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Abstract

This thesis investigates minimal extensions to the standard model (SM) scalar sector.
These are separated into two parts: renormalizable and non-renormalizable. The sec-
ond one is strongly motivated by dark matter while both of them get motivated by
the fermion mass hierarchies. In particular, the smallness of the first fermion family
masses, the dominance of the top-quark mass, or the dominance of the third fermion
family masses. Additionally, the discovery of a fundamentally looking scalar particle,
in agreement with the SM particle spectrum, serves as a strong reason to consider a mul-
tiscalar scenario. In the first part, we extend the SM with a second scalar doublet and
consider it with the same quantum numbers as the SM Higgs. Two new models are pro-
posed and called Type-A and B, where either the top quark alone or all third-generation
fermions couple to the doublet with a larger vacuum-expectation-value (vev). This dis-
tinction becomes possible after implementing a parity symmetry and introducing the
singular alignment ansatz. As a consequence, the remaining fermions exclusively acquire
their masses through the small vev of the other doublet. Simultaneously, we avoid un-
desirable flavor-changing-neutral-currents at tree-level. We study the main differences
between the proposed new models and conventional ones and include a discussion of
their structure and phenomenological consequences. In the second part of this thesis,
we extend the SM with a scalar singlet and a dark matter (DM) fermion. We embed this
into a hybrid framework in the form of an effective completion of simplified models
called extended dark matter effective field theory (eDMEFT). The phenomenology of
the dimension five operators connecting the SM fermions with the dark sector is ex-
plored in the form of missing energy at several colliders in a restricted case scenario.
Here we address the smallness of first-generation fermion masses via suppressed Z2
breaking effects. The theoretical matching of the eDMEFT is performed with more-UV-
complete theories such as two Higgs doublets plus a (pseudo-)scalar mediator and the
inclusion of new vector-like quarks. In addition, we explore their collider signatures.
Finally, we use the same framework to scrutinize the XENON1T electron recoil excess.
We confront it with various astrophysical and laboratory constraints both in a general
setup and in the one presented in the mentioned case scenario. We find that the excess
can be explained by modified neutrino–electron interactions, linked with the neutrino
and electron masses, while DM–electron scattering does not lead to statistically signifi-
cant improvement. We analyze the parameter space preferred by the anomaly and find
severe constraints that can only be avoided in certain corners of the parameter space. In
particular, problematic bounds on electron couplings from Big-Bang Nucleosynthesis
can be circumvented via a late phase transition in the new scalar sector.
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Zusammenfassung
In dieser Arbeit werden minimale Erweiterungen des skalaren Sektors des Standard-
modells (SM) untersucht. Diese sind in zwei Teile unterteilt: renormierbare und nicht
renormierbare. Der zweite ist stark durch dunkle Materie motiviert, während beide
durch die Massenhierarchie der Fermionen motiviert werden, insbesondere durch die
kleinen Massen der ersten Fermionenfamilie, die Dominanz der Topquarkmasse, oder
die Dominanz der Massen in der dritten Fermionenfamilie. Die Entdeckung eines el-
ementar aussehenden skalaren Teilchens, dem Higgs, die mit dem SM- Teilchenspek-
trum übereinstimmt, ist ebenfalls ein starker Grund, ein multiskalares Szenario in Be-
tracht zu ziehen. Im ersten Teil dieser Arbeit erweitern wir das SM um ein zweites
skalares Dublett, für welches wir die gleichen Quantenzahlen annehmen wie für das
SM-Higgs. Es werden zwei neue Modelle vorgeschlagen, Typ A und Typ B, in de-
nen entweder nur das Top-Quark oder alle Fermionen der dritten Generation an das
Dublett mit dem größeren Vakuum-Erwartungswert (VEV) koppeln. Diese Unterschei-
dung wird möglich, nachdem eine Paritätssymmetrie eingeführt und der singuläre
Alignment-Ansatz angewandt wird. Infolgedessen erhalten die übrigen Fermionen
ihre Masse ausschließlich durch den kleinen VEV des anderen Dubletts. Zugleich
vermeiden wir unerwünschte flavourverändernde neutrale Ströme (FCNCs) auf Tree-
Level. Wir untersuchen die Hauptunterschiede zwischen den vorgestellten neuen Mod-
ellen und konventionellen Modellen und diskutieren ihre Strukturen und die phänome-
nologischen Konsequenzen. Im zweiten Teil dieser Arbeit, erweitern wir das SM um ein
skalares Singulett und ein Dunkle Materie (DM) Fermion. Wir betrachten dies in einem
hybriden Framework in Form einer effektiven Vervollständigung der vereinfachten
Modelle, der erweiterten effektiven Feldtheorie der dunklen Materie (eDMEFT). Die
Phänomenologie der Operatoren der fünften Dimension, die die SM-Fermionen mit
dem dunklen Sektor verbinden, wird in einem eingeschränkten Szenario in Form von
Suchen nach fehlender Energie an mehreren Teilchenbeschleunigern erforscht. Zusät-
zlich behandeln wir die Kleinheit der Fermionenmassen der ersten Generation als un-
terdrückten Effekt der Brechung einer Z2 Symmetrie. Das theoretische Matching an
die eDMEFT wird mit weiteren UV-vollständigen Theorien ansgeführt, wie ein Mod-
ell mit zwei zusätzlichen Higgs-Dubletts sowie einem (pseudo-)skalaren Teilchen oder
eines mit neuen vektorartigen Quarks. Darüber hinaus erforschen wir ihre Collider-
Signaturen. Schließlich verwenden wir das gleiche Framework, um den Überschuss an
Events im XENON1T Elektronenrückstoß-Experiment zu untersuchen. Wir konfron-
tieren ihn mit verschiedenen astrophysikalischen und experimentellen Einschränkun-
gen, sowohl in einem allgemeinen als auch in dem erwähnten Szenario. Wir stellen
fest, dass der Überschuss durch modifizierte Neutrino-Elektronen- Wechselwirkungen
erklärt werden kann, die mit den Neutrino- und Elektronenmassen verbunden sind,
während die DM-Elektron-Streuung nicht zu einer statistisch signifikanten Verbesserung
führt. Wir analysieren den Parameterraum der von der Anomalie bevorzugt wird,
und finden starke Einschränkungen, die nur in bestimmten Ecken des Parameterraums
vermieden werden können. Insbesondere problematische Einschränkungen für Elek-
tronenkopplungen aus der primordialen Nukleosynthese können durch einen späten
Phasenübergang im neuen skalaren Sektor umgangen werden.
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Chapter 1

Introduction

With the discovery of the Higgs boson, announced in 2012 by the CMS [1] and AT-
LAS [2] collaborations, the predicted particle spectrum of the Standard Model (SM)
was fully confirmed. All the observed particles can be organized through the sym-
metrical properties of the theory. First, due to Lorentz-invariance, the spectrum can be
separated into two types of particles: half-integer (s = 1/2) and integer (s = 0, 1) spin.
In the former case, there are twelve elementary particles 1 called fermions giving place
to ordinary matter. These twelve may be further divided into two sectors: quarks and
leptons. The first sector is composed of two types of quarks: those with electric charge,
q = 2/3, called up-type quarks (u, c, t) and those with electric charge, q = −1/3, called
down-type quarks (d, s, b). The second sector consists of two types of leptons: those
with electric charge, q = −1, called charged leptons (e, µ, τ) and those with q = 0
called neutrinos (νe, νµ, ντ). On the other hand, the SM particle content with integer
spin (s = 0, 1) consists of four kind of vector bosons (s = 1), carriers of the fundamental
forces (except for gravity): the gluons Ga

µ (a = 1, 2, ..., 8), which mediate the strong in-
teractions; the weak bosons, W±µ and Z0

µ, which mediate the weak interactions; and the
photon, γµ, which mediates the electromagnetic interactions. These vector bosons can
be called gauge bosons as they are a consequence of the SM local (or gauge) symmetry
group, GSM:

GSM = SU(3)c × SU(2)L ×U(1)Y , (1.1)

where Y denotes the hypercharge, L means that only the left-handed fermionic parts
will non-trivially transform under the weak isospin group and c denotes the colour
symmetry group. For more details about the non-trivial transformations of the fermions
under the SM gauge group, see Appendix A. For last, the SM theory has one scalar
(s = 0) field called the Higgs boson. It is a doublet under SU(2)L and it is required in
order to spontaneously break the electroweak symmetry, SU(2)L ×U(1)Y → U(1)EM,
in agreement with observation, where EM stands for electromagnetism. This breaking
happens through the Higgs mechanism, i.e. the neutral component of the Higgs boson
acquires a vacuum expectation value (vev) different than zero and as a consequence
the corresponding fields of the three broken generators of the initial symmetry group,

1Note that every charged fermion has also its corresponding anti-particle. Additionally, all fermions
(except neutrinos) have a right-handed and left-handed chirality, which is the projection of total angular
momentum on the direction of motion in the massless limit.
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become massive and one preserved Abelian generator field remains massless. Further-
more, by virtue of the Yukawa interactions, between the fermions and the Higgs boson,
the non-zero vev will give rise to the fermion mass terms.

In relation to the previous discussion, the SM theoretical framework possesses eigh-
teen physical and arbitrary parameters which must be determined by experiments:
nine charged-fermions masses, four mixing parameters, three gauge couplings, and
the Higgs’ vev as well as its mass. Due to historical reasons, the SM considered neu-
trinos as massless particles. Now, that we know they have mass, their massive nature
can be incorporated either by assuming them Dirac or Majorana (their own antiparti-
cles) fermions. Once this is done, the free parameters can increase respectively up to
twenty-five or twenty-seven, depending on their massive nature.

The SM has achieved tremendous success both in the theoretical and experimental
points of view. However, there is a clear lack of understanding of certain emergent
patterns in various measured parameters. One example of this is the flavour puzzle,
which consists of a single, but rather precise question: Why do the fermion masses and
mixing parameters in the SM take the values they have? In principle, they are arbitrary,
nonetheless, by taking a closer look to the experimental values, we start noticing some
hierarchies between groups with similar masses, which may suggest an underlying
mechanism.

The measured fermion masses show the following hierarchy:

intergeneration−−−−−−−−−−−→
mt ≫ mc ≫ mu−−−−−−−−−→

interspecies

≫ ≫ <

mb ≫ ms ≫ md> <

<

mτ ≫ mµ ≫ me≫ ≫

≪

mν3(2) ? mν2(1) ? mν1(3)

From here, several intriguing features can be identified such as: i) the dominance of the
top-quark mass among all the fermion masses, mt ∼ EW scale and mt ≫ m f ; the in-
tergenerational hierarchy, m3 ≫ m2 ≫ m1; ii) how the down-type quarks and charged
leptons have similar masses, mdi ∼ mei (d1,2,3 = d, s, b and e1,2,3 = e, µ, τ); iii) and the
smallness of the neutrino masses, mν ≪ me. These unsolved questions, among others,
are commonly referred to as the problem of mass [3].

We find another interesting set of patterns in the observed quark mixing as de-
scribed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This unitary matrix con-
tains all the information on the strength of flavour-changing weak decays mediated by
the charged W± bosons. The CKM matrix happens to be approximately close to the unit
matrix VCKM ∼ 1; showing that flavour transitions between members of the same fam-
ily are more likely to happen, |Vud| ≃ |Vcs| ≃ |Vtb| ≃ 1, when compared to those from
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different ones which are strongly suppressed, |Vcd| ≃ |Vus| ≃ 0.23, |Vts| ≃ |Vcb| ≃ 0.04
and |Vtd| ∼ |Vub| ∼ O(10−3). When the massive nature of neutrinos is considered, their
observed mixing is described by the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) ma-
trix. Unlike the quark mixing matrix, the PMNS shows a completely different be-
haviour with a more anarchic structure. For more information about the flavour mixing
in the SM, please see Appendix A.

Besides the puzzle represented by the SM parameters, there are new observables that
cannot be explained with the SM current framework. In the last decades, we have dis-
covered, by several means, evidence on the existence of another kind of (non-baryonic)
matter. This points towards a new cold, weekly-interacting and electrically-neutral par-
ticle, called dark matter (DM). In Sec. 3.2, we introduce and discuss in detail the current
evidence of DM as well as the experimental efforts for detecting it.

As previously mentioned, there are many motivations to suspect on the existence of
new, undetected particles, that could be responsible of one or more of these phenomena.
Thus, the urge of extending the SM, and include all new possible interactions between
the SM fermions and the new physics (NP) sector.

There are two approaches to incorporate new particles and extend the SM theory
while still keeping it gauge and Lorentz invariant: via renormalizable (D ≤ 4 opera-
tors) or "non-renormalizable" (D > 4 operators) models. The second approach corre-
sponds to the concept of Effective field theories (EFT). These theories provide a modern
perspective on renormalization, going beyond the pure systematic cancellations of in-
finities. Here, the higher-dimensional interactions, often called non-renormalizable by
historic reasons, parameterize the effects of NP in the low energy theory and are sup-
pressed by an energy scale ΛN with N = D− 4 and D the operator’s dimension. This
kind of operators contribute at some precision level and its coefficients, known as Wil-
son Coefficients, capture the physics of the high energy (or UV) theory. The effects of the
higher-dimensional operators are numerically suppressed if the cutoff scale Λ is much
larger than the typical energies achieved in experiments. Hence, by default, EFTs are
renormalizable order by order in operator dimension as long as the cutoff scale is large.

When speaking about DM, EFTs are generally a valid description of its interactions
with the SM as long as the mass of a heavy mediator, that could induce the operators,
lies out of the kinematic reach of the collider. In this regard, since LHC limits on DM
usually correspond to mass-suppression scales that are lower than the energy of the
process, the validity of the EFT approximation becomes questionable and an active me-
diator particle would need to be included instead. This simple point requires a careful
and consistent use of the effective approach, checking its range of validity, in the con-
text of DM searches at the LHC. Now, unlike EFTs, simplified models which are made
of renormalizable operators, are valid to arbitrary high energies as they capture the on-
shell effects of the mediators. A downside of such models is that the structure of the
couplings does not always respect gauge invariance. In addition, they are not as model
independent as EFTs, since the mediator is explicitly present in the operators, no addi-
tional new physics is allowed, and they often do not capture realistic UV scenarios. A
comparison of the advantages and disadvantages of EFTs and simplified models in a
DM context is discussed in Ref. [4]. It is the combination of these two approaches that
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is of special interest in this thesis and will be explored through a hybrid framework and
to be later discussed.

After building any new beyond the SM (BSM) model, it is necessary to study their
phenomenology and verify that the parameters in the proposed theory are not ruled out
by current experimental limits. To this end, we normally perform Monte Carlo simula-
tions followed by an extensive analysis of signal vs background. The latter can be done
through conventional methods like cut and count or by studying the Likelihood ratio.
However, as technology evolves, the amount of available data increases dramatically.
Only the ATLAS and CMS experiments at the LHC generate petabytes (∼ 109 Mb) of
data per year. This together with the continuous quest for more precision have brought
the need of implementing new methods to perform the analysis of our models. Ma-
chine learning (ML), is nowadays the most efficient tool for the analysis of "big data".
Several ML algorithms can be easily adapted to physics analysis, some of them are de-
cision trees, decision forest, linear regression, logistic regression and neural networks.
For more information, on the relation between physics and ML please see Ref. [5] and
for a broad overview with practical examples/exercises refer to Ref. [6]. The implemen-
tation of such techniques is not the main scope of this work and therefore will only be
mentioned as complementary information.

This thesis is divided into two independent parts: the first one in which two renor-
malizable extensions of the SM are built (Chapter 2) and the second one where a non-
renormalizable approach is considered (Chapters 3 and 4). The overarching idea being
to understand the puzzles mentioned in the beginning. More explicitly, the content of
the present document goes as follows. In Chapter 2, we study the flavour puzzle by
extending the SM content with a second scalar in a two-Higgs doublet model (2HDM)
scenario [7]. Dirac’s and ’t Hooft’s naturalness criteria are discussed in Sec. 2.1. We mo-
tivate such scalar extensions in Sec. 2.2 and introduce the 2HDM formalism in Sec. 2.3.
We explore the origin for the observed difference between the SM fermion masses by
linking the energy scale of a given set of fermions to a unique Higgs doublet. To avoid
the unwanted appearance of flavour changing neutral currents (FCNC) we employ the
singular alignment ansatz [8] in Sec. 2.7. We then explicitly construct two models called
Type-A and B, in Sec. 2.8, where either the top quark alone or the heaviest fermion gen-
eration couples to the Higgs doublet with the largest vev, while the other fermions
couple to the second scalar doublet. The main differences between the new proposed
models and conventional ones are discussed together with their phenomenological con-
sequences, like possible tests at the LHC, in Secs. 2.9–2.11. Additional information on
the flavour in the SM is found in Appendix A.

The following two chapters compose the second part of the thesis and deal with
non-renormalizable scalar extensions. In Chapter 3 we explore a model where not only
the problem of mass is considered but also DM. We first introduce the concept of effec-
tive field theories (EFTs) from a top-down and bottom-up approach in Sec. 3.1, giving
further explicit examples in Appendix B. Then, a brief overview of DM and simplified
models is given in Sec. 3.2 which is followed by their combination in a framework
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called extended dark matter EFT [9] in Sec. 3.3. This framework addresses drawbacks
regarding validity at high energies and/or generality that conventional DM effective
field theories or simplified models suffer of. Here, the advantages of model indepen-
dence of effective theories are taken but also the dark matter states and a new scalar
mediator are kept as propagating degrees of freedom. The presence of the latter, which
properly connects the dark sector to the fields with the help of dimension five opera-
tors, increases the consistently testable parameter space at colliders. Afterwards, in Sec.
3.4, we present an eDMEFT case scenario [10] where we explored the possibility of DM
coupling to the first generation of the SM fermions via a scalar mediator, S , odd under
a parity symmetry. We can then address the small nature of the first generation fermion
masses together with a prominent di-jet/lepton plus missing transverse energy (MET)
signal at the (HL-)LHC and the future e+e− Compact Linear Collider (CLIC) [11]. To fi-
nalize, in Sect. 3.5 we match concrete models of DM to the mentioned framework. This
allows us to translate the experimental constraints derived in Ref. [12] to more-UV-
complete scenarios. To achieve this, we considered three setups: two Higgs doublets
plus a pseudoscalar or a scalar mediator and another one with heavy vector-like quarks
plus a scalar mediator. Both models also contain fermionic DM. With this, we want to
show that the eDMEFT can be used as a convenient standard interface between exper-
iment and concrete DM models. Lastly, in Sec. 3.6, we study the collider signatures in
the eDMEFT and translate the exclusion limits into the more-UV-complete parameters
by using the matching relations obtained in the previous section. In particular, we fo-
cus in mono-jet searches where the signal is characterized by a jet plus large missing
energy. A more complete study on the matching of these theories is new, unpublished
work and partially presented in this thesis, and will be extended to a paper [13].

In Chapter 4, we present an EFT interpretation of the reported XENON1T Electron
Recoil Excess [14]. We start by introducing the observed excess in Sec. 4.1 and con-
tinue by detailing the setup in Sec. 4.2, which is a slightly extended version of the
eDMEFT. We continue by fitting the excess in Sec. 4.3 and confront several astrophys-
ical and laboratory constraints for the previous framework in Sec. 4.4. Our findings
are the following two: i) the excess can be explained by neutrino/electron interactions,
while a DM-electron scattering does not lead to statistically significant improvement;
ii) additionally, severe constraints are obtained in the parameter space preferred by the
anomaly, where it can only be avoided in certain small regions. In Sec. 4.5, we realize
how the potential problematic bounds on electron couplings from Big-Bang Nucleosyn-
thesis can be circumvented via a late phase transition in the new scalar sector. Lastly,
in Sec. 4.6 we discuss the current status of the XENON1T excess and what should we
expect for the future DM experiments.

Finally, in Chapter 5, we summarize our findings and conclude. Additionally, three
appendices have been added where we give details on the SM flavour sector (Appendix
A), three of the most common EFTs (Appendix B) and a brief discussion on the required
procedures for the statistical analyses done in Sec. 3.4 (Appendix C).
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Scalar Sector
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Chapter 2

Natural 2HDMs without FCNCs

The discovery of the Higgs particle not only represented a validation of the SM the-
ory but it also opened the door to the possibility of having more than one fundamen-
tal scalar in Nature. Hence, we focus here on a minimal renormalizable extension of
the SM by going beyond the simplest choice of introducing a weak singlet scalar and
instead, consider a weak doublet scalar with the same quantum numbers as the SM
Higgs. The reason behind this choice is to not only extend the scalar spectrum but si-
multaneously address the hierarchy in the fermion masses, as this inclusion doubles
the amount of Yukawa terms, providing an additional freedom to study the origin of
the fermion masses.

The outlook of the chapter is as follows. In Sec. 2.1, we discuss Dirac and ’t Hooft’s
naturalness criteria, and evaluate under which conditions the SM fermions could be
called natural. We find that multi-scalar theories with suitable vevs, could fulfill both
naturalness criteria in the SM fermionic sector. In Sec 2.2, we explore possible exten-
sions to the SM scalar sector and discuss the minimal scenario where only a second
SU(2) doublet is added to the SM content. Here we also present several theoretical
constraints on the CP-even potential parameters. In Sec. 2.3, we discuss the general
aspects of the 2HDM models. We continue in Sec. 2.4 with ways to avoid problem-
atic flavour-changing-neutral-currents and motivate the need for a Z2 symmetry. Here
we also present the four conventional types of 2HDMs with natural flavour conserva-
tion [15, 16]. The soft-breaking of the latter symmetry and how to produce hierarchical
vevs are discussed in Sec. 2.5. We discuss the scalar potential and the theoretical con-
straints in Sec. 2.6. In Sec. 2.7, we study in detail the generalization of the Yukawa
alignment called singular alignment [8]. Moving forward, in Sec. 2.8, we present the
setup of two new natural 2HDM types (Type-A and Type-B). In both types, we address
either the heaviness of the top or of the third fermion family compared with the other
SM fermions. We continue in Sec. 2.9, with the study of the corresponding scalar cou-
plings and the branching ratios of the SM-like scalar h in Type-A and B. Furthermore, in
Sec. 2.10 we list all the experimental constraints that are relevant for the phenomenolog-
ical study and defining convenient benchmarks. To finalize, in Sec 2.11 we present and
discuss the phenomenological results. Complementary information on flavour physics
in the SM can be found in Appendix A.
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2.1 Naturalness as a Motivation to Multiscalar Theories

The concept of naturalness has played an important role in particle physics, for recent
discussions see Refs. [17–21]. It gives rise to the hierarchy problem. The latter can be seen
as an unnatural separation between the Planck scale, as defined by the Planck mass
Mp ∼ 1019 GeV, and the EW scale, as defined by the SM Higgs’ vev, v ∼ 102 GeV.
This particular situation originates because the loop-effects or quantum corrections to
the Higgs mass are way larger than the tree level effects. From the symmetry point of
view, we understand the lightness of the fermions as they are protected by the chiral
symmetry, also the gauge bosons become massive only after the electroweak symmetry
breaking and therefore their mass is naturally expected at O(100) GeV. However, the
Higgs mass has no symmetry protecting it and therefore nothing prevents the appear-
ance of large quantum corrections in this parameter, thus making unnatural to have a
light mass. We will not elaborate further as it is not the focus of this thesis and rather
move to another issue with hierarchical numbers, while referring the reader to the pre-
vious references.

As mentioned in the introduction in Chapter 1, the SM fermion masses have among
them very well defined patterns and they cannot be explained by the SM current frame-
work. We are interested in studying these patterns that, as a whole, do not represent a
problem from the viewpoint of the aforementioned discussion. However, the fact that
the top-quark is the only one with coupling yt = 1, in accordance to the EW scale, trig-
gers the question of how naturally small, when compared to the top-quark, are the other
Yukawa parameters in the fermionic sector. That is, how expected can small quantities
be in a given theory. As natural is a subjective concept one must stick to a mathemati-
cal (or at least to a conventional) definition that could help us to distinguish when the
parameter’s value may be considered natural.

Dirac and ’t Hooft proposed two pioneering criteria to be capable of clearly defining
naturalness, Ref. [22] and [23], respectively. Dirac’s naturalness criterion [22] requires
all dimensionless couplings of a giving theory to be of order one in order to be called
natural. On the other hand, ’t Hooft’s criterion [23] states that a smaller than one pa-
rameter is natural if the theory, where it is contained, acquires a symmetry when this
parameter is set to zero. For extended reviews on naturalness, see Refs. [24–27].

Applying Dirac’s criterion to the SM would then demand the observation of all the
fermion masses to be around the electroweak scale, i.e. m f = y f v with y f ∼ O(1) and
v = 174 GeV the SM Higgs vev; which, as mentioned before, is only satisfied by the top
quark. The unnaturalness of the SM lighter fermions can then be described as:

yt ∼ 1≫ y f ( f = c, b, s, u, d, τ, µ, e) . (2.1)

However, the smallness in this set of small Yukawas could still be called natural accord-
ing to ’t Hooft’s criterion. In fact, if we take the limit where all SM Yukawa couplings
are taken to zero, we recover a U(3)5 flavour symmetry. This corresponds to a U(3)
symmetry for each type of right- and left-handed fermion

U(3)QL ×U(3)LL ×U(3)dR ×U(3)uR ×U(3)eR . (2.2)
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A caveat still exists: there is no common parameter among this set of masses that could
simultaneously bring all of them to zero. Although this is a subjective choice, it brings
many benefits. The main one is that the lightness of the whole set of fermion masses
is related to a single parameter in a minimalist approach. Note that the intricacies also
appearing within the set itself would require additional parameters but at the expense
of further complexities in the theory. As we are interested in the minimalist approach
we do not consider them here. Now, there are two ways to solve the aforementioned
caveat: 1) with a common Yukawa that would point to a symmetry or 2) the appearance
of other vevs which would be used to make the distinction between mass scales. Here,
we consider the second approach.

A theory with multiple Higgs doublets with all of them acquiring a vev would im-
ply for the fermion mass matrices

M f = ∑
i

Yi
f vi (2.3)

where f = u, d, e and ∑i v2
i = v2 = (174GeV)2. In general, when moving to the mass

basis, one would expect the fermion masses to be given by a linear combination of
Yukawa parameters and vevs

m f = ∑
i

yi
f vi . (2.4)

It is only through the introduction of symmetries that a given vev could be made re-
sponsible for the masses in a certain fermion sector. In Sec. 2.8, we discuss such a
mechanism.

2.2 Scalar Extensions

The fact of having already observed a neutral scalar particle points towards the pos-
sibility of a richer scalar sector. These new scalars could then be used to tackle some
of the SM downsides, as the problem of mass or DM, as we will see in the upcoming
sections. Nevertheless, multi-scalar theories should satisfy severe constraints imposed
by the measured 125 GeV scalar.

There are several types of scalar multiplets, that could belong to the electroweak
symmetry breaking sector. In particular, scalar singlets and doublets under SU(2)L are
among the safest options1. This because they do not spoil, at tree level, the well precise
measurement of ρ = MW/(cos(θw)MZ) = 1. New contributions to this parameter
are constrained by the maximum allowed deviations from the SM-expectation [32], the
experimental value of the rho parameter is:

ρexp = 1.00040± 0.00024 . (2.5)

1The inclusion of larger SU(2)L representations is possible under the right choice of hypercharges. In
general, these type of models have a richer scalar sector, e.g. adding a Higgs triplet with Y = 2 to the
SM one has doubly charged scalars apart from the known single charged ones which may give unique
phenomenology like the possibility of explaining the smallness of the neutrino masses, accommodating
DM candidates, and providing an interesting search channel for collider searches, as a recent example see
Ref. [28]. Nevertheless, they also bring up more subtleties into play [29–31].
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The tree-level contributions produced from a theory with N number of scalar multiplets
is [33]

ρtree =

N
∑

i=0
[Ti(Ti + 1)−Y2

i ]vi

2
N
∑

i=0
Y2

i vi

, (2.6)

where T denote the weak isospin and Y the hypercharge, i stands for the i-th scalar
multiplet respectively. Lastly, vi is the vev acquired by the neutral component of the
corresponding multiplet. At this point, is easy to note that if the scalar sector contains
only SU(2) singlets and doublets i.e. Ti = 0 and Ti = 1/2 with Yi = 0 and ±1/2,
respectively, then the requirement ρ = 1 at tree level is automatically fulfilled without
the need of any fine-tuning among the vevs.

Note that a clear disadvantage of extending the SM scalar sector with additional
scalar singlets is that they do not contribute to the flavour structure of the theory, as
scalar singlets do not couple to fermions (in a renormalizable theory) due to gauge in-
variance. Their only contributions are in the scalar sector. On the contrary, Higgs weak
doublets enrich the Yukawa sector of the theory. Hence, adding additional doublets
turns out to be the most compelling option, as they allow the study of an origin for the
mass hierarchies.

As the two dominant aspects in the fermion mass hierarchies are: i) top-quark dom-
inance, mt ≫ m f , and ii) the third fermion family mass being much larger than the first
two, m3 ≫ m1(2), then we only consider the introduction of one Higgs doublet that
could help us make the distinction between the two different energy scales. Therefore,
in the following, we focus on a minimal extension of the SM scalar sector with only
one additional scalar doublet with the same quantum numbers as the SM one called
two-Higgs-doublet model (2HDM).

2.3 The General 2HDM

We have introduced a second Higgs doublet to the SM framework with hypercharge2

Y = 1
2 ,

Φj =

(
ϕ+

j
vj + ϕ0

j

)
(j = 1, 2) , (2.7)

where vj represents the corresponding vev 3 and ϕ0
j can be decomposed as ϕ0

j = ℜ(ϕ0
j )+

iℑ(ϕ0
j ). Note that we have doubled the amount of scalar fields, and so, the scalar spec-

tra is now made of two electrically charged scalars and four neutral ones. After EWSB,

2We are employing the following definition for the electric charge operator, Q = 1Y + σ3
2 where σ3 is

the diagonal Pauli matrix with the two eigenvalues ±1.
3In general, vj can be complex, e.g. in a Charge-Parity (CP) violating potential [34].
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it is necessary to ensure that three of them remain massless (Goldstone bosons) and be-
come the longitudinal degrees of freedom of the weak gauge bosons (W± and Z0), thus
making us end up with five physical Higgs bosons to be later discussed in more detail.

The most general scalar potential for two scalar doublets, Φ1 and Φ2, is written as
follows [34]

V2HDM = ∑
x=1,2

[
m2

xx(Φ
†
xΦx) +

λx

2
(Φ†

xΦx)
2
]
− (m2

12Φ†
1Φ2 + h.c.) (2.8)

+ λ3(Φ†
1Φ1)(Φ†

2Φ2) + λ4(Φ†
1Φ2)(Φ†

2Φ1)

+

[
1
2

λ5(Φ†
1Φ2)

2 + λ6(Φ†
1Φ1)(Φ†

1Φ2) + λ7(Φ†
2Φ2)(Φ†

1Φ2) + h.c.
]

.

