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Improved winter data coverage of the Southern
Ocean CO2 sink from extrapolation of summertime
observations
Neill Mackay 1✉, Andrew J. Watson 1, Parvada Suntharalingam2, Zhaohui Chen2 & Peter Landschützer 3,4

The Southern Ocean is an important sink of anthropogenic CO2, but it is among the least

well-observed ocean basins, and consequentially substantial uncertainties in the CO2 flux

reconstruction exist. A recent attempt to address historically sparse wintertime sampling

produced ‘pseudo’ wintertime observations of surface pCO2 using subsurface summertime

observations south of the Antarctic Polar Front. Here, we present an estimate of the Southern

Ocean CO2 sink that combines a machine learning-based mapping method with an updated

set of pseudo observations that increases regional wintertime data coverage by 68% com-

pared with the historical dataset. Our results confirm the suggestion that improved winter

coverage has a modest impact on the reconstruction, slightly strengthening the uptake trend

in the 2000s. After also adjusting for surface boundary layer temperature effects, we find a

2004-2018 mean sink of −0.16 ± 0.07 PgC yr−1 south of the Polar Front and −1.27 ± 0.23

PgC yr−1 south of 35°S, consistent with independent estimates from atmospheric data.
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The ocean is an important sink of anthropogenic CO2,
having absorbed 23% of all man-made emissions in 20191,
with the Southern Ocean south of 35°S accounting for

around 40% of this global ocean sink2. This outsized role in the
climate system means that understanding the Southern Ocean
carbon sink and its variability are critical for climate assessments
and for the Global Carbon Budget1 that contributes to the
Intergovernmental Panel on Climate Change report3. Estimates of
air-sea CO2 fluxes from models, observation-based data products
and observations show the largest disagreement in the Southern
Ocean, in particular with regard to low frequency variations4.
Given the lack of observational coverage in this remote and harsh
ocean region, this disagreement does not come as a surprise. The
Surface Ocean CO2 Atlas (SOCAT)5 is the largest compilation of
all surface CO2 observations, but large areas of the Southern
Ocean remain sparsely or unsampled in winter, particularly at
higher latitudes (Fig. 1a and S1). To fill this data void, ocean
carbon sink estimates are produced by interpolating in-situ
measurements using a variety of techniques including state-of-
the-art machine learning methods6–9, and air-sea CO2 fluxes
are then computed by combining the mapped values with
atmospheric CO2 data using a simple bulk gas transfer
parameterization10. Despite the recent advancements in gap-
filling methods, however, data sparsity continues to be among the
largest uncertainties in the flux reconstructions, particularly in the
Southern Ocean4.

Recognizing the need for year-round observations to monitor
this essential carbon sink, since 2014 the observational coverage
of the Southern Ocean has rapidly improved thanks to the
advent of autonomous platforms including floats11 and
uncrewed surface vehicles12. Notwithstanding the substantial
improvement in coverage they bring, these new observations
cannot address historical sparsity and are therefore limited in
their ability to constrain estimates of past multiyear variability.
In an attempt to resolve this, a recent study13 used summertime
subsurface observations of dissolved inorganic carbon (DIC)
south of the Antarctic Polar Front (APF) from the Global
Ocean Data Analysis Project (GLODAP)14,15 to extrapolate
‘pseudo observations’ of wintertime surface pCO2, boosting the
coverage from 2004 onwards. They found that the pseudo
observations increased winter outgassing, but their method did

not reproduce a strong reversal of the trend from an increasing
to a decreasing sink around 2011 suggested by other studies7,16.
In this work, we build on this novel constraint in two ways: first
by switching from a simple multiple linear regression (MLR)
for gap-filling the data to a more sophisticated neural network-
based approach17; and second by increasing the number of
pseudo observations from 760 to 798 using a more recent
version of GLODAP18. We further validate the full set of
pseudo observations against a data-assimilating biogeochemical
ocean model19, and combine our mapped fCO2 product with a
gas transfer parameterisation10 to produce air–sea CO2 flux
estimates for the Southern Ocean from 1993 to 2018 (see
Methods section).

