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Abstract

This thesis investigates minimal extensions to the standard model (SM) scalar sector.
These are separated into two parts: renormalizable and non-renormalizable. The sec-
ond one is strongly motivated by dark matter while both of them get motivated by
the fermion mass hierarchies. In particular, the smallness of the first fermion family
masses, the dominance of the top-quark mass, or the dominance of the third fermion
family masses. Additionally, the discovery of a fundamentally looking scalar particle,
in agreement with the SM particle spectrum, serves as a strong reason to consider a mul-
tiscalar scenario. In the first part, we extend the SM with a second scalar doublet and
consider it with the same quantum numbers as the SM Higgs. Two new models are pro-
posed and called Type-A and B, where either the top quark alone or all third-generation
fermions couple to the doublet with a larger vacuum-expectation-value (vev). This dis-
tinction becomes possible after implementing a parity symmetry and introducing the
singular alignment ansatz. As a consequence, the remaining fermions exclusively acquire
their masses through the small vev of the other doublet. Simultaneously, we avoid un-
desirable flavor-changing-neutral-currents at tree-level. We study the main differences
between the proposed new models and conventional ones and include a discussion of
their structure and phenomenological consequences. In the second part of this thesis,
we extend the SM with a scalar singlet and a dark matter (DM) fermion. We embed this
into a hybrid framework in the form of an effective completion of simplified models
called extended dark matter effective field theory (eDMEFT). The phenomenology of
the dimension five operators connecting the SM fermions with the dark sector is ex-
plored in the form of missing energy at several colliders in a restricted case scenario.
Here we address the smallness of first-generation fermion masses via suppressed Z,
breaking effects. The theoretical matching of the eDMEFT is performed with more-UV-
complete theories such as two Higgs doublets plus a (pseudo-)scalar mediator and the
inclusion of new vector-like quarks. In addition, we explore their collider signatures.
Finally, we use the same framework to scrutinize the XENONIT electron recoil excess.
We confront it with various astrophysical and laboratory constraints both in a general
setup and in the one presented in the mentioned case scenario. We find that the excess
can be explained by modified neutrino-electron interactions, linked with the neutrino
and electron masses, while DM—electron scattering does not lead to statistically signifi-
cant improvement. We analyze the parameter space preferred by the anomaly and find
severe constraints that can only be avoided in certain corners of the parameter space. In
particular, problematic bounds on electron couplings from Big-Bang Nucleosynthesis
can be circumvented via a late phase transition in the new scalar sector.
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Zusammenfassung