The physical or nonphysical nature of the parameters can be deduced from the follow-
ing counting. First, as the potential should be real, the two mass parameters m11, m22
are required to be real while the third one m12 can be, in general, complex. On the
other hand, {λ1, λ2, λ3, λ4} are required to be real while {λ5, λ6, λ7} can also be, in gen-
eral, complex. That is, we have fourteen parameters (ten magnitudes and four complex
phases). To finally determine which of them is physical, we take into account the fact
that there is a nonphysical freedom in rotating the Higgs basis,(

Φ̃1

Φ̃2

)
= U

(
Φ1
Φ2

)
, (2.9)

where U is a two-dimensional unitary matrix, U†U = UU† = I2×2. This unitary matrix
can be re-expressed as U = eiαŨ where Ũ is a special unitary matrix. The complex
phase gets automatically cancel out in the scalar potential, offering no reduction in the
number of parameters, while the three parameters implied by the remaining rotating
freedom, Ũ, translates into the fact that, when moving to the mass basis or any other
special basis, there are 11 = 14− 3 physical parameters.

There exists several conditions that the scalar potential should satisfy. The ones
required for minimizing the potential in Eq. (2.8) are

m2
11 = m2

12 tan β− v2[λ1 cos2 β + λ345 sin2 β + 3λ6 sin β cos β + λ7 sin2 β tan β] (2.10)

m2
22 = m2

12 tan−1 β− v2[λ2 sin2 β + λ345 cos2 β + λ6 cos2 β tan−1 β + 3λ7 sin β cos β]

where λ345 = λ3 + λ4 + λ5, tan β = v2/v1 and v2 = v2
1 + v2

2. On the other hand, the
scalar potential should be bounded from below (BFB), that is we require that there
should not be any directions in the field space in which the Higgs potential grows
infinitely negative, V2HDM → −∞. To this end, the lambda parameters should meet
certain requirements as

λ1,2 ≥ 0 , λ3 ≥ −
√

λ1λ2 , λ3 + λ4 − |λ5| ≥ −
√

λ1λ2 . (2.11)
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It has been shown in Refs. [35, 36] that these are actually necessary and sufficient con-
ditions when λ6 = λ7 = 0. However, when assuming these couplings as complex the
additional requirements do not follow a simple analytic formula. For simpler scenarios,
like when assumed real, one may find other necessary conditions like [37, 38],

2|λ6 + λ7| < λ1 + λ2 + λ3 + λ4 + λ5 . (2.12)

Further details on the constraints for the general 2HDM are out of the scope of this
work and instead, we refer the interested reader to Ref. [34].

2.4 FCNCs and the Introduction of a Z2 Symmetry

Adding a second scalar doublet to the SM brings its own challenges. One of them is the
dangerous presence of flavour-changing-neutral-currents (FCNCs) at tree-level4. The
latter are interactions that change the flavour of fermions through a neutral mediator.
These interactions do not show up in the SM at tree level and get suppressed at the
loop level. This happens because the Z and γ bosons couple only diagonally in flavour
space. Additionally, the FCNCs present at the loop level have been experimentally
observed to be strongly suppressed [39, 40]. The smallness of the FCNCs in the SM has
long been understood through the Glashow–Iliopoulos–Maiani (GIM) mechanism [41].
However, its simplicity requires only considering one Higgs doublet; once two scalar
doublets are assumed, the fermion mass matrix

M f = v1Y1 + v2Y2 , (2.13)

has more than one contribution. As a consequence, the diagonalization of the mass
matrix, M f , does not guarantee that any of the two Yukawa matrices conforming it also
become diagonal. Hence, there is nothing that may prevent potential flavour transitions
at the tree level. These FCNCs get mediated by the linear combination of the neutral
components of the doublets. Note that this undesirable aspect, in general, is a common
feature of multiscalar theories that have no clear mechanism to suppress FCNCs. To
overcome this situation, one must call for further assumptions.

A typical approach to avoid tree-level FCNCs, departing from the general 2HDM,
is to introduce a Z2 symmetry under which both the scalar doublets and the fermions
get non-trivial charges [15, 16]. Conventionally, the Z2-parities are assigned as

Φ2 → +Φ2 and Φ1 → −Φ1 . (2.14)

Note how this allows the separation into two different set of fermions, those which
only interact with Φ1 and those which only interact with Φ2. This distinction reduces
the contribution of the Yukawa matrices to a single one per fermion-type, i.e the mass
matrix in Eq. (2.13) becomes M f = viYi, where i = 1, 2 depending on the assigned Z2

4The only kind of flavour-changing transitions occurring at tree level are those mediated by the charged
W± bosons.
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charge of the given fermion type. Then the diagonalization of the mass matrix ensures
the diagonalization of the Yukawa matrix, preventing FCNCs at tree-level.

There are four common types of distributing the Z2 charges and therefore four con-
ventional 2HDMs:

• Type I: Here all quarks and leptons couple to only one scalar doublet Φ2.

• Type II: Here Φ2 couples to up-type quarks, while Φ1 couples to down-type
quarks and charged leptons.

• Type X (or lepton-specific): Here Φ2 couples to all quarks, while Φ1 couples to all
leptons.

• Type Y (or flipped): Here Φ2 couples to up-type quarks and leptons, while Φ1
couples to down-type quarks.

A summary of the Z2 charge distribution for each of the aforementioned 2HDM
types is shown in Table 2.1. For a thorough assessment of 2HDMs please refer to [34]
and for more recent reviews to [33, 42]. Note that, when introducing the Z2 symmetry
in the 2HDM, this is usually applied only to the right-handed (RH) fermions. As an
example, let us consider the Type-II scenario, where the Z2 assignments for the fermions
are,

di,R → − di,R , ei,R → − ei,R ,
ui,R → + ui,R ,

(2.15)

with i = 1, 2, 3. Here, all left-handed fermions are even under the parity symmetry.
Then, Φ2 can only couple to up-type quarks, while Φ1 couples to down-type quarks
and charged leptons, shown in the second column of Table 2.1.

The introduction of the parity symmetry reduces the number of parameters in the
scalar potential, m2

12, λ6,7 = 0. Then, the most general Z2-invariant scalar potential is
expressed as

VZ2
2HDM = ∑

x=1,2

[
m2

xx(Φ
†
xΦx) +

λx

2
(Φ†

xΦx)
2
]
+ λ3(Φ†

1Φ1)(Φ†
2Φ2)

+ λ4(Φ†
1Φ2)(Φ†

2Φ1) +
1
2

[
λ5(Φ†

1Φ2)
2 + λ∗5(Φ

†
2Φ1)

2
]

. (2.16)

Note that after demanding hermiticity, λ5 remains as the only complex parameter in
the potential, while m2

11, m2
22, and λ1,2,3,4 are real. However, performing the now al-

lowed phase redefinition5 the complex phase of λ5 can be turned to zero without loss
of generality. Therefore, as all parameters are real we conclude that the potential is
CP-symmetric and only has seven physical parameters.

5The parity distinction between the two Higgses brings the complex phase back.
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Type- I II X Y
ui,R Φ2 Φ2 Φ2 Φ2
di,R Φ2 Φ1 Φ2 Φ1
ℓi,R Φ2 Φ1 Φ1 Φ2

TABLE 2.1: The four different types of 2HDMs without tree-level FC-
NCs. The allowed couplings between each fermion and a certain Higgs
doublet are imposed by a group symmetry, e.g. a Z2. Note that only the

right-handed components obtain a non-trivial charge assignment.

Another set of options to evade FCNCs include, next to arranging the additional
scalar particles to be very heavy, suppressing dangerous Yukawa couplings [43], sep-
arating the Yukawa matrices, by introducing a Z2 symmetry, such that only one scalar
doublet couples to a given right-handed fermion field [15, 16], or Yukawa alignment
[44, 45], in which the different Yukawa matrices are proportional to each other. In par-
ticular, the new models proposed in this chapter, assume a generalized version of the
Yukawa alignment, where their parameters are assumed to be in a certain region of
flavour space. There, both Yukawa matrices become diagonal in the mass basis, irre-
spective of the fact that they were initially not proportional to the mass matrix. The sim-
plest case assumption is known as the Yukawa alignment anzat [44] while the flavour
non-universal realization of the latter is called singular alignment [8, 45] and it is ex-
plained in detail in Sec. 2.7.

2.5 Soft-Breaking Z2 and Hierarchical vevs

The problem of mass has many facets as aforementioned in Chapter 1. To understand
them all, within a renormalizable approach, would actually require having more than
two Higgs doublets, e.g. the most extreme case would require a nine Higgs doublet
model [46] while the minimal one, requires only four Higgs doublets [8]. With two
scalar doublets there are only two vevs, allowing a single split in the fermion mass
spectrum. This split can be either use as a way to understand the top-dominance aspect,
where mt ≫ m f ( f stands for all other fermions except the top quark), or the third-
generation-dominance where m3 ≫ m1,2 where the sub-index indicates the fermion
generation.

Now, there are two requirements that are necessary in order to guarantee the sepa-
ration of the fermion masses into two energy scales: i) to be able to express a given set
of eigenmasses in terms of a chosen vev regardless of the fermion type, for example:

mt = ytv2 and mc(u) = yc(u)v1 , (2.17)

and ii) to be able to produce and control the hierarchy between the vevs, v2 ≫ v1.
To this end, singular aligning the Yukawa matrices with the right Z2 assignments will
guarantee the first condition. However, the second requirement is not a conventional
procedure in 2HDMs. In the following, we discuss the subtleties and details on the
mechanism.
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We want the following two scales:

v2 ∼ O(100) GeV and v1 ∼ O(1) GeV . (2.18)

The energy scale of each vev should correspond to the heaviest mass of the set of
fermions with which they are coupled. In order to create such a hierarchy, we then
guarantee that in the first stage only Φ2 develops a vev by assuming

m2
22 < 0 and m2

11 > 0 . (2.19)

Therefore, the Z2 symmetry is preserved, and

v2 =

√
−m2

22
λ2

, (2.20)

while v1 = 0. The second stage then requires to softly-break the Z2 symmetry by adding
the term

−m2
12(Φ

†
1Φ2 + Φ†

2Φ1) (2.21)

to the potential in Eq. (2.16). Choosing m2
12 to be real ensures that these terms preserve

CP. If the condition m2
12tβ ≫ λ1v2

1 with tβ = v2/v1 is met, then Φ2 induces a small vev
to Φ1 of the form

v1 ≃
m2

12v2

m2
11 + λ345v2

2
, (2.22)

where λ345 ≡ λ3 + λ4 + λ5. One can show that in this case the heavy scalar masses are
above the EW scale. The two minimization conditions from which Eqs. (2.20) and (2.22)
were derived are:

m2
22v2 = m2

12v1 − λ2v3
2 − λ345v2v2

1 ,

m2
11v1 = m2

12v2 − λ1v3
1 − λ345v1v2

2 .
(2.23)

Note that, in the limit where v1 → 0 and m2
12 → 0 we recover the vev in Eq. (2.20). For

the sake of illustration, we can simplify the expression for v1 by assuming λ345 ∼ O(1)
and m11 ∼ v2, thus obtaining

v1 ∼
m2

12
v

. (2.24)

Hence, if m12 ∼ O(10 GeV) then v1 ∼ O(1 GeV), as expected. Realize that the small-
ness of v1 is natural regarding ’t Hooft’s criterion, as if setting it to zero we recover the
initial Z2 symmetry. Now, as both vevs contribute to the W-boson mass, they satisfy
the condition

v2 = v2
1 + v2

2 = (174 GeV)2 . (2.25)

As we still need one of the scalars to be responsible for the top-quark mass, it is straight-
forward to realize that the large vev will be close to the EW scale, i.e. v2 ≈ v. The latter
is a direct consequence of taking the hierarchical nature between the vevs, v2 ≫ v1.
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2.6 The Scalar Potential and its Theoretical Constraints

The physical states of the CP-symmetric potential are: two CP-even (h, H) and one CP-
odd (A) in the neutral scalar sector, and a pair of scalars (H±) in the charged sector. The
transition from the interaction to the mass basis, i.e. from

(Re(ϕ0
1,2), Im(ϕ0

1,2), ϕ±1,2)→ (h, H, A, H±, G0, G±)

depends on only two mixing angles (α, β), and is parametrized as follows:(
h
H

)
=

(
cos α − sin α
sin α cos α

)(
Re(ϕ0

2)
Re(ϕ0

1)

)
,(

A
G0

)
=

(
cos β − sin β
sin β cos β

)(
Im(ϕ0

2)
Im(ϕ0

1)

)
,(

H+

G+

)
=

(
cos β − sin β
sin β cos β

)(
ϕ+

2
ϕ+

1

)
,

(2.26)

where G0 and G+ denote the required two massless SM Goldstone bosons. In the fol-
lowing, we refer to h as the SM-like Higgs with mass mh = 125 GeV. Furthermore we
know that tan(β) = v2/v1, therefore, v2 = v sin(β) and v1 = v cos(β) . Through the
invariants of the scalar mass matrices and

t2α =
2(v2λ345 s2β −m2

12)

m2
12(tβ − t−1

β ) + 2v2(c2
βλ1 − s2

βλ2)
, (2.27)

the quartic couplings of the scalar potential in Eq. (2.16) can be expressed in terms of
the Higgs mass eigenvalues [47–49]

λ1 =
1

2v2c2
β

(
m2

hc2
α + m2

Hs2
α −M2s2

β

)
,

λ2 =
1

2v2s2
β

(
m2

hs2
α + m2

Hc2
α −M2c2

β

)
,

λ3 =
1

2v2

[ s2α

s2β
(m2

H −m2
h) + 2mH± −M2

]
,

λ4 =
1

2v2

(
M2 + m2

A − 2m2
H±

)
,

λ5 =
1

2v2

(
M2 −m2

A

)
,

(2.28)

where M2 ≡ 2m2
12/s2β, mA, mH± are the masses for the neutral CP-odd and charged

scalars and mh, mH are the masses of the SM-like and heavy Higgs, correspondingly.
We note that λ345 = [M2 + (m2

H −m2
h)s2α/s2β]/(2v2).

For the scalar potential to be bounded from below, the quartic couplings should
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fulfil the conditions in Eq. (2.11) [35,50] Moreover, from imposing unitarity and pertur-
bativity conditions, the coefficients have to satisfy the following relations [33, 51]

|λ3 + 2λ4 ± 3λ5| ≤ 16π ,
|λ3 ± λ4| ≤ 16π , |λ3 ± λ5| ≤ 16π ,∣∣∣1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

4

) ∣∣∣ ≤ 16π ,∣∣∣1
2

(
λ1 + λ2 ±

√
(λ1 − λ2)2 + 4λ2

5

) ∣∣∣ ≤ 16π ,∣∣∣1
2

(
3λ1 + 3λ2 ±

√
9(λ1 − λ2)2 + 4(2λ3 + λ4)2

) ∣∣∣ ≤ 16π .

(2.29)

These constraints indirectly ensure that the potential remains perturbative up to very
high scales. Any additional constraint on the sizes of the λi will make the analysis more
restrictive.

For last, in order to guarantee a global minimum, we need to fulfill the constraint
[52]

m2
12

(
m2

11 −m2
22

√
λ1

λ2

)(
tβ − 4

√
λ1

λ2

)
> 0 . (2.30)

2.7 Singular Alignment

The right implementation of the parity symmetry Z2, starting from a general 2HDM,
avoided the appearance of tree-level FCNCs and produced four types. This class of
theories, in which symmetries are adequately used to complement the GIM mecha-
nism when going beyond the SM, are said to possess Natural Flavour Conservation
(NFC) [15, 16].

Interestingly, the four conventional models can actually be contained as particular
cases of an ansatz called Yukawa alignment [44]. It is a generalized approach to pro-
hibit FCNCs at tree level, without choosing a particular type, and consistent with NFC
theories. The ansatz states that the two Yukawa matrices, contributing to a given mass
matrix, should be proportional to each other

Y1 ∝ Y2 , (2.31)

guaranteeing the simultaneous diagonalization of both Yukawa matrices, Y1(2), when
moving to the mass basis.

Realize how the Yukawa alignment and the four models it may represent, are flavour
universal regarding how the parity symmetry was employed. A flavour non-universal
approach has been already proposed [8, 45]. This kind of alignment in flavour space
does not have any specific symmetry protection at the Lagrangian level. Therefore,
one-loop quantum corrections may induce misalignment in the Yukawa matrices and
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bring about FCNCs at the loop level. In Ref. [45], it was shown that the induced mis-
alignment is a quite small effect, as the initial alignment in the multi-Higgs Lagrangian
has some residual flavour symmetries, which tightly limit the type of FCNC operators
that can be generated at higher orders. This can be easily understood as both the flavour
universal Yukawa alignment and its generalization are a linear realization of the mini-
mal flavour violation hypothesis [53] and could be derived from it [54]. This hypothesis
states that the only source of flavour breaking should come from the Yukawa matrices,
even in the presence of new particles and interactions [55–57]. Lastly, this kind of ap-
parently adhoc ansatz could originate from a family symmetry as shown in Ref. [58] or
from an effective approach with additional hidden scalars [59].

In order to explain the singular alignment ansatz, let us first introduce a key con-
cept: the Singular Value Decomposition (SVD). In general, a complex matrix M can be
decomposed as

M = L†ΣR , (2.32)

where Σ = diag(m1, m2, m3) with mi > 0 and L and R are unitary matrices which rotate
independently the left and right-handed fermion fields. Notice how the SVD in Eq.
(2.32) can also be written as a sum of three rank 1 matrices,

M = ∑
i

miL†PiR , (2.33)

where Pi are three projector operators, P2
i = Pi and ∑i Pi = 13×3. Here each Pi reads

P1 =

1 0 0
0 0 0
0 0 0

 , P2 =

0 0 0
0 1 0
0 0 0

 , P3 =

0 0 0
0 0 0
0 0 1

 . (2.34)

In the following, we denote each rank 1 matrix by

∆i = L†PiR , (2.35)

and we refer to it as a singular matrix.

Now, let us apply the aforementioned and continue with the discussion on the sin-
gular alignment ansatz. The latter takes, as starting point, the singular value decompo-
sition in Eq. (2.32) and apply it to Eq. (2.13). The mass matrix then takes the form

L†MdiagR = v1Y1 + v2Y2 . (2.36)

Note that Mdiag can be expressed in terms of the projection operators as

Mdiag = ∑
i

miPi with [Pi]jk = δijδik (i, j, k = 1, 2, 3) (2.37)
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then, it is possible to redefine the l.h.s of Eq. (2.36) as

∑
i

mi∆i = v1Y1 + v2Y2 , (2.38)

where recall ∆i = L†PiR.
Now the ansatz of singular alignment is defined by demanding that each Yukawa

matrix satisfies
Yk = αk∆1 + βk∆2 + γk∆3 , (k = 1, 2) . (2.39)

In return, we would obtain,

∑
i

mi∆i =

(
∑

k
αkvk

)
∆1 +

(
∑

k
βkvk

)
∆2 +

(
∑

k
γkvk

)
∆3 (2.40)

giving the relations for the masses

m1 = ∑
k

αkvk , m2 = ∑
k

βkvk , m3 = ∑
k

γkvk . (2.41)

Realize that, by substituting the ansatz defined in Eq. (2.39) into Eq. (2.36), each Yukawa
matrix becomes diagonal in the mass-basis and therefore, it guarantees the absence of
tree-level FCNCs. The new diagonal Yukawa matrix can be written as follows

Yk = LYkR† = αkP1 + βkP2 + γkP3 . (2.42)

Moreover, we recover the Yukawa alignment in the limit where αk ∝ βk ∝ γk [44]. It
is clear from here how the singular alignment can be seen as the generalized version of
the Yukawa alignment [44] and thus equivalent to [45].

2.8 Model Setups

We have gathered all the requirements to build a successful model where the hierarchy
between the two vevs can be directly transferred as two dominant mass scales in the
fermion spectrum. We use this to explain two independent aspects of the problem of
mass. Each aspect gives place to a different model setup as follows:

• Type A (or top-quark dominance): It offers a clear distinction between the top
quark and all the other fermion masses as motivated by the large mass splitting,

mt ∼ v≫ m f . (2.43)

• Type-B (or third-fermion-family dominance): It creates a distinction between the
whole third fermion family and the two lighter ones

m3 ≫ m1,2 , (2.44)

where this relation holds for each kind of fermion.
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From the point of view of naturalness, ’t Hooft’s criterion is fulfilled in both models,
as in the limit where the small vev, connected to all light fermion masses is taken to be
zero, v1 → 0, then the Z2 symmetry is recovered. On the other hand, Dirac’s criterion
gets realized slightly different in each model. Type-A has four natural Yukawa cou-
plings, {yt, yb, yc, yτ} ∼ O(1), while Type-B has only two, {yt, yc} ∼ O(1). Thus, even
though both types have a certain degree of naturalness in action, overall, Type-A offers
a more natural scenario than Type-B.

The field content of both models is that of a general 2HDM with a softly-broken
Z2 symmetry as discussed in Sec. 2.2. Also, in both of them we employ the singular
alignment ansatz to guarantee the absence of FCNCs at tree level.

The Z2 assignments for Type-A are:

u3,R → +u3,R

{uj,R, dj,R, ej,R} → −{uj,R, dj,R, ej,R}
(2.45)

whereas Type B:

{u3,R, d3,R, e3,R} → +{u3,R, d3,R, e3,R}
{uj,R, dj,R, ej,R} → −{uj,R, dj,R, ej,R} .

(2.46)

Here, j denotes the remaining RH fermions. All left-handed ones are chosen even under
the Z2 symmetry. We summarize the charge distribution of the two models in Table 2.2.

Then, the Yukawa Lagrangian for Type-A reads

−LQ
A,Y =

3

∑
i=1

Q̄i,L

[
yt

i Φ̃2u3,R + Φ̃1(yc
i u2,R + yu

i u1,R)
]

+
3

∑
i=1

Q̄i,LΦ1(yb
i d3,R + ys

i d2,R + yd
i d1,R) + h.c.

−Lℓ
A,Y =

3

∑
i=1

ℓ̄i,LΦ1(yτ
i e3,R + yµ

i e2,R + ye
i e1,R) + h.c. , (2.47)

while for Type-B reads

−LQ
B,Y =

3

∑
i=1

Q̄i,L

[
yt

i Φ̃2u3,R + Φ̃1(yc
i u2,R + yu

i u1,R)
]

+
3

∑
i=1

Qi,L

[
yb

i Φ2d3,R + Φ1(ys
i d2,R + yd

i d1,R)
]
+ h.c.

−Lℓ
B,Y =

3

∑
i=1

ℓ̄i,L
[
yτ

i Φ2e3,R + Φ1(y
µ
i e2,R + ye

i e1,R)
]
+ h.c. . (2.48)

In general, the two models presented here, feature FCNCs at tree level. However, as
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Type- A B
u3,R Φ2 Φ2
d3,R, e3,R Φ1 Φ2
Other RH fermions Φ1 Φ1

TABLE 2.2: Each column shows the fermions with the same Z2 charge
assignment as a certain Higgs doublet, Φ1(2). This defines the new types
A and B. Note that a flavour conserving ansatz is required in order to

avoid tree-level FCNCs.

discussed before, through the introduction of the singular alignment ansatz we choose
the right parameter region of family space such that the Yukawa matrices become diag-
onal in the mass basis. Thus, FCNCs are absent at tree level. For further details on the
application of the singular alignment in a multi-Higgs scenario, we refer to Ref. [8].

Note that, as the fermion mass matrices are given in terms of two hierarchical vevs,
v1 ≪ v2, we can explore the scenario where the smaller vev is set to zero and study the
possible consequences. In Type-A all mass matrices are equal to zero except the one for
the up-type quarks which takes the form

Mu = v2

0 0 yt
1

0 0 yt
2

0 0 yt
3

 . (2.49)

As the down-type quarks have a null mass matrix, a simultaneous unitary transforma-
tion in the quark weak doublet leaves the kinetic terms invariant and simultaneously
brings us to the mass basis. Therefore, at this level the quark mixing matrix is given by
the identity which is a good first approximation to the observed CKM mixing matrix.

In order to discuss lepton mixing in our models, we must introduce massive neu-
trinos to the setup. For the moment, we let open the possibility of Dirac or Majorana
nature. Under this circumstance, as the mass matrices for both the charged leptons and
neutrinos depend on the same vev (even in the Majorana scenario), the mixing among
them is expected to strongly deviate from the identity and behave more anarchically
which is aligned with the observations of the PMNS matrix [60].

On the other hand, the Type-B mass matrices in the limit where v1 → 0 take the
form

Mu = v2

0 0 yt
1

0 0 yt
2

0 0 yt
3

 , Md = v2

0 0 yd
1

0 0 yd
2

0 0 yd
3

 , Me = v2

0 0 ye
1

0 0 ye
2

0 0 ye
3

 . (2.50)

This implies that all fermion should mix anarchically, and therefore in disagreement
with the experimental observations. Nevertheless, this undesired issue can be solved
by reassigning all Z2 odd charges to the left-handed fermions instead of the right-
handed ones. Thereafter, a weak-basis transformation in the RH fields would be enough
to diagonalize the Yukawa matrices and recover the trivial quark mixing. However, in
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the lepton sector one would have anarchic mixing, but only under the assumption of a
Majorana neutrino nature.

To summarize the discussion on fermion mixing, both models are able to predict
trivial mixing for the quark sector under the right Z2 charge assignment. Additionally,
we predict anarchic mixing for the lepton sector if neutrinos are considered to have
Majorana nature. Additionally, fermion mixing can be explicitly related to tβ in the
recent study in Ref. [61]. We achieve similar conclusions for the Type-B scenario as
in [62] where a similar model is investigated.

2.9 Scalar Couplings

The Yukawa Lagrangian in the mass basis is expressed by:

−LY ⊃∑
f

m f

(246 GeV)

(
ξh

f f̄ f h + ξH
f f̄ f H − iξ A

f f̄ γ5 f A
)

− H+

√
2 ∑ij VCKM

ij

(246 GeV)
ūi

(
mui ξ

H+

qu
PL + mdj ξ

H+

qd
PR

)
dj

− H+

√
2mℓ

(246 GeV)
ξH+

ℓ ν̄L,iℓR,j + h.c. (2.51)

where VCKM is the quark mixing matrix (See Appendix A for further details). The SM
is recovered for ξh

f = 1 and ξH,A,H+

f = 0. In Table 2.3 we show the corresponding
couplings for the conventional NFC scenarios, while in Table 2.4 the respective ones for
our Types-A and B. The two tables show great similarities, as the main change from the
conventional ones is breaking their family universality.

To derive the Yukawa couplings shown in Tables 2.3 and 2.4 we first insert Φ1,2 from
Eq. (2.7) into Eqs. (2.47) and (2.48). Then we perform a rotation in the neutral and charge
scalar sector to move to the mass basis as in Eq. (2.26). The resulting terms depend on
β and α as well as on the two vevs, v1,2. In addition, we use the relations between the
fermionic Yukawa couplings and masses,

y f =
m f

cβ v
or y f =

m f

sβ v
. (2.52)

The former relation is then used if the given fermion couples to Φ1 whereas the latter
if it couples to Φ2. For an example where the couplings acquire a completely different
behaviour when enlarging the flavour symmetry to a larger group refer to Ref. [63].
For other related phenomenological applications of the Yukawa alignment see for ex-
ample [64].

Moving forward, the couplings of the CP-even scalars, h and H, to a pair of vector
bosons, V = W±, Z, are modified by

ξh
VV = sin(β− α) and ξH

VV = cos(β− α) . (2.53)
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Type- I II X Y
ξh

qu
cα/sβ cα/sβ cα/sβ cα/sβ

ξh
qd

cα/sβ −sα/cβ cα/sβ −sα/cβ

ξh
ℓ cα/sβ −sα/cβ −sα/cβ cα/sβ

ξH
qu

sα/sβ sα/sβ sα/sβ sα/sβ

ξH
qd

sα/sβ cα/cβ sα/sβ cα/cβ

ξH
ℓ sα/sβ cα/cβ cα/cβ sα/sβ

ξ A
qu

1/tβ 1/tβ 1/tβ 1/tβ

ξA
qd

−1/tβ tβ −1/tβ tβ

ξA
ℓ −1/tβ tβ tβ −1/tβ

ξH+

qu
1/tβ 1/tβ 1/tβ 1/tβ

ξH+

qd
1/tβ −tβ 1/tβ −tβ

ξH+

ℓ 1/tβ −tβ −tβ 1/tβ

TABLE 2.3: Flavour universal Yukawa couplings of the charged fermions
to the Higgs bosons h, H, A, and H+ in the four conventional 2HDMs.

Nevertheless, SM values are favored by present data, meaning that to a very good de-
gree of approximation,

sin(β− α) ≃ 1 . (2.54)

This is the so called alignment limit (AL) and whenever satisfied, the CP-even neutral
scalar, h, will have identical couplings as the SM one. We can approach the alignment
limit in terms of angles as: β = α + π/2− ϵ with ϵ → 0. An implication of the latter is
reflected in ξh

f → 1 in Tables 2.3 and 2.4. This again reinforces the fact that h behaves as
the SM Higgs in the AL. Our two proposed models satisfy the same alignment condi-
tions as the conventional NFC ones. To better understand the behaviour of the Yukawa
couplings we rewrite the relevant ξ

(h,H)
f in terms of tβ, cβ−α, and sβ−α. Including terms

for the AL up to O(ϵ) leads to

cα/sβ = sβ−α + cβ−α/tβ ≃ 1 + ϵ/tβ ,

−sα/cβ = sβ−α − cβ−α tβ ≃ 1− ϵ tβ ,

cα/cβ = cβ−α + sβ−α tβ ≃ ϵ + tβ ,

sα/sβ = cβ−α − sβ−α/tβ ≃ ϵ− 1/tβ .

(2.55)

Thus, away from the exact AL, we expect significant deviations in Type-A and B com-
pared to the SM Higgs couplings to the first and second fermion generations.