When binned monthly and onto a 4° latitude by 6° longitude
grid (roughly equivalent to the 400 km decorrelation length scale
for pCO2

20), our pseudo observations increase wintertime (June-
September) coverage south of the APF by 68% for the period
2004–2018 compared with using only the direct observations
compiled in the SOCAT database5 (see Fig. 1). However, the
pseudo observations are assumed to represent conditions in
September (see Methods section), and as such a majority of them
are in locations that would be under sea ice, which diminishes
their direct influence on the air-sea flux. Instead, it is the mod-
ification by the pseudo observations of relationships between
driver variables and surface fCO2 established in the gap-filling
step that refines our estimate of the carbon sink. An illustration of
the differences between the estimate of surface CO2 from this
study and an estimate using the same set of pseudo observations
combined with the MLR gap-filling method of prevously
employed13 is shown in Supplementary Fig. S1.

Furthermore, recent research21 highlighted the need to make a
correction to the fCO2 data to account for temperature gradients
in the atmosphere-ocean mass boundary layer (MBL) before
calculating the air–sea flux. This altered the 1992–2018 global
mean ocean CO2 sink by 0.8–0.9 PgC yr−1 (ref. 22), yet no
regional correction for the Southern Ocean exists. Here we apply
a similar temperature correction, and compare our estimate of the
Southern Ocean carbon sink with results from an atmospheric
inversion that relies on atmospheric observations of CO2 from
surface sites in combination with model simulations of atmo-
spheric CO2 transport23 (see Methods section).

Fig. 1 Southern ocean fCO2 data coverage. a Colour shows wintertime (June-September) observations of sea surface fCO2 (in micro-atmosphere, µ atm)
from SOCAT south of 35°S from 2004 to 2018, binned and averaged onto a 4° latitude by 6° longitude grid. b As a but with the addition of wintertime
pseudo fCO2 observations constructed for the same period. Light grey shading shows the coverage of all non-wintertime SOCAT fCO2 observations for the
same years on the same grid, and the black dots are the locations of the pseudo observations on the 1° × 1° grid used to train the SOM-FFN. The black lines
show the mean position of the polar front from a published product62.
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Results
Surface pCO2 south of the Antarctic Polar Front. Figure 2
shows the mean seasonal cycle and annual means south of the
APF of surface pCO2 mapped using a Self-Organising Map Feed
Forward Neural Network technique (SOM-FFN; see Methods
section). The winter peak of the seasonal cycle of pCO2 in the
region is reduced due to the pseudo observations. The phase of
the seasonal cycle of pCO2 is unaffected by their inclusion, but its
magnitude reduces from 47 µatm to 40 µatm. The seasonal cycle
of pCO2 is anticorrelated with temperature, and instead most
closely resembles the non-thermal drivers mixed layer depth and
sea surface salinity, which have their peak values in September
and October (see Supplementary Fig. S2). This suggests the sea-
sonal cycle of pCO2 is DIC-driven in this region, with deeper
mixed layers in wintertime stirring up DIC-rich waters from
below causing an outgassing tendency that overcomes the uptake
tendency caused by surface cooling.

The long-term trend follows the atmospheric pCO2 trend
(Fig. 2b), but with some strong variability in the 2000s in
particular that is not reduced by the inclusion of pseudo
observations. From 2007 onwards, the pseudo observations cause
only a slight divergence in the two solid lines, and a slightly
weaker upward trend such that the surface pCO2 estimate does
not keep pace with the atmosphere.

Air-sea CO2 fluxes south of the Antarctic Polar Front. The
reduction of the winter peak of the seasonal cycle due to the
pseudo observations seen on Fig. 2a would alone tend to increase
the estimated CO2 uptake by the ocean. However, the reduction
in pCO2 occurs below the sea ice (see Supplementary Fig. S3),
and, consequently, this signal has little contribution to the air-sea
flux: away from sea ice, the pseudo observations tend to increase
pCO2 and this effect just dominates the air–sea flux south of the
APF (Figs. S3 and 3a). The peak winter outgassing increases
fractionally from 0.09 PgC yr−1 to 0.12 PgC yr−1, and is shifted
from July to September attributed to the data interpolation
method; meanwhile the magnitude of the flux seasonal cycle
increases from 0.66 to 0.69 PgC yr−1.