In dieser Arbeit werden minimale Erweiterungen des skalaren Sektors des Standard-
modells (SM) untersucht. Diese sind in zwei Teile unterteilt: renormierbare und nicht
renormierbare. Der zweite ist stark durch dunkle Materie motiviert, wihrend beide
durch die Massenhierarchie der Fermionen motiviert werden, insbesondere durch die
kleinen Massen der ersten Fermionenfamilie, die Dominanz der Topquarkmasse, oder
die Dominanz der Massen in der dritten Fermionenfamilie. Die Entdeckung eines el-
ementar aussehenden skalaren Teilchens, dem Higgs, die mit dem SM- Teilchenspek-
trum tibereinstimmt, ist ebenfalls ein starker Grund, ein multiskalares Szenario in Be-
tracht zu ziehen. Im ersten Teil dieser Arbeit erweitern wir das SM um ein zweites
skalares Dublett, fiir welches wir die gleichen Quantenzahlen annehmen wie fiir das
SM-Higgs. Es werden zwei neue Modelle vorgeschlagen, Typ A und Typ B, in de-
nen entweder nur das Top-Quark oder alle Fermionen der dritten Generation an das
Dublett mit dem grofieren Vakuum-Erwartungswert (VEV) koppeln. Diese Unterschei-
dung wird moglich, nachdem eine Parititssymmetrie eingefiihrt und der singulédre
Alignment-Ansatz angewandt wird. Infolgedessen erhalten die iibrigen Fermionen
ihre Masse ausschliefillich durch den kleinen VEV des anderen Dubletts. Zugleich
vermeiden wir unerwiinschte flavourveridndernde neutrale Strome (FCNCs) auf Tree-
Level. Wir untersuchen die Hauptunterschiede zwischen den vorgestellten neuen Mod-
ellen und konventionellen Modellen und diskutieren ihre Strukturen und die phanome-
nologischen Konsequenzen. Im zweiten Teil dieser Arbeit, erweitern wir das SM um ein
skalares Singulett und ein Dunkle Materie (DM) Fermion. Wir betrachten dies in einem
hybriden Framework in Form einer effektiven Vervollstindigung der vereinfachten
Modelle, der erweiterten effektiven Feldtheorie der dunklen Materie (¢eDMEFT). Die
Phinomenologie der Operatoren der fiinften Dimension, die die SM-Fermionen mit
dem dunklen Sektor verbinden, wird in einem eingeschrankten Szenario in Form von
Suchen nach fehlender Energie an mehreren Teilchenbeschleunigern erforscht. Zusét-
zlich behandeln wir die Kleinheit der Fermionenmassen der ersten Generation als un-
terdriickten Effekt der Brechung einer Z, Symmetrie. Das theoretische Matching an
die eDMEFT wird mit weiteren UV-vollstindigen Theorien ansgefiihrt, wie ein Mod-
ell mit zwei zusatzlichen Higgs-Dubletts sowie einem (pseudo-)skalaren Teilchen oder
eines mit neuen vektorartigen Quarks. Dariiber hinaus erforschen wir ihre Collider-
Signaturen. Schliellich verwenden wir das gleiche Framework, um den Uberschuss an
Events im XENONIT Elektronenriickstof3-Experiment zu untersuchen. Wir konfron-
tieren ihn mit verschiedenen astrophysikalischen und experimentellen Einschrankun-
gen, sowohl in einem allgemeinen als auch in dem erwdhnten Szenario. Wir stellen
fest, dass der Uberschuss durch modifizierte Neutrino-Elektronen- Wechselwirkungen
erkldrt werden kann, die mit den Neutrino- und Elektronenmassen verbunden sind,
wihrend die DM-Elektron-Streuung nicht zu einer statistisch signifikanten Verbesserung
fuhrt. Wir analysieren den Parameterraum der von der Anomalie bevorzugt wird,
und finden starke Einschrankungen, die nur in bestimmten Ecken des Parameterraums
vermieden werden konnen. Insbesondere problematische Einschrankungen fiir Elek-
tronenkopplungen aus der primordialen Nukleosynthese konnen durch einen spaten
Phasentibergang im neuen skalaren Sektor umgangen werden.
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Chapter 1

Introduction

With the discovery of the Higgs boson, announced in 2012 by the CMS [1] and AT-
LAS [2] collaborations, the predicted particle spectrum of the Standard Model (SM)
was fully confirmed. All the observed particles can be organized through the sym-
metrical properties of the theory. First, due to Lorentz-invariance, the spectrum can be
separated into two types of particles: half-integer (s = 1/2) and integer (s = 0, 1) spin.
In the former case, there are twelve elementary particles ! called fermions giving place
to ordinary matter. These twelve may be further divided into two sectors: quarks and
leptons. The first sector is composed of two types of quarks: those with electric charge,
q = 2/3, called up-type quarks (u,c, t) and those with electric charge, ¢ = —1/3, called
down-type quarks (d,s,b). The second sector consists of two types of leptons: those
with electric charge, 4 = —1, called charged leptons (e, 4, T) and those with g = 0
called neutrinos (v, v, ). On the other hand, the SM particle content with integer
spin (s = 0, 1) consists of four kind of vector bosons (s = 1), carriers of the fundamental
forces (except for gravity): the gluons G (a2 = 1,2,...,8), which mediate the strong in-
teractions; the weak bosons, W]jc and Zg, which mediate the weak interactions; and the
photon, 1y, which mediates the electromagnetic interactions. These vector bosons can
be called gauge bosons as they are a consequence of the SM local (or gauge) symmetry
group, Gsum:

Gsm = SU(3)e x SU2)L x U(1)y, (1.1)

where Y denotes the hypercharge, L means that only the left-handed fermionic parts
will non-trivially transform under the weak isospin group and ¢ denotes the colour
symmetry group. For more details about the non-trivial transformations of the fermions
under the SM gauge group, see Appendix A. For last, the SM theory has one scalar
(s = 0) field called the Higgs boson. It is a doublet under SU(2); and it is required in
order to spontaneously break the electroweak symmetry, SU(2); x U(1)y — U(1)gm,
in agreement with observation, where EM stands for electromagnetism. This breaking
happens through the Higgs mechanism, i.e. the neutral component of the Higgs boson
acquires a vacuum expectation value (vev) different than zero and as a consequence
the corresponding fields of the three broken generators of the initial symmetry group,

INote that every charged fermion has also its corresponding anti-particle. Additionally, all fermions
(except neutrinos) have a right-handed and left-handed chirality, which is the projection of total angular
momentum on the direction of motion in the massless limit.
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become massive and one preserved Abelian generator field remains massless. Further-
more, by virtue of the Yukawa interactions, between the fermions and the Higgs boson,
the non-zero vev will give rise to the fermion mass terms.

In relation to the previous discussion, the SM theoretical framework possesses eigh-
teen physical and arbitrary parameters which must be determined by experiments:
nine charged-fermions masses, four mixing parameters, three gauge couplings, and
the Higgs” vev as well as its mass. Due to historical reasons, the SM considered neu-
trinos as massless particles. Now, that we know they have mass, their massive nature
can be incorporated either by assuming them Dirac or Majorana (their own antiparti-
cles) fermions. Once this is done, the free parameters can increase respectively up to
twenty-five or twenty-seven, depending on their massive nature.

The SM has achieved tremendous success both in the theoretical and experimental
points of view. However, there is a clear lack of understanding of certain emergent
patterns in various measured parameters. One example of this is the flavour puzzle,
which consists of a single, but rather precise question: Why do the fermion masses and
mixing parameters in the SM take the values they have? In principle, they are arbitrary,
nonetheless, by taking a closer look to the experimental values, we start noticing some
hierarchies between groups with similar masses, which may suggest an underlying
mechanism.

The measured fermion masses show the following hierarchy:

intergeneration
ny > me > my
% v A
5: my, > ms > my
g v A Vi
Bl ome > omy > m
¢ % v v
M) 7 Mypay 7 M)

From here, several intriguing features can be identified such as: i) the dominance of the
top-quark mass among all the fermion masses, m; ~ EW scale and m; > my; the in-
tergenerational hierarchy, m3 > my > my; ii) how the down-type quarks and charged
leptons have similar masses, m, ~ me, (d123 = d,s,b and e1p3 = e, pt, T); iii) and the
smallness of the neutrino masses, m, < m,. These unsolved questions, among others,
are commonly referred to as the problem of mass [3].

We find another interesting set of patterns in the observed quark mixing as de-
scribed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix. This unitary matrix con-
tains all the information on the strength of flavour-changing weak decays mediated by
the charged W bosons. The CKM matrix happens to be approximately close to the unit
matrix Vcxm ~ 1; showing that flavour transitions between members of the same fam-
ily are more likely to happen, |V,;| =~ |Vs| =~ |V}p| =~ 1, when compared to those from
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different ones which are strongly suppressed, | V4| >~ |Vis| =~ 0.23, |Vis| >~ | V| =~ 0.04
and |Viy| ~ |Vip| ~ O(1073). When the massive nature of neutrinos is considered, their
observed mixing is described by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) ma-
trix. Unlike the quark mixing matrix, the PMNS shows a completely different be-
haviour with a more anarchic structure. For more information about the flavour mixing
in the SM, please see Appendix A.

Besides the puzzle represented by the SM parameters, there are new observables that
cannot be explained with the SM current framework. In the last decades, we have dis-
covered, by several means, evidence on the existence of another kind of (non-baryonic)
matter. This points towards a new cold, weekly-interacting and electrically-neutral par-
ticle, called dark matter (DM). In Sec. 3.2, we introduce and discuss in detail the current
evidence of DM as well as the experimental efforts for detecting it.

As previously mentioned, there are many motivations to suspect on the existence of
new, undetected particles, that could be responsible of one or more of these phenomena.
Thus, the urge of extending the SM, and include all new possible interactions between
the SM fermions and the new physics (NP) sector.