Before discussing the phenomenology of our two models, note that, regarding the
Higgs couplings, Type-A is closely related to Type-II besides the up and charm quark
couplings. Due to their small Yukawa values they have limited phenomenological rel-
evance at colliders, although some efforts have been made to constraint their values.
In particular, the decay h → J/Ψ + γ is sensitive to potential deviations in the charm-
Yukawa coupling which could be tested [65] see also [66]. For Type-B, the situation
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Type- A B
ξh

t cα/sβ cα/sβ

ξh
b,τ −sα/cβ cα/sβ

ξh
light −sα/cβ −sα/cβ

ξH
t sα/sβ sα/sβ

ξH
b,τ cα/cβ sα/sβ

ξH
light cα/cβ cα/cβ

ξA
t 1/tβ 1/tβ

ξ A
b,τ tβ −1/tβ

ξA
u,c −tβ −tβ

ξ A
d,s,ℓ tβ tβ

ξH±
t 1/tβ 1/tβ

ξH±
b,τ −tβ 1/tβ

ξH±
light −tβ −tβ

TABLE 2.4: Flavour non-universal Yukawa couplings, cf. Eq. (2.51), of
the charged fermions to the scalars h, H, A, and H+ in Type-A and B

with light = {u, c, d, s, ℓ} and ℓ = {e, µ}.

is slightly different. Compared to Type-I, the couplings to d, s, u, c, e, µ are changed.
Thus, in Type-B in case of deviations from the AL those couplings can be enhanced for
large values of tβ instead of being suppressed as in Type-I. Therefore, the changes in
the muon coupling are of special interest as it is experimentally constrained [67–69].
Lastly, Type-I is mostly constrained for tβ ≲ 10 due to the 1/tβ suppressed b-Yukawa
coupling, while for Type-II relevant constraints also arise for large values of tβ [70]. We
investigate all the aforementioned channels and compare the results between Type-A,
Type-B, Type-I and Type-II in Sec. 2.11.

To visualize the deviations from the SM Higgs couplings, in the four different sce-
narios: A, B, I and II; we show the branching ratios (BRs) of h as a function of tβ in
Figure 2.1 with cosβ−α = 0.1 for Type-A (II) in the right panel, as well as for Type-B (I)
in the left one [71, 72] Here Type-A and B are presented in solid lines while Type-I and
II as dashed lines. We notice that for Type-A, most decay modes behave very similar
to Type-II, except for the BR(h → cc̄) which differs significantly. On the other side,
in Type-B all BRs differ considerably compared to Type-I for tβ ≳ 30 as BR(h → cc̄)
becomes sizeable. Similarly, BR(h → µ+µ−) also shows deviations from predictions in
the usual 2HDM-types. A more detailed discussion of the h → µ+µ− mode and the
Higgs decay into charmonium plus a photon is presented in Sec. 2.11. Additionally,
the total decay width deviates stronger from the SM value for Type-A than for Type-B
as shown in Figure 2.2. In the left panel, regions outside the solid contour lines are
excluded at 95% CL by CMS [73].

Similarly, in Figure 2.3 we show the BRs for the heavy scalar, H. The BRs of the
pseudoscalar A, behave similarly and therefore, we do not discuss them explicitly. In
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FIGURE 2.1: Branching ratios of the SM-like scalar h in Type-A (left) and
B (right) for cβ−α = 0.1 [71,72]. For comparison we show the BRs in Type
II (left) and I (right), as dashed lines using the same color for each mode.

general, the left panel shows good agreement between Type-A and II, as expected. Ad-
ditionally, the BR(H → tt̄) dominates for tβ ≲ 5 in Type-A and II, respectively for
tβ ≲ 12 in Type-B, and for all values of tβ in Type-I. For values of tβ ≳ 10 BR(H → bb̄)
becomes dominant in Type-A and II, while in Type-B the BR(H → cc̄) takes over. In
Type-A and II, the decay H → τ+τ− features the second biggest BR for tβ ≳ 10. While
in Type-B the BR(H → µ+µ−) is the second dominant for tβ ≳ 43. Note that the latter
BR for Type-I is small and therefore not appearing in the plot. In Type-I, the ratios of
the BRs stay constant and the gg channel is next-to-dominant. Considering deviations
from the alignment limit decays to weak gauge bosons become relevant. For example,
for cβ−α = 0.1 the maxima of BR(H → WW) ≃ 0.33 and BR(H → ZZ) ≃ 0.16 are at
tβ ≈ 5. For higher values of tβ, both approach values of O(1%).

To understand the importance of studying the couplings of the SM Higgs as a way to
distinguish among different multi-scalar scenarios please refer to Ref. [74]. In particular,
different imprints that the SM and BSM scenarios leave on the Higgs Yukawa couplings
were identified. Namely, in the SM those couplings lay on a single line if plotted as a
function of the fermion masses. This also occurs for the 2HDM of Type-I but with a
different slope. On the other hand, for the Type-II the Higgs Yukawa couplings will lay
on two lines, one for down-type quarks and leptons and one for up-type quarks. Now,
within Type-A the top quark Yukawa coupling will deviate from the line defined by
the remaining fermions. In Type-B, all third generation Yukawa couplings will lay on a
different line than the ones of the light fermions.

2.10 Experimental Constraints and Benchmarks

In Sec. 2.6 we briefly discussed the theoretical constraints for 2HDMs. However, we
also need to include experimental limits that have been set by different channels. There



30 Chapter 2. Natural 2HDMs without FCNCs

10 20 30 40 50 60
tβ

10−4

10−3

10−2

10−1

Γ
h

A

I

II

SM

B

−0.4 −0.2 0.0 0.2 0.4
cβ−α

10

20

30

40

50

60

t β

A

B
0.002

0.002

0.
05
0

0.050

0.004

0.
00
4

0.004

0.
02
0

0.020

FIGURE 2.2: Left panel: Total decay width of h for Type-A, B, I, and
II with cβ−α = 0.1. The SM value is depicted as the black dotted line
and the experimentally allowed band [73] at 95% CL as the grey hatched
region. Right panel: Contours of Γh = const. for Type-A (blue) and B

(orange). Regions outside the solid lines are excluded at 95% CL [73].

are two ways to study multi-scalar scenarios: i) by possible deviations from the SM
predictions, specially on the SM Higgs properties, and ii) by direct searches for the new
scalar states. We take both into consideration. Furthermore, we make use of results
derived for the well-studied Types-I and II, and discuss the main differences occurring
in our Types-A and B. A full investigation of the 2HDM parameter space is beyond
the scope of this thesis and therefore will not be discussed in detail. Instead, we refer
the reader to Ref. [70] for a comprehensive analysis regarding the present status of the
2HDM neutral scalars from current LHC searches. Additionally, a summary of the
most relevant theoretical and experimental constraints is presented. In the following
we mention the most important experimental limits for our analysis and define several
benchmark scenarios.

2.10.1 Experimental Constraints

We consider the following experimental constraints for 2HDMs as the most relevant
ones for our study:

• Higgs Couplings: As mentioned before, one important constraint to consider is
the deviation of the SM-like Higgs couplings, as they get modified when more
scalars are included. To this end, we use the Higgs coupling modifiers, κi. They
are defined such that for a given production process or decay mode one has [69,
75]

κ2
i =

σi

σSM
i

or κ2
i =

Γi

ΓSM
i

, (2.56)

which correspond to (ξh
i )

2 in our models. In Table 2.5 we summarize the current
limits on the coupling modifiers derived from combined measurements of ATLAS
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FIGURE 2.3: Dominant BRs of the heavy CP-even scalar, H, in Type-A
(left) and B (right) for cβ−α = 0 and mH = 500 GeV. For comparison we
also show the BRs for Type-II (top) and Type-I (bottom) as dashed lines.

The BRs of the pseudoscalar, A, behave similarly.

and CMS [75, 76]. Note that the channels h → µµ and h → J/Ψ + γ are of spe-
cial interest for the models under consideration, as in those decays, the coupling
structure differs from the conventional types (I and II).

Additionally, the recent limit on the total decay width of the SM Higgs by CMS [75]
(0.08 MeV < Γh < 9.16 MeV at 95 % CL) strongly constrains the enhanced cou-
plings of h to SM fermions and other decay modes. In this regard, Figure 2.2
shows the observed limit together with Γh as a function of tβ in Types-I, II, A, and
B for cβ−α = 0.1 as well as a contour plot in the (cβ−α, tβ) plane.

• Direct Collider Searches: Here, we consider the LHC collider, in particular we
take limits for the heavy scalar resonances from ATLAS and CMS [75, 77]. In
these searches we expect significant deviations for Type-B compared to Type-I.
In [75], model-independent exclusion limits on the production cross section times
the BR have been determined for scalars in the mass range from (130-1000) GeV.
As shown in Ref. [70], values of tβ ≳ 10 are excluded by searches for A/H →
τ−τ+ for the mass degenerated scenario and cβ−α = 0.05. Therefore, we adapt
these constraints for Type-A and II.

• Electroweak Precision Constraints: The two terms in the scalar potential propor-
tional to λ4 and λ5 break the custodial symmetry. This leads to additional contri-
butions to the ρ parameter which can be avoided by taking mA = mH± or/and
mH = mH± [78–80].

• Flavour Observables: Constraints from the Belle II dataset [81, 82] on b → sγ
decays are particularly relevant. They require mH± > 600 GeV. The Type-II is most
sensitive to this constraint. After a careful study of the involved couplings it is
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Bayesian fit [83] CMS [75] ATLAS [76]

κW 1.01± 0.06 1.10+0.12
−0.17 1.05± 0.08

κZ 1.01± 0.06 0.99+0.11
−0.12 1.10± 0.08

κt 1.04+0.09
−0.10 1.11+0.12

−0.10 1.02+0.11
−0.10

κb 0.94± 0.13 −1.10+0.33
−0.23 1.06+0.19

−0.18
κτ 1.0± 0.1 1.01+0.16

−0.20 1.07± 0.15
κµ 0.58+0.40

−0.38 0.79+0.58
−0.79 < 1.53 at 95% C.L.

TABLE 2.5: Current 68% probability sensitivities and best fit values for
the Higgs coupling modifiers, κi, as obtained from a Bayesian statistical
analysis and from combined data taken by ATLAS and CMS at

√
s = 13

TeV. The ATLAS fit assumes all coupling modifiers to be positive.

possible to show that our two proposed types behave in the same way as the Type-
II for this flavour violating transition. Therefore, we constrain the charged scalar
mass to be larger than 600 GeV. Note that these flavour constraints are model-
dependent and could be relaxed in the presence of more intricate BSM sectors.

2.10.2 Benchmark Scenarios

As mentioned in Sec 2.6, the number of independent (physical) free parameters in the
scalar sector is seven. We choose them to be given by

{m2
12, mh, mH, mA, mH± , tβ, α} . (2.57)

In order to simplify the analysis and reduce the number of physical parameters, we
investigate the most relevant phenomenological aspects of our two models by focusing
on the following well motivated benchmarks:

• Alignment Limit: So far there are two constraints that help us to reduce the pa-
rameter space: i) we have β = α+π/2 and ii) we know that v2 ≫ v1 such that we
could take v1 ∈ (3, 58)GeV. In the latter, the lower bound is obtained by demand-
ing the bottom Yukawa coupling to be of order one, yb ∼ O(1), i.e. mb ≈ 3 GeV.
The upper bound is then obtained by relaxing the previous condition and just
demanding v1/v2 ≲ O(10−1). In return, we obtain a region for tβ ∈ (3, 58) that
implies for the scalar mixing angle

α ∈ (−18.43,−0.99)◦ . (2.58)

In the AL, the Yukawa couplings flavour universality is restored for h, but not for
H and A.

We recall the two employed criteria for naturalness mentioned in Sec. 2.2, as they
are crucial to understand why we conceive tβ ∈ (3, 58) as the natural range for our



2.10. Experimental Constraints and Benchmarks 33

-0.4 -0.2 0.0 0.2 0.4

1

5

10

50

cβ-α

t β

FIGURE 2.4: Current allowed regions from the measured SM-like Higgs
couplings to fermions, κh

t,b,τ , and gauge bosons, κh
V , at 95% CL for

2HDMs of Type-I (purple), B (red), A and II (both in yellow). The vertical
dashed line corresponds to the AL, whereas the two horizontal ones to

the previously discussed natural range (3 < tβ < 58).

discussion6. First, notice that only for tβ ∼ (20, 58) hierarchical fermion masses,
(mb, mτ, mc) ∼ O(1) GeV or mc ∼ O(1) GeV, are natural regarding Dirac’s crite-
rion, whereas for tβ ∼ (3, 20) they stop being so. However, we also employ the
latter range as it is connected to a small value of v1 which is natural according to
’t Hooft’s criterion. In order to understand the last point, we need to consider that
the possibility to neglect v1 is only subject to its appearance in v2

2 + v2
1 = v2. So,

even if v1 is not much smaller than v2, their squared may still be sufficiently small
to allow the approximate relation v2 ≈ v.

• Degenerate Masses: Contributions to the oblique parameter T (or ρ) are the most
restrained ones, as they depend on the relative mass squared differences. We can
define three different cases: i) mH = mH± , ii) mA = mH± , and iii) mH = mA =
mH± . The full bounds from electroweak precision measurements can be more
easily satisfied in the last case.

• Unitarity and Vacuum Stability: It has been shown that in the AL the soft Z2
symmetry breaking parameter is fixed, by unitarity and vacuum stability bounds
for arbitrary values of tan β, to [84]

m2
12 =

tβ

1 + t2
β

m2
H , (2.59)

with deviations possible only at tan β ∼ 1. This can be understood as, after im-
posing the perturbativity condition |λi| ≤ 4π, the strongest constraints in the
alignment limit come, respectively, from v2λ1 ∼ t3

β(m
2
12 − m2

Hsβcβ) for tβ ≫
6Please note that as 174 is a common multiple for the numbers 3 and 58, the allowed ranges for v1 and

tan β turned out to be the same.
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FIGURE 2.5: Allowed masses for the 2HDM Type-I (purple), B (red), A
and II (both in yellow) in the bi-dimensional plane (mH± , mA). The gray
(applicable to Type-II, A, and B) and cyan (applicable to Type-I and tβ <
2) regions are excluded by flavour constraints (mostly b→ s transitions).

A similar looking plot can be obtained for (mH± , mH).

1 and v2λ2 ∼ t−3
β (m2

12 − m2
Hsβcβ) for tβ ≪ 1. Thus, perturbativity demands

|m2
12 −m2

Hsβcβ| ≲ v2 unless tβ ∼ 1.

If the different viable regions, mentioned above, are simultaneously employed, it
could significantly reduce the number of physical parameters. In its two minimal
forms, the analysis could require three or four free parameters. This is a consequence of
Eq. (2.59), the AL, and the degenerate masses assumption. In the following, we make
use of these regions as a complimentary aspect of our discussion. Additionally, we
present the phenomenology of our two models and its respective comparisons with
Type-I and II.

2.11 Phenomenological Results

We start this section by commenting on the plane spanned by tβ and cβ−α. In Figure 2.4
we show the allowed regions from the measured SM-like Higgs couplings depicted
in Table 2.5. Here, each plotted point satisfies the contributions to the ρ parameter
and the BFB, unitarity, perturbativity, and global minimum conditions. Additionally,
the charged scalar mass is required to be mH± > 600 GeV as implied by the b → s
flavour violating transitions. The AL and the natural range for tβ are also included as
dashed lines. The range of scalar masses for mH+ and mA satisfying the aforementioned
conditions are shown in Figure 2.5. We present in both figures the Type-A and B models
as well as the corresponding comparison with the Types I and II.

Moving forward, one of the salient features of our two models, concerns the Higgs
coupling with muons, which could significantly deviate from the SM. The CMS col-
laboration announced results for the Higgs decay into a muon pair [85]. The obtained
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FIGURE 2.6: BR(h → µ+µ−) in all six 2HDM types for cβ−α = 0.1. The
SM value is shown as a dashed black line and the experimental allowed

region at 95% CL as the hashed band [85].

limits are 0.8 × 10−4 < BR(h → µ+µ−) < 4.5 × 10−4 at 95% CL. A comparison of
BR(h→ µ+µ−) in the four common types (I, II, X, Y) and our types (A, B) is depicted in
Figure 2.6 for cβ−α = 0.1. We note that large values of tβ are excluded for Type-B, while
for Type-A most of the range of tβ is still consistent with the current data.

Another interesting prediction of our models is the enhancement of the Higgs cou-
pling to charm quarks. Although the detection of the Higgs decay to a charm pair
probably has to wait for a linear collider, it might be possible to search for the Higgs
decay to J/ψ + γ at the High-Luminosity LHC (HL-LHC). In Figure 2.7, we present the
BR(h → J/ψ + γ) for Type-A, B, I, and II. We note that the newly proposed types give
the strongest enhancement above the SM value [86].

Finally, the most direct signature of any 2HDM is the discovery of the full Higgs
spectrum at the (HL-)LHC. The main production mechanism of the heavy scalar, H, for
tβ ≲ 10 is gluon-fusion, where the top-loop dominants the cross section. However, for
larger values of tβ other contributions become relevant. In this case the bottom-loop
in Type-A and II or the charm-loop in Type-B have to be included. In fact, the large
enhancement for the bottom-Yukawa coupling arising in Type-A, opens the possibility
to consider the b-associated production of H. For Type-B due to the enhancement of
the charm-Yukawa coupling also c-associated production could become relevant. Even
though those are certainly interesting aspects, a detailed discussion of is beyond the
scope of this thesis.

Searches for heavy resonances decaying into muon pairs are of potential interest for
our models. The recent ATLAS and CMS searches in [75, 76] distinguish between the
gluon-fusion and b-associated production channels. The results are present as upper
limits on the production cross section, σ, times the BR(H → µ+µ−). To obtain the pro-
duction cross sections of H we rescaled the next-to-next-to-leading-order results from
Ref. [87] to our parameter space. For small to intermediate values of tβ, the suppression
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FIGURE 2.7: BR(h → J/ψ + γ) in the four 2HDMs types (Type-X and Y
are identical to Type-I and II, respectively) for cβ−α = 0.1. The SM value

is depicted as the dashed black line.

of ξH
t is already effective but ξH

b(c) is not strongly enhanced yet. For mH = 500 GeV and
tβ > 10 (50) the bottom (charm) contributions to gluon-fusion start to compensate the
top coupling suppression in Type-A (B). For Type-A, the enhancement of ξH

b is strong
enough to exclude high values of tβ in b-associated production. These effects are shown
in Figure 2.8. There we adopted the slightly stronger upper bounds from CMS [75] con-
sidering both production modes. To summarize the constraints of special interest for
Type-A and B, we show them together in Fig. 2.9 in the (cβ−α, tβ) plane. We find that
even with this selection of channels large parts of the parameter space can be excluded.

So far we have extended the SM scalar sector in a minimal renormalizable way, and
even in this simple scenario we have addressed a fundamental question regarding the
mass pattern shown in the SM fermions. The architecture of the Type-A and B mod-
els offers new exciting possibilities to construct multi-Higgs models. In both scenarios
the observed hierarchies in the fermion mass spectrum were taken into account while,
at the same time, avoiding dangerous FCNCs through the implementation of the sin-
gular alignment ansatz [8]. There are still many details that need to be addressed to
fully understand the pros and cons compared to the well studied conventional types.
However, this is let for future work. In the next chapters, we go a step further and
include non-renormalizable operators to the SM Lagrangian and study the richness of
the augmented parameter space.
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FIGURE 2.8: Values of σ×BR(H → µ+µ−) with cβ−α = 0 for MH =
500 GeV (left) and MH = 250 GeV (right) in Type-A (blue) and B (or-
ange) together with the corresponding limits from CMS (black) [75].
The dashed (solid) lines indicate b-associated (gluon fusion) production.
Contributions from b- and c-loops to the gluon fusion production are in-

cluded. We note that Type-A is identical to Type-II in these channels.
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FIGURE 2.9: Summary of the discussed constraints on Type-A (blue) and
B (orange) for MH = 500 GeV. For Type-A we observe an interesting
interplay of various measurements. For Type-B the dominant constraint

arises from deviations of BR(h→ µ+µ−).
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Part II

Non-Renormalizable Extensions of
the Scalar Sector
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Chapter 3

extended Dark Matter EFT:
Phenomenology and Matching

So far, we have been concerned with models where the SM Lagrangian was extended
with renormalizable (dim ≤ 4) operators. However, the SM can be seen as an effective
field theory at the electroweak scale (see B.1). New physics (NP) effects, coming from
higher energy (or heavy) physics, then manifest by introducing higher-dimensional op-
erators which are non-renormalizable and get suppressed by corresponding powers of
the high-energy scale, ΛNP. In the following, we focus only on non-renormalizable ex-
tensions to the SM. Additionally, from now on we address the existence of dark matter
by including a new fermion field to the SM particle content.

The outline of this chapter is as follows. In Sec. 3.1 we introduce all the formalism
of effective field theories (EFTs), in a top-down (Sec. 3.1.1) and bottom-up (Sec. 3.1.2)
approach. We then study the dark matter evidence and its current status in Sec. 3.2
including a brief discussion on simplified models in Sec. 3.2.1. With this we cover all
the three main components of the eDMEFT framework, which is extensively studied
in Sec. 3.3. We follow by presenting a case study in Sec. 3.4. Here, the new mediator
is charged under a Z2 symmetry as well as the first fermion generation, giving (as in
the previous chapter) a possible explanation of the smallness of the first fermion family.
Within the same section, we also present exclusion limits on the coupling of the new
scalar with the electron, up-quark and DM (YSe,u, YSχ) correspondingly, for the (HL-
)LHC and CLIC colliders. This scenario will be crucial for the next chapter, as we will
use a similar framework to explain the XENON1T excess while being able to explain the
lightness of electrons and neutrinos. Lastly, in Sec. 3.5 we perform the matching of the
eDMEFT, with UV complete theories such as 2HDM + S̃ (S) and vector-like fermions.

3.1 Effective Field Theories

Quantum physics phenomena manifest at multiple energy scales varying over many
orders of magnitude, for example, from the neutrino mass scale ∼ 10−9 GeV to the
Planck mass∼ 1019 GeV. This makes it impossible to a theory to explain, in a single, yet
practical, framework all the physics involved in such a large energy range. A theoreti-
cal approach that systematically separates the effects related to different energy scales,
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keeping only the relevant physics at any given scale, is called an effective field theory.
This is done under the consideration that physics effects, at small length scales (high-
energy), start becoming negligible and do not affect any physics observable when mov-
ing to sufficiently larger scales (low-energy). In general, if a theory is assumed to be the
low-energy limit of a more fundamental UV description then it should be approached
as an EFT. Its Lagrangian would then get extended by a set of higher-dimensional op-
erators. Note how the low-energy effective theory is only valid where the new, UV
ingredients cannot be excited directly, and would break outside this range. The beauty
of EFTs relay on the fact that they provide a multi-scale and model independent ap-
proach.

There are two different ways to construct an effective theory: top-down and bottom-
up. The first one starts with a high-energy theory which spans several energy scales.
Then, by conveniently choosing a cutoff scale the modes with energy above the cutoff,
or also called heavy fields, are systematically integrated out such that the low energy
theory is parameterized by only the light fields and the cutoff scale, Λcutoff. The top-
down approach will be crucial when constructing the model in Sec. 3.4 and the next
Chapter 4. On the other hand, the bottom-up approach is more focused on the possible
degrees of freedom (DOF) at low energy, thus, the aim is to find the full UV theory
starting from the operators constructed from low-energy DOF and use the experimental
measurements to compute the coefficients. This approach is of special relevance when
either the high-energy theory is unknown, or it is known but it is impossible to find its
low-energy description in a top-down approach. Furthermore, in the case where the
UV theory is not known, the model can be constructed with only a few assumptions
and therefore, in a more model independent way [88]. In the following, we study the
EFT formalism starting from a top-down and continuing with a bottom-up approach.
For an exhaustive review on EFTs, please see Ref. [89–96].

3.1.1 Top-Down Approach

To exemplify this approach, let us consider a quantum field theory with a large energy
scale M, normally associated with a large (Euclidean) momentum transfer or, most
commonly, to the mass of a heavy particle. As the experimental energies typically run at
E ≪ M, we can build an EFT, starting from the full theory, to compute the observables
at experimental level. To construct such a theory, we follow the steps below, allowing
to expand the decay amplitudes of our theory in powers of E/M.

1. Fixing a cutoff in the energy scale Λ < M and divide the QFT fields into high-
frequency or heavy (ϕH → w > Λ) and low-frequency or light (ϕL → w < Λ)
Fourier modes, such that ϕ = ϕL + ϕH.

The cutoff Λ represents the upper limit in which we have information on the
theory, therefore, everything beyond the cutoff is out of reach. Is in that sense
that our theory, at low energies is only governed by the light fields ϕL. Then
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vacuum correlation function and the generating functional of the theory are:

⟨0|T{ϕL(x1)...ϕ(xn)}|0⟩ =
1

Z[0]
(
−iδ

δJL(x1)
)...(

−iδ
δJL(xn))

)Z[JL]|JL=0 (3.1)

and
Z[JL] =

∫
DϕLDϕHeiS(ϕL,ϕH)+i

∫
ddxJL(x)ϕL(x) , (3.2)

respectively. Here S(ϕL, ϕH) =
∫

ddxL(x) corresponds to the action of the QFT in
d space-time dimensions.

2. Integrating out the heavy fields by solving the corresponding path integral over
ϕH, where the high energy modes have been removed,

Z[JL] =
∫
DϕLeiSΛ(ϕL)+i

∫
ddxJL(x)ϕL(x) (3.3)

where
eiSΛ(ϕL) =

∫
DϕHeiS(ϕL,ϕH). (3.4)

where SΛ
e f f (ϕL) is called the "Wilsonian effective action" and has a Λ dependence.

As the high-frequency fluctuations have been removed from the theory, the latter
is non-local at distances ∆xµ ∼ 1/Λ. Note that it is not always possible to solve
the path integrals and therefore further mechanisms like the amplitude matching
or the covariant derivative expansion should be used. In particular, the latter will
be employ below.

3. Expanding Eq. (3.4) in terms of the light fields, is performing an operator product
expansion (OPE)1. This is possible due to E≪ Λ, thus the effective action reads,

SΛ(ϕL) =
∫

ddxLe f f
Λ (x) (3.5)

where
Le f f

Λ (x) = ∑
i

giQi(ϕL(x)) . (3.6)

This is known as the Effective Lagrangian. Here gi are called the Wilson Coeffi-
cients while Qi are all possible operators that can appear given the symmetries
and quantum numbers. In principle, Le f f

Λ (x) can be composed of an unlimited
number of operators Qi, resulting in an very large series. This severely affects the
predictivity, as we would then have an infinite amount of coefficients to fix, mak-
ing predictions impossible. Nevertheless, the high-dimensional operators, have
rather small contributions to the low energy observables. Consequently, only a
few operators are in fact relevant and we can truncate the infinite sum by per-
forming a dimensional analysis and fully recover the predictivity.

1The OPE expresses the product of two (or more) fields as a sum of local fields. As an axiom, it offers a
non-perturbative approach to quantum field theory.
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To perform such an analysis we do the following. As M is supposed to be the
only relevant scale in the theory, we can write the Wilson coefficients in terms of
it as2

gi = Ci M−(D−d) (3.7)

where d is the number of dimensions, D is the full high-dimension of the oper-
ators Qi and, as the action is dimensionless by definition, gi must have a mass
dimension (d − D). The Ci are natural constants of order O(1). In the validity
range (E≪ Λ < M), the operators Qi scale as ED−d, and the effective Lagrangian
can be expanded in terms of E/M ≪ 1. The contribution of Ci(E/M)D−d to the
observables can be classified into three different scenarios:

• D = d thus Ci(E/M)D−d ∼ O(1). The operators with this contribution
are called "marginal" or renormalizable. In this case the operator is equally
important at all energy scales. This operators are normally consider in QFTs
and renormalizable theories as the SM.

• D < d thus Ci(E/M)D−d ≫ 1. The operators with this contribution are
called "relevant" or super-renormalizable. Unlike non-renormalizable terms,
the relevant operators grow in the limit E → 0. This operators are usually
forbidden by symmetries, otherwise could have lead to problematic effects,
for example, the scalar mass-term in a ϕ4 theory would generate a mass
∼ Λ2 which push the particle outside the EFT.

• D > d thus Ci(E/M)D−d ≪ 1. These contributions are called "irrelevant"
or non-renormalizable. These terms typically vanish at low-energies and
are numerically suppressed, however, are not forbidden. In fact, irrelevant
operators tend to be the most important ones, as they can describe new
physics. In addition they are essential for precision measurements and are
the only ones who can say something at scales Λ ∼ M. The latter will be
studied in detail in Section 3.5.

After evaluating the contribution of each operator in the expansion, for a de-
manded accuracy on E/M, we indeed realize that only a few terms are kept and
the infinite series become feasible, successfully recovering the predictivity. For
an exhaustive review on the validity and the dimensional analysis for EFTs, see
Ref. [94, 97, 98] and Ref. [99–107]

3.1.2 Bottom-Up Approach

As mentioned before, in this approach the aim is not to start from the full theory and
then integrate out the heavy fields, but rather to start from what we know and construct
all possible non-redundant terms to describe our theory. The bottom-up approach is
very useful when the UV theory is not known. To build such a list of operators in a
model-independent way, we need to consider three ingredients: the particle content

2We use the natural units where [E] = [M] = [p] = [t]−1 = [x]−1 = GeV.
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(degrees of freedom), the symmetries, and a counting scheme that decides which oper-
ators are relevant in the validity regime.

1. The first one defines the minimum fields as dynamical degrees of freedom rele-
vant for the theory. This can be for example, all possible fields that can take part
in Feynman diagrams as either internal propagators or external legs. In principle,
all particles with masses mp ≪ Λ should be included.

2. To reduce the complexity and the amount of operators, it is imperative to make
sure that the constructed terms do not violate the symmetries of the theory. This
can be gauge symmetries, space-time symmetries (such as Lorentz symmetry), or
global symmetries (such as flavour symmetries).

3. Lastly, even though we have only a few fields constrained by symmetries in our
EFT, we could still write down an infinite expansion of the operators, therefore
it is important to evaluate the importance of each operator by its dimensionality
and truncate the series at a given order of accuracy.

To exemplify the points mentioned above, let us construct a bottom-up EFT from
scratch [98]. A generic EFT Lagrangian can be written as

Le f f = LSM + ∑
i

C(5)
i
Λ

O(5)
i + ∑

i

C(6)
i

Λ2 O(6)
i + ∑

i

C(7)
i

Λ3 O(7)
i + ∑

i

C(8)
i

Λ4 O(8)
i + ... , (3.8)

If, for example, we focus only in the SM effective field theory (SMEFT), we could
remove all D = 5 operators as they violate the lepton number symmetry. In addi-
tion the D = 7 operators violate B − L number Furthermore, operators of D ≥ 8 are
strongly suppressed as the couplings have a suppression term ≥ 1/Λ4, and therefore
only operators of D = 6 survive. Then, the effective Lagrangian takes the form

Le f f = LSM + ∑
i

C(6)
i

Λ2 O(6)
i . (3.9)

In general the list of operators kept in the theory must form a basis. The selection
of such a basis can allow us to concentrate in specific BSM models. The most popular
ones are SILH, Warsaw and Higgs [108–112]. An example of a dimension 6 operator in
the SILH basis is (2v2)−1(∂µ(H†H))2.

Even though the effective Lagrangian in Eq. 3.9 contains, in principle, a very large
sum of dimension 6 operators, we still need to make assumptions on the symmetries.
For example, the number of independent operators for D=6 after imposing lepton and
baryon number conservation reduces to 2499. Furthermore, if we consider flavour uni-
versality, we can cut down the operators to 76. For a particular model, with additional
symmetries can dramatically reduce the number of independent operators to just a
few 3.