The fluxes on Fig. 3 with and without the pseudo observations
are not distinguishable within the uncertainties, but the central
estimate of the annual mean flux is shifted upwards slightly in the
period 2002 to 2011. The pseudo observations begin in 2004 due
to their method of calculation (see Methods section), so their
influence diminishes before then; after 2011 the relative increase in
coverage they provide also reduces due to improvements in direct
fCO2 measurement coverage (see Supplementary Fig. S4). There is
only a slight impact on the multiyear variability of the fluxes over
the period covered by the pseudo observations: both lines on
Fig. 3b show an increase in the sink from 2004 to 2011 followed by
a stagnation. Without the pseudo observations the sink trend
south of the APF from 2004 to 2011 is −0.27 PgC yr−1 decade−1,
and from 2011 to 2018 is −0.04 PgC yr−1 decade−1. When the
pseudo observations are added, the trends over the same
two periods are −0.33 PgC yr−1 decade−1 and −0.06 PgC yr−1

decade−1, respectively (linear trends are shown as dashed lines on
Fig. 3). For the period between 2004, when the pseudo
observations begin, to 2011, where their influence largely vanishes,
they reduce the mean sink by 34% from 0.15 PgC yr−1 to
0.10 PgC yr−1.

Spatial patterns of air-sea CO2 flux trends. The decadal trends
shown on Fig. 3b support the view of a weakening sink in the
1990s24, followed by a reinvigoration in the 2000s25 and a sub-
sequent stagnation in at least the early part of the 2010s26. We
now examine the spatial variation of the decadal trends from
2004 onwards, and the impact of the pseudo observations on
those trends, on Fig. 4. While direction and spatial patterns are
largely unaltered, we observe a regional refinement of the trends.
In 2004–2011 (Fig. 4a, b), the trend is towards increasing uptake
almost everywhere across the Southern Ocean, and the pseudo
observations even strengthen the trend south of the zonal wind
maximum in all sectors, with the largest effect in the Pacific
(Fig. 4c). In 2011–2018, the trend is patchier with areas of
increasing uptake and areas of increasing outgassing. The pseudo
observations strengthen an outgassing trend in the Pacific lower
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Fig. 2 Mean pCO2 from SOM-FFN reconstructions. a 1993-2018 mean seasonal cycle and b annual mean surface pCO2 (in micro-atmosphere, µ atm)
south of the Antarctic Polar Front from the SOM-FFN with and without pseudo observations in the training data (solid lines). Each line represents an
ensemble mean, and the shaded areas are the 1-σ uncertainties (see Methods section). The black dashed line shows the annual mean atmospheric pCO2

above the same ocean area, calculated from the NOAA ESRL product50,51.
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latitudes, and weaken a region of outgassing trend just south of
the zonal wind maximum near 20°E (Fig. 4e, f).

The weakening of the Southern Ocean carbon sink in the 1990s
has been explained by a southward shift of westerly winds
associated with an increasing positive index of the Southern

Annual Mode, which caused increased upwelling of natural DIC
and consequent outgassing of CO2

27. The reinvigoration from
2002 to 2011 has been attributed to a zonally asymmetric
atmospheric circulation that drove contrasting patterns of wind
and SST change in the different ocean basins25,26, and the
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Fig. 3 Air-sea CO2 fluxes south of the Antarctic Polar Front. a 1993-2018 mean seasonal cycle and b annual mean air-sea CO2 fluxes (negative into the
ocean) south of the Antarctic Polar Front based on sea surface fCO2 from the SOM-FFN with and without pseudo observations in the training data. Values
are Petagrams of carbon per year (Pg C yr−1). Each solid line represents an ensemble mean, and the shaded areas are the 1-σ uncertainties (see Methods
section). The dashed lines on b are linear fits for the 2004–2011 and 2011–2018 periods.

Fig. 4 Mapped CO2 flux trends. Colours show air–sea CO2 flux trends (negative is increasing uptake) and arrows show wind trends, for the 2004–2011 period
(top row) and 2011–2018 period (bottom row). Values are moles of carbon per metre squared per year per decade (mol Cm−2 yr−1 decade−1). Panels a and
d show CO2 flux trends when pseudo observations are not used, panels b and e show the trends when the pseudo observations are included, and panels c and
f show the difference in CO2 flux trends due to the pseudo observations (note the different colour scale for the difference plots). The solid green line on all
panels shows the latitude of the 2004–2018 mean zonal wind maximum based on CCMP winds46, and the black dashed lines mark ocean basin boundaries.
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subsequent stagnation to regional shifts in sea level pressure
linked to its zonal wavenumber 3 and related changes in winds26.
Other explanations include changes in external forcing28, and
changes in the strength of the upper ocean overturning
circulation29. Here we are unable to further elaborate on the
cause of the decadal variations, however, we can speculate as to
whether the addition of our pseudo observations supports the
previously suggested mechanisms. For example, the enhanced
2004 to 2011 uptake trend at high latitudes (Fig. 4c) coincides
with a weakening trend in the westerly winds that would likely be
associated with changes in the physical circulation. This appears
consistent with suggestions that winter variability driven by
changes in mixing and stratification controls the longer term
variability of the Southern Ocean carbon sink30. This is also
supported by our finding that the seasonal cycle of pCO2 in the
region closely resembles that of the mixed layer depth
(Supplementary Fig. S2).