There are two approaches to incorporate new particles and extend the SM theory
while still keeping it gauge and Lorentz invariant: via renormalizable (D < 4 opera-
tors) or "non-renormalizable" (D > 4 operators) models. The second approach corre-
sponds to the concept of Effective field theories (EFT). These theories provide a modern
perspective on renormalization, going beyond the pure systematic cancellations of in-
finities. Here, the higher-dimensional interactions, often called non-renormalizable by
historic reasons, parameterize the effects of NP in the low energy theory and are sup-
pressed by an energy scale AN with N = D — 4 and D the operator’s dimension. This
kind of operators contribute at some precision level and its coefficients, known as Wil-
son Coefficients, capture the physics of the high energy (or UV) theory. The effects of the
higher-dimensional operators are numerically suppressed if the cutoff scale A is much
larger than the typical energies achieved in experiments. Hence, by default, EFTs are
renormalizable order by order in operator dimension as long as the cutoff scale is large.

When speaking about DM, EFTs are generally a valid description of its interactions
with the SM as long as the mass of a heavy mediator, that could induce the operators,
lies out of the kinematic reach of the collider. In this regard, since LHC limits on DM
usually correspond to mass-suppression scales that are lower than the energy of the
process, the validity of the EFT approximation becomes questionable and an active me-
diator particle would need to be included instead. This simple point requires a careful
and consistent use of the effective approach, checking its range of validity, in the con-
text of DM searches at the LHC. Now, unlike EFTs, simplified models which are made
of renormalizable operators, are valid to arbitrary high energies as they capture the on-
shell effects of the mediators. A downside of such models is that the structure of the
couplings does not always respect gauge invariance. In addition, they are not as model
independent as EFTs, since the mediator is explicitly present in the operators, no addi-
tional new physics is allowed, and they often do not capture realistic UV scenarios. A
comparison of the advantages and disadvantages of EFTs and simplified models in a
DM context is discussed in Ref. [4]. It is the combination of these two approaches that
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is of special interest in this thesis and will be explored through a hybrid framework and
to be later discussed.

After building any new beyond the SM (BSM) model, it is necessary to study their
phenomenology and verify that the parameters in the proposed theory are not ruled out
by current experimental limits. To this end, we normally perform Monte Carlo simula-
tions followed by an extensive analysis of signal vs background. The latter can be done
through conventional methods like cut and count or by studying the Likelihood ratio.
However, as technology evolves, the amount of available data increases dramatically.
Only the ATLAS and CMS experiments at the LHC generate petabytes (~ 10° Mb) of
data per year. This together with the continuous quest for more precision have brought
the need of implementing new methods to perform the analysis of our models. Ma-
chine learning (ML), is nowadays the most efficient tool for the analysis of "big data".
Several ML algorithms can be easily adapted to physics analysis, some of them are de-
cision trees, decision forest, linear regression, logistic regression and neural networks.
For more information, on the relation between physics and ML please see Ref. [5] and
for a broad overview with practical examples/exercises refer to Ref. [6]. The implemen-
tation of such techniques is not the main scope of this work and therefore will only be
mentioned as complementary information.

This thesis is divided into two independent parts: the first one in which two renor-
malizable extensions of the SM are built (Chapter 2) and the second one where a non-
renormalizable approach is considered (Chapters 3 and 4). The overarching idea being
to understand the puzzles mentioned in the beginning. More explicitly, the content of
the present document goes as follows. In Chapter 2, we study the flavour puzzle by
extending the SM content with a second scalar in a two-Higgs doublet model (2HDM)
scenario [7]. Dirac’s and 't Hooft’s naturalness criteria are discussed in Sec. 2.1. We mo-
tivate such scalar extensions in Sec. 2.2 and introduce the 2HDM formalism in Sec. 2.3.
We explore the origin for the observed difference between the SM fermion masses by
linking the energy scale of a given set of fermions to a unique Higgs doublet. To avoid
the unwanted appearance of flavour changing neutral currents (FCNC) we employ the
singular alignment ansatz [8] in Sec. 2.7. We then explicitly construct two models called
Type-A and B, in Sec. 2.8, where either the top quark alone or the heaviest fermion gen-
eration couples to the Higgs doublet with the largest vev, while the other fermions
couple to the second scalar doublet. The main differences between the new proposed
models and conventional ones are discussed together with their phenomenological con-
sequences, like possible tests at the LHC, in Secs. 2.9-2.11. Additional information on
the flavour in the SM is found in Appendix A.