3Another common assumption is that UV physics is minimally coupled, i.e. some operators are gener-
ated only at the loop level.
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After constructing the EFT, we must measure the Wilson coefficients in the exper-
iment, and depending on the outcome we could consider adding higher-dimensional
operators to the effective Lagrangian. If the experimental value of the Wilson coefficient
is small then the suppression scale Λ is estimated to be large and we can safely neglect
higher dimensional operators. On the contrary, if the experimental value is large, it
means that the coefficient is less suppressed, then, the value of Λ would not be big and
the presence of high-dimensional operators could be important. For more examples of
EFTs in the top-down and bottom-up approaches, go to Appendix B.

3.2 Dark Matter

Since it was first mentioned [113–115], DM has being of great interest for the physics
and astrophysics community. High precision measurements of the cosmic microwave
background (CMB) from the WMAP [116, 117] to the Planck mission [118, 119] con-
firmed that DM comprises around 23% of the total energy density of the universe, giv-
ing place to 73% of dark energy and only 4% of luminous (known) matter, like stars,
planets, etc. We have evidence of its existence due to its gravitational interactions. Fritz
Zwicky was one of the first ones to spot the existence of dark matter. This by realizing
that the measured mass of the Coma cluster was around ten times larger than the one
expected from luminous stars [120]. More evidence of the existence of DM originates
from the flattening of galactic rotation curves [121, 122]. Explaining the observed rota-
tion curves then requires more matter abundance than the visible one, and differently
distributed, which can only be accomplished by adding another kind of matter.

Another DM imprint comes through the famous Bullet cluster observation [123],
where the merging of two galaxy clusters show a clear separation of the gravitational
potential and ordinary matter [124]. Finally, we know that in order to agree with the
observations of large scale structure formation [125, 126], DM should play a major role
in the theoretical simulations [123, 127].

After almost a century of research, it has been possible to identify several of its
properties: it is not electrically charged, and therefore it does not interact electromag-
netically; it is massive, and as consequence, can interact gravitational; it must be stable
at cosmological scales, otherwise it would not be abundant today, in contrast with as-
trophysical and cosmological observations; it cannot be made of protons or neutrons,
however, its composition is still unknown; finally, it is cold, i.e non-relativistic, or at
least cold enough to allow for structure formation in the early universe. The latter is
essential for the formulation of the cosmology ΛCDM model, where Λ stands for the
cosmological constant describing dark energy and CDM for cold dark matter. For an
extensive review of DM and its properties, refer to Refs. [128–131].

Although this knowledge is already of great value, we still need to detect the asso-
ciated DM particle and its interactions with the SM fermions (if any). There are several
candidates that have been proposed along the years, and their masses reach from 10−20

eV for the case of axion-like particles, to masses (solar masses) ≳ M⊙ ∼ 1066 eV for
primordial black holes [132]. Among all the candidates, one that has been of special
interest and is rather easy to include it in several beyond the SM scenarios, is a new
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massive (∼ 100 GeV) elementary particle, that interacts weakly with the SM fermions.
This weakly interacting massive particle (WIMP) has the property to reproduce the ob-
served relic density. The production mechanism associated to this kind of particle is
the thermal freeze-out mechanism. To explain the concept of such mechanism we con-
sider a WIMP particle χ, and a SM fermion f , both in thermal equilibrium in the hot
plasma, that is, f f ←→ χχ. However, as the universe expands, the rate for the afore-
mentioned processes becomes slower than the expansion rate of the universe. At the
point where the annihilation rate Γ ≲ H, with H the Hubble constant, such reactions go
out of equilibrium. Then, on one hand the production reaction ( f f → χχ) is kinemat-
ically suppressed and, on the other hand, DM particles become increasingly separated
in space which makes it harder for them to find each other and annihilate. From this
point on, the DM decouples from the plasma remaining with a constant density which
is known as the relic density. Surprisingly, it happens that a particle with the WIMPs
characteristics, i.e weak-scale mass and couplings, gives rise to a relic abundance in the
right ballpark of the observed DM abundance. In the literature, this is called the WIMP
miracle [133]. WIMP particles are a guideline for several new DM experiments.

There are three different search strategies to detect DM particles: Direct, Indirect
and Collider detection. The former one (DD), make use of low momentum transfer. The
detection is done trough the observation of the atomic nuclei recoil scattering processes,
in ultra-sensitive low-background experiments. As WIMPs are not electrically charged,
is unlikely that they interact with atomic electrons, but instead elastically scatter off the
atomic nucleus, where the momentum transfer gives place to a nuclear recoil that can
be detectable. For a detail introduction to DD please refer to Ref. [134, 135]. The lead-
ing exclusion limits are obtained with liquid xenon detectors, such as XENON1T [136],
PandaX [137], or LUX [138]. On the other hand, indirect detection (ID) explores the
annihilation and decay of two DM particles into SM ones, so its aim is either to de-
tect SM particles arising from the collision, or their side effects. For a review of ID
searches with Neutrinos, X-Rays, Gamma Rays, Micro and Radio waves and Charged
Cosmic Rays please refer to Ref. [139]. For a broader review, see e.g. Ref. [140, 141].
Ultimately, collider searches study the annihilation of two SM fermions into a pair of
DM particles. This is done through high-energy particle collisions, for example, at the
Large Hadron Collider (LHC). As mentioned before, DM particles are electrically neu-
tral, and in consequence, evade the detectors at colliders and only manifest as miss-
ing transverse energy (�ET). Fortunately, we can look for the visible, highly energetic
counterparts of the event, leading to the so called mono-X events. The experiments AT-
LAS [142] and CMS [143] at the LHC are currently looking for such mono-X signatures,
where X represents either a jet, photon, Z/W± bosons or the SM Higgs boson and are
mainly produced as initial state radiation. For a summary of the searches, please see
Fig. 3.1. The main difference between collider searches and direct/indirect detection
is that, in the former, all the particles with a lifetime longer that O(10−8)s escape the
detectors, and therefore are counted as �ET. As a consequence, we could not be certain
about our signal to be DM or any other new or long-lived particle. Therefore, it is of
convenience to combine results from several searches to accurate determine the DM
properties.
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FIGURE 3.1: Scheme for the three different dark matter searches for
fermionic DM (χ) and SM particles (P).

3.2.1 Simplified Models

As mentioned before, new physics models can be described by an effective Lagrangian
and a high-energy scale Λ ≳ 1 TeV. However, full BSM models tend to be rather com-
plex, and even though EFTs can describe new physics with a few high-dimensional op-
erators, the validity gets questionable at high energies. The latter is specially dangerous
at the LHC, where the particles (protons) are accelerated along the 27 Km ring, acquir-
ing an energy of approximate 6.5 TeV and producing a collision at a center of mass
energy of

√
s = 13 TeV, while limits on cross sections are, on the other hand, rather

weak. To overcome these issues, systematic simplifications, valid in a wider range of
energy have been developed in the last years, facilitating searches of new physics, and
are called simplified models 4. This kind of model extents the SM content by only a cou-
ple of new particles along with their interactions and decay channels (to either BSM or
SM particles). Simplified models have many benefits, for example, as aforementioned,
they include operators with all new particles, regardless of their mass, thus increasing
the validity to a wider energy range. Additionally, simplified models allow the explicit
search for the mediator, unlike EFTs, where it is not present as an active degree of free-
dom and producing it puts into question the validity of the theory, as the mediator’s
mass is also the cutoff of the theory. However, this also implies that simplified models
are model-dependent, and thus suffer from a loss of generality. Moreover, a poten-
tial problem with these models is that certain type of relevant operators violate gauge
invariance, for example, the one connecting the SM fermions with the new mediator,
g f SFLS fR, as the term still transforms as a weak doublet instead of a weak singlet due
to the transformation properties of the fermion current, FL fR ∼ 2, and mediator, S ∼ 1,
under SU(2)L.

Some of the primary applications for simplified model results are:

4In fact, the LHC-Run I used EFT to derive exclusion limits via mono-X searches whereas LHC-Run II
employed simplified models.
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FIGURE 3.2: Feynman diagram of the DM simplified model. Here f rep-
resents a SM fermion whereas χ a fermionic DM particle and S a scalar

mediator.

• Identifying sensitivity boundaries: The evaluation of any LHC searches must
include sensitivity boundaries, with this information both theorists and exper-
imentalists can identify kinematic regions where the search strategies need to
be improved or generalized. Simplified models are also useful for estimating a
search’s sensitivity to alternative BSM models in simulated Monte Carlo events.

• Characterizing new physics signals: It is important to fully characterize the
physics of a NP signal once it is observed. Simplified models can help to iden-
tify important mass ranges, decay widths, cross sections and, in particular, the
particle quantum numbers [144, 145].

• Deriving limits on more general models: By using limits from simplified models,
one can derive constraints on a variety of models. This can be done by adding the
effective cross-section for each model’s topology, weighted by their experimental
efficiencies, and then comparing the result to the upper bound imposed by the
simplified model.

For more information on simplified models and its applications see Ref. [88, 146–
150]. Let us now explore an explicit example of a simplified model in which both the
dark matter particle as well as a new scalar mediator are added to the SM content.

Simplified Dark Matter Models

There are several simplified DM models [150–154] that are well summarized in Figure 1
of Ref [154]. In general, these models are characterized by a DM particle and a mediator.
The latter typically serves as a bridge between the SM fields and the dark sectors 5, see,
for example, Fig. 3.2.

The most conventional choice for simplified models is the following one. The parti-
cles and interactions for the model with fermionic DM (χ) and a scalar mediator (S) is

5In principal, the mediator could also couple to gluons or other SM bosons.
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described by the following Lagrangian:

Lsimp = LSM +
1
2
(∂µS)2 − 1

2
m2
SS2 + iχ/∂χ−mχχχ− gχSχχ− ∑

f ermions
gs f

y f√
2
S f R fL , (3.10)

notice how all operators in the simplified Lagrangian are renormalizable. The SM then
acquires five new free parameters: The DM particle and the mediator mass mχ and mS ,
the DM-S coupling gχ, the SM-S coupling gs f and the mediator decay width ΓS . The
latter can be either fix or let open, allowing the possibility of decaying to additional
(new) particles. For a pseudo scalar mediator approach see Ref. [151, 155].

In DM models, it is common to implement a Z2 symmetry and assign an odd parity
to the DM particle, so it becomes stable. We can also consider the mediator or a set
of SM fermions to be charged under such a symmetry, as we will see in Sec. 3.3. It
is important to be careful with the SM accidental global symmetries, in fact, processes
that violate such symmetries are highly constrained.

3.3 extended Dark Matter Effective Field Theory

Now that we have discussed EFTs, dark matter and simplified models, we have all the
requirements needed to explain the extended dark matter EFT (eDMEFT). As depicted
in Fig. 3.3, EFTs are model independent, as the heavy new particles do not appear ex-
plicitly in the Lagrangian, but are rather manifested as a suppression factor, Λ−1. There-
fore, Λ can represent any new particle at energies higher than the effective theory. On
the other hand, DM experiments run in a wide energy range. From DD experiments,
probing recoil energies at keV, to the large momentum transfer in LHC collisions at
TeV range. EFTs are particularly useful for the former, as the SM content is extended
uniquely by a DM candidate, then we can set limits on the Wilson coefficients, (see
e.g. Ref. [116, 156–158]) while the mediator, with mass typically assumed in the GeV
range, can be safely integrated out. On the other hand, EFTs suffer a breakdown in
searches at colliders, which are normally sensitive to mediator masses at/or below the
scale of reached momentum transfers, in the case of LHC the energy of the collisions is
high enough to detect particles of mass∼TeV, and therefore would require the explicit
presence of the heavy particle in the Lagrangian. Moving forward, simplified models
include all new (heavy) particles, in a renormalizable theory, allowing a direct search
for the mediators. This also improves the LHC kinematics, as we have much more in-
formation to characterize and reconstruct the events. However, the presence of the me-
diator in the simplified models has a price to pay, as we lose the model-independence
that was present in the EFTs, furthermore, some important terms might not be gauge
invariant, and therefore problematic, as mentioned above. Finally, simplified models
still make very specific assumptions on the new particles, and do not allow to model a
richer NP sector.

We then would like a single, consistent, and general framework with as few free pa-
rameters as possible. As an attempt to reach this theory in Ref. [9] is proposed a hybrid
approach that combines the best of EFTs and simplified models in a DM framework.
This model is a proper field theory, where gauge invariance stays intact. It offers the
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FIGURE 3.3: Pros (+) and cons (-) of EFTs and simplified models. Here
the intersection of the positive aspects of the two approaches represents

the extended dark matter EFT framework.

possibility to interpret various DD, ID and collider DM searches. The eDMEFT content
consists of the SM enlarged by a (Dirac) DM fermion χ, that behaves as a singlet un-
der the SM gauge group6 and a (pseudo-)scalar mediator (S̃)S . The interactions of the
mediator with SM fields are realized, in a gauge invariant way, via dimension five op-
erators, this allows the search of the mediator at colliders. Additionally, we can achieve
the correct DM relic abundance in several regions as will be discussed later. The inclu-
sion of the most general set of (non-redundant) dimension five operators, allows us to
consider richer new physics sectors, than the ones extended by only a single dark state
and a mediator.

We will introduce the corresponding effective Lagrangians for a (pseudo- )scalar in
Sec. 3.3.1 and discuss their basic features [9, 160]. We also present a case study in Sect.
3.4 and explore the phenomenology in current (LHC) and future (HL-LHC and CLIC)
colliders [10].

6Even though it is possible to consider vectorial and scalar DM, they are not included in the following,
and therefore will not be mentioned. For more information refer to Ref. [159].
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3.3.1 (Pseudo-)Scalar Mediator

The effective Lagrangian, for a scalar mediator S and fermionic DM χ, including oper-
ators up to dimension five reads [9]

LSχ
eff = LSM +

1
2

∂µS∂µS − 1
2

µ2
SS2 + χ̄i/∂χ−mχχ̄χ− λ′S1v3S − λ′S

2
√

2
vS3 − λS

4
S4

− λ′HSv|H|2S − λHS|H|2S2 − (ySS χ̄LχR + h.c.)

− S
Λ

[
cλSS4 + cHS|H|2S2 + cλH |H|4

]
(3.11)

− S
Λ

[
(yS

d)
ijQi

LHdj
R + (yS

u)
ijQi

LH̃uj
R + (yS

ℓ )
ijLi

LHℓ
j
R + h.c.

]
− y(2)S S2 + y(2)H |H|2

Λ
χLχR + h.c.

− S
Λ

1
16π2

[
g′2cS

BBµνBµν + g2cS
WW IµνW I

µν + g2
s cS

GGaµνGa
µν

]
.

Here Qi
L and Li

L are the i-th generation left-handed SU(2)L quark and lepton doublets,
respectively, while dj

R, uj
R, and ℓ

j
R are the right-handed singlets for generation j. H =

(2)−1/2(0, v + ϕ)T is the SM Higgs scalar doublet in the unitary gauge with a vev, v =
246 GeV. In this case the extra scalar singlet does not get a vev and thus, develop a
mass mS = (µ2

S + λHSv2)1/2 after the EWSB. In order to couple the mediator to the SM
fermions, it is necessary the presence of a Higgs doublet, allowing for dimension five
Yukawa-like couplings, ∼ (yS

d)
ij, (yS

u)
ij. All high-dimensional terms are suppressed by

the energy scale Λ. The interactions between DM and the SM fields involve one or two
scalar singlets or two doublets due to gauge invariance, parametrized by yS , y(2)S and
y(2)H , respectively. cSB , cSG and cSW correspond to the effective couplings between S and
the U(1)Y, SU(3)c and SU(2)L field strength squared.

The complete set of coefficients in the Lagrangian are assumed to be real as the
scalar interactions are invariant under CP. A symmetry for stabilizing the DM particle
forbids the LH̃χR term preventing it from acting like a right handed neutrino. Lastly, if
the suppressed dimension five sector is governed by a coupling g∗, then, the effective
couplings can obtain a scaling, in this case is cλS ∼ cHS ∼ cλH ∼ g3

∗ , yS
f ∼ y f g∗ , y(2)S,H ∼

g2
∗ and cS

V ∼ g∗. This order the operators by their expected importance in a certain
couple regime, and can allow to reduce the number of higher-dimension operators at
leading order approximation, for example, in the case of D = 6 operators for a vector
mediator [9].

The eDMEFT Lagrangian allows all possible DM searches. For example, if the cou-
pling (ySq )ij/Λ is non-negligible, the interaction between DM and a nucleus can be

mediated by the SQi
LHqj

R operator, coupling the scalar mediator to the DM via the lin-
ear term S → χχ, which is allowed. Additionally, DM can be searched at the LHC
via mono-jet or mono-Higgs + missing transverse energy (�ET). Finally, direct detection
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bounds can be set, for example, if we turn on the coupling (ys
u)

11, while yS is fixed such
as to produce the correct relic abundance, via χχ→ SS decay (here mDM > mS ).

The Yukawa couplings (ySq )ij can produce FCNCs. Some mechanisms like minimal
flavour violations could be implemented, however, this could lead to a suppression in
the coupling to the light valence quarks and these small effects at colliders. In Chapter 2
and Sec. 3.4, we explored other options to avoid FCNCs. For more information, please
refer to [9, 160].

In the case of a CP-odd scalar mediator S̃ , DD searches are much weaker, due to
momentum suppression of the cross section. The effective Lagrangian in the pseudo-
scalar case reads

LS̃χ
eff =LSM +

1
2

∂µS̃∂µS̃ − 1
2

µ2
S̃ S̃

2 + χi/∂χ−mχχχ− λS̃
4
S̃4

− λHS̃ |H|2S̃2 − (yS̃ S̃ iχLχR + h.c.)

− S̃
Λ

[
i(yS̃d )

ijQi
LHdj

R + i(yS̃u )
ijQi

LH̃uj
R + i(yS̃ℓ )

ijLi
LHℓ

j
R + h.c.

]
− [

y(2)S̃ S̃
2 + y(2)H |H|2

Λ
χLχR + h.c.] (3.12)

− S̃
Λ

1
16π2

[
g′2cS̃B B̃µνBµν + g2cS̃WW IµνW̃ I

µν + g2
s cS̃GGaµνG̃a

µν

]
.

Note that, due to CP-conservation, the portal with a single mediator vanishes. We
assume that S̃ does not develop a vacuum expectation value. Therefore, there is no
mixing between the SM Higgs and the pseudoscalar mediator, and Higgs precision ob-
servations are less sensitive to this model. For further details on the DM phenomenol-
ogy in both the scalar and pseudoscalar cases, see Ref. [160]. Additionally, in the next
section, we investigate an end-to-end case study to explore the power of eDMEFT.

3.4 Case Scenario: Di− jet/e+e−

Let us now exemplify the eDMEFT through a case study based on Ref. [10]. We start
from the Lagrangian in Eq. (3.11) where the SM gets enlarged by a Dirac fermion, χ,
which represents DM, and a real scalar mediator, S . DM stability comes from imple-
menting a parity symmetry, Z2, where the new fermion, χ, is assigned an odd parity,
χ

Z2−−→−χ. Furthermore, the new scalar mediator together with the first fermion gen-
eration, gets an odd parity, thus an explanation to the smallness of the first-generation
fermion masses via suppressed Z2-breaking effects, see below. We then focus in the
phenomenology of the D = 5 operator S2χLχR, which can give rise to interesting di-
jet/lepton + �E phenomenology at colliders. If the dimension four operator SχLχR is
forbidden by imposing the Z2 symmetry, its coupling, which is the main portal to the
dark sector, could be missed in DD experiments, while mono-jet searches should be
adjusted to take advantage of the di-fermion final state. In the following, we perform
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χL(R) S quR qcR qtR qdR qsR qbR eR µR τR

Z2 - - - + + - + + - + +

TABLE 3.1: Transformation sign under the Z2 symmetry for the scalar
mediator S , the DM fermion, and the SM right-handed fermions.

di-jet searches in the (HL-)LHC and the e+e− future collider CLIC. We find that the lat-
ter delivers better constraints and therefore motivates a leptophilic mediator. We also
highlight the parameter space that allows us to produce the observed DM density and
include constraints from DD.

General Setup

As mentioned before, we start from Eq. (3.11) with the additional assumption of a sym-
metry forbidding the D = 4 interaction of S with DM. To this end, we assigned an odd
parity to the scalar mediator, S Z2−−→−S . The smallness of the first-fermion generation,
m2,3 ≫ m1, can be tackled by assuming that all the SM fields are even under the par-
ity symmetry, with the exception of the right-handed first fermion generation, which is
considered odd. A summary of the charges is shown in Table 3.1. As a consequence the
new CP-even mediator will uniquely couple to the first fermion generation and will be
blind to the others. On the other hand, the Z2-odd fermions are blind to the SM Higgs
boson. However, as now S has a vev, their mass will only come through S , as dis-
cussed later. In the following, we assume the absence of right handed neutrinos, hence
no mass term is included in the Lagrangian.

After implementing the Z2 symmetry, many terms of the original eDMEFT La-
grangian in Eq. (3.11) vanish: those with an odd power of the mediator, unless they
feature a right-handed fermion from the first generation (eR, uR, dR). The correspond-
ing Lagrangian for this specific setup then reads

LSχ
eff =LSM +

1
2

∂µS∂µS − 1
2

µ2
SS2 + χi/∂χ−mχχχ

− λS
4
S4 − λHS |H|2S2 (3.13)

− S
Λ

[
(ySd )iQ

i
LHdR + (ySu )iQ

i
LH̃uR + (ySℓ )iL

i
LHeR + h.c.

]
−
[

yH
χ |H|2

Λ
χLχR +

ySχS2

Λ
χLχR + h.c.

]
,

where we follow the notation presented in Sec. 3.3.1. The red-colored operators are the
main focus for the phenomenology study below.

Unlike the original eDMEFT setup, the SM Yukawa couplings of the first generation
are now forbidden at the renormalizable level, therefore, their masses will only be gen-
erated via small Z2-breaking effects equipped with an additional cutoff suppression. In
return, we assume the mediator develops a small vev |⟨S⟩| ≡ vS ∼ O(10)MeV, which
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is enough to generate the masses for the first fermion generation. The fact that there
are now two scalars (S and H) with two different vev scales (MeV and GeV) offers the
possibility to address the lightness of the light fermions. Although it would be interest-
ing to tackle all flavour hierarchies with a more extended scalar sector, this is beyond
the scope of this discussion. The resulting mixing with the Higgs via the |H|2S2 op-
erator is suppressed, and thus it is not considered in the following. Furthermore, the
usual dark matter coupling Sχχ is generated by the spontaneous breaking of the Z2
symmetry, with coefficient ∼ 2ySχ vS/Λ. The latter is highly suppressed and only plays
a role in DD experiments. In order to avoid DD constraints and limits from invisible
Higgs decays (for light dark matter) [161], the coefficient of the second D = 5 portal to
the dark sector allowed by the symmetry, |H|2χLχR, is taken to be small from the start
(recall that vS/v ∼ O(10−4)) and therefore is not included in the discussion below.

Fermion Masses

For simplicity, we only present the mass mechanism for quarks. However, the lepton
case is analogous. The resulting mass terms after spontaneous symmetry breaking read

L ⊃ − ∑
q=u,d

qL
v√
2

(
YH

q +
vS
Λ

YS
q

)
qR ≡ − ∑

q=u,d
qLMqqR , (3.14)

where q = u, d are three-vectors in flavour space and the Yukawa matrices

YH
q =

0 yq
12 yq

13
0 yq

22 yq
23

0 yq
32 yq

33

 , YS
q =

(ySq )1 0 0
(ySq )2 0 0
(ySq )3 0 0

 (3.15)

reflect the Z2 assignments. Here we can explicitly see that without the breaking of
the latter symmetry via vS > 0, the first quark family would remain massless, corre-
sponding to the vanishing eigenvalue of YH

q . On the other hand, a small breaking of
vS ∼ O(10) MeV is enough to generate mu ∼ md ∼ 5 MeV with O(1) Yukawa cou-
plings and Λ ≳ 1 TeV. Note that, even though the main contribution for the masses of
the first quark generation comes through the scalar mediator S , when moving to the
mass basis, the diagonal terms will have the form ∼ vŶH

kk + vS ŶSkk and therefore the SM
Higgs will have a non-neglecting contribution too. However, these could be cancelled
by an appropriate choice of alignment for the Yukawa matrices, i.e. if one forces the
columns to be orthonormal among each other. We will come back to this point later.

After performing a rotation to the mass basis

Mu
diag = diag(mu, mc, mt) = Uu

L MuUu †
R ,

Md
diag = diag(md, ms, mb) = Ud

L MdUd †
R

(3.16)

with Ud
L = Uu

L VCKM, we obtain the couplings of the physical quarks to the Higgs boson
and the scalar mediator Ŷs

q = Uq †
L Ys

qUq
R, s = H, S; with q = u, d. In the new basis, the
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interaction Lagrangian then reads

L ⊃ − ∑
q=u,d

qL

(
ŶH

q√
2

h +
vS ŶS

q√
2Λ

h +
v ŶS

q√
2Λ
S
)

qR , (3.17)

where the second term is small and then ignored. In particular the last term in Eq.(3.17)
is crucial to test the S2χ2 operator at colliders, as it bridges the SM with the dark sector.
As the mass matrices Mu,d receive contributions from different sources (see Eq. (3.14))
and are, in general, not aligned with the individual scalar-fermion couplings∼ yH,S

q , the
new Yukawa matrices ŶH,S

q are not diagonal thus inducing FCNCs. In the following, we
present a way to overcome such undesirable effects.

Flavour Structure

As seen before, FCNCs are present in the model. Although this might provide interest-
ing phenomenology, here we opt for a simpler scenario where they are absent at tree
level. To this end, we first note that, in the interaction basis, the Yukawa matrices can
be expressed in terms of the mass matrices as

YS
q =

√
2Λ

vvS
Mq diag(1, 0, 0) =

√
2Λ

vvS
Uq

L Mq
diagUq †

R diag(1, 0, 0) ,

YH
q =

√
2

v
Mq diag(0, 1, 1) =

√
2

v
Uq

L Mq
diagUq †

R diag(0, 1, 1) .

(3.18)

In the mass basis, they become

ŶS
q =

√
2Λ

vvS
Mq

diag Uq †
R diag(1, 0, 0)Uq

R ,

ŶH
q =

√
2

v
Mq

diag Uq †
R diag(0, 1, 1)Uq

R ,

(3.19)

where the unitary rotations of the left-handed fermion fields drop out since they share
the same Z2 charges and their couplings with a fixed right-handed fermion are thus
aligned with the corresponding mass terms. This is not true for the right handed
fermions, where the corresponding rotation matrices induce a misalignment

Uq †
R diag(0, 1, 1)Uq

R ̸= diag (3.20)

and thus, FCNCs could be produced at tree level.
However, the latter could be avoided by introducing the ansatz Uu

R = 1 = Ud
R

7. The
left-handed rotations can be arbitrary with the only constraint Uu †

L Ud
L = VCKM

8. The
ansatz is equivalent to having assumed the Yukawa matrices to be singularly aligned in

7A more extensive analysis of FCNCs could be interesting but it is out of the scope of this thesis.
8It would not be possible to ask for Uu

L = 1 = Ud
L , since then, VCKM = 1 is in conflict with observations
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FIGURE 3.4: Feynman diagrams for dark matter + di-electron production
at CLIC – for the (HL-)LHC case, the electrons are replaced by up and

down quarks.

flavour space [8] as discussed in Sec. 2.7. We thus end up with only diagonal couplings

ŶS
u =

√
2Λ

vvS
diag(mu, 0, 0) ŶS

d =

√
2Λ

vvS
diag(md, 0, 0)

ŶH
u =

√
2

v
diag(0, mc, mt) ŶH

d =

√
2

v
diag(0, ms, mb) .

(3.21)

As mentioned in the beginning of this section, the lepton sector has a similar setup
leading directly to

ŶS
e =

√
2Λ

vvS
diag(me, 0, 0), ŶH

e =

√
2

v
diag(0, mµ, mτ) . (3.22)

The Higgs boson is then responsible for the mass of the second and third genera-
tion only, while the first generation couples instead to the DM mediator, with strength
determined by the free parameter vS , which we will trade for ySu /Λ ≡ (ŶS

u )11/Λ in the
following. This requires the previous ratio to not be too tiny, since then a very large
Z2-breaking vS would be required to reproduce the quark masses, as discussed, O(1)
values of ySu v/Λ are in perfect agreement with a modest vev of 10 MeV and a reason-
able cutoff of 1 TeV. Thus, we can express all S-Yukawas in terms of ySu . We obtain the
approximate relations

ySe = 0.1 ySd = 0.2 ySu (3.23)

for the couplings of the mediator to SM fermions, and the values mu = 2.5 MeV, md =
5 MeV, me = 0.5 MeV. As mentioned, yS

u/Λ can be chosen basically free as long as
it does not violate perturbativity of the EFT (and of the potentially UV completion),
which constrains ySf v/(

√
2Λ) < 4π (ySf < (4π)2), for f = u, d, e, where we made

use of the fact that the S−Yukawa scales like ySf ∼ g2
UV. This relation is particularly

important because it allows a connection between the quark and lepton sectors, that
later will allow to convert, for example, direct detection limits, made for quarks only,
to lepton colliders.
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Relevant Parameters

In the coming sections, we derive the prospects to constrain the S2χLχR portal and the
S-Yukawa coupling from (HL)-LHC and future e+e− collider data, meeting constraints
from DD and the observed relic density. For that purpose, note that the relevant physi-
cal parameters in the model are:

• the DM mass mχ,

• the mediator mass mS =
√

µ2
S+3λSv2

S ,

• the bi-quadratic portal coupling ySχ /Λ,

• and the S−Yukawa coupling ySu /Λ,

where we neglected the potential scalar mixing from λHS . While this defines the main
full model, where the mediator couples to both quarks and leptons, there are also two
interesting variants obtained by either assigning positive Z2 parity to all leptons or to
all quarks, then the mediator would just couple to one sector in each case. In return,
this would lead to a leptophobic or hadrophobic mediator, respectively, with ySe = 0 and
finite ySd = 2ySu or vice versa.

In the following, we study a unique process where the new portal manifests through
the fermion-pair-associated DM production, in both the t and s channel, as depicted in
Fig. 3.4, where the DM is presented as a signature of missing energy. We consider the
mediator to be much heavier than its vev (mS = 200 GeV), which requires a decoupling
by an additional contribution to the Lagrangian in Eq. (3.13). This however has several
solutions. One is to add a cubic term of the form gS3vSS3. Nonetheless it needs a
very large (non-perturbative) coefficient of around 100 TeV. Another possibility is to
add a second singlet S2, already envisaged before, with a vev v2 around 102 GeV and
a mixing between SS2 of around µ12 ∼ 1 GeV. Finally, another possibility is to look
for a SS3

2 portal with coefficient O(10−6). We have checked other effects of the new
scalar including mixing with the Higgs, and in all cases the vev and the mass can be
effectively decoupled.