Comparison with atmospheric inversions. We have so far
examined the mean fluxes for the region of the Southern Ocean
southwards of the APF, since this is where we have added
information in the form of our pseudo observations to aid in the
estimation of the carbon sink. To place the results in context, we
show the sink for the whole Southern Ocean south of 35°S, on
Fig. 5. The results are similar to those for the high latitudes on
Fig. 3, with the pseudo observations causing a small reduction in
uptake over the winter period (Fig. 5a) and in the mid-late 2000s
(Fig. 5b). The central estimate of the 2004 to 2011 mean sink
reduces by 8% from −1.21 PgC yr−1 without the pseudo obser-
vations to −1.11 PgC yr−1 when they are included.

Corrections applied to account for MBL effects have increased
the sink south of 35°S by ~0.3 PgC yr−1 compared with estimates
from fluxes where the corrections were not applied to the fCO2 data
driving the SOM-FFN mapping (see Supplementary Fig. S5); this
offset is in line with a previous estimate for the global ocean21. The
combination of the reduction due to the pseudo observations offset
by the increase due to the MBL corrections results in an estimated
2004-2018 mean sink south of the APF of −0.16 ± 0.07 PgC yr−1,
and south of 35°S of−1.27 ± 0.23 PgC yr−1. Our results are broadly
consistent with two atmospheric inversions (Fig. 5 dashed lines),

which are based on a set of independent measurements, and with a
recent study that estimated the Southern Ocean sink using aircraft
data31 (see Supplementary Fig. S6). We note here that the MBL
correction is crucial to bringing our results in line with the
atmospheric estimates, with the pseudo observations only improv-
ing the agreement with one of the atmospheric inversions on
Fig. 5b, and making almost no difference to the comparison with
aircraft data on Fig. S6.

Discussion
We have presented an estimate of the Southern Ocean CO2 sink
that applied a sophisticated pCO2 gap-filling technique to a
dataset with boosted wintertime coverage in the form of pseudo
observations extrapolated from subsurface summertime obser-
vations. Our work builds on the results of an earlier study13 that
attempted to estimate the carbon sink and its variability south of
the APF with the benefit of pseudo observations constructed
using the same methods, but with the necessary step of gap-filling
ocean surface CO2 data having been achieved using a multiple
linear regression, rather than the more sophisticated SOM-FFN
machine learning method used here. The earlier study estimated
the long-term mean sink from 2004 to 2017 as −0.02 ± 0.02
PgC yr−1 south of the APF. After accounting for a downward
shift of 0.10 PgC yr−1 for that region due to the MBL corrections
applied in this study, our estimate of −0.16 ± 0.07 PgC yr−1

agrees well with the earlier result. Qualitatively the variability over
the same period is also quite similar between the two studies:
when split at 2011 and run separately over two time periods, the
MLR showed an increasing sink from 2004 to 2011 followed by a
flattening/slight decrease (their Fig. D1). It also showed, as we do
here, that the introduction of pseudo observations increases the
downward trend over the 2004–2011 period (Fig. 3b). Quantita-
tively, the increase in the sink of 0.32 PgC yr−1 from the MLR
implies a trend of ~−0.46 PgC yr−1 decade−1 which is larger than
our trend of −0.33 PgC yr−1 decade−1 using the SOM-FFN. The
difference could be explained by a number of factors, including
the different gap-filling methods, the longer training dataset used
in the current study (1993–2018 compared to 2004–2017), a
larger set of driver variables (see Table 1; the MLR study used
only temperature, salinity, mixed layer depth and atmospheric

Fig. 5 Air-sea CO2 fluxes for the Southern Ocean. a 2000–2017 mean seasonal cycle and b annual mean air-sea CO2 fluxes (negative into the ocean) for
the Southern Ocean south of 35°S based on sea surface fCO2 from the SOM-FFN with and without pseudo observations. Values are Petagrams of carbon
per year (Pg C yr−1). Each line represents an ensemble mean, and the shaded area is the 1-σ uncertainty on the SOM-FFN result with pseudo observations
(see Methods). Also plotted are the same quantities derived from an atmospheric inversion using two different priors (dashed lines; see Methods section).
Note that unlike Fig. 3, the mean seasonal cycle is plotted for a shorter time period, for consistency with the atmospheric inversions.
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CO2 concentration), and perhaps least significantly, the addi-
tional pCO2 and pseudo-data used here.

