted the nonlinear terms as mean-field-
exchange-correlation (Mxc) fields in order to highlight that
besides the Hartree term there are now also other mean-field
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contributions that can be made explicit in the effective fields.
Similarly to the electronic density-functional case there are
various ways of approximating the difference of these
mappings170,172,256,307 (note that in the dipole case the Mxc
current is exactly the mean-field current, i.e., jMxc([n, q],t) =
jM([n, q],t)

94,124,145), and we can distinguish the contribution
due to the Coulomb interaction and due to the direct electron-
photon interaction as81,94,124,145

[ ] = [ ] + [ ]r r rv n, q t v n, q t v n, q t( , ) ( , ) ( , )Mxc Hxc pxc (97)

While in principle vHxc([n, q],rt) ≠ vHxc([n],rt), in practice
one usually employs approximations to vHxc([n], rt) from
electronic density functional theories also in QEDFT. This
raises the question of consistency between approximation to
the longitudinal (Coulombic) and transverse (photonic)
interactions. That is, optimally both functionals are approxi-
mated in the same way. Examples of this are the use of
optimized effective potentials in the exchange approxima-
tion172,256 or the use of local exact exchange approximations170

for Coulomb and photon interactions. Similar consistency
considerations arise also in the context of linear-response time-
dependent density functional functional theory, where one can
potentially use different functionals for the Coulomb
interaction in the ground state calculation and for the
Coulomb interaction in the Hartree-exchange-correlation
kernel.166

We finally note that one is not restricted to using
noninteracting electrons and photons as auxiliary system.
Similar to electronic density functional theory, where nonlocal
(generalized) Kohn−Sham systems308−310 or strictly correlated
electrons311−313 are sometimes used, in QEDFT one can, for
instance, use polaritonic orbitals as reference.147,176 The main
drawback of using polaritonic orbitals is that we have mixed
statistics that need to be handled with extra care to not
generate unphysical results.147,174,176
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G.; Schachenmayer, J. Dark state semilocalization of quantum
emitters in a cavity. Phys. Rev. B 2020, 102, 144202.
(159) Reitz, M.; Sommer, C.; Gurlek, B.; Sandoghdar, V.; Martin-

Cano, D.; Genes, C. Molecule-photon interactions in phononic
environments. Phys. Rev. Res. 2020, 2, 033270.
(160) Wellnitz, D.; Pupillo, G.; Schachenmayer, J. A quantum optics

approach to photoinduced electron transfer in cavities. J. Chem. Phys.
2021, 154, 054104.
(161) Gurlek, B.; Sandoghdar, V.; Martin-Cano, D. Engineering

long-lived vibrational states for an organic molecule. Phys. Rev. Lett.
2021, 127, 123603.
(162) Reitz, M.; Sommer, C.; Genes, C. Cooperative quantum

phenomena in light-matter platforms. PRX Quantum 2022, 3, 010201.
(163) Wellnitz, D.; Pupillo, G.; Schachenmayer, J. Disorder

enhanced vibrational entanglement and dynamics in polaritonic
chemistry. Commun. Phys. 2022, 5, 120 DOI: 10.1038/s42005-022-
00892-5.
(164) Dreizler, R. M.; Gross, E. K. Density functional theory: an

approach to the quantum many-body problem; Springer Science &
Business Media, 2012.
(165) Burke, K. Perspective on density functional theory. J. Chem.

Phys. 2012, 136, 150901.
(166) Ullrich, C. A. Time-dependent density-functional theory: concepts

and applications; Oxford University Press, 2011.
(167) Marques, M. A.; Maitra, N. T.; Nogueira, F. M.; Gross, E. K.;

Rubio, A. Fundamentals of time-dependent density functional theory;
Springer, 2012; Vol. 837.
(168) Tokatly, I. V. Quantum many-body dynamics in a Lagrangian

frame: II. Geometric formulation of time-dependent density func-
tional theory. Phys. Rev. B 2005, 71, 165105.
(169) Tchenkoue, M.-L. M.; Penz, M.; Theophilou, I.; Ruggenthaler,

M.; Rubio, A. Force balance approach for advanced approximations in
density functional theories. J. Chem. Phys. 2019, 151, 154107.
(170) Schäfer, C.; Buchholz, F.; Penz, M.; Ruggenthaler, M.; Rubio,

A. Making ab initio QED functional (s): nonperturbative and photon-
free effective frameworks for strong light-matter coupling. Proc. Natl.
Acad. Sci. U.S.A. 2021, 118, No. e2110464118.
(171) Fetter, A. L.; Walecka, J. D. Quantum theory of many-particle

systems; Courier Corporation, 2012.