(HL-)LHC Searches

For simplicity, in this section we assume that the mediator only couples to the quarks,
i.e. ySe = 0. Then, we say that the scalar singlet has a leptophobic (or hadrophilic)
nature. To constrain ySχ we use a unique signature, di-jet + �E as shown in Fig. 3.4
by replacing the electrons with up or down quarks. To derive bounds from (pro-
jected) current (HL-)LHC runs on the new DM portal, we employ the eDMEFT UFO
[162] file generated with FeynRules [163, 164] then, we simulate events with Mad-
Graph5_aMC@NLO (v 2.6.5) [165,166] and perform the detector simulation and parton-
showering with Delphes [167] and Pythia [168, 169], accordingly. Lastly, we employ
CheckMate [170,171] implementations of ATLAS analyses, in particular we considered
the mono-jet search in Ref. [172] using 36.1 fb1 of data and a search for multiple jets
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FIGURE 3.5: Exclusion reach of the current (solid) and future HL-LHC
run (dotted) for mS = 200 GeV and DM masses of 5 GeV (red), 100 GeV

(blue), 300 GeV (black).

+ �ET in Ref. [173]. A dedicated analysis of the particular di-jet signature is expected
to improve the sensitivity. However, we leave a detailed and personalized study for
future work and only focus on future leptonic colliders. The latter having an advan-
tageous reduction of the large QCD background faced at the LHC searches, thus we
expect tighter limits 9.

One disadvantage of the aforementioned ATLAS analyses is the high energy used
for the events, as it is above the suggested cutoff Λ = O(1) TeV and then the valid-
ity become questionable [98, 174, 175]. The scalar sum of the transverse momenta of
the leading N jets and Emiss

T is required to be at least 1.6 TeV. Therefore, a reasonable
value for the cutoff is at least Λ ≳ 3 TeV . In addition, all signal regions are inclusive
ones, which means that they include events with even higher energies, such that the
resulting constraints would only be valid for borderline large couplings ySu . In contrast,
exclusive signal regions (EM) for the the mono-jet analysis provided in [172] allow for a
better estimate of the momentum flow of an event. To obtain robust limits we constrain
our analysis to signal regions up to EM6 of Ref. [172], containing events with missing
energy (�ET) = (600 − 700) GeV.

In Fig. 3.5, we show the actual bounds on the ySu − ySχ plane for the LHC (solid
lines) and the projections for the HL-LHC with a luminosity of 3 ab−1 (dotted lines).

9The final state of Higgs-to-invisible in VBF production searches, is indeed similar to the final state in
the current analysis. Nevertheless, we find that the signal and background distributions in the important
kinematic variables are very similar and no efficient separation is possible.
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Stage
√

s [TeV] L[ab−1]
I 0.380 1.0
II 1.5 2.5
III 3 5.0

TABLE 3.2: Center of mass energy and luminosity for each realization of
CLIC.

The masses considered for the analysis are mS = 200 GeV for the mediator 10 and
mχ = {5, 100, 300} for the DM particle depicted in red, blue and black, correspondingly.

To obtain the projections, we use the r-value defined in CheckMate [171] with hand-
scaling event numbers, thus assuming that ATLAS measures the same distributions.
Following Ref. [177], we further assume that the systematic uncertainty on the SM back-
ground can be lowered by a factor of four. Note that, due to the nature of the process,
the radiation of two DM particles coming from an internal mediator, the limits do not
die off quickly when mχ > mS/2, allowing this mass hierarchy to be tested, typically
inaccessibly for colliders. As mentioned, further improvement could be reached by ad-
justing the analysis to the specific signature, e.g. by demanding two correlated jets in
the final state.

Finally, we also estimate the effects of gauge boson couplings induced by light quark
loops. These are suppressed by a quark mass insertion needed by the chirality flip.
Therefore, the partial width of S to photons and gluons is smaller than the correspond-
ing Higgs width by a factor of ∼ 105 for photons and ∼ 103 for gluons. We then
conclude that the contribution of gluon-fusion to the production cross section can be
neglected. The width to photons is more strongly suppressed, since the W-loop domi-
nating the partial width of the SM Higgs [178], is absent. In addition, the BR(S → γγ)
is suppressed by the large decay width of the scalar mediator to quarks leading to no
relevant constraints from present di-photon searches, see e.g. [179].

The Compact Linear Collider

An interesting proposal for a next high-energy e+e− collider is the Compact Linear
Collider (CLIC) [11] to be build at CERN. It would be the first mature realization of a
collider of such nature and, if realized, its first run would be in the year 2035. The plan
includes three stages of 11, 29 and 50 Km long correspondingly. The luminosity per
stage is depicted in Table 3.2.

In the following, we propose a search in the e+e− +�ET final state as depicted in Fig.
3.4 where the right process dominates the cross section for large parts of the parameter
space. From now on, we assume the mediator to be hadrophobic, i.e. S only couples to
leptons, specifically to electrons and yS

u = yS
d = 0. The main irreducible background is

10While with this choice the flavour model considered is fine, note that for mS ≳ 225 GeV strong bounds
on the S-Yukawa couplings arise from the recent ATLAS search for resonant di-lepton production [176],
which would exceed the projected limits of Fig. 3.5. Clearly, this can be avoided by moving either to the
leptophobic or the hadrophobic scenario.
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FIGURE 3.6: Comparison of the signal and background shape for CLIC
Stage III. The signal events correspond to ySe /Λ = 1.5/TeV and ySχ /Λ =

0.25/TeV, close to the exclusion limit.

e+e− → e+e−νν with the most important contribution coming from a ZZ intermediate
state, and further backgrounds turn out to be negligible11 as shown in Ref. [179]. To
simulate the events, we use again MadGraph5_aMC@NLO for the event generation
[165, 166], Pythia 8.1 for the hadronization [168, 169] and Delphes 3 for a fast detector
simulation, fortunately, the latter has already a existing parameter card for the three
CLIC stages [167]. The final analysis is performed with MadAnalysis 5 [180, 181].

Even though the cut-and-count method is considerably better than in the previous
LHC analysis, we still have to face a rather small signal with a sizable background.
In particular, when the uncertainty in the background cross-section normalization is
taken into account, leading to weak constraints. Nonetheless, the signal has a peak-like
structure in the mee-variable compared to a smoothly falling background as shown in
Fig. 3.6. This is observed due to an on-shell S decaying to electrons, as the resonant
diagram in the right panel of Fig. 3.4 dominates the cross section. Therefore, we im-
prove the analysis by performing a statistical shape analysis with a binned likelihood
approach. This also reduces the impact of the uncertainty of the background normal-
ization. Details to this procedure are laid out in Appendix C.

To achieve a preliminary separation between signal and background, we apply in
all the stages the following cuts:

MET me+e− pT(e) ∆R(e+e−) θ(e+) θ(e−)
[GeV] [GeV] [GeV]

> 80 > 150 > 25 < 3.25 > 0.6 < 2.4

where the me+e− cut is applied to lower the impact of Z decays. An example, for stage
III, of the shape of the signal and background, after cuts and before fitting, are shown
in Fig. 3.6. Here, the couplings ySe /Λ = 1.5 TeV and ySχ /Λ = 0.25 TeV are chosen to be
close to the exclusion limit.

11In general, neutrinos are the main background as they manifest also as missing energy at the detectors
and then any process with neutrinos as a final state could affect the DM signal.
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FIGURE 3.7: Exclusion Limits for CLIC in the ySe − ySχ plane.

Fitting Signal and Background

In order to use the mee spectrum to discriminate signal and background, we gener-
ate 50.000 signal and 106 background events. Since the signal shape depends on the
width of S , it is simulated for several values of the latter, depending non-trivially on
the input parameters mS and ySe /Λ, given at the end of Sec. 3.4 where mS and ySe have
the greatest impact. To perform the analysis, we implement the corresponding cuts in
MadAnalysis and generate histograms that are fitted to a fourth order polynomial for
the background, and a simple Breit-Wigner distribution for the signal. Finally, the sig-
nal is characterized by the total number of events and the width of the Breit-Wigner
distribution, allowing to easily test several couplings.

Resulting Constraints for CLIC

To establish constraints on the model parameters, it is necessary to translate the limits
on the signal strength modifier, µ, into limits on the Yukawa couplings. Details on
the statistics analysis and the Likelihood function are given in Appendix C. Note that,
for fixed ye

S and thereby for a fixed width and fixed shape of the mee distribution, we
have µ = (ySχ /Λ)2. We also take into account for all limits a 5% uncertainty on the
background normalization i.e., σB = 0.05, while σS is negligible.

The resulting limits in the ySe − ySχ plane are summarized in Fig. 3.7. In the left panel,
Fig. 3.7a, we compare the reach of the three CLIC stages, assuming mS = 200 GeV and
mχ = 5 GeV. Note that the choice of the mass of the mediator is set in such a way that
we evade LEP limits. We observe that already at the first stage we would be sensitive to
O(1/TeV) couplings, while at the later stages the reach extends well beyond a TeV. On
the other hand, in Fig. 3.7b, we explore the constraints for several DM masses, with a
fixed mS = 200 GeV. The obtained limits are shown for the stage II, which demonstrates
that the sensitivity does not vanish for mχ/2 > mS . We further note that our search is
just sensitive to the product of the couplings, while e+e− resonance would be sensitive
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FIGURE 3.8: Left panel: Band of relic density 0.11 < h2ΩDM < 0.13
(dark blue) for ySχ = 2.25, independent of ySu,d,e. Exclusions from
XENON1T (to the left of the green line) and the LZ projection (to the
left of the red curve) are superimposed (which however are not present
for the hadrophobic model). The leftover space can be tested with DAR-
WIN. Right Panel: Band of relic density 0.11 < h2ΩDM < 0.13 for

mS = 200 GeV.

only to the ySe , breaking this degeneracy. This offers another way to test either full or
part of the model, while still the dark matter search above would be crucial to probe
the new SSχχ portal.

DM Phenomenology

Let us now address the fulfilment of the relic density. In this case, as we have allowed
regions where the DM mass is larger than the mediator mass (mχ ≳ mS ), the DM
relic density is set via the process χχ → SS , while for smaller dark matter masses
it is always far above the measured value since no decay channel is kinematically al-
lowed. We have verified that the s-channel decay (where one of the scalar singlets gets
a vS > 0) is negligible even in the resonance region. We use micrOmegas 5.0.8 [182]
for the numerical values. The viable parameter region, for a relic density between
0.11< h2ΩDM<0.13, is shown as a blue band in the left panel of Fig. 3.8 in the mS −mχ

plane, where we set ySχ = 2.25. Light mediators mS < 200 GeV, below the green line,
are already excluded by XENON1T [183] and heavier once will be tested in future ex-
periments like LZ [184] (red line) and DARWIN [185] (remaining region). The domi-
nant contribution to direct detection rates arises from tree-level s-channel exchange of
S with the up and down quarks and therefore vanishes in the hadrophobic case. Since
vS ∝ 1/ySf , the cross section is independent of the Yukawa couplings. Finally, in the
right panel of Fig. 3.8 we show the ySχ vs mχ, for mS = 200 GeV. Note that also the relic
density is independent of the values of ySu (or ySe ), which do not enter the dominant
annihilation amplitude. We find that, unless the electron S−Yukawa coupling is very
small, most of the viable parameter space will be tested at CLIC.
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3.5 Matching the eDMEFT with More-UV-Complete Theories

The concept of matching in EFTs can be broken down into a single question: How does
the physics at high energies show up in the low energy effective theory? Every time
we remove a heavy field from the high energy theory, it is crucial to verify whether
the physics in the low energy theory has changed or not. Thus, the need to keep track
of physical effects in order to have consistency between both the high and low energy
theories. Matching is nothing else but the right establishment of that connection.

When performing the matching, it is necessary to be at energies close to the range
in which the heavy particles were integrated out, as shown in Fig. 3.9. This, because
is precisely in that limit when the physics behaviour starts to be unclear. Furthermore,
if the matching is done at scales far from µ = M (where the latter is the mass of the
heavy integrated-out field), we would have a two-scale problem, and therefore large
logarithms. When performing the matching, the physics of the heavy fields is then
captured in the so called Wilson coefficients.

In a nutshell, the matching consist of the following steps:

1. Computing the amplitudes in both the full and EFT theory, taking diagrams up
to a certain loop level into account.

2. Then equate the resulting amplitudes, order by order in perturbation theory, from
the high energy theory with the ones in the low-effective one.

3. Finally, solve for the Wilson coefficients Ci.

As we see in the following, matching is specially useful when calculating one loop
processes. When loop corrections are taken into account, EFTs become a strong tool to
calculate and deal with large separated energy scales. Acting accordingly with the reg-
ular procedure of an EFT, logarithms of the large ratio of such energy scales, appearing
in the perturbative expansion, are handled by effectively splitting them into a heavy
and light fields. While the fraction above the matching scale is associated to the Wilson
coefficients, the light (or low-energetic) one is captured in the matrix elements of the
effective operators. Then, the Wilson coefficients are derived at the high scale by the
matching procedure. There, the corresponding large logarithms disappear in the cal-
culations, since the matching is independent of the IR regime, where both theories are
identical. Then, as depicted in the right panel of Fig. 3.9, we can run down the Wilson
coefficients by using the renormalization group equations (RGE). In this way, one is left
with an EFT for the IR featuring only one scale. The repeated combination and running
of the Wilson coefficients allows to sum up the logarithms in all orders of perturbation
theory [106]. For a full study, please refer to Refs. [96, 101, 103, 106].

The approach used below, consists of using the equations of motion for the heavy
fields that are integrated out. The effective Lagrangian is thus derived by solving them,
and inserting the results in the corresponding UV theory Lagrangian. This approach is
particularly straightforward for tree-level matching and has been extended to one-loop
level under the name of covariant-derivative-expansion [186–188]; applications to SMEFT
can be read at Refs. [189–192]. In the upcoming sections, we present the matching of
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FIGURE 3.9: A regular matching scheme is presented in the left panel.
Here ϕH represent the heavy fields while ϕL the lights fields, µ is the
renormalization energy scale and M is the fundamental energy scale for
the new effective theory. The running of the couplings is then presented
in the right panel. Here RG running represents the corresponding renor-

malization group equations necessary for the running.

the eDMEFT with two more-UV-complete theories: 2HDM + Pseudoscalar and SM +
vector-like-quarks.

3.5.1 2HDM + Pseudoscalar

In Chapter 2, we introduced the 2HDM as a renormalizable extension of the SM. Let
us now explore the scenario where we augment the SM by a second doublet and a
pseudoscalar field (S̃) as reviewed in [193]. We start by briefly exploring the theoretical
properties of the 2HDM+S̃ 12, afterwards, we examine the limit where the mass scale of
the second doublet is far above the EW scale. In this case, the doublet can be integrated
out, generating a combination of Wilson coefficients of the eDMEFT.

The general potential of the 2HDM+S̃ is expressed as [193–195]

V(Φ1, Φ2, S̃) = V2HD(Φ1, Φ2) + VS̃(S̃) + VS̃2HD(Φ1, Φ2, S̃), (3.24)

12In the literature, the 2HDM plus a pseudoscalar is commonly referred as 2HDM+a where a is a pseu-
doscalar field. However, for consistency we use the notation where S̃ is the pseudoscalar singlet mediator.
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where the different parts of the potential are given by

V2HD(Φ1, Φ2) = M2
11Φ†

1Φ1 + M2
22Φ†

2Φ2 +
[

M2
12Φ†

2Φ1 + h.c.
]
+ 1

2 λ1(Φ†
1Φ1)

2

+ 1
2 λ2(Φ†

2Φ2)
2 + λ3(Φ†

1Φ1)(Φ†
2Φ2) + λ4(Φ†

2Φ1)(Φ†
1Φ2) (3.25)

+
[

1
2 λ5(Φ†

2Φ1)
2 +

{
λ6(Φ†

1Φ1) + λ7(Φ†
2Φ2)

}
(Φ†

1Φ2) + h.c.
]

,

VS̃(S̃) =
1
2 M2

S̃S̃S̃2 + 1
4 λS̃S̃4 , (3.26)

VS̃2HD(Φ1, Φ2, S̃) = λS̃1 (Φ
†
1Φ1)S̃2 + λS̃2 (Φ

†
2Φ2)S̃2 + µS̃12S̃(iΦ†

1Φ2 + h.c.) . (3.27)

Here, λ5,6,7 and M2
12 are potentially complex parameters. To ensure a CP-conserving

potential and vacuum stability all coefficients and both vevs are taken to be real [196].
For more a more detail explanation on the 2HD potential please refer to Sec. 2.6 and
Sec. 2.3. To identify the doublet containing the new states and to consistently integrate
them out, it is convenient to rotate {Φ1, Φ2} to the Higgs basis, {Φh, ΦH}. There the
two doublets are defined as 13

Φh = cβ Φ1 + sβ Φ2 =

(
G+

v+ρ̂1+iG0
√

2

)
, ΦH = −sβ Φ1 + cβ Φ2 =

(
H+

ρ̂2+iρ̂3√
2

)
, (3.28)

such that the vev of the heavy and light higgs are ⟨ΦH⟩ = 0 and ⟨Φh⟩ = v ≈ 246 GeV.
The SM Goldstone bosons, G±, G0, and the charged scalar pair, H±, are already mass
eigenstates. On the other hand, the CP-even scalars ρ̂1,2 are linear combinations of the
SM Higgs, h, and an additional heavy scalar, H. In addition, ρ̂3 and S̃ are CP-odd with
mass eigenstates a and A.

The potential in the Higgs basis reads

V̂(Φh, ΦH, S̃) = V̂2HD(Φh, ΦH) + V̂S̃(S̃) + V̂S̃2HD(Φh, ΦH, S̃) , (3.29)

where each part is given by

V̂2HD(Φh, ΦH) = M̂2
hhΦ†

hΦh + M̂2
HHΦ†

HΦH +
[

M̂2
hHΦ†

HΦh + h.c.
]
+ 1

2 λ̂h(Φ†
hΦh)

2

+ 1
2 λ̂H(Φ†

HΦH)
2 + λ̂3(Φ†

hΦh)(Φ†
HΦH) + λ̂4(Φ†

HΦh)(Φ†
hΦH) (3.30)

+
[

1
2 λ̂5(Φ†

HΦh)
2 +

{
λ̂6(Φ†

hΦh) + λ̂7(Φ†
HΦH)

}
(Φ†

HΦh) + h.c.
]

,

V̂S̃(S̃) =
1
2 M2

S̃S̃ S̃2 + 1
4 λS̃S̃4, (3.31)

13From now on we make use of the shorthand notation sβ ≡ sin β and cβ ≡ cos β.
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V̂S̃2HD(Φh, ΦH, S̃) = λ̂HHS̃ Φ†
HΦH S̃2 + λ̂hhS̃ Φ†

hΦhS̃2 + λ̂hHS̃ S̃2(Φ†
HΦh (3.32)

+ h.c.) + µS̃hH S̃
(

iΦ†
hΦH + h.c.

)
,

where the couplings mediating the mixing between the Higgs fields (H,h) and the pseu-
doscalar mediator (S̃) in Eq. (3.32) are

λ̂HHS̃ = s2
β λS̃1 + c2

β λS̃2 , (3.33)

λ̂hhS̃ = c2
β λS̃1 + s2

β λS̃2 , (3.34)

λ̂hHS̃ = sβcβ (λS̃2 − λS̃1) . (3.35)

In general, the terms λ̂6, λ̂7, and λ̂hHS̃ get defined during the basis transformation. We
comment on them in the following. Moreover, the coefficient of S̃

(
iΦ†

hΦH + h.c.
)

does
not change under this rotation. The minimization conditions of Eq. (3.30) are given by

M2
hh = −λ̂hv2/2 , (3.36)

M2
hH = −λ̂6v2/2 = − 1

2 (m
2
h −m2

H)cβ−αsβ−α . (3.37)

As seen before, a Z2-symmetry is typically imposed to ensure the absence of FCNCs
in 2HDMs. Here the doublets carry different charges, eg. Φ1 → +Φ1 and Φ2 → −Φ2.
Applying this symmetry to the scalar potential in Eq. (3.25) and only allowing for it to
be softly broken by the M2

12 term sets

λ6 = λ7 = 0 . (3.38)

In agreement with the original papers and experimental searches, we focus on the
phenomenologically well motivated alignment limit, which can be guaranteed by a
specific choice of the potential coefficients [197]

λ1 = λ2 = λ3 + λ4 + λ5 . (3.39)

In this limit, the potential parameters from the Z2 transfer directly to the Higgs basis as
λi = λ̂i for i = {1, h} , {2, H} , 3 , 4 , 5 and λ̂6 = λ̂7 = 0. This implies cβ−α ∝ λ̂6 = 0. The
minimization conditions simplify to

M̂2
hh = −λ1v2/2 and M̂2

hH = 0 . (3.40)

Therefore, the potential in Eq. (3.30) reads

V̂2HD(Φh, ΦH) = M̂2
hhΦ†

hΦh + M̂2
HHΦ†

HΦH (3.41)

+ 1
2 λ1

[
(Φ†

hΦh)
2 + (Φ†

HΦH)
2
]
+ λ3(Φ†

hΦh)(Φ†
HΦH)

+ λ4(Φ†
HΦh)(Φ†

hΦH) +
1
2 (λ1 − λ3 − λ4)

[
(Φ†

HΦh)
2 + h.c.

]
,
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where the CP-even scalars are now mass eigenstates and Eq. (3.28) simplifies to

Φh =

(
G+

v+h+iG0√
2

)
and ΦH =

(
H+

H+iρ̂3√
2

)
. (3.42)

Therefore, Φh corresponds to the SM Higgs doublet, c.f. [196,198–200], and ΦH contains
the new physics contributions. The CP-odd state ρ̂3 mixes with S̃ to form the mass
eigenstates a and A with masses MA > Ma and the mixing angle

sin 2θ =
2 v µ12S̃

M2
A −M2

a
. (3.43)

We note that in the limit M̂2
HH ≫ v2 the new states, H, A, and H± are nearly mass

degenerated with the common mass scale M̂HH.
For completeness, the DM and Yukawa Lagrangians in the Higgs basis are given by

LYukawa = − ∑
n=h,H

(
Ŷu

n,ij Qi
Luj

RΦ̃n + Ŷd
n,ij Qi

Ldj
RΦn + Ŷl

n,ij Li
Ll j

RΦn + h.c.
)

, (3.44)

LDM = −yS̃
χ S̃ χγ5χ . (3.45)

Since Φh corresponds to the SM Higgs doublet the Yukawa matrices Yu,d,l
h have to be the

SM ones. The matrices of the second doublet are assumed to be proportional to them,
namely

Ŷi
h ≡ Yi

SM and Ŷi
H = ϵiYi

SM, (3.46)

with the scaling factors ϵi and i = u, d, ℓ. Due to the mass mixing between the SU(2)
singlet and doublet scalars, DM couples to both CP-odd physical states.

Matching

After introducing the full theory, we are now able to integrate out the second Higgs
doublet, ΦH. To do so, we employ its equation of motion at zero momentum, which is
given by

M̂2
HHΦH + λ1(Φ†

HΦH)ΦH + λ3(Φ†
hΦh)ΦH

+ λ4Φh(Φ†
hΦH) + (λ1 − λ3 − λ4)(Φ†

HΦh)Φh

+ λ̂HHS̃ S̃2ΦH + λ̂hHS̃ S̃2Φh − iµS̃hH S̃Φh

+ Yu∗
H,iju

i
RϵQj

L + Yd∗
H,ijd

i
RQj

L + Yl∗
H,ijl

i
RLj

L = 0 .

(3.47)

Linearizing in ΦH and expanding in large M̂HH leads to

M̂2
HHΦH + λ̂hHS̃ S̃2Φh − µS̃hH i S̃Φh

+
(

Yu∗
H,iju

i
RϵQj

L + Yd∗
H,ijd

i
RQj

L + Yl∗
H,ijl

i
RLj

L

)
= 0 .

(3.48)
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We note that this approach is appropriate only if the mixing satisfies sin θ ∼ µS̃hH be-
tween the heavy CP-odd Higgs and S̃ in the UV theory after EWSB (the latter identified
with S̃ in the EFT), is not too large, corresponding to a valid mass-insertion approxima-
tion. We thus write µS̃hH = λS̃12M, requiring M/Λ ≡ ϵM < 1, as also suggested by
perturbative unitarity. Moreover, identifying the mass scale of the heavy doublet with
the cutoff, M̂HH = Λ ≫ v [191, 198], and setting the off-diagonal operator M̂2

hH = 0
due to the alignment limit, leads to

ΦH =− λ̂hHS̃
Λ2 S̃2Φh +

λS̃12
Λ

ϵM i S̃Φh

− 1
Λ2

(
Yu∗

H,iju
i
RϵQj

L + Yd∗
H,ijd

i
RQj

L + Yl∗
H,ijl

i
RLj

L

)
.

(3.49)

This result will be inserted into the Lagrangian (3.41).

For a CP-conserving potential, terms with odd powers of S̃ besides S̃ ΦHΦh vanish.
Therefore, at D ≤ 4 only the Higgs-portal gets higher order corrections. At D = 5 an
effective Yukawa-like coupling is generated:

LD = 4
S̃ =

(
−λ̂hhS̃ + λ2

S̃12
ϵ2

M

)
S̃2 Φ†

hΦh (3.50)

LD = 5
S̃2HD

=
iλS̃12ϵM

Λ
S̃
(

Yu
H,ijQ̄

i
Luj

RΦ̃h + Yd
H,ijQ̄

i
Ldj

RΦh + Yl
H,ij L̄

i
Ll j

RΦh + h.c.
)

. (3.51)

To translate the coefficients from the Higgs basis to the interaction basis, we employ
Eq. (3.33) to (3.35). We obtain

λHS̃ = s2
βλS̃2 + c2

βλS̃1 −
λ2

S̃12
v2

Λ2 (3.52)

with

λS̃12 = sin(2θ)
M2

A −M2
a

2vM
. (3.53)

For the Yukawa couplings with the Z2 charges similar to the 2HDM Type-II we get the
final relation

yS̃t =
µS̃hH

Λ
Yu

H,33 = λS̃12ϵMYu
H,33 . (3.54)

3.5.2 2HDM + Scalar

A similar procedure can be done for 2HDM + scalar. However, unlike the 2HDM +
pseudoscalar, where the DD limits are only relevant for light mediators as the cross
section is strongly suppressed by the momentum transfer, the scalar case generates spin
independent interactions via t-channel scalar exchange. Therefore, DD experiments get
sensitive to mediators masses around TeV scale and as a consequence, the exclusion
limits should be taken into account in the phenomenological studies [193]. This model
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has been already considered in the literature [193, 199–202]. A study on the constraints
and implications in the search for heavy bosons for 2HDM + S at the LHC can be found
in Ref. [201] while an extensive comparison between 2HDM + scalar/pseudoscalar can
be found in Ref. [193].

The 2HDM + S general potential can be expressed as [193, 201]

V(Φ1, Φ2, S) = V2HD(Φ1, Φ2) + VS(S) + VS2HD(Φ1, Φ2, S) . (3.55)

After consideration of the Z2 charge assignments and assuming S to be even under it,
the different parts of the scalar-related potential are now given by

VS2HD(Φ1, Φ2, S) =µ11S(Φ†
1Φ1)S + µ22S(Φ†

2Φ2)S + µ12SS(Φ†
2Φ1 + h.c.) (3.56)

+ λ11S
2 (Φ†

1Φ1)S2 + λ22S
2 (Φ†

2Φ2)S2 + λ12S
2 (Φ†

1Φ2 + h.c.)S2 ,

VS(S) = 1
2 M2

SSS2 + 1
3 µSS3 + 1

4 λSS4 . (3.57)

Rewriting the potential in the Higgs basis leads to

V̂(Φh, ΦH, S) = V̂2HD(Φh, ΦH) + VS(S) + V̂S2HD(Φh, ΦH, S) , (3.58)

with V̂2HD as given in Eq. (3.41). The corresponding part mixing the singlet with the
two doublets then reads

V̂S2HD(Φh, ΦH, S) = 1
2 µ̂HHS(Φ†

HΦH)S + 1
2 µ̂hhS(Φ†

hΦh)S + 1
2 µ̂hHSS

(
Φ†

HΦh + h.c.
)

+ 1
2 λ̂HHS(Φ†

HΦH)S2 + 1
2 λ̂hhS(Φ†

hΦh)S2 + 1
2 λ̂hHSS2

(
Φ†

HΦh + h.c.
)

,

(3.59)

where the λ̂ijS are analogue to Eq. (3.33) to (3.35) and

µ̂HHS = s2
βλS1 + c2

βµS2 , (3.60)

µ̂hhS = c2
βλS1 + s2

βµS2 , (3.61)

µ̂hHS = sβcβ(µS2 − µS1) . (3.62)

In the following, we set µhhS = 0 to reach the aligment limit and to avoid mixing
between the scalar and the SM Higgs. Also, for simplicity, µHHS = 0. The resulting
potential is then identical to the one for the 2HDM + pseudoscalar in Eq. (3.32). As a
consequence, the matching is the same, and the corresponding relation for the Type-II
2HDM for the bottom quark is

yS
b =

µhHS

Λ
Yd

H,33 = λS12ϵMYd
H,33 . (3.63)
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3.5.3 SM + Vector-Like Quarks

In the SM, the left-handed fermions transforms as doublets under the SU(2)L symme-
try while the right-handed ones transform as singlets. Therefore, to construct the mass
term it is required the product of both the left- and right-handed parts and the presence
of the SM Higgs field to be gauge invariant. However, the possibility of introducing
exotic fermions transforming as weak singlets also exists. This kind of fermion is called
vector-like [203–207], their left- and right-handed components now transform equally,
making the mass term automatically gauge invariant, independently of the Higgs bo-
son. As a consequence, this kind of fermions have the freedom to be much heavier
than the SM ones. In this Section, we focus on them and include vector-like quarks
(VLQ) [208]. The latter transform as triplets under the SU(3)c gauge group. Recent
experimental limits on such exotic fermions can be found in Refs. [209–213].

We then consider a more-UV-complete model by extending the SM with a scalar
singlet, S , a DM fermion, χ, and two new coloured VLQs. All singlets under the SU(2)L
symmetry. We consider two types of VLQs, T with Q = 2/3 and B with Q = −1/3
[214]. The corresponding Lagrangian then reads

L =−MT TLTR −MB BLBR −
1
2

µ2
SS2 −mχχχ− yχS χ̄χ

−
(

yT STLTR + ySt STLtR + µTt TLtR + yHT QLH̃TR + yt QLH̃tR

+ yB SBLBR + ySb SBLbR + µBb BLbR + yHB QLHBR + yb QLHbR + h.c.
) (3.64)

By performing a rotation in the (TR, tR) and (BR, bR) fields, the terms proportional to
µTt(Bb) can be removed. Additionally, yt,b are fixed while yT(B), ySt(Sb) and yHT(HB) are
free parameters. In the following, we present the derivation for the top-quark only, but
it applies similar to every quark generation. The Yukawa Lagrangian can be written in
matrix form.