One potential caveat introduced by the pseudo observations
(discussed in detail in previous work13), is the possibility of a bias
in the estimated air-sea CO2 fluxes. We therefore explored the
possibility of bias in the pseudo observations by validating them
with a data-assimilating biogeochemical ocean model (see
Methods section), and concluded it was neglectable, confirming
an earlier validation with direct winter observations13.

We have found that the incorporation of pseudo observations
that increase winter data coverage at high latitudes from 2004
onwards does not significantly alter the Southern Ocean carbon
sink variability over the reconstructed period, suggesting it is
relatively well constrained by sparse and seasonally-biased
observations using this method. The pseudo observations influ-
ence our estimates of the air-sea flux pre-2004 by modifying
relationships between fCO2 and its driver variables in the SOM-
FFN reconstruction, but their effect diminishes with time and
disappears by the year 2001 (Figs. 3b and 5b). Our conclusions
about the robustness of multiyear variability to additional data
coverage are therefore limited to the most recent period
encompassing the reinvigoration and subsequent stagnation of
the sink. A definitively constrained estimate of the variability in
the most data-sparse period before 2000 remains elusive.

While introducing the additional observational constraints
lowers the air-sea CO2 uptake in the Southern Ocean, this
reduction is more than compensated by corrections made to
account for mass boundary layer gradients in temperature and
salinity. Those increased the estimated Southern Ocean carbon
sink south of 35°S by ~0.3 PgC yr−1, balancing the lower uptake
induced by the wintertime observations and bringing it in line
with atmospheric inversions. Our results confirm earlier
conclusions21 suggesting these corrections are important for
understanding the ocean carbon sink.

Methods
Calculation and validation of pseudo observations. The construction of pseudo
observations of wintertime surface pCO2 is described in detail in section 2.1 of an
earlier study13; here we provide a summary of the method and any differences from
that paper. Using data from the Global Ocean Data Analysis Project (GLODAP)18,

we identify a Temperature Minimum Layer in summertime temperature profiles
south of the Antarctic Polar Front (APF). These are treated as having the preserved
properties of the surface waters at the same latitude and longitude in the previous
September. We then adjust the concentration of dissolved inorganic carbon (DIC)
from the Temperature Minimum Layer for biological activity that occurred in the
water mass since last winter using the apparent oxygen utilisation (AOU) and a
Redfield ratio RRC:O, obtaining an estimate for the wintertime surface DIC con-
centration. We also apply two corrections to the AOU value to account for oxygen
undersaturation when the Temperature Minimum Layer water was last in contact
with the atmosphere. The first is a uniform correction of −13.5 µmol kg−1, applied
away from sea ice, that derives from the mean oxygen undersaturation, determined
from SOCCOM float data11,32, in the top 10 m in the region between the APF and
the sea ice. The second correction, applied in sea ice, takes the form AOUcorr=
AOU(1-aCice

b), in which Cice is the sea ice concentration, and a and b are para-
meters we will optimise during the validation phase (see next paragraph). We then
combine the extrapolated wintertime surface DIC estimate with an estimate of total
alkalinity derived from a locally interpolated alkalinity regression for global alka-
linity estimation (LIAR)33, and with surface temperature and salinity from a
gridded Argo product34, and other tracers from GLODAP, to calculate pCO2 using
MATLAB CO2SYS software35. The Argo product used in the construction of the
pseudo observations spans the years 2004–2018, and consequently this period is the
focus of our study.