(172) Pellegrini, C.; Flick, J.; Tokatly, I. V.; Appel, H.; Rubio, A.
Optimized effective potential for quantum electrodynamical time-
dependent density functional theory. Phys. Rev. Lett. 2015, 115,
093001.
(173) de Melo, P. M. M. C.; Marini, A. Unified theory of quantized

electrons, phonons, and photons out of equilibrium: a simplified ab
initio approach based on the generalized Baym-Kadanoff ansatz. Phys.
Rev. B 2016, 93, 155102.
(174) Buchholz, F.; Theophilou, I.; Nielsen, S. E.; Ruggenthaler, M.;

Rubio, A. Reduced density-matrix approach to strong matter-photon
interaction. ACS Photonics 2019, 6, 2694−2711.
(175) Tokatly, I. Conserving approximations in cavity quantum

electrodynamics: implications for density functional theory of
electron-photon systems. Phys. Rev. B 2018, 98, 235123.
(176) Buchholz, F.; Theophilou, I.; Giesbertz, K. J.; Ruggenthaler,

M.; Rubio, A. Light-matter hybrid-orbital-based first-principles
methods: the influence of polariton statistics. J. Chem. Theory Comput.
2020, 16, 5601−5620.
(177) Karlsson, D.; van Leeuwen, R.; Pavlyukh, Y.; Perfetto, E.;

Stefanucci, G. Fast Green’s function method for ultrafast electron-
boson dynamics. Phys. Rev. Lett. 2021, 127, 036402.
(178) Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio, A. Kohn-Sham

approach to quantum electrodynamical density-functional theory:
exact time-dependent effective potentials in real space. Proc. Natl.
Acad. Sci. U.S.A. 2015, 112, 15285−15290.
(179) Dimitrov, T.; Flick, J.; Ruggenthaler, M.; Rubio, A. Exact

functionals for correlated electron-photon systems. New J. Phys. 2017,
19, 113036.
(180) Theophilou, I.; Penz, M.; Ruggenthaler, M.; Rubio, A. Virial

relations for electrons coupled to quantum field modes. J. Chem.
Theory Comput. 2020, 16, 6236−6243.
(181) Tancogne-Dejean, N.; Oliveira, M. J. T.; Andrade, X.; Appel,

H.; Borca, C. H.; Le Breton, G.; Buchholz, F.; Castro, A.; Corni, S.;
Correa, A. A.; et al. Octopus, a computational framework for
exploring light-driven phenomena and quantum dynamics in extended
and finite systems. J. Chem. Phys. 2020, 152, 124119.
(182) Svendsen, M. K.; Kurman, Y.; Schmidt, P.; Koppens, F.;

Kaminer, I.; Thygesen, K. S. Combining density functional theory
with macroscopic QED for quantum light-matter interactions in 2D
materials. Nat. Commun. 2021, 12, 1−13.
(183) Flick, J.; Narang, P. Cavity-correlated electron-nuclear

dynamics from first principles. Phys. Rev. Lett. 2018, 121, 113002.
(184) Flick, J.; Welakuh, D. M.; Ruggenthaler, M.; Appel, H.; Rubio,

A. Light-matter response in nonrelativistic quantum electrodynamics.
ACS Photonics 2019, 6, 2757−2778.
(185) Yang, J.; Ou, Q.; Pei, Z.; Wang, H.; Weng, B.; Shuai, Z.;

Mullen, K.; Shao, Y. Quantum-electrodynamical time-dependent
density functional theory within Gaussian atomic basis. J. Chem.
Phys. 2021, 155, 064107.
(186) Welakuh, D. M.; Flick, J.; Ruggenthaler, M.; Appel, H.; Rubio,

A. Frequency-dependent Sternheimer linear-response formalism for
strongly coupled light-matter systems. J. Chem. Theory Comput. 2022,
18, 4354−4365.
(187) Wang, D. S.; Neuman, T.; Flick, J.; Narang, P. Light-matter

interaction of a molecule in a dissipative cavity from first principles. J.
Chem. Phys. 2021, 154, 104109.
(188) Schäfer, C.; Johansson, G. Shortcut to self-consistent light-

matter interaction and realistic spectra from first principles. Phys. Rev.
Lett. 2022, 128, 156402.
(189) Bustamante, C. M.; Gadea, E. D.; Horsfield, A.; Todorov, T.