Lt
yuk = −(QL, TL)

(
ytH̃ yHT H̃
yStS yTS + MT

)(
tR
TR

)
+ h.c. (3.65)

To focus only on the VLQ related effects, we consider the case where S neither
develops a vev i.e ⟨S⟩ = 0, nor mixes with the SM Higgs. Therefore, after EWSB
Eq. (3.65) can be written as

Lt
yuk = −

(
tL, TL

)
M
(

tR
TR

)
−
(
tL, TL

)
∆(h, S)

(
tR
TR

)
, (3.66)

where

M =

(
yt√

2
v yHT√

2
v

0 MT

)
and ∆(h, S) =

(
yt√

2
h yHT√

2
h

ySt S yT S

)
. (3.67)

and v is the vev of the SM Higgs v = 246 GeV. As in the previous models, in order to
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diagonalize the mass matrix, M, we introduce the unitary rotation matrices, L and R,
chosen such that L M R† = diag(mt, mT). The resulting fermion mass eigenstates read

t′i = cos θi ti + sin θi Ti, (3.68)
T′i = − sin θi ti + cos θi Ti, (3.69)

with i = L, R and the mixing angles [215, 216]

sin(θL) =
yHT v MT√

2
√
(M2

T −m2
t )

2 + (yHTv MT)2
, (3.70)

sin(θR) =
mt

MT
sin(θL) . (3.71)

Therefore, the corresponding mass eigenvalues for the SM top-quark and the new
VLQ T can be written as

{M2
T, m2

t } =
1
2

(
tr(MM†)±

√
tr(MM†)2 − 4 det(MM†)

)
, (3.72)

where the trace and determinant are given by

tr(MM†) = M2
T +

1
2

v2 (y2
HT + y2

t
)

, (3.73)

det(MM†) =
1
2
(yt v MT)

2 . (3.74)

Here mt is the measured top quark mass, thereby yt is fixed and as consequence the
mass of the VLQ reads

m2
T = M2

T

(
1 +

(yHT v)2

2(m2
t − (yHT v)2)

)
. (3.75)

After diagonalizing the mass matrix, Eq. (3.66) takes the form

Lyuk = −
(

t′L, T′L
)(mt 0

0 mT

)(
t′R
T′R

)
−
(

t′L, T′L
)(∆11 ∆12

∆21 ∆22

)(
t′R
T′R

)
, (3.76)

where the interaction part is now described by

∆11 = S(β2ySt + β4yT) +
h√
2
(β1yt + β3yHT) (3.77)

∆12 = S(β2yT − β4ySt) +
h√
2
(β1yHT − β3yt) (3.78)

∆21 = S(β1ySt + β3yT)−
h√
2
(β2yt + β4yHT) (3.79)

∆22 = S(β1yT − β3ySt) +
h√
2
(−β2yHT + β4yt), (3.80)
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FIGURE 3.10: Feynman diagrams for a mono-jet signal in the left panel
and gluon fusion scalar production in the right panel.

with β1 = cos(θL) cos(θR), β2 = cos(θR) sin(θL), β3 = cos(θL) sin(θR), and β4 =
sin(θL) sin(θR). We note that β3 and β4 are strongly suppressed for MT ≳TeV.

Matching

We now match the UV-complete VLQ model explored above to the eDMEFT. This is
done by following the three steps mentioned at the beginning of the section. Thus we
start by deriving the equations of motion, that are linear in TL(R) at zero momentum,
from the Lagrangian (3.64). We obtain

TR = − ySt

MT
S tR and TL = −yHT

MT
H̃†QL . (3.81)

Inserting it back into the original Lagrangian leads to the dimension five operator

Leff
VLQ =

yHT ySt

MT
S QLH̃tR . (3.82)

By identifying Λ = MT in the eDMEFT Lagrangian shown in Eq. (3.11), the corre-
sponding Wilson coefficients read

(YS
u)33 = −yHT ySt . (3.83)

Note that by exchanging, for example, the top quark in Eq. (3.64) for the up quark,
we could generate (YS

u)11 in a similar way. Moreover, at one-loop the SGaµνGa
µν vertex

is generated. By comparison with the SM top quark loop, we derive for the effective
coupling appearing in Eq. (3.11)

cSG
Λ

=
yT

3 MT
. (3.84)

Further details on the phenomenology of this coupling will be discussed in the sec-
tion below. For more detail on the general eDMEFT’s phenomenology please refer to
Ref. [12].
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FIGURE 3.11: Blind spot region for the annihilation cross section in the
yS

b − cS
G plane. The solid red line shows a relic abundance of frel = 1,

while the light red shaded region gets excluded by overabundance. The
two different blue shaded regions describe the DD XENON1T exclusion
limits. The gray region depicts the mono-jet exclusion at the projected 2σ
sensitivity at HL-LHC. Here we have fixed the masses to mχ = 65 GeV
and mS = 140 GeV, while the cutoff is set to Λ = 1 TeV. The black dot is

a benchmark point.

3.6 Collider Signatures

There are various kinds of collider signatures that can be studied in the specific models
we are exploring, and the relative relevance of such signals depends upon the values of
the different effective couplings. Most of these, are associated to the single production
of the scalar mediator, S, that further decays into DM particles. The main signal inves-
tigated in this section and its leading process are summarized in Fig. 3.10. In the left
panel, we show the mono-jet signature that gets characterized in the detector, by a jet
coming from a radiated gluon which was generated in the initial state and the missing
energy coming from the DM pair after the mediator decays. On the other hand, the
right panel depicts a gluon fusion scalar production process. In the SM, the top-quark
would be running inside the loop and the Higgs boson would be produced. In our
model, however, we consider a heavy VLQ, denoted by T, running inside the loop and
coupling to the new scalar mediator, S.
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FIGURE 3.12: Exclusion limits from the ATLAS mono-jet search [221]
and the 2σ HL-LHC projections in the mS − cS

G plane normalized to Λ
for mχ = 10 GeV, yS = 1, and all other couplings are equal to zero.

We can integrate out the heavy VLQ and identify its mass with the scale Λ ending
up with the coupling shown in Eq. (3.84). Additionally, if the VLQ coupling yHT is
set to zero, the qq initial state of the diagram could originate from the 2HDM+S and
the VLQ model would induce the cS

G operator. Then we have a non-trivial interplay
between both more-UV theories that could come from a richer NP sector. Here we are
interested in exploring such interplay. The dimension five gluon-mediator coupling
then contributes with a different sign than the dimension five quark-mediator to the
DD cross section. As a consequence, the operators cancel each other and blind regions
appear. For general examples of blind regions in different contexts, see Refs. [9, 217–
220]. In our case, we find more subtle blind spot regions in the EFT context, where it
can appear between different operators featuring only one type of mediator [9]. The
effect is phenomenologically more relevant near the resonant region. In Figure 3.11, we
show the blind region in a yS

b − cS
G plane for a mχ = 10 GeV, mS = 140 GeV, yS

f = 1 and
Λ = 1 TeV. We then confront the annihilation cross sections with the XENON1T limits
(blue shaded regions) and the correct relic abundance curve (light red solid line). The
light red shaded region is excluded by an overabundance in the relic density ( frel > 1).
The grey shaded region is the 2σ projected HL-LHC exclusion region. The projection
was done by employing the 2017 ATLAS analysis [221] in CheckMate [171] and scaling
the results for the corresponding high luminosity [9]. We can see that the HL-LHC
can already explore the blind spot region for couplings of yS

b = 0.4 and cS
G = 0.7 (see

the black dot in Figs. 3.11-3.13). For more details of the blind regions coming from the
eDMEFT, please see Ref. [9].
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FIGURE 3.13: Translation of the eDMEFT yS
b coupling into the 2HDM+S

coefficient λS12 using Eq. (3.63). Here ϵM = 0.5, and the bottom Yukawa
Yd

H,33 = 0.16. The shaded red region is excluded by the overabundance
of the relic density, the red star is the point that reproduces the correct
relic density. The black dot point is the benchmark point depicted in the
plots above which can be tested at HL-LHC with perturbative couplings

for the VLQ and lies in the blind region.

On the other hand, in Figure 3.12, we study the exclusion limits for the LHC and the
HL-LHC projections from mono-jet searches as a function of the mediator mass. Here
we fixed the value of mχ = 10 GeV. Nonetheless, the choice of the DM mass can be
freely selected as long as it is not close to the mS ≈ 2mχ threshold. In fact, in Ref. [12],
it was verified that the experimental sensitivity is independent of the DM mass in that
region. Here the parameter space which can be probed through current ATLAS mono-
jet searches is limited, allowing only to O(1) couplings to be tested [12]. Nevertheless,
future HL-LHC limits can cover regions where cS

G < 1. In particular, the limits are
tighter for light mediators.

Coming back to Eq. (3.84), and identifying Λ = MT ∼ 1 TeV, we can translate
the limits in Fig. 3.12 as a coupling for the VLQ. As an example, for the benchmark
mS = 140 GeV and cS

G = 0.7 (black dot in Figure 3.12), the corresponding VLQ cou-
pling is yT ≈ 2, being well in the perturbative regime. Note that the current LHC limits
can be improved by using the newest results from ATLAS [222] that were recently im-
plemented in CheckMate2 [171].

Regarding the 2HDM+S model only, we were not able to find a concrete parameter
space that lead to an observable LHC signal, and therefore neglect its contribution in the
regime where the VLQ becomes relevant. However, when looking at the combination
of 2HDM+S and VLQ, the values on the bottom-Yukawa coupling can be translated into
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the 2HDM+S coupling λS12. This is done by using the relation obtained after perform-
ing the matching in Eq. (3.63). Specifically for the benchmark point in the blind region
where yS

b = 0.03, the corresponding value for the 2HDM+S parameter is λS12 = 3.8.
We assume the heavy Higgs, H, dominantly coupling to bottom quarks and therefore,
ϵu,l = 0 and ϵd = 1 (see Eq. (3.46)). Additionally, by judiciously modifying the flavour
structure of the theory, we may safely assume the DD effects of the down and charm
quarks to be small enough so they do not play a role in the analysis. We then consider
ϵb = 1, ϵM = M/Λ = 0.5, mb = 2.86 GeV (in the Z mass scale) and Yd

H,33 = 0.016. In
Fig. 3.13, we depict the coupling translation as a solid blue line, the red shaded region
is excluded by relic density overabundance whereas the red star represent the point
were the correct relic density can be achieved. For last, the black dot is the benchmark
point depicted in all the aforementioned Figures which can be tested at HL-LHC with
perturbative couplings for the VLQ and lies in the blind region.

In general, the findings from the interplay between the VLQ and 2HDM + S models
are of special interest as with small coefficients coming from the eDMEFT theory (cS

G =
0.7 and yS

b = 0.03), sitting at a DD blind spot, we can find O(1) couplings in the more-
UV-complete theories. Moreover, the sign difference between operators create blind
regions in which DD effects can be suppressed. It is in a corner of that blind region that
we find a suitable value for the eDMEFT couplings that could be tested in the future
HL-LHC collider. Such limits could then be translated into limits on the parameters
of the more-UV-complete theories through the performed matching. We thus showed
that a blind spot region, identified in the EFT, can in fact be achieved in a UV complete
model, being a combination of VLQ and 2HDM+S, with a reasonable O(1) values for
the fundamental couplings and can be potentially detectable at HL-LHC.
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Chapter 4

Addressing the XENON1T Excess
within the eDMEFT Framework

As mentioned in Sec. 3.2, DM is one of the strongest evidences which require the pres-
ence of new physics. Finding the corresponding particle(s) is one of the biggest tasks
for the present century. To this end, several detectors are already trying to detect it and
unveil major aspects of its nature. They are designed with different target materials,
some of which are [223, 224]:

• Scintillator crystals detectors: They use NaI(Tl) or CsI(Tl). The high mass-number
of I (A = 127) or Cs (A = 133) lead to high sensitivities for spin-independent inter-
actions [225,226]. Some experiments that use this kind of detector are DAMA/NaI
[227, 228], DAMA/LIBRA [227, 229], UKDMC(NAIAD) [230] and ANAIS [231].
Among all the aforementioned experiments, DAMA/LIBRA has achieved the
lowest level of background and accumulated sufficient data to study the annual
modulation signature of WIMP interactions.

• Semi-conductor ionisation detectors: These ones employ germanium and silicon
and are mainly used to search for DM-induced charge signals. One example is the
CoGeNT experiment [232] that searches for DM candidates of around ∼ 10 GeV
with pure germanium detectors. For searches of sub-GeV DM in semi-conductor
detectors, please refer to Ref. [233].

• Crystalline cryogenic detectors (bolometers): They measure the increase of the
small particle interaction-induced temperature ∆T to measure either heat or ather-
mal phonon signals. Cryogenic detectors are specially remarkable to reject back-
grounds from interactions of normal matter. Some experiments of this kind are
CRESST [234–237] , EURECA [234, 235] and COSINUS [238], where the first two
make use of CaWO4 crystals while the last one uses NaI.

• Noble gases detectors: These ones use liquid argon (Ar) and xenon (Xe) as scin-
tillators as they are easily ionized. These noble gases have the advantage of being
easily liquified to build dense and compact dark matter targets. The detection is
done through the heat produced by the interactions. The undetected heat excite
and ionise the atoms and as consequence the latter decay under the emission of
ultraviolet light at wavelengths of 128 nm for Ar and 178 nm for Xe. Noble gas
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detectors have already established important limits on the DM mass and interac-
tion couplings. Some experiments of this kind are XENON1T [183], LUX [239],
ZEPLIN-III [240, 241], XMASS [242], DARWIN [243], among others [244].

For an extensive review on the experimental status of WIMP-like DM, please refer to
Ref. [224].

In the following, we only focus our attention on the noble gas detectors, specially on
the XENON1T experiment [183]. The latter employs one ton of liquid-xenon as target
material and a time projection chamber (LXe TPC), that perform a three-dimensional
reconstruction of particles trajectories or interactions as depicted in Fig. 4.1. XENON1T
was primarily designed to detect WIMPs, however, it is also sensitive to interactions
from alternative dark matter candidates and to other physics beyond the standard
model. In 2020, the XENON1T collaboration announced an excess in the electron recoil
events [14], leading to a cascade of theoretical explanations of such phenomena rang-
ing from new neutrino interactions [245–250], the absorption of keV-scale dark mat-
ter [251–255], scattering induced by a new U(1) symmetry [256,257], semi-relativistic or
boosted DM [258–262], axions [250, 263], inelastic DM scattering [264–268], large neu-
trino magnetic moment [269–271] or more exotic explanations [272–276], a few more
examples are [265, 277–283]. It is important to mention that most of the theories fitting
the excess face astrophysical problems. Here, we explore a scenario where such con-
straints can be avoided with late-phase transitions [277]. As the XENON1T experiment
is able to detect not only DM but also other BSM particles, this motivates the possibility
of probing the framework mentioned in Sec. 3.3, where the SM was augmented with
fermionic DM and a (pseudo)scalar mediator. Through a slightly extended version of
the eDMEFT we explore and address the excess in the low-energy electron recoil spec-
trum [277].

The chapter is organized as follows. In Sec. 4.1, we introduce the reported XENON1T
excess. Then, in Sec. 4.2, we introduce the general setup and the Lagrangian of our
model, discussing the masses, scalar mixing and the free parameters of our theory.
In Sec. 4.3, we fit the excess via modified neutrinos interactions and DM scattering.
In the latter, we also explore the fulfillment of the DM relic abundance. Afterwards,
in Sec. 4.4, we discuss the terrestrial and astrophysical constraints, including bounds
on electron-neutrino scalar interactions, the electron couplings and the neutrino cou-
plings. Here we also introduce two benchmarks that are used when confronting our
model with the astrophysical and laboratory constraints and discuss a more general
free-EFT description of our model. In Sec. 4.5, we present scenarios in which we can
avoid some astrophysical bounds, specially the ones coming from BBN, where a late
phase transition could evade the imposed constraint. Finally, in Sec. 4.6, we discuss the
current status of the XENON1T excess.
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FIGURE 4.1: Illustration of the xenon experiment. The particle (WIMPs)
hit the xenon atom when passing through the detector. The energy from
the collision excite the electrons orbiting the nucleus and their energy is
measured by time projection chambers (TPC) which surround the xenon

tank. Image taken from [284].

4.1 The XENON1T Excess

In 2020, the XENON1T collaboration reported an excess of 53 events, as 285 were de-
tected but only 232 events were expected. The excess was observed in the energy range
between 1 → 7 keV [14]. Inside this particular range, the collected data enables sensi-
tive searches for solar axions, bosonic dark matter and an enhanced neutrino magnetic
moment by solar neutrinos. The interpretation of the data in terms of the first and
last possibilities, finds substantial statistical improvements over the background-only
hypothesis with a significance around 3.4σ for solar axions and 3.2σ for the neutrino
magnetic moment. For further details of the aforementioned models, please refer to
Ref. [14].

Even though the excess might be an important hint to new physics, the possibility
of a more mundane explanation is considerable. With the current understanding of
the experiment, a contamination with tritium, could have contributed to the excess via
its beta decays. In addition, the PandaX-II experiment [285], carried on in China, later
reported a search for new physics signals using the low energy electron recoil events
previously recorded in their complete data sets. They concluded that the expected ex-
cess, assuming the best fit signal strength from XENON1T, is compatible with the data
within uncertainties. However, the data is also consistent with the background only
hypothesis. This cannot confirm or dismiss the presence of NP in the excess, but it is
expected that the next generation detectors as PandaX-4T [286], XENONnT [287] and
LZ [288] could confirm the nature of such anomaly.

As the XENON1T excess is observed in a few bins above the threshold, only theo-
ries that predict a highly localized energy deposit or an IR-dominated recoil spectrum
can account for the observation. In this thesis, we attempt to characterize the excess
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in a moderately expanded version of eDMEFT presented in Sec. 3.3. Here, instead of
having only one extra mediator, we have two: One that only couples with electrons
and the other only coupling with neutrinos. This is a result of a broken Ze

2 × Zν
2 sym-

metry under which neutrinos and electrons are charged. In this approach, modified
neutrino interactions with electrons, via a potentially light new scalar sector, are natu-
rally included in the eDMEFT. Therefore, the new extended framework, possesses all
the ingredients needed for explaining the excess. The induced non-trivial couplings of
the new scalars allow the excess to be related to the observed electron and neutrino
masses.

The complete setup is introduced in Sec. 4.2. In Sec. 4.3, we present fits to the
XENONT1T electron recoil excess, first assuming neutrino-electron scattering, and sec-
ond DM-electron scattering as its origin. There, we also examine whether the correct
DM relic abundance can be achieved consistently with our fits. Subsequently, in Sec.
4.4, we confront the neutrino explanation with stringent limits on new electron and
neutrino interactions, from terrestrial and astrophysical observations. We also identify
benchmark points and non-trivial mechanisms to avoid the severe constraints. Further-
more, the case of free couplings is considered corresponding to a subset of eDMEFT
operators, to characterize viable parameter regions. Lastly, we show how to avoid as-
trophysical and BBN constraints via late phase transitions in Sec. 4.5 and summarize in
Sec.4.6. The complete chapter is based on the results presented in reference Ref. [277].

4.2 Model Setup

We consider the leptophilic variant of the eDMEFT. Here, the SM scalar sector is ex-
tended by assuming two different parity symmetries, Ze

2 × Zν
2 , one shared by the neu-

trinos and the other by the electron. Just as in Sec. 3.4, the mentioned symmetries are
broken by vevs of two distinct scalars Sν(e) generating the electron and neutrino masses.
This allows us to address the smallness of neutrino masses and the charged-lepton
masses with two different energy scales coming from the mediator’s vev. Following
the convention from Eq. (3.11), the corresponding Lagrangian then reads

LSχ
eff =LSM′ +

1
2
(
∂µSℓ∂µSℓ − µ2

ℓS2
ℓ

)
+ χi/∂χ−mχχχ

− λℓ

4
S4
ℓ − λνe S2

νS2
e − λHSℓ |H|2S2

ℓ (4.1)

− 1
Λ

[
(ySν )ij Li

LH̃ν
j
R Sν + (ySe )i Li

LHeR Se + h.c.
]

−
[

yℓχS2
ℓ + yH

χ |H|2
Λ

χLχR + h.c.

]
,

where a summation over ℓ = ν, e is understood and LL are the left-handed SU(2)L lep-
ton doublets, eR, νe

R are the right-handed electron and right-handed neutrinos, while
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H is the Higgs doublet, furthermore, LSM′ denotes the SM Lagrangian without the
Yukawa couplings of the electron (and the neutrinos).

Note that, the mediators develop small vevs |⟨Sℓ⟩| ≡ vℓ ≪ v, which break the Ze,ν
2

symmetries, carried by all the right-handed neutrinos and the right-handed electron,
respectively, generating the masses for such light leptons. The mixing with the Higgs
via the |H|2S2

ℓ operators has to be small and will not be considered in this section.
Additionally, the conventional DM interaction Sℓ χχ is still generated with coefficient
∼ 2yℓχvℓ/Λ which will remain relevant for the following analysis. Lastly, we assume
the coefficient of the operator |H|2χχ to be negligibly small, such as to evade DD con-
straints and limits from invisible Higgs decays [161, 289, 290].

Masses, Scalar Mixing and Free Parameters

We start by studying the fermion and scalar mass spectrum, and summarize the rele-
vant free parameters. The fermion mass terms after electroweak and Ze

2× Zν
2 symmetry

breaking read

L ⊃ − ∑
ℓ=e,ν

ℓ̄L
v√
2

(
YH
ℓ +

vℓ
Λ

YSℓ
)
ℓR ≡ − ∑

ℓ=e,ν
ℓ̄L MℓℓR , (4.2)

where ℓL,R = eL,R, νL,R are three-vectors in flavour space and the Yukawa matrices

YH
e =

0 ye
12 ye

13
0 ye

22 ye
23

0 ye
32 ye

33

 , YSν =

(ySν )11 (ySν )12 (ySν )31
(ySν )21 (ySν )22 (ySν )32
(ySν )31 (ySν )32 (ySν )33

 , YSe =

(ySe )1 0 0
(ySe )2 0 0
(ySe )3 0 0

 ,

(4.3)

and YH
ν = 0, reflect the Ze

2 × Zν
2 assignments. Due to vanishing eigenvalues of YH

ℓ , the
electron and neutrinos would actually remain massless if the latter symmetries were
not broken via ve(ν) > 0. On the other hand, and following the idea of Sec. 3.4, a small
breaking of vν ∼ O(eV) and ve ∼ O(MeV) would be enough to generate mν ∼ 0.1 eV
and me ∼ 0.5 MeV with natural (ySℓ ) ≲ O(1) and Λ ≳ 1 TeV. We note that, in order to
explain the XENON1T excess in light of various constraints, it is necessary to deviate
from these natural scales, ending up with a partly explanation of light-fermion masses.

The following steps are very similar to those discussed in Sec. 3.4 with the Z2 odd
mediator. Now, we perform a rotation to the mass basis,

Mν = Uν
L Mν

diagUν †
R , with Mν

diag= diag(mν1 , mν2 , mν3) ,

Me = Ue
L Me

diagUe †
R , with Me

diag= diag(me, mµ, mτ) ,
(4.4)
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with Ue
L = Uν

L VPMNS, the couplings of the physical leptons to the SM Higgs boson and
the scalar mediators are given by

L ⊃ − ∑
ℓ=e,ν

ℓ̄L

(
ŶH
ℓ + vℓ/Λ ŶSℓ√

2
h +

v ŶSℓ√
2Λ
Sℓ
)
ℓR , (4.5)

where Ŷs
ℓ = Uℓ †

L Ys
ℓU

ℓ
R, s = H,S ; ℓ = ν, e, and (with some abuse of notation) we denote

the mass eigenstates by the same spinors ℓ = e, ν. The Yukawa matrices in the mass
basis can be expressed as

ŶSℓ =

√
2Λ

vvℓ
Mℓ

diag Uℓ †
R CS

ℓ Uℓ
R ,

ŶH
ℓ =

√
2

v
Mℓ

diag Uℓ †
R CH

ℓ Uℓ
R ,

(4.6)

where CS
e = diag(1, 0, 0) , CS

ν = diag(1, 1, 1) , CH
e = diag(0, 1, 1) and CH

ν = 0, and the
unitary rotations of the left-handed lepton fields drop out since they share the same
Zℓ

2 charges. Thus, the couplings with a fixed right-handed lepton are aligned with the
corresponding mass terms. While this is not true for the right handed leptons, which
could introduce FCNCs. Here, we chose the Yukawa matrices Mℓ

diag, such that Ue
R = 1,

avoiding FCNCs. The Yukawa matrices then read

ŶSe =

√
2Λ

vve
diag(me, 0, 0) ,

ŶSν =

√
2Λ

vvν
diag(mν1 , mν2 , mν3) ,

ŶH
e =

√
2

v
diag(0, mµ, mτ) ,

ŶH
ν = 0 .

(4.7)

As a consequence, muons and taus interact with the Higgs boson as in the SM, while
the electrons and neutrinos couples instead only to Se,ν, accordingly. The interaction
strength is determined by the free parameter ve,ν, which can be traded for ySe /Λ ≡
(ŶSe )11/Λ in the electron case and yS1 /Λ, where ySi /Λ ≡ (ŶSν )ii/Λ, for the neutrino
case.

Besides the fermion mixing, the scalar potential term parametrized by λνe also leads
to a scalar mixing after they obtain their corresponding vevs |⟨Sνe⟩| = vνe. Such mixing
is described by an angle θ as(

s
S

)
=

(
cos θ sin θ
− sin θ cos θ

)(Sν

Se

)
, (4.8)
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with
tan 2θ =

4 λνevνve

M2
ν −M2

e
, (4.9)

where M2
ℓ = µ2

ℓ + 3λℓv2
ℓ + 2λνe v2

νv2
e /v2

ℓ . The resulting physical masses read

m2
s/S =

1
2
(M2

ν + M2
e )±

M2
ν −M2

e
2 cos 2θ

. (4.10)

Taking the difference in the energy scale between neutrinos and electrons, where
in general mν ≪ me, we assume vν ≪ ve and accordingly Mν ≪ Me. This leads to
ms ≈ Mν, mS ≈ Me, as well as cos θ ≈ 1, sin θ ≪ 1. The scalar mixing then induces
suppressed couplings between the electron and the light mediator s (as well as between
the neutrinos and the heavy scalar S), given by

Ls =− s
v√
2Λ

(
cθySi νi

Lνi
R + sθySe eLeR

)
,

LS =− S
v√
2Λ

(
cθySe eLeR − sθySi νi

Lνi
R

)
,

(4.11)

where cθ ≡ cos θ, sθ ≡ sin θ.

The couplings of the electrons and the first neutrino to the light (and heavy) medi-
ators s (and S) can then be written as

ys
e ≡ sθ

v√
2Λ

ySe , ys
ν ≡ cθ

v√
2Λ

yS1 ,

yS
e ≡ cθ

v√
2Λ

ySe , yS
ν ≡ −sθ

v√
2Λ

yS1 .
(4.12)

At this point, we are in a position to summarize the free parameters of our setup,
relevant for our study, which are

• the mediator masses ms,S ≈ Mν,e

• the Se−Yukawa coupling ySe /Λ

• the Sν−Yukawa coupling yS1 /Λ

• the mixing portal λνe ,

• the DM mass mχ

• the bi-quadratic DM portal coupling yℓχ/Λ ,

where the remaining Yukawa couplings are given by Eq. (4.7).
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4.3 Fitting the Excess

In this section, we propose two possible scenarios that could fit the XENON1T excess.
In the first one, we make use of a modified neutrino interaction and study the corre-
sponding neutrino-electron scattering, whereas in the second one we study the DM-
electron scattering. Additionally, we also examine the fulfillment of the DM relic abun-
dance in the aforementioned scenarios. The corresponding Feynman diagrams for the
scattering of both models are shown in Fig. 4.2.

FIGURE 4.2: Corresponding Feynman diagrams for neutrino and DM
electron scattering, respectively.

Modified Neutrino Interactions

In this first scenario, we assume the DM-electron scattering inducing an electron recoil
to be negligible, and therefore will not be taken into account. Instead, we propose the
origin of the excess explained by modified neutrino scattering with electrons, in our
model mediated by s and S . As we will see, observational constraints prefer ms ≪ mS
such that neutrino-electron scattering can, to good approximation, be described by s-
exchange alone. The differential cross section for the new-physics signal reads [291]

dσνe

dEr
=

(ys
eys

ν)
2

4π(2meEr + m2
s )

2
m2

e Er

Eν2
, (4.13)

where me is the electron mass, Eν the energy of the incoming neutrino, Er the electron
recoil energy. The couplings of the electrons and the first neutrino to the light (and
heavy) mediators are shown in Eq. (4.12). The true differential event rate is thus given
by convoluting the differential cross section and the incident neutrino flux ϕν, weight-
ing by the number of electrons per unit mass Ne

dR
dEr

= Ne

∫
dEν

dσνe

dEr

dϕν

dEν
. (4.14)
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At the energies relevant for the XENON1T excess, the neutrino flux is dominated by
pp neutrinos from the sun. For the observed value of the pp-flux, we use Ref. [292]
whereas for the parameterization of the spectrum we employ [293].

In the following, we assume a universal interaction between the light mediator (s)
and the different neutrino flavours, such that oscillation effects do not affect the scatter-
ing rate. To make the connection between our theoretical spectrum and the observed
rate, experimental effects have to be included, in particular the efficiency reported
in [294] is applied. The limited detector resolution is taken into account via a gaus-
sian smearing function with an energy dependent resolution. As suggested in [295] we
take the ansatz

σ(E)/E =
a√
E
+ b (4.15)

and assume that the resolution varies between ≈ 30% at Er = 1 keV and ≈ 6% at 30
keV. We adopt the best fit background model from the experimental publication [294]
and allow the normalization to vary within the 1σ.

In order to assess the impact of a light scalar on the electron-neutrino scattering, a
χ2 analysis of the signal and background model is performed. We find that a coupling
of √

ys
e ys

ν ≈ 7.9× 10−7 (4.16)

is preferred with barely no dependence on ms for masses ms ≲ 20 keV. An exemplary
comparison between the signal associated with the best fit point for ms = 60 eV and
the data is shown in Fig. 4.3. This choice of parameters corresponds to χ2

best = 38.9
compared to χ2

bd = 47.1 for the background-only hypothesis. We can see that our results
are in good qualitative agreement with those in [245–247] which study a related set-
up. Next, we confront them with a comprehensive set of complementary experimental
constraints.