In order to establish optimal parameters a and b for the AOU correction in sea
ice, and to further validate the method of calculating pseudo observations beyond
what was carried out previously13, we use model output from a data-assimilating
ocean state estimate with biogeochemistry, B-SOSE19. We use the model output to
create pseudo observations of DIC in exactly the same manner as had been done
using observations, except that we produce model pseudo observations covering
the entire region south of the APF for the years 2008–2011 (the limited time range
is for convenience, reflecting the packaging of downloaded data; in practice the
large number of available model points for validation means this is unlikely to be a
limitation). This produces 6791 pseudo observations, which we compare with their
wintertime equivalents in the previous September, at the same latitude/longitude
grid cell at the surface. We then repeated the calculation for a range of parameters
a, and b, and two alternative values of RRC:O, each time calculating the resulting
RMSE between the set of model pseudo observations and their wintertime
equivalents. The optimised parameters are a= 0.8, b= 0.1, and RRC:O= 106:−138,
giving an RMSE of 11.4 µmol kg−1 and a bias of 0.49 µmol kg−1. This compares to
a= 0.9, b= 0.3 and the same RRC:O giving an RMSE of 13.9 µmol kg−1 and bias of
4.1 µmol kg−1 for the validation carried out in the earlier paper using a small
number of real world observations13. In addition, we tested the effect of fixing
RRC:O to 106:−150, equivalent to the fixed values used by B-SOSE. This gives
optimised values of a= 0.8 and b= 0.2, and the resulting set of pseudo
observations produces results in terms of the mean seasonal cycle and annual mean
trends of pCO2 that are indistinguishable from those we have presented on Fig. 2.

Having established a, b and RRC:O, we then run a 100-member MonteCarlo
ensemble to create pseudo observations of surface pCO2 while propagating
uncertainties in temperature, salinity, AOU and other parameters described
previously13 through the calculation. Next, we take a mean of the ensemble to

Table 1 Sources of data.

Variable Used for Data source Product and reference

Sea surface fCO2 SOM-FFN https://www.socat.info/index.php/version-2020/ SOCAT V20205

Sea surface temperature SOM-FFN, fCO2 temperature
correction and air-sea flux

https://www.emc.ncep.noaa.gov/research/cmb/
sst_analysis/

NOAA Optimum
Interpolation product v236

Sea surface salinity SOM-FFN https://www.metoffice.gov.uk/hadobs/en4/
download-en4-2-1.html

Hadley Centre EN4 version
EN4.2.156

Sea ice concentration SOM-FFN https://www.metoffice.gov.uk/hadobs/hadisst/ HadISST57

Mixed layer depth SOM-FFN https://resources.marine.copernicus.eu/product-
detail/MULTIOBS_GLO_PHY_TSUV_3D_MYNRT_
015_012/INFORMATION

CMEMS ARMOR3D
REP40,41

Chlorophyll SOM-FFN https://www.globcolour.info/ Globcolour58,59

Marine boundary layer
atmospheric xCO2

SOM-FFN and air-sea flux ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/
flask/surface/.

NOAA ESRL50,51

Sea ice concentration Air-sea flux and pseudo
observations

https://nsidc.org/data/g02202/versions/3 NOAA/NSIDC v360,61

Sea level atmospheric
pressure

Air-sea flux www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.surface.html

NCEP reanalysis53

Winds Air-sea flux https://www.remss.com/measurements/ccmp/ CCMP46,47

Temperature and salinity Pseudo observations https://sio-argo.ucsd.edu/RG_Climatology.html Roemmich and Gilson
climatology34

Biogeochemical tracers Pseudo observations https://www.glodap.info/ GLODAP v2.202114,18

Oxygen Pseudo observations adjustment
for surface oxygen undersaturation

https://soccompu.princeton.edu/www/index.html SOCCOM float data11,32
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produce a set of 798 pseudo observations of wintertime surface pCO2 (increased
from 760 in the earlier study). We also calculate additional surface pCO2 values
from wintertime surface GLODAP observations, as in the earlier study13. We then
convert the pCO2 values to fCO2 using the formula

fCO2 ¼ pCO2exp
B ´ 10�6 þ 2δ ´ 10�6P

R T

� �
ð1Þ

where B=−1636.75+ 12.0408 T − 3.16528 × 10−5 T2 + 3.16528 × 10−5 T3, T is
the wintertime surface temperature from the Argo product associated with the
pseudo observation, δ = 57.7 – 0.118 T, P= 1013.25 is the atmospheric pressure in
millibar, and R= 8.31447. Finally, we combine the GLODAP-derived and pseudo
observations of fCO2 with the SOCAT 1° × 1° monthly gridded product by taking
the mean of any GLODAP-derived or pseudo observations within a grid cell and
the SOCAT fCO2 value for that grid cell, if there is one, for September of the year
to which those pseudo observations correspond.