The following two chapters compose the second part of the thesis and deal with
non-renormalizable scalar extensions. In Chapter 3 we explore a model where not only
the problem of mass is considered but also DM. We first introduce the concept of effec-
tive field theories (EFTs) from a top-down and bottom-up approach in Sec. 3.1, giving
further explicit examples in Appendix B. Then, a brief overview of DM and simplified
models is given in Sec. 3.2 which is followed by their combination in a framework
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called extended dark matter EFT [9] in Sec. 3.3. This framework addresses drawbacks
regarding validity at high energies and/or generality that conventional DM effective
field theories or simplified models suffer of. Here, the advantages of model indepen-
dence of effective theories are taken but also the dark matter states and a new scalar
mediator are kept as propagating degrees of freedom. The presence of the latter, which
properly connects the dark sector to the fields with the help of dimension five opera-
tors, increases the consistently testable parameter space at colliders. Afterwards, in Sec.
3.4, we present an eDMEFT case scenario [10] where we explored the possibility of DM
coupling to the first generation of the SM fermions via a scalar mediator, S, odd under
a parity symmetry. We can then address the small nature of the first generation fermion
masses together with a prominent di-jet/lepton plus missing transverse energy (MET)
signal at the (HL-)LHC and the future e*e~ Compact Linear Collider (CLIC) [11]. To fi-
nalize, in Sect. 3.5 we match concrete models of DM to the mentioned framework. This
allows us to translate the experimental constraints derived in Ref. [12] to more-UV-
complete scenarios. To achieve this, we considered three setups: two Higgs doublets
plus a pseudoscalar or a scalar mediator and another one with heavy vector-like quarks
plus a scalar mediator. Both models also contain fermionic DM. With this, we want to
show that the eDMEFT can be used as a convenient standard interface between exper-
iment and concrete DM models. Lastly, in Sec. 3.6, we study the collider signatures in
the eDMEFT and translate the exclusion limits into the more-UV-complete parameters
by using the matching relations obtained in the previous section. In particular, we fo-
cus in mono-jet searches where the signal is characterized by a jet plus large missing
energy. A more complete study on the matching of these theories is new, unpublished
work and partially presented in this thesis, and will be extended to a paper [13].

In Chapter 4, we present an EFT interpretation of the reported XENONIT Electron
Recoil Excess [14]. We start by introducing the observed excess in Sec. 4.1 and con-
tinue by detailing the setup in Sec. 4.2, which is a slightly extended version of the
eDMEFT. We continue by fitting the excess in Sec. 4.3 and confront several astrophys-
ical and laboratory constraints for the previous framework in Sec. 4.4. Our findings
are the following two: i) the excess can be explained by neutrino/electron interactions,
while a DM-electron scattering does not lead to statistically significant improvement;
ii) additionally, severe constraints are obtained in the parameter space preferred by the
anomaly, where it can only be avoided in certain small regions. In Sec. 4.5, we realize
how the potential problematic bounds on electron couplings from Big-Bang Nucleosyn-
thesis can be circumvented via a late phase transition in the new scalar sector. Lastly,
in Sec. 4.6 we discuss the current status of the XENONIT excess and what should we
expect for the future DM experiments.

Finally, in Chapter 5, we summarize our findings and conclude. Additionally, three
appendices have been added where we give details on the SM flavour sector (Appendix
A), three of the most common EFTs (Appendix B) and a brief discussion on the required
procedures for the statistical analyses done in Sec. 3.4 (Appendix C).
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Chapter 2

Natural 2HDMs without FCNCs

The discovery of the Higgs particle not only represented a validation of the SM the-
ory but it also opened the door to the possibility of having more than one fundamen-
tal scalar in Nature. Hence, we focus here on a minimal renormalizable extension of
the SM by going beyond the simplest choice of introducing a weak singlet scalar and
instead, consider a weak doublet scalar with the same quantum numbers as the SM
Higgs. The reason behind this choice is to not only extend the scalar spectrum but si-
multaneously address the hierarchy in the fermion masses, as this inclusion doubles
the amount of Yukawa terms, providing an additional freedom to study the origin of
the fermion masses.