DM Scattering and Relic Abundance

One of the many advantages of the eDMEFT [9] and the slightly extended eDMEFT
frameworks, presented in Sect. 3.3 and Sec. 4.2, accordingly, is that both of them nat-
urally include DM interactions. Hence, the scattering between DM and electrons is
possible, and could account to the observed excess (see right panel of Fig. 4.2). In addi-
tion, it is also, interesting to check whether the correct relic abundance can be achieved
simultaneously with an explanation of the XENON1T excess. These observables are
correlated with each other as in the neutrino case, via the mediator couplings to SM
fermions.

A naive estimate of the maximum recoil energy possible in non-relativistic DM-
electron collisions leads to

Er,max =
2µ2

χ,e

me
v2

max ≈ 2× 10−6me , (4.17)



88 Chapter 4. Addressing the XENON1T Excess within the eDMEFT Framework

0 5 10 15 20 25 30
0

20

40

60

80

100

120

E [keV]

E
ve
nt
s/
(t
·y
·k
eV

)

FIGURE 4.3: Comparison between an exemplary differential event rate
for a scalar with ms = 60 eV and

√
ys

eys
ν = 7.9× 10−7 and the data as

reported by [183]. The full differential event rate is shown in blue while
the pure signal (background) contribution is depicted in orange (red).

where µχ,e is the reduced mass of the system and v the speed of DM. After taking into
account that v is limited by the local escape velocity of our galaxy, vesc = O(10−3 c),
and for mDM≫ me this leads to an estimate of Er,max ≈ 1 eV and thus well below the
energy scale required to account for the signal. Nevertheless, it is important to note
that the electrons form part of a bound system, the xenon atom. As a consequence, the
momentum of the electron is different from zero and could in principle take an arbitrary
value. The typical momentum of the bound electron is expected to be O(αemme) which
is small but allows for a larger energy transfer in the DM-electron scattering process
[296]. Then, the differential event rate is given by

dR
dEr

=
nXeρχ

mχ

d⟨σχe⟩
dEr

(4.18)

where nXe is the number of xenon atoms per unit mass in the detector and ρχ ≈
0.3 GeV/cm3 the local DM density. For the velocity averaged differential cross section,
we rely on the results of [297, 298]. In the heavy mediator limit, it can be parametrized
as

d⟨σχe⟩
dEr

=
σχe

2me

∫
dv

f (v)
v

∫
dq a2

0qK(Er, q) , (4.19)

where σχe is the cross section for scattering on a free electron with a momentum trans-
fer a−1

0 = αemme, while f (v) denotes the velocity distribution of the DM at Earth. The
atomic physics is encoded in the excitation factor K, originally computed in [297]. In or-
der to estimate the implications of a DM signal, we consider the averaged cross sections
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FIGURE 4.4: Comparison between the best fit differential event rate for a
DM particle with mχ = 10 GeV and σeχ = 1.25× 10−39 cm2 and the data.
The style is similar to Fig. 4.3 and for better visibility we also show the

signal rate enhanced by a factor of 5 as an orange dashed line.

reported in [298], and perform a fit to the signal using the same assumptions about the
detector as in the neutrino case. Note that, the case of a light mediator, leads to a much
stronger energy dependence of the signal and is expected to provide a worse fit of the
signal than a heavy mediator.

The best fit recoil rate that we found is depicted in Fig. 4.4, where the correspond-
ing values are mχ = 10 GeV and σχe ≈ 1.25× 10−39cm2, which could for instance be
explained by an MeV scale mediator with an O(1) coupling to DM and yS

e ≈ 10−5. It
can be seen that, at low energies, the signal (in orange) rises very steeply such that the
peak occurs at approximately 1.5 keV instead of the 2.5 keV needed to reproduce the
data. Nonetheless, it is interesting to note that the fit shows some improvement if a
small DM signal is added, even though, the statistical improvement only amounts to
marginally more than 1σ. Therefore, the DM-electron-scattering hypothesis does not
provide a convincing explanation of the observation and we do not entertain this pos-
sibility further. In reference [253], similar conclusions were reached. To have a better
fit with DM, requires a flatter recoil spectrum. This could for instance be achieved if a
relativistic or semi-relativistic DM sub-population [258,259,262] contribute to the signal
or if the interaction has additional momentum dependence [253].

Regardless of the success of the DM-electron scattering model in fitting the excess, it
is interesting to explore whether the observed DM relic density can be accounted for in
our framework. To this end, we assume the DM production mechanism via freeze-out
(see Sec. 3.2), the main DM annihilation channels are e+e− and S2 final state1. Then, the

1Here we neglect the corresponding contributions involving the light mediator s for simplicity, which
does not lead to qualitative changes.
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correct relic abundance can be achieved if the thermally averaged annihilation cross-
section is O(10−26 cm3 s−1). The cross-section for the e+e− channel can be estimated
as [12]:

⟨σv⟩ee ≈
1

8π

v2v2
e

Λ4

(ye
χ)

2(ySe )2m2
χ

(m2
S − 4m2

χ)
2

v2
χ

≈ 10−5σ0
v

( ve

5 GeV

)2
(

1 GeV
mχ

)2(10 TeV
Λ

)4

(ye
χ)

2(ySe )
2 , (4.20)

where vχ is the DM velocity (the cross-section is p-wave suppressed), while σ0
v = 2×

10−26 cm3 s−1. A similar estimate for the cross-section χχ→ S̄S final state reads:

⟨σv⟩(χ̄χ→ S̄S) ≈ 10−3 σ0
v

(
10 TeV

Λ

)2

(ye
χ)

2. (4.21)

We find that the e+e− cross section is too small if the XENON1T excess is explained
consistently. However, the S2 cross section could lead to the correct relic density, under
the conditions: Λ is lowered to the TeV scale and ye

χ ≳ 1.
Another possibility to improve the cross sections is considering an alternative pro-

duction mechanism. In this case, we use the freeze-in mechanism as it is more easily
realized within our setup. In this case, the thermal equilibrium has never been realized
in the early Universe as yℓχ ≪ 1 and the DM interactions are extremely weak. Then
the relic density can be built up from a negligible initial value, by SS(ss)→ χ̄χ inverse
annihilation processes and, S→ χ̄χ decays for sufficiently light DM. Since it is realized
via a D = 5 operator, the annihilation process leads to a UV dominated rate. Hence the
relic density is sensitive to the largest temperature and we need to specify our assumed
value for the reheating temperature TR. In order not to exceed the validity of our EFT
we limit ourselves to TR below the new physics scale Λ.

We compute the relic density with the freeze-in module implemented in the pub-
lic software micrOMEGAs 5 [299] which takes the full momentum dependence of the
annihilation and decay rates into account. In Fig. 4.5, we show the isocontours of
Ωχh2 = 0.12 in the (mχ, ye

χ) plane for the two benchmark models described in Sec.
4.4, assuming yν

χ = ye
χ. In our computation we have adopted TR = 100 GeV. The DM

relic density depends, besides the plotted parameters, on mS and ve. The values of the
latter two parameters are comparable for our benchmarks (mS ∼ 5 MeV, ve ∼ 5 GeV),
so that the two contours in Fig. 4.5 are rather close to each other and align in the high
and low mass limit.

4.4 Terrestrial and Astrophysical Constraints

We continue with the study of the neutrino-scattering case. As additional interactions
of scalars with electrons and neutrinos are targets of various experimental searches, we
confront the neutrino-electron scattering with several of these constraints. We keep the
exploration in two different scenarios: our specific Ze

2× Zν
2 setup and in a more general
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FIGURE 4.5: Isocontours of correct DM relic density assuming produc-
tion through freeze-in and considering the assignations of model param-
eters for BM1 (red) and BM2 (black). The reheating temperature TR has

been set to 100 GeV.

subset of eDMEFT operators. The above models are summarized in Figs. 4.6 and 4.7
for the scalar-couplings to electrons and neutrinos, respectively.

Bounds on the Electron-Neutrino Scalar Interaction

There are several experiments studying the neutrino-electron scattering, as it is a key
signature for the observation of solar and reactor neutrinos. These experiments probe
very similar physics as XENON1T and place an upper bound on the neutrino-electron
scattering rate, which is relevant for our study. The reported bounds on new physics
that lead to a recoil spectrum peaking at low energies are normally interpreted in terms
of a neutrino magnetic moment µν. Nowadays, the best limits come from Borexino [301]
and GEMMA [302] standing at µν < 2.9× 10−11µB with a 90% C.L. This is right on the
edge of the values preferred by the XENON1T excess, µν = 1.4− 2.9× 10−11µB found
by the collaboration in [183], but does not exclude the neutrino magnetic moment inter-
pretation. This observation is particularly relevant for the scenario under consideration
featuring a light scalar mediator.

In the energy range of the observed XENON1T signal, the recoil energy distribution
of events that are induced by solar or reactor neutrinos interacting via a light scalar
(ms ≲ Er) or a magnetic moment are essentially indistinguishable. Therefore, an inter-
pretation of the Borexino data in our model will only apply relevant constraints on the
upper boundary of the preferred region. Furthermore, as the signal and the expected
exclusion are close to each other, the exact position of the upper bound will depend
on the details of the experimental data and the statistical procedure, and a naive phe-
nomenological recast is unlikely to allow for a clear comparison. Thus, we refrain from
quoting an explicit limit and note that the bound is expected to be closely aligned with
the upper edge of the preferred values

√
ys

eys
ν.
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FIGURE 4.6: Constraints in the mS/s− yS/s
e -plane from [300] and our own

analysis, including our two BM points. For a discussion of the various
limits and their shading, see the main text.

Bounds on Electron Couplings

In this case, terrestrial precision experiments are remarkably good at testing couplings
between electron and NP states. Particularly, in the mass range of interest, the tighter
constraints come from the anomalous magnetic moment of the electron, ae, as both the
experimental measurement and the SM prediction are incredibly precise. At 3σ the
deviation of ae from the SM expectation is limited to δae ≲ 1.4× 10−12 [303, 304].The
new scalars under consideration then contribute [305]

δas
e =

(ys
e)

2

4π2
m2

e
m2

s
IS

(
m2

e
m2

s

)
, (4.22)

where the loop function is given by

IS(r) =
∫ 1

0
dz

z2(2− z)
1− z + z2r

. (4.23)

For ms ≪ me, this leads to ys
e ≲ 10−5 while the limit relaxes for ms ≥ me, a similar be-

haviour is shown in the red area in Fig. 4.6. Softer terrestrial constraints can be derived
from e+e− colliders through the process e+e− → γs which dominates for ms ∼ O(1)
GeV, see for example [300].

In addition, there are a number of bounds on ys,S
e from astrophysical and cosmo-

logical observations. In the energy range where the mediator mass is comparable or
smaller than the core temperature of a star, the emission of the scalars can contribute
to the energy loss and change the properties and dynamics of these astrophysical sys-
tems. In particular, strong limits can be derived from red giants (RG) and horizontal
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branch stars (HB). We adopt the results of [300,306] where plasma mixing is considered
to be the main production mechanism of the light scalars, for a more recent analysis
of the impact of stellar cooling on NP in other models refer to Ref. [307]. In princi-
ple, for ms,S ≪ 10 keV, the RG bound excludes couplings ys

e ≳ 10−15 and therefore
such a small ys

e excludes a solar neutrino interpretation of the XENON1T excess for
all reasonable values of ys

ν. The bounds from observations of HB stars are less severe
at low masses but take over for ms,S ≳ 10 keV. However, it is conceivable that these
constraints can be circumvented in the presence of additional new physics such as an
environment-dependent mass for the scalar similar to the chameleon mechanism con-
sidered in cosmology [308, 309]. In Ref. [310], a first attempt to perform such a solution
for theories that explain the XENON1T excess has been presented, having promising re-
sults. Alternatively, ys

e could depend on the matter background and thus be suppressed
in a high density environment such as stellar cores. Therefore, we consider such astro-
physical bounds less robust than the direct laboratory bounds discussed before and in
consequence draw them as lines in Fig. 4.6, removing the shading from the disfavored
regions.

Moving forward, the supernova (SN) SN1987A set another constraint for mediator
masses up to O(10) MeV, as additional light degrees of freedom would cool the SN too
rapidly, in opposition to current observations [311]. Due to the very high density of
the SN core, the scalar mediator can be trapped before actually leaving the core and as
consequence, the limits for higher values of ys

e vanish (see Fig. 4.6). We consider the
limits from [300], where only the resonant production via mixing with the longitudinal
component of the photon is included and direct production through Compton scatter-
ing or electron-ion recoil is neglected. This is possible for ms < wp ∼ 20 MeV, where wp
is the photon plasma frequency [312]. The trapping regime for resonant production is
included by using the balance of production and absorption rate, with the requirement
of the scalar to be re-absorbed in a range of R ≈ 10 km. In this trapping regime, the
decay s→ e+e− determines the bound for masses MeV≤ ms ≤ 30 MeV.

To finalize the constraints on the electron couplings, we also assume bounds from
Big Bang Nucleosynthesis (BBN), for additional light degrees of freedom entering ther-
mal equilibrium with e and γ. On top of an increase of Ne f f , the entropy release from
e+e− annihilation is diluted in that case. This leads to a lower photon temperature
during BBN and therefore a higher baryon-to-photon ratio, which causes a decrease of
the deuterium abundance [300]. For ms ≲ 1 MeV,the BBN bound is flat and requires
ys

e ≲ 10−9. Nonetheless, in our specific setup, this robust constraint can be circum-
vented with a late time phase transitions in the new physics sector. This prevents the
mixing of the scalar mediators s and S in the early Universe, removing the coupling ys

e
at the relevant temperatures. More comments on this are in Sec. 4.5.

Bounds on Neutrino Couplings

Let us now discuss all possible constraints on the neutrino scalar coupling. In general,
the interaction between NP and neutrinos is harder to test than in the case of electrons,
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FIGURE 4.7: Constraints in the ms − ys
ν-plane including our two BM

points. Note that the heavier mediator does not show here as it has a
very small coupling.

thus, we expect the bounds to be less constraining. However, robust terrestrial bounds
arise from searches for new meson decays such as K−/D−/π− → e−sν [313]. Decays to
µ− can also be considered. In Fig. 4.7, we show the strongest limit of those decay com-
binations, assuming a flavour universal coupling. In case of flavour non-universality,
the bounds for electron couplings are slightly stronger. The tighter bound on ys

ν comes
from the limits on the decay width of Higgs to invisible states via h→ sνν, for mediator
masses between mh > ms ≳ 1 GeV [313]. In Fig. 4.6, we use the latest ATLAS result of
BR(h→ inv.) < 0.13 [76, 314].

The observation of MeV-scale neutrinos originating from SN1987A constraints the
neutrino self-interaction [315]. This is because the scattering of the SN-neutrinos with
the CMB-ν via the new mediator shifts their energy to significantly lower values and
potentially below the detection threshold. Additionally, the SN neutrinos get deflected
which delay their arrival on earth. A first bound was derived in [316], however, we
show the one from [315] in Fig. 4.7, where the recent limits on the neutrino masses were
used.

The considered model could also have an impact on the amount of radiation in
the Universe which can be tested by BBN. Particularly, the right-handed neutrinos are
dangerous, as if each of them is fully thermalized, they would contribute ∆Ne f f = 1
while the upper bound stands at approximately 0.2 [317]. Therefore, the only regions
of parameter space allowed by cosmology are those where the right-handed neutrinos
do not reach thermal equilibrium before the left-handed ones decouple from the SM
bath. Even if the initial population of νR is negligible we can produce them in neutrino-
antineutrino scattering via s exchange in a t-channel. A good estimate for thermaliza-
tion can be obtained by requiring that the production rate γ does exceed the Hubble
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BM Mν Me ySν ySe Λ λνe

BM1 18.5 keV 5 MeV 1×10−4 0.005 10 TeV 3×10−4

BM2 60 eV 10 MeV 0.06 0.005 10 TeV 0.001

TABLE 4.1: Chosen benchmark points to confront our model with the
astrophysical and laboratory constraints presented in Sec. 4.4.

rate H before the neutrino decoupling that happens at about 2− 3 MeV. In our model,
the thermally averaged production rate reads

γ ≈ ⟨σv⟩ × nν ≈
(ys

ν)
4

512π
T , (4.24)

where nν is the equilibrium number density of neutrinos and ⟨σv⟩ is the thermally
averaged νR production cross section. By requiring γ < H, we find ys

ν ≲ 6.3× 10−5

for ms ≪ 2 MeV, the bound then weakens for larger masses, as depicted in Fig. 4.7.
Since the absence of a νR bath prevents the direct production of s, its contribution is
less pronounced than in the case of electrons. This bound can be avoided by adding
another mass term for the right-handed neutrinos, making them too heavy to contribute
to Ne f f . The latter can be realized rather easily in our setup, by just increasing vν such
as to generate a more sizable Dirac-mass term leading to viable neutrino masses via
see-saw suppression in the presence of large Majorana masses for the right-handed
neutrinos. This approach would provide a hybrid explanation for the smallness of
neutrino masses, however, further details on this are not included in this thesis.

To finalize with the neutrino bounds, there are also constraints coming from the
CMB. In this case, if the neutrinos interaction rate is high enough, they cannot be con-
sidered as a free-streaming gas. Therefore, the impact of their interactions needs to be
included in the Boltzmann equations governing the evolution of the primordial pertur-
bations. For a heavy mediator, this leads to an upper bound on the interaction strength
of (ys

ν/ms)
2 ≤ (0.06 GeV)−2 [318]. This estimate is only valid when ms ≫ 10 eV, thus,

the limit become unreliable for lower masses, in particular for BM2 while BM1 is out-
side the limit anyways. Nevertheless, alternative limits on very light mediators are also
available [318] but they only become applicable at even smaller masses.

Benchmark Models

To confront our model for the XENON1T excess with the astrophysical and laboratory
constraints presented above, we define two different benchmarks (BMs) defined by the
independent input parameters depicted in Table 4.1. Both of them delivering a good fit
to the anomaly as in Eq. (4.16). While we require roughly natural scales for the model,
we are mainly led by the goal to avoid the most severe experimental bounds.

The benchmark points lead to the vevs (vν, ve) = (26.5 keV, 5.3 GeV) and (vν, ve) =
(50 eV, 5.9 GeV) for BM1 and BM2, respectively. The derived physical couplings for the
corresponding mixing angles for each BM, sBM1

θ = −5× 10−3 and sBM2
θ = −6× 10−6,
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BM ys
ν ys

e yS
ν yS

e

BM1 1.8×10−6 −4.5×10−7 8.3×10−9 9×10−5

BM2 0.001 −5×10−10 6×10−9 8×10−5

TABLE 4.2: Derived physical couplings.

are presented in Table 4.2. The couplings associated with BM1 and BM2 are displayed
in red and black in the landscape of collected bounds on ys/S

e and ys
ν in Fig. 4.6 and

Fig. 4.7, respectively. For both BMs, we arrive at a prediction for the strength of the
anomaly of

ys
e ys

ν ≈ −(5− 7)× 10−13 , (4.25)

in line with the best-fit value obtained before2 in Eq. (4.16).

There are two main assumptions, regarding the nature of neutrino masses, that are
needed in order to define the aforementioned benchmarks:

1. We assumed an inverted neutrino-mass hierarchy, i.e. mν3 ≪ mν1 ∼ mν2 ∼ 0.05 eV.
In this case, the interaction of the lightest neutrino is negligible while both ν1,2
couple to the mediator s with similar strength ys

ν, see Eq. (4.7). The heaviest neu-
trinos, ν1,2, couple universally to s and contain almost all the electron-flavour
content. As a consequence, no flux from the sun will be lost when considering
neutrino-electron scattering in XENON1T and the analysis as described above re-
mains valid.

2. A normal hierarchy, i.e. mν1 ∼ mν2 ∼ 0.05 eV ≪ mν3 , would also be consistent
with the same BMs. Here we assume that both chiralities of the heaviest state ν3
are even under the Zν

2 symmetry. Therefore, the heaviest state does not couple
to s and again, the electron-neutrino content is almost entirely in the universally
coupling eigenstates ν1,2.

Let us have some final comments on the chosen benchmarks. The precision bounds
for the mediator mass of mS ∼ 10 MeV, can be evaded for a value of ve > Me, some-
what above the electron mass, leading to a coupling of electrons to the heavy mediator
of yS

e ∼ 10−4 [300]. On the other hand, the coupling to the light s is suppressed in
sθ , pushing the resulting interaction into the window above the SN1987A exclusion re-
gion but below the (g− 2)e limit for BM1, while BM2 can even evade BBN constraints
without further requirements (at the price of a higher neutrino coupling). The BBN
constraint for electrons in BM1 can be avoided via a late phase transition, generating
the vev vν > 0 below T ≈ 150 keV, as we discuss in Sec 4.5.

2Moreover, both BMs satisfy the positive-definiteness condition Mν Me > 2λνevνve, ensuring a proper
potential minimum.
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FIGURE 4.8: Constraints in the ys
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ν-plane for a 60 eV mediator (as in
BM2) and the 1σ preferred region from our fit to the XENON1T excess.
The BBN bound on the electron coupling, indicated by the hatched re-

gion, can be circumvented by a late time phase transition.

Free EFT Description

In this rather general description, we confront the EFT resolution to the XENON1T
anomaly via scalar couplings to electrons and neutrinos with the constraints discussed
above. Here, we just employ the effective Lagrangian (omitting kinetic and potential
terms)

Leff = −
√

2
v

[
ys

ν L1
LHν1R s + ys

eL1
LHeR s + h.c.

]
, (4.26)

which can be obtained from Eq. (4.1) by neglecting the second scalar singlet while cou-
pling the remaining one to both, electrons and neutrinos, and removing the Z2 sym-
metries as well as the vev of the mediator. In consequence, the only contribution to
all fermion masses is through the SM Higgs boson, and ys

ν,e are now completely free
couplings. In particular, Eq. (4.26) corresponds to a subset of operators of the general
eDMEFT [9, 12].

In Fig. 4.8, we show the constraints and best fit region in the ys
e − ys

ν-plane for a
mediator mass of 60 eV and in Fig. 4.9 for 20 keV, respectively. For comparison, we also
add the coupling values used in the two BMs above.

By looking at Fig. 4.8 and Fig. 4.9, we see two possible regions in the couplings
space preferred by the XENON1T fit, that could potentially remain valid, however,
both would need extra mechanisms to avoid bounds from BBN in the early universe.
The region around ys

e ∼ O(10−9) is excluded by the neutrino BBN bound. As discussed
before, this could be avoided by an additional mass terms for the right-handed neutri-
nos. The other benchmark around ys

e ∼ O(10−6) is under pressure from the electron
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FIGURE 4.9: Constraints in the ys
e − ys

ν-plane for a 20 keV mediator (as in
BM1) and the 1σ preferred region from our fit to the XENON1T excess.
The BBN bound on the electron coupling, indicated by the hatched re-

gion, can be circumvented by a late time phase transition.

BBN bound. Nonetheless, as will be shown in the following section, a late phase transi-
tion can remove the interaction of the light mediator and electrons during the relevant
age of the Universe making this the most promisingly point and potentially viable.

4.5 Avoiding Astrophysical and BBN Bounds

Here we introduce a possible mechanism to ease the astrophysical bounds mentioned
above. This is based on a new scalar singlet ϕ with a potential similar to the one em-
ployed by [310]. Unlike that work, here we aim to remove the vev of Sν and not to
increase the mass of the offending field. Then, the scalar field couples to the baryons
through the gϕNN operator, where g is the coupling between ϕ and the baryons de-
noted by N. The new mediator also has a four scalar interaction with the light, neu-
trinophilic scalar Sν, mediated by λϕS.

The Lagrangian with the relevant terms for this scenario reads

L ⊃ 1
2

(
∂µϕ∂µϕ−m2

ϕϕ2
)
+ gϕNN − 1

4
λϕϕ4 (4.27)

+
1
2
(
∂µSν∂µSν − µ̃2

νS2
ν

)
− 1

4
λνS4

ν − λϕSϕ2S2
ν ,

where we have defined the effective mass parameter by µ̃2
ν ≡ µ2

ν + 2λνev2
e . The Yukaw-

like term coupling baryons with the scalar ϕ induces a background dependent contri-
bution to the ϕ potential. In a bath this translates to, NN → nB

γ , where γ ≈ 1 in the
non-relativistic backgrounds of interest to us.
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By assuming m2
ϕ > 0 and neglecting λϕS, the potential develops a vev, vϕ ≈ g nB/m2

ϕ,
provided that λϕ is small enough. In the case of a non-vanishing λϕS, the vev influences
the Sν sector, transforming the effective µ̃2

ν term to µ̃2 = µ̃2
ν + 2λϕS(gnB/m2

ϕ)
2. If the

new physics contribution exceeds |µ̃2
ν|, then µ̃2 > 0 making the vev of Sν disappear.

This eliminates the mixing with the scalar Se shutting off the coupling between s and
the electrons that drive the astrophysical constraints.

Even though the aforementioned mechanism looks promising, finding a parame-
ter space where we achieve the desired results, without violating the experimental
constraints, would be more advisable. To this end, we provide one working assign-
ment of the couplings and masses that allows to evade the astrophysical bounds for
BM2. HB stars possess a central density3 of about 104 g/cm3 [306] which induces
vϕ ≈ g 4× 10−5MeV3/m2

ϕ. Choosing mϕ = 1 eV and g = 10−11 leads to vϕ ≈ 400 eV.
Note that the values for mϕ and g respect bounds from searches for a fifth force [319].
In our benchmark scenario |µ̃ν| ≈ 40 eV which implies that λϕS ≈ 0.01 is sufficient to
remove the minimum at non-zero vν. In principle, the whole potential should be con-
sidered simultaneously and not treated consecutively, however, in this case, vϕ exceeds
vν significantly and thus the expected influence of Sν on ϕ is small for the values of
the coupling at hand. We have checked explicitly that our argument goes through with
minimal corrections if the full potential is assumed.

Avoiding BBN Bounds via a Late Phase Transition

As discussed in the previous sections, one of the most problematic bounds for the cho-
sen benchmarks, is the one coming from the BBN. In particular, the benchmark BM1,
would be excluded by applying that constraint on the electron coupling. Nonetheless,
in this section we demonstrate how our scenario naturally realizes a late Z2 breaking
phase transition, delaying the coupling of the electron to the light mediator until BBN
has been completed.

The scalar potential in our original setup, Eq. (4.1), can lead to a rich cosmological
history in which the Zℓ

2 symmetries are broken in a step-wise fashion [320]. For simplic-
ity, we neglect the mixing between scalars Sν, Se and the Higgs doublet H by turning
λHSℓ

= 0. The tree-level scalar potential then reads

Vtree =
1
2

µ2
νS2

ν +
1
2

µ2
e S2

e + λνeS2
νS2

e +
1
4

λνS4
ν +

1
4

λeS4
e . (4.28)

To study the cosmological evolution of the previous potential, we add the one-loop
thermal corrections given by [321]

Vthermal =
T4

2π2

[
JB

(
m2

s
T2

)
+ JB

(
m2

S
T2

)]
, (4.29)

3RG stars are even denser and our argument goes through without modification.
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where JB(α) =
∫ ∞

0 x2 ln(1− e
√

x2+α)dx is the thermal correction for bosonic degrees of
freedom. Working in the high-temperature limit, the thermal corrections have analyt-
ical forms JB(α) = −π4

45 + π2

12 α + O(α3/2). Since mixing between Sν and Se is small,
we can take approximately ms ≈ Mν and mS ≈ Me. Under these approximations, the
critical temperature Tc2 at which a second minimum with vevs (⟨Sν⟩, ⟨Se⟩) = (0, ve)
degenerate with the Zν

2 × Ze
2 preserving (⟨Sν⟩, ⟨Se⟩) = (0, 0) forms, is given by

Tc2 =

√
−12µ2

e
2λνe + 3λe

. (4.30)

A second phase transition appears once the temperature has dropped to Tc1 at which
a non zero vev of Sν forms, with

T2
c1 =

12
(
2λνeµ

2
e − λeµ

2
ν

)
λe(2λνe + 3λν)− 2λνe(2λνe + 3λe)

. (4.31)

For BM1, the first phase transition occurs around 500 MeV while the second phase tran-
sition occurs at 150 keV. At this temperature most of the photon heating is completed
and the electron density has already dropped significantly. Therefore, the thermaliza-
tion rates start to be exponentially suppressed.

4.6 Current Status of the XENON1T Excess

As the XENON1T excess was reported almost two years ago, it is worth to discuss
its current status and refer to Sect. 3.2 of Ref. [322] for the most recent details. The
XENON1T collaboration originally reported the analysis of the data taken between the
years 2016 and 2018. This showed a low-energy electronic recoil excess below 7 keV
and most prominent between 2–3 keV, with a significance of ∼ 3.5σ. The origin of the
excess can be rooted to three possibilities: i) a statistical fluctuation, ii) a mismodelled
background or iii) a signal of NP. Given the fact that the experiment used an unbinned
likelihood analysis and relaying in the ∼ 3.5σ significance, the former option is the
less likely. In the case of background mismodelling, there are certainly many possible
backgrounds that could contribute to the excess. One of them is argon as it decays via
electron capture and can peak at 2.8 keV, dangerously close to the excess peak. Other
backgrounds that could deposit low-energy peaks in the XENON1T excess region are
calcium and vanadium peaking at 3.3 keV and 4.5 keV, respectively. However, all the
mentioned backgrounds are unlikely to originate the excess, as the uncertainty rate is
simply not enough. Interestingly, there is still one background that is considered the
most problematic one: tritium. The continuous energy spectrum of the latter, peaks
exactly between 2–3 keV. Furthermore, the concentration of tritium that would be re-
quired to explain the excess is, in fact, very small, at around 3 atoms per kilogram of
xenon. This by its own, could lead to a significance of 3.2σ, requiring further data in
order to completely rule out this possibility. The third possible nature of the excess, is
a NP signal. The XENON1T collaboration has proposed three possible scenarios: solar
axions, bosonic matter or solar neutrinos, favouring the former with a significance of
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3.4σ. More theoretical explanations were mentioned through out this chapter. Some of
the latest works addressing the XENON1T excess are Refs. [323–327].

So far, there has not been any other independent experiment that scrutinises more
on the nature of the excess. Except for the PandaX-II experiment [285] which has
reported a consistency of the XENON1T excess with his own data sets. The next-
generation xenon experiments could improve the sensitivity, leading to a more accu-
rate results and a possible confirmation of NP. For instance, the upgraded version of
XENON1T called XENONnT [328], will feature a sensitive mass of 5.9 tonne liquid
xenon, that is a factor of three larger than the current version. This is expected to re-
duce the total background by a factor of six. Another promising experiment is the
LUX-ZEPLIN (LZ) [184], which uses a 7 tonne active mass of liquid xenon. This exper-
iment will focus on seven physical processes: an effective neutrino magnetic moment
and an effective neutrino millicharge (both for pp-chain and solar neutrinos), an axion
flux generated by the sun, ALPs dark matter, hidden photons, mirror dark matter and
leptophilic dark matter. The expected low energy electronic recoil response of LZ to the
mentioned scenarios can be found in Ref. [329].