N.; González Lebrero, M. C.; Scherlis, D. A. Dissipative equation of
motion for electromagnetic radiation in quantum dynamics. Phys. Rev.
Lett. 2021, 126, 087401.
(190) Schäfer, C. Polaritonic chemistry from first principles via

embedding radiation reaction. J. Phys. Chem. Lett. 2022, 13, 6905−
6911.
(191) Rossi, T. P.; Shegai, T.; Erhart, P.; Antosiewicz, T. J. Strong

plasmon-molecule coupling at the nanoscale revealed by first-
principles modeling. Nat. Commun. 2019, 10, 1−7.

Chemical Reviews pubs.acs.org/CR Review

https://doi.org/10.1021/acs.chemrev.2c00788
Chem. Rev. 2023, 123, 11191−11229

11226

https://doi.org/10.1063/5.0039256
https://doi.org/10.1021/jz501905h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz501905h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1209/0295-5075/105/47009
https://doi.org/10.1209/0295-5075/105/47009
https://doi.org/10.1103/PhysRevA.93.033840
https://doi.org/10.1103/PhysRevA.93.033840
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.116.238301
https://doi.org/10.1103/PhysRevLett.119.223601
https://doi.org/10.1038/s41467-017-01504-5
https://doi.org/10.1038/s41467-017-01504-5
https://doi.org/10.1038/s41467-017-01504-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-017-01504-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.97.205303
https://doi.org/10.1103/PhysRevB.97.205303
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1103/PhysRevLett.122.203602
https://doi.org/10.1021/acsphotonics.9b00268?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b00268?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1103/PhysRevB.102.144202
https://doi.org/10.1103/PhysRevResearch.2.033270
https://doi.org/10.1103/PhysRevResearch.2.033270
https://doi.org/10.1063/5.0037412
https://doi.org/10.1063/5.0037412
https://doi.org/10.1103/PhysRevLett.127.123603
https://doi.org/10.1103/PhysRevLett.127.123603
https://doi.org/10.1103/PRXQuantum.3.010201
https://doi.org/10.1103/PRXQuantum.3.010201
https://doi.org/10.1038/s42005-022-00892-5
https://doi.org/10.1038/s42005-022-00892-5
https://doi.org/10.1038/s42005-022-00892-5
https://doi.org/10.1038/s42005-022-00892-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s42005-022-00892-5?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4704546
https://doi.org/10.1103/PhysRevB.71.165105
https://doi.org/10.1103/PhysRevB.71.165105
https://doi.org/10.1103/PhysRevB.71.165105
https://doi.org/10.1063/1.5123608
https://doi.org/10.1063/1.5123608
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1073/pnas.2110464118
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1103/PhysRevLett.115.093001
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1103/PhysRevB.93.155102
https://doi.org/10.1021/acsphotonics.9b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.9b00648?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevB.98.235123
https://doi.org/10.1103/PhysRevB.98.235123
https://doi.org/10.1103/PhysRevB.98.235123
https://doi.org/10.1021/acs.jctc.0c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1073/pnas.1518224112
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1088/1367-2630/aa8f09
https://doi.org/10.1021/acs.jctc.0c00618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00618?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.5142502
https://doi.org/10.1063/1.5142502
https://doi.org/10.1063/1.5142502
https://doi.org/10.1038/s41467-021-23012-3
https://doi.org/10.1038/s41467-021-23012-3
https://doi.org/10.1038/s41467-021-23012-3
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1103/PhysRevLett.121.113002
https://doi.org/10.1021/acsphotonics.9b00768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0057542
https://doi.org/10.1063/5.0057542
https://doi.org/10.1021/acs.jctc.2c00076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00076?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0036283
https://doi.org/10.1063/5.0036283
https://doi.org/10.1103/PhysRevLett.128.156402
https://doi.org/10.1103/PhysRevLett.128.156402
https://doi.org/10.1103/PhysRevLett.126.087401
https://doi.org/10.1103/PhysRevLett.126.087401
https://doi.org/10.1021/acs.jpclett.2c01169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c01169?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41467-019-11315-5
https://doi.org/10.1038/s41467-019-11315-5
https://doi.org/10.1038/s41467-019-11315-5
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.2c00788?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(192) Tserkezis, C.; Fernández-Domínguez, A. I.; Gonçalves, P.;
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