Surface fCO2 correction for surface temperature gradients. The SOCAT
gridded fCO2 have been corrected for a temperature difference between the depth
of the observations several metres below the surface and the base of surface mass
boundary layer (MBL), as in a recent study21. The temperature at the base of the
MBL is obtained from the NOAA Optimum Interpolation (OI) product v236. We
also correct our GLODAP-derived and pseudo observations of pCO2 to the NOAA
OI temperatures, following earlier work37, using the formula:

pCO2
corr ¼ pCO2exp 0:0433 TOI � T

� �� 4:35 ´ 10�5 TOI 2 � T2
� �h i

ð2Þ

where TOI is the NOAA OI product temperature at the latitude, longitude and
month corresponding to the pCO2 value.

Gap-filling and mapping surface fCO2. In the original pseudo observations
study13, a multiple linear regression (MLR) was used to gap-fill a combination of
SOCAT, GLODAP-derived and pseudo observations of surface pCO2 and then
map them for the Southern Ocean in order to calculate air-sea CO2 fluxes13. This
allowed for MonteCarlo ensembles of the fluxes to be conducted to explore the
uncertainties due to the pseudo observation calculation in particular, since the
MLR is comparatively computationally inexpensive. However, the MLR is limited
in its ability to fit the CO2 data, which in general has nonlinear relationships to its
driver variables, and in particular was unable to reproduce the interannual varia-
bility captured by other studies. Here we employ a Self-Organising-Map Feed-
Forward-Neural-network (SOM-FFN) method, applied to a combination of
SOCAT, GLODAP-derived and pseudo fCO2 values constructed as described
earlier in this text, to produce time-varying maps of surface fCO2 for the Southern
Ocean south of 35°S from 1993-2018 from which to calculate air-sea CO2 fluxes.
The SOM-FFN method has previously been described in detail7,38,39; here we will
detail only the differences with this work.

The time period of 1993–2018 for which we have run the SOM-FFN is
motivated by the use of a time-varying mixed layer depth product that starts in
199340,41, and the inclusion of the pseudo observations that have been produced
for the period 2004–2018. While we present results for 1993–2018 we focus our
analysis on the later period covered by the pseudo observations. The use of
interannually varying mixed layer depths is an important distinction from previous
work39 which used a climatology; other datasets that we use to drive the SOM-FFN
are summarised in Table 1. Note also that we use the NOAA OI sea surface
temperature (SST) product for the boundary layer temperature correction, for
driving the SOM-FFN, and for calculating the air-sea flux (see next subsection).

We carry out ensembles of SOM-FFN runs with four members each to explore
the sensitivity of the method to certain aspects of the setup. We use either only data
south of 35°S as driver variables, or data south of 10°S. The latter latitude range
provides some more data for the SOM-FFN to draw from, particularly benefitting
gap-filling in the mid latitude SouthEast Pacific where fCO2 coverage is especially
sparse, while excluding some data from near the equator that was found to cause
problems for the regressions. We did not include runs using the global datasets
because these require significantly more computation time, and results may be
unduly influenced by data from regions remote to the Southern Ocean. We also test
two methods of organising the data into biogeochemical provinces (known as
biomes) in the first stage of the SOM-FFN. The first uses a Self Organising Map
(the ‘SOM’ part) employed in earlier studies7,39,42, which is time-varying, and the
second uses previously published biomes43,44 which are fixed in time (see
Supplementary Fig. S7). We then take an ensemble mean of the mapped fCO2 from
the 4 combinations of these configurations (south of 35°S vs south of 10°S data and
fixed vs SOM biomes) to calculate air-sea CO2 fluxes. There is a spread in the flux
estimates produced by the individual ensemble members, but it is significantly
smaller than the flux uncertainties calculated as described in the next section, and it
is not included in our results. We then repeat the ensembles with two further
variations on our setup: one with and one without the inclusion of the pseudo
observations to drive the SOM-FFN mapping. Another final distinction between
the SOM-FFN setup in our study and earlier work7,38,39 is that we do not use the
pCO2 climatology of Takahashi45 as a training variable for the SOM, so that our
results remain independent of the gap-filling used to produce that climatology. The

RMSE between the mapped SOM-FFN fCO2 and the equivalent values from the
gridded SOCAT product at the same latitude, longitude and month, for the 4 runs
including pseudo observations ranges from 17.63 µatm to 18.77 µatm. In general,
the RMSE for the region worsened in tests where the Takahashi data were used in
the SOM phase.