To summarize, the XENON1T excess is a very exciting hint for a possible NP signal.
Nevertheless, we still need to wait a few more years in order to fully claim it as a
discovery, as with the present data, we do not have certainty on the nature of the excess.
The most promising xenon experiments are XENONnT and LZ which will continue
searching for DM particles, delivering new data in the future to come.
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Chapter 5

Conclusions

The observation, at last, of all particles predicted by the Standard Model (SM), through
the discovery of the Higgs boson and the subsequent validation of its properties, in
agreement with the SM, so far, ended a many decades chapter in particle physics. As
good as it gets, however, other facts, like the poor understanding of the patterns arising
from the fermion mixing and mass spectrum, the hierarchy problem, or dark matter
(DM), among others, cannot be solely understood by the SM theoretical framework.
Therefore, independently of the SM’s success, a whole new era has been already opened
for particle physics which brings about the existence of new particles and/or dynamics
to be unveiled in the upcoming future.

In this thesis, we focused on two particular unexplained observations: DM and
the problem of fermion masses. Moreover, motivated by the previous confirmation,
of the discovery of a fundamentally looking scalar particle, both conundrums were
approached by assuming a multiscalar scenario. Adding scalars to the SM theory can
be explored in two ways: renormalizable and non-renormalizable. As a consequence,
this document was divided into two parts and ordered correspondingly.

For the first part, in Chapter 2, we devoted ourselves to investigating renormaliz-
able extensions. There, we introduced a second scalar doublet and considered it with
the same quantum numbers as the SM Higgs. By it, we were able to address some
of the dominant patterns in the fermion masses. Namely, the mass hierarchy between
the top quark and the other fermions, or between the third fermion generation and the
other two. As both aspects cannot be explained with two Higgs doublets at a time,
two new and independent models were proposed and called type-A and B, where ei-
ther the top quark alone or all third-generation fermions coupled to the doublet with a
larger vacuum-expectation-value (vev). This distinction only became possible after im-
plementing a parity symmetry, Z2, and introducing the singular alignment ansatz which
allowed us to avoid undesirable flavor-changing-neutral-currents at the tree level. The
remaining fermions exclusively acquire their masses through the small vev of the other
doublet being produced by the soft-breaking of the parity symmetry. Moreover, within
the new types, two naturalness criteria (Dirac and ’t Hooft) might be realized in the
scalar and/or Yukawa sector. In that sense, we obtained more natural models when
compared to those conventional ones (I, II, X, Y).
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Phenomenologically speaking, the new types are closely related to the well-known
2HDMs types, I and II. This is a direct consequence of the great similarity between the
models when only the heaviest fermions are considered. In return, that allowed us
to comprehensively investigate their phenomenological viability and to make use of
derived constraints to restrict the parameter space. Nevertheless, the proposed types
feature deviations from the conventional ones in channels of the potential reach of the
HL-LHC enabling a distinction between them. In particular, strong constraints origi-
nate from b → s flavour violating transitions, requiring the charged scalar mass to be
above 600 GeV. Given the phenomenological relevance of the alignment limit, we al-
lowed at most small deviations from it. However, specific signatures can be identified
and used to distinguish our models from the conventional ones, namely, i) h → µ+µ−,
ii) H → µ+µ−, and iii) h → J/ψ + γ. With the former decay, it is possible to exclude
large values of tβ for type-B, while for type-A most of the range remains consistent with
current data. On the other hand, for the latter decay, we found that our two types give
the strongest enhancement above the SM value compared to the conventional natural
flavor conserving scenarios. Additionally, since the most direct signature of any 2HDM
is the detection of the full scalar spectrum, we considered viable decay channels of the
heavy CP-even neutral scalar. Specifically, the decay into muon pairs can exclude large
values of tβ for Type-A even in the alignment limit.

Overall, the architecture of the two newly proposed types offers new exciting possi-
bilities to construct multi-Higgs models taking the observed hierarchies in the fermion
mass spectrum into account and at the same time naturally avoiding dangerous FC-
NCs. This is certainly an ambitious goal. Many issues should still be addressed to fully
understand the pros and cons compared to the well-studied conventional types.

For the second part, we dedicated ourselves to the study of non-renormalizable
extensions. In Ch. 3, we built a scenario where the SM is augmented by a real scalar
singlet, S, and a fermionic DM, χ. We followed a hybrid approach that adequately
combined both the model independence of EFTs, where high dimension operators are
suppressed by corresponding powers of a heavy scale Λ, and the virtues of simplified
models in which the mediator is explicitly included in a minimal and renormalizable
extension, easing its search in colliders. Despite their virtues, both approaches have
several drawbacks; for example, the validity of EFTs break at collider energies while
simplified models suffer from a model dependence along with occasions where gauge
invariance forbids relevant and interesting operators. We thus discussed a minimal yet
consistent framework that overcomes the aforementioned shortcomings. This is done
through a Lagrangian with operators up to dimension five, in which the new scalar
mediator is present in an explicit gauge-invariant way but high dimension operators
are suppressed by a new physics scale. This effective approach is called the extended
dark matter EFT (eDMEFT). To exemplify it, in Sec. 3.4, we presented a case scenario
where we assumed the mediator, as well as the right-handed first fermion generation,
to be odd under a Z2 symmetry. As a consequence, the masses of the up and down
quarks and the electron can be generated from the spontaneous breaking of the Z2
symmetry. We required the mediator to have a small vev of approximately 10 MeV,
just enough to generate the mass of the light fermions. As those masses come from
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D = 5 operators, are thus suppressed by the energy scale Λ ∼ 1 TeV. This approach
immediately provides a plausible explanation for the smallness of the first-generation
fermion masses. Furthermore, as the setup also includes a DM particle, dimension five
operators enabled us to explore the channel SS → χχ, where a dijet plus missing-
energy-searches were studied.

Our analyses focused on two colliders: the (HL)-LHC and the future experiment
CLIC. The final state of the dijet (dilepton) plus missing transverse energy (MET) was
qq̄χχ and e−e+χχ, where q = u, d. In both cases, the main background was the same
process as before but exchanging χ → νi, i = e, µ, τ. On the dijet plus MET signal,
we explored the possibilities where the mediator could be either leptophobic or fully
coupled. To perform the analysis, we used the CheckMate software with which we
compared our signal with existing ATLAS analyses for mono-jet searches, leading to
rather loose bounds, with couplings of ∼ O(5) as depicted in Fig. 3.5. On the other
hand, the fully coupled case can translate direct detection limits from the quark sector
to the lepton sector. However, we found a very low cross-section due to the large width
of S, which strongly depends on the value of the quark and lepton couplings and enters
inversely to σ. In addition, with the future CLIC detector, we studied the hadrophobic
case, in which the mediator just couples to electrons (positrons). Here we analyzed the
signal process with the MadAnalysis software noticing a very clear peak-like structure
in the kinematic variable me+e− as shown in Fig. 3.6. By performing a more sophis-
ticated statistical analysis we got tighter constraints where small couplings of O(0.5)
(already in stage I) are allowed. We also studied the conditions for our model to satisfy
the DM relic density presented in Fig. 3.8.

Continuing with the eDMEFT approach, in Sec. 3.5, we performed the matching
of our current framework with two more-UV-complete theories: 2HDM plus a pseu-
doscalar mediator and SM plus a vector-like quark (VLQ). The collider studies were dis-
cussed in Sec.3.6, where combining the VLQ completion with the 2HDM+S we found
a cancellation of the dimension five gluon- and quark-mediator operators, giving place
to DD blind regions. We added the scaled projections for the HL-LHC at 2σ and chose
a benchmark point in the blind region that could be potentially discovered by the fu-
ture HL-LHC collider. We also studied the exclusion limits set by the ATLAS experi-
ment and the corresponding HL-LHC projections for mono-jet searches for the cS

G/Λ
coefficient varying the mediator mass and found that the HL-LHC will be able to ex-
clude values smaller than one for such a coupling. Then, we took the aforementioned
benchmark and by utilizing the relations obtained when performing the matching, we
translated the limit of the gluon coefficient into a limit on the vector-like top-quark
coupling. We could not find any viable parameter space in which the 2HDM plus a
(pseudo-)scalar leads to an observable LHC signal, and therefore neglected its contri-
bution in the regime where the VLQ becomes relevant. However, when considering the
2HDM plus a scalar mediator, the values on the bottom-Yukawa coupling can be trans-
lated into the coupling λS12. We found that from both the VLQ and 2HDM + S models,
with small coefficients coming from the eDMEFT theory (cS

G = 0.7 and yS
b = 0.03), we

can obtain O(1) couplings in the more-UV-complete theories. Moreover, the sign dif-
ference between operators create blind regions in which DD effects can be suppressed.
It is in a corner of that blind region that we found a suitable value for the eDMEFT
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couplings that could be tested in the future HL-LHC collider. By this, we thus showed
that a blind-spot region, identified in the EFT, can in fact be achieved in UV complete
models with reasonable (O(1)) values for the fundamental couplings and be potentially
detectable at HL-LHC.

Given the previously discussed advantages of the eDMEFT framework, in Ch. 4, we
investigated the excess in low energy electron recoil events reported by the XENON1T
collaboration. We found that conventional DM-electron scattering only allows for a
marginally better fit than the background-only hypothesis since the signal spectrum
peaks at lower energies than observed experimentally. Therefore, DM does not pro-
vide a convincing explanation of the data. However, the new neutrino and electron
couplings induced by the neutrino mass mechanism embedded in the model predict a
significant neutrino-electron scattering cross-section. Including this interaction in the
fit improves it considerably and we found that a light scalar with an average electron-
neutrino coupling of

√
ys

eys
ν ≈ 7.9× 10−7 is preferred by more than 2 σ. These observa-

tions motivated us to scrutinize the parameter space of the model in more detail and
compare it to limits from various other observations. In general, the parameter space
that allows for a successful explanation of the XENON1T excess is rather constrained.
While limits from terrestrial experiments can be avoided comparatively easily, bounds
from cosmology are more constraining. In particular, BBN bounds on a light scalar
coupling to electrons are very severe. Interestingly, the model under consideration here
naturally allows for a late phase transition in the early Universe which prevents the
scalar-electron coupling during BBN. However, in such a scenario additional contribu-
tions to the right-handed neutrino masses are required to avoid their thermalization
before BBN. Once this is taken into account, we found solutions that comply with cos-
mological bounds. There remains a strong tension with astrophysical bounds, that rely
on stellar cooling arguments. Nevertheless, if we allow for the possibility of additional
new physics, these limits can be avoided by a density-dependent contribution to the Sν

potential that suppresses or even removes the mixing with Se in a high-density envi-
ronment.

In summary, we conclude that our model, within the eDMEFT framework, presents
promising signal channels for both HL-LHC and CLIC, however, the stronger con-
straints come from future e+e− colliders given the mediator is hadrophobic. Further-
more, from the flavour model perspective, we presented a possible explanation for the
lightness of the first fermion generation. Additionally, a new physics explanation of the
excess is a tantalizing possibility, but in light of stringent constraints from other obser-
vations, this potential sign of physics beyond the SM should be taken with a grain of
salt. Luckily, the upcoming run of the XENONnT experiment will be able to weigh in
on this question shortly and either strengthen the excess or rule it out conclusively.
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Appendix A

Flavour in the SM

We present here a brief overview of flavour physics in the SM. Specifically, we focus
on the fermion masses and mixing. We recall for completeness that the SM is a rela-
tivistic quantum field theory whose Lagrangian is intentionally made invariant under
the local symmetry group SU(3)c × SU(2)L ×U(1)Y, where the subscripts c, L and Y
stand for color, left-handedness and hypercharge, respectively. The SM fermion content
with the respective gauge charges is shown in Table A.1. Note that as the massive na-
ture of neutrinos is outside the scope of this thesis it is not considered in the following
discussion.

A.1 Fermion Masses

Let us start from the scenario where the Yukawa interactions with the SM Higgs boson
are not present in the SM Lagrangian. As a consequence, all the fermions would be
massless and a global flavour symmetry would appear

U(3)LL ×U(3)QL ×U(3)eR ×U(3)uR ×U(3)dR . (A.1)

By bringing back the Yukawa terms, this global symmetry group gets broken to baryon
and three lepton flavour numbers, U(1)B ×U(1)e ×U(1)µ ×U(1)τ. The masses of the
SM fermions can arise after the EWSB.

The Yukawa Lagrangian reads

LYuk = Yij
u Q̄i

LΦ̃uj
R + Yij

d Q̄i
LΦdj

R + Yij
e L̄i

LΦej
R + h.c. . (A.2)

Here Yu,e,d are the Yukawa matrices for the corresponding fermion type, ij represent
the matrix element and Φ is the scalar doublet (see Eq. 2.7). Note that neutrinos do not
appear in the Yukawa Lagrangian as they do not have a right-handed partner. This is
why, by construction, neutrinos are massless particles in the SM.

The corresponding mass matrices for each fermion type read

M f =
v√
2

Y f , (A.3)

where v = 246 GeV is the Higgs vev and sets the EW scale. In general, as the mass
matrices are complex they require a bi-unitary transformation for their diagonalization.
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SU(3)c SU(2)L U(1)Y

LL =

(
νi

L
ℓi

L

)
1 2 -1/2

QL =

(
ui

L
di

L

)
3 2 1/6

eR, µR, τR 1 1 -1
uR, cR, tR 3 1 2/3
dR, sR, bR 3 1 -1/3

TABLE A.1: SM fermion content and charge distribution under the SM
gauge group. Here the LL are the the left-handed lepton doublets and

QL are the left-handed quark doublets where i = 1, 2, 3.

The value of all the measured fermion masses and Yukawa couplings are depicted in
Table A.2. It is clear that the only O(1) Yukawa coupling is the one from the top quark.
The fermion masses can be divided into four different scales:

• O(100) MeV for {e, u, d},

• O(102) MeV for {µ, s},

• O(103) MeV for {τ, c, b},

• O(105) MeV for the top quark.

These various scales suggest a possible underlining mechanism behind it. There have
been many ideas discussed in the literature which try to explain the fermion mass hier-
archies [8, 46, 330–335].

We remark that in this thesis, we mainly focus on only three aspects of the fermion
masses and treat them separately by a very specific model:

• mt ≫ m f ,

• m f
3 ≫ m f

2 , m f
1 with f = qu, qd, ℓ,

• m f
3 , m f

2 ≫ m f
1 with f = qu, qd, ℓ.

A.2 Fermion Mixing

Let us now explore the fermion mixing by starting with the gauge couplings. The gauge
Lagrangian reads

Lgauge = ∑
j

iψjγµDµψj (A.4)
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Mass [MeV] Yukawa coupling
e 0.511 3×10−6

µ 105.6 6×10−4

τ 1776.86± 0.12 10−2

u 2.3+0.7
−0.5 10−5

d 4.8+0.5
−0.3 2× 10−5

s 95± 5 5× 10−4

c 1275± 25 7× 10−3

b 4180± 30 2× 10−2

t (173.21± 0.51)× 103 1

TABLE A.2: Masses and Yukawa couplings for the SM fermions.

where ψj = {QL, LL, uR, dR, eR} and the covariant derivative Dµ is defined as

Dµ = ∂µ + igsGµ
a Ta + igwWµ

b τb + ig′BµY. (A.5)

Here Gµ
a are the eight gluons (a = 1, ...8) and Ta = λa/2 are the SU(3) generators or

Gell-Mann matrices acting on the colour triplets. The three weak interaction bosons
are denoted as Wµ

b , τa = σa/2 are the Pauli matrices acting on fermion doublets and
b = 1, 2, 3. Lastly, Bµ is the hypercharge boson and Y is the corresponding U(1)Y charge.

Quark Sector

By replacing the covariant derivative in the gauge Lagrangian, we can now study, for
example, the left-handed quark gauge interactions

LQL
gauge = iQi

Lγµ

(
∂µ + igsGµ

a
λa

2
+ igwWµ

b
σb

2
+

ig′

6
Bµ

)
Qi

L . (A.6)

Note that the gauge interactions are unchanged by linear unitary transformations such
as ψL(R) → VψL(R)ψL(R). After EWSB and the diagonalization of the Yukawa matrices
Yu

diag = V†
uLYuVuR and Yd

diag = V†
dLYdVdR, the gauge Lagrangian can be written as

LQL
gauge ⊃

g√
2
(ūLV†

uLVdLγµW+
µ dL + d̄LV†

dLVuLγµW−µ uL) (A.7)

+
g

cw

[
ūLγµ(

1
2
− 2

3
sin θ2

W)uL + ...
]

Z0
µ. (A.8)

where sin θW = g′/
√

g2 + g′2 and Z0 is the weak neutral boson. We can conclude from
here two interesting facts: i) the interactions with the weak neutral boson are flavor
diagonal and ii) the interactions with the charge bosons W± are parametrized by the
unitary matrix V = V†

uLVdL. The quark mixing matrix is called the Cabibbo-Kobayashi-
Maskawa matrix (CKM) and implies flavour transitions among the left-handed up and
down quarks.
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The CKM matrix elements have been measured and they are [336]

|VCKM| ≡
Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb

 =

0.97445 0.22458 0.00364
0.22442 0.97358 0.04217
0.00897 0.04137 0.999104

 . (A.9)

It is interesting to note how the elements of the CKM matrix show a strong hierarchy
among them

|VCKM| ∼
ϵ0 ϵ1 ϵ3

ϵ1 ϵ0 ϵ2

ϵ3 ϵ2 ϵ0

 , (A.10)

where ϵ ∼ 10−1. There is also a physical parameter composed by elements of the CKM
matrix called the Jarlskog invariant defined by J = Im(VudV∗cdVcbV∗ub) with a value of
JCKM = (3.18± 0.15)× 10−5 [336].

Let us know do a quick counting on the physical parameter in the quark sector.
On the one side, from the two Yukawa matrices Yu and Yd we obtain 2× 9 + 2× 9 =
36 arbitrary parameters. Note that 18 are magnitudes while the other half are com-
plex phases. On the other hand, after the Yukawas break the quark global symmetry,
U(3)QL ×U(3)uR ×U(3)dR → U(1)B where U(1) is the baryon number symmetry. We
then get (9× 9× 9) − 1 = 26 broken generators. Realize how each one of them can
be employed to move to another basis without changing the theory. Their presence
comes through two three-dimensional unitary matrices and one three-dimensional spe-
cial unitary matrix. All the freedom contained in these matrices is characterized by 26
(9 magnitudes and 17 complex phases) parameters to be chosen such that the initial
arbitrariness is reduced to its least amount. Combining the two results, we are left with
only 36− 26 = 10 physical parameters [337]. More precisely, 18− 9 = 9 magnitudes
and 18− 17 = 1 complex phase. Now, from those 10 parameters, 6 can be assigned
to the quark masses and, therefore, the CKM has 4 physical parameters that can be
expressed as 3 angles and 1 phase.

At this point, we can also mention something about the discrete symmetries in the
SM [338]: parity (P), time reversal (T) and charge conjugation (C). The strong inter-
actions conserve C and P separately whereas the weak interactions violate C and P.
When analysing CP invariance, we notice that the only source of CP violation in the
SM quark sector comes through the CKM phase δ. It enters in the Jarlskog invariant as
J = c12c23c2

13s12s23s13sδ where cij = cos(θ)ij and sij = sin(θ)ij. It has been noted that to
obtain CP violation in the weak interactions we require some conditions to be satisfied,
for example, the Jarlskog invariant should be different from zero (J ̸= 0) implying non-
vanishing angles and non-vanishing phase in the CKM matrix. In addition we should
have non-degenerate masses, i.e. m f

1 ̸= m f
2 ̸= m f

3 with f = qu, qd.

Leptonic Sector

The flavour structure of the lepton sector in the SM can be analyzed similarly to the
quark sector. If we assume neutrinos to be massless, the only relevant particle content
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would then be Li T
L = (νi

L, ℓi
L)

T , ℓi
R where ℓi = e, µ, τ. In the mass basis of the charged

leptons, the charged weak interactions of the leptons are given by

Lgauge ⊃
g√
2

ν̄LV†
eLγµW+

µ eL + h.c. . (A.11)

In the case of massless neutrinos, the charged lepton transformation can be absorbed
by the neutrino left-handed field and as a consequence there is no lepton mixing. For
massive neutrinos, an independent transformation is required to bring them to the mass
basis, and the flavour mixing among left-handed leptons becomes physical,

Lgauge ⊃
g√
2

ν̄LV†
eLVνLγµW+

µ eL + h.c. , (A.12)

where V†
eLVνL is called the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix, and

it has at 3σ the values [339]

UPMNS ≡
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 =

0.801→ 0.845 0.513→ 0.579 0.144→ 0.156
0.244→ 0.499 0.505→ 0.693 0.631→ 0.768
0.272→ 0.518 0.471→ 0.669 0.623→ 0.761

 .

(A.13)

In this case, the Jarlskog invariant at 1σ is JPMNS = −(0.0329± 0.0007) [339]. Similar
to the CKM matrix, the PMNS matrix can be parametrized by 3 angles and 1 phase as
long as neutrinos are Dirac particles. If instead neutrinos are of Majorana nature, the
lepton sector acquires two additional phases. We will not discuss the neutrino nature
as it is beyond the interest of this thesis. For further information in flavour physics, we
refer the reader to Refs. [337, 340–350].
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Appendix B

EFT Examples

We present here three bottom-up EFT examples that are commonly used. The first
and most common one is the SMEFT. The second one is the basis of the eDMEFT as it
presents the general EFT theory for DM. Lastly, the third one is more QCD focused.

B.1 Standard Model EFT (SMEFT)

Quoting the theorem of modesty "no quantum field theory is ever complete at arbitrarily
high energies" [106], we can interpret the SM as an EFT from other more-UV-complete
theories where the energy Λ ≫ EW scale. Then, the SMEFT provides a very power-
ful framework for analyzing many LHC and other NP searches [95, 351]. To this end,
additional high-energy gauge-invariant interactions of the SM fields are introduced via
effective operators. Remarkably, at D = 5 only the Weinberg-operator OW = (LH)2

arises, which violates lepton number by two units and gives rise to a Majorana mass-
term for neutrinos after EWSB [352]. In this case, the suppression scale can be related
to the mass of right-handed neutrinos.

There are 2499 dimension-6 possible operators Oi of the SMEFT Lagrangian [353,
354]:

LSMEFT ⊃ LSM +
g0

Λ
OW +

2499

∑
i=1

giOi

Λ2 . (B.1)

It is clearly impractical to include 2499 parameters. Therefore, further assumptions,
for example, on the flavour structure of the operators involving fermions are needed
in order to simplify the SMEFT Lagrangian. For example, assuming baryon-number
conservation, to forbid strongly constrained proton decays, and flavor-universality to
circumvent bounds from flavour physics, the list drops down to only 59 independent
operators that can be given in different bases [80,110]. At higher dimension, the number
of operators grows rapidly [355, 356].

B.2 Dark Matter EFT (DMEFT)

In this scenario, the SM particles are connected with the dark sector through a set of
non-renormalizable operators, parametrized by the SM fermions, a DM particle (χ)
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and one effective scale (Λ). The first relevant operators arise at D = 6 for fermionic
DM, and are commonly written in the broken phase, but can also be constructed such
as to respect the SM gauge symmetries. While SM fermions are often the only particles
considered, the SM gauge bosons could also have interactions with the DM fermions,
and appear at D = 7 operators, see e.g. in [357–360]. The effective Lagrangian up to
dimension 6 can be written as [361–367]

LDMEFT = ∑
i,j

∑
f

g f
ij( f̄ Γ f

i f )(χ̄Γχ
j χ)

Λ2 + ... (B.2)

where the sum runs over all fermions f = u, d, s, c, b, t, e, µ, τ . The gamma matrices
are defined as Γ f = {1, γ5, γµ, γ5γµ, σµν} and Γχ = {Γ f , γ5σµν}. These are chosen ap-
propriately to form valid combinations of bilinear operators. Note that the DMEFT La-
grangian is described by the DM mass and the Wilson coefficients, g f

ij. The imprint of
gauge symmetry reflects itself in the scaling of the coefficients, which for scalar opera-
tors takes the form (acknowledging that gauge symmetry could be restored by inserting
an additional Higgs field) [368]

g f
ij =

g f
ijm f

Λ
. (B.3)

The DMEFT approach has been used and it is very successful on setting bounds that
are model independent. Moreover, this perspective has the attribute of providing corre-
lation between several experiments. While this framework was originally constructed
for comparison of all DM searches, people realized its questionable validity, since the
energy of the processes is often around the limit on Λ, and thus is not used so exten-
sively anymore [174, 361, 369–375]. However, in DD experiments the recoil energy is
much smaller (∼ keV), and DMEFTs are still used to calculate collision rates and set
bounds on the allowed interaction strength. All of this is done in a model independent
way. As the aforementioned calculations are performed at the nuclear scale, quarks
interactions are replaced by nucleons. Furthermore, the heavy SM fields are integrated
out, and the non-relativistic limit is taken [376–382].

B.3 Soft Collinear Effective Theory (SCET)

The SCET [383–385] is a theory that includes both soft (low energy) particles and collinear
(high energy) particles travelling in the same direction at a given process. In other
words, SCET is an effective theory for highly energetic quarks interacting with collinear
and/or soft gluons. In order to write the most general Lagrangian, we first need to di-
vide the QCD fields into two components qn = ψn(x) + Σn(x), where

ψn(x) = /n/̄n
4

qn(x) and Σn(x) =
/̄n/n
4

qn(x) (B.4)
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where n, n̄ are light-like vectors in light-cone basis and n · n̄ = 2. Then one can study
the equation of motion for Σn that can be integrated out due to the fact that its degrees
of freedom are far off-shell. At leading order the Lagrangian reads [106]

LSCET = ψn(x)
[

in · D + i /D
1

in · D i /D
]

/n
2

ψn . (B.5)

The procedure for writing the heavy quarks EFT (HQEFT) Lagrangian is similar as
in SCEFT, and is therefore not mentioned here, however, you can find details about that
framework in Refs. [106, 386, 387].





121

Appendix C

Statistical Analysis

We discuss here the details about the statistics used in the CLIC analysis in Sec. 3.13.

C.1 Likelihood Function

To derive the exclusion regions, we start with the binned Likelihood function. This
expresses how likely is a statistical parameter with respect to a set of observables [388].
We use a similar Likelihood as the one in CheckMate [171]. For the number of events
ni in the i-th bin, the function reads

L(µ, θS, θB) =∏
i

[ϕ(µ, θS, θB)]
ni

ni!
e−ϕ(µ,θS,θB)e−θ2

S/2−θS
B/2 , (C.1)

with
ϕ(µ, θS, θB) = µSeσSθS + BeσBθB (C.2)

and
σS =

∆S
S

, σB =
∆B
B

. (C.3)

Here, S and B, are the predicted numbers of signal and background events, respectively,
while θS,B are nuisance parameters incorporating the corresponding uncertainties ∆S
and ∆B. The variation of the signal strength with the input parameters, given in Sec. 3.4,
is parameterized by the signal-strength modifier µ, which is normalized for fixed ySe /Λ
and fixed masses such that µ = (ySχ /Λ)2. Finally, the last exponential in Eq. (C.1) is
required to ensure a good behaviour in the distribution, i.e. no negative values.

For testing the compatibility of different values for µ with data, we need a profile
likelihood ratio [388], in this case we use

λ̃(µ) =


L(µ, ˆ̂θS(µ),

ˆ̂θB(µ))

L(µ̂,θ̂S,θ̂B)
µ̂ ≥ 0 ,

L(µ, ˆ̂θS(µ),
ˆ̂θB(µ))

L(0, ˆ̂θS(0),
ˆ̂θB(0))

µ̂ < 0 ,
(C.4)
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where ˆ̂θS(µ),
ˆ̂θB(µ) maximize the Likelihood L for the given value of µ, while µ̂, θ̂S, θ̂B

are called unconditional Maximum Likelihood estimators and correspond to the global max-
imum, appearing in the denominator Here, the lower case accounts for the fact that we
can only have a positive signal contribution.

Finally, for the numerical analysis, we used by convenience the test statistics [388]

q̃µ =

{
−2 ln λ̃(µ) µ̂ ≤ µ

0 µ̂ > µ
(C.5)

for setting upper limits (with higher values corresponding to less compatibility), we
use the python package iminuit [389].

C.2 p-Value

The p-value gives an insight into the statistical significance. It measures the possibility
that a difference could have happened by random events. Additionally, the p-value
is related to the confident level (CL) of a measurement as it represents the part of the
distribution that is not excluded. For example, a p-value of 0.32 would represent a 68%
CL (1σ), while a p-value of 0.05 a 95% CL (2σ). Then, to set the limits in the current
model at CLIC we quantify the agreement between the background only and the signal
hypothesis µ. In the following we assume µ = 0, i.e. we expect to see background only,
and derive corresponding projected experimental exclusion regions on µ.

In general, the p−value used for µ>0, leading to a certain q̃µ,obs is

pµ =
∫ ∞

q̃µ,obs

f (q̃µ|µ)dq̃µ (C.6)

where f (q̃µ|µ′) is the probability density function (pdf) of q̃µ under the assumption that
the data is distributed according to a true µ = µ′, while the subscript in the first argu-
ment denotes the hypothesis being tested1. As we want to derive the expected upper
limits from future experiments (i.e. we do not know q̃µ,obs) and assuming no signal to
be present, we will use the median value of the corresponding distribution, f (q̃µ|0),
for q̃µ,obs. Finally, working at the 95% CL, we will solve for the value of µ that leads to
pµ = 0.05.

To avoid a large number of Monte Carlo simulations when computing the distri-
butions f (q̃µ|µ′), we use the asymptotic formulas given in [388]. Those are valid for a
sufficiently high number of events in each bin, which is fulfilled in our case. While in
the case µ′ = µ, f (q̃µ|µ) is given by a simple half-chi-square distribution, we use the so-
called Asimov data set [388]2 for obtaining the median of q̃µ according to f (q̃µ|0), where
all estimators obtain their true values. This data set can be approximated via large

1In fact, this quantifies the probability that, given the true signal strength µ, we will observe a value of
q̃µ as large as q̃µ,obs (or larger).

2The Asimov data set is such that all observed quantities are set equal to their expected values, with all
the statistic fluctuations suppressed.
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Monte Carlo simulations. Here we assume that our initial sets are large enough and
use the fitted distributions as Asimov data. With this, the corresponding likelihood-
function and test statistics can be evaluated, which are denoted by LA and qµ,A. The

variance, from which f (q̃µ|0) can be obtained, is then simply given by σ2
A = µ2

qµ,A
, as-

suming background-only hypothesis [388]. In practice, we can however just use the
Asimov value qµ,A for the median of [q̃µ|0], according to [388], and therefore the ex-
pected p−value for a signal hypothesis becomes

pµ = 1−Φ
(√

qµ,A

)
, (C.7)

with Φ the cumulative Gaussian distribution. In the end, pµ is evaluated for varying µ
in order to find pµ = 0.05.
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