Calculation of air–sea fluxes and uncertainties. Following a recent study21, we
use the following equation to calculate the air-sea flux of CO2 (values are positive
from sea to air):

FCO2
¼ ð1� CiceÞk CSW � CATM

� �
ð3Þ

where k is the gas transfer velocity, and CSW and CATM are the concentration of
dissolved CO2 at the base of the MBL and the air-sea interface, respectively. The gas
transfer velocity is a function of wind speed from the CCMP wind product46–48

and SST from NOAA OI v236, and is calculated according to an established
method10. The CCMP winds are at 0.25° and 6-hourly resolution, and are inter-
polated onto a 1° grid to match the other inputs to the gas transfer calculation. The
temporal resolution is limited by the satellites, but 6-hourly wind speeds are
squared before being monthly averaged. CSW is calculated as αSWfCO2-SW, where
αSW is the solubility of CO2 at the temperature and salinity at the base of the MBL,
following an established method49 and using the data products outlined in Table 1,
and fCO2-SW is the fCO2 value also at the base of the MBL. Similarly, CATM is
calculated as αASfCO2-ATM, where in this case αAS is the solubility at the air-sea
interface, and fCO2-ATM is the atmospheric fCO2, which has been calculated from
the NOAA ESRL xCO2 product50,51 according to an established method52 and
using NOAA OI SST36 and NCEP sea level atmospheric pressure53. We also
correct the surface temperature and salinity used to calculate αAS and k by −0.17 °C
and 0.1 PSU, to approximate the conditions at the air-sea interface.

The three main sources of uncertainty in the calculation of air–sea CO2 fluxes
are: the uncertainty from gridding SOCAT fCO2 observations onto the 1° × 1° grid,
the uncertainty from the SOM-FFN mapping, and the uncertainty on the gas
transfer velocity. We calculate the gridding error following earlier work on the
SOM-FFN method7, obtaining a value of errgrid= 0.27 µatm for the Southern
Ocean. We calculate the mapping error following another SOM-FFN study54,
obtaining a value of errmap= 2.00 µatm. These two uncertainties are combined to
give an overall fCO2 uncertainty of 2.02 µatm. We then add/subtract this uniform
value from the ensemble mean fCO2 to get upper and lower bounds on the full
fCO2 field. We then combine the upper and lower bound fCO2 estimates with a
central estimate for the gas transfer velocities, producing two estimates of the
air–sea flux. We then take the uncertainty on the fluxes due to the fCO2 uncertainty
as the difference between the upper bound and central estimate fluxes (or the
difference between the central and lower bound estimates; since the errors are
normally distributed they are identical). We further combine the central estimate of
the fCO2 field with upper and lower bounds on k, assuming 10% uncertainty on k
as suggested by a recent review55, producing two more estimates of the air–sea flux.
We then take the uncertainty on the fluxes due to the k uncertainty as the
difference between this last upper bound and the central flux estimate. Finally, we
combined the relative uncertainties for the flux field due to the pCO2 and k
uncertainties to produce the total uncertainty on the flux.

Atmospheric inversion. The atmospheric inverse CO2 flux estimates used in this
analysis follow previously published methods23. The methodology employs the
GEOS-Chem atmospheric transport model in combination with the Localized
Ensemble Transform Kalman Filter (LETKF) data assimilation system and atmo-
spheric CO2 observations from the NOAA-ESRL surface network50. We use
optimized monthly fluxes from the combined GEOSChem-LETKF system at a
spatial resolution of of 2° latitude by 2.5° longitude. For the comparisons of this
study we utilize posterior flux estimates for the Southern Ocean derived from two
alternative representations of the prior ocean flux21,39. Further details on the
GEOSChem-LETKF system are available in the related methods paper23.

Data availability
All of the data used in this study are freely available and downloadable at locations listed
in Table 1. The pCO2 and air-sea CO2 flux product (https://doi.org/10.25921/zs6b-ng95)
and the pseudo observations (https://doi.org/10.25921/d44p-fv85) are available for
download at the NCEI OCADS national database https://www.ncei.noaa.gov/access/
ocean-carbon-acidification-data-system/.

Code availability
Analysis was carried out in Matlab using standard routines and functions, and scripts
used are available on request from the corresponding author.
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