The outlook of the chapter is as follows. In Sec. 2.1, we discuss Dirac and "t Hooft’s
naturalness criteria, and evaluate under which conditions the SM fermions could be
called natural. We find that multi-scalar theories with suitable vevs, could fulfill both
naturalness criteria in the SM fermionic sector. In Sec 2.2, we explore possible exten-
sions to the SM scalar sector and discuss the minimal scenario where only a second
SU(2) doublet is added to the SM content. Here we also present several theoretical
constraints on the CP-even potential parameters. In Sec. 2.3, we discuss the general
aspects of the 2HDM models. We continue in Sec. 2.4 with ways to avoid problem-
atic flavour-changing-neutral-currents and motivate the need for a Z, symmetry. Here
we also present the four conventional types of 2HDMs with natural flavour conserva-
tion [15,16]. The soft-breaking of the latter symmetry and how to produce hierarchical
vevs are discussed in Sec. 2.5. We discuss the scalar potential and the theoretical con-
straints in Sec. 2.6. In Sec. 2.7, we study in detail the generalization of the Yukawa
alignment called singular alignment [8]. Moving forward, in Sec. 2.8, we present the
setup of two new natural 2HDM types (Type-A and Type-B). In both types, we address
either the heaviness of the top or of the third fermion family compared with the other
SM fermions. We continue in Sec. 2.9, with the study of the corresponding scalar cou-
plings and the branching ratios of the SM-like scalar h in Type-A and B. Furthermore, in
Sec. 2.10 we list all the experimental constraints that are relevant for the phenomenolog-
ical study and defining convenient benchmarks. To finalize, in Sec 2.11 we present and
discuss the phenomenological results. Complementary information on flavour physics
in the SM can be found in Appendix A.
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2.1 Naturalness as a Motivation to Multiscalar Theories

The concept of naturalness has played an important role in particle physics, for recent
discussions see Refs. [17-21]. It gives rise to the hierarchy problem. The latter can be seen
as an unnatural separation between the Planck scale, as defined by the Planck mass
M, ~ 10" GeV, and the EW scale, as defined by the SM Higgs’ vev, v ~ 10% GeV.
This particular situation originates because the loop-effects or quantum corrections to
the Higgs mass are way larger than the tree level effects. From the symmetry point of
view, we understand the lightness of the fermions as they are protected by the chiral
symmetry, also the gauge bosons become massive only after the electroweak symmetry
breaking and therefore their mass is naturally expected at O(100) GeV. However, the
Higgs mass has no symmetry protecting it and therefore nothing prevents the appear-
ance of large quantum corrections in this parameter, thus making unnatural to have a
light mass. We will not elaborate further as it is not the focus of this thesis and rather
move to another issue with hierarchical numbers, while referring the reader to the pre-
vious references.

As mentioned in the introduction in Chapter 1, the SM fermion masses have among
them very well defined patterns and they cannot be explained by the SM current frame-
work. We are interested in studying these patterns that, as a whole, do not represent a
problem from the viewpoint of the aforementioned discussion. However, the fact that
the top-quark is the only one with coupling y; = 1, in accordance to the EW scale, trig-
gers the question of how naturally small, when compared to the top-quark, are the other
Yukawa parameters in the fermionic sector. That is, how expected can small quantities
be in a given theory. As natural is a subjective concept one must stick to a mathemati-
cal (or at least to a conventional) definition that could help us to distinguish when the
parameter’s value may be considered natural.

Dirac and "t Hooft proposed two pioneering criteria to be capable of clearly defining
naturalness, Ref. [22] and [23], respectively. Dirac’s naturalness criterion [22] requires
all dimensionless couplings of a giving theory to be of order one in order to be called
natural. On the other hand, 't Hooft’s criterion [23] states that a smaller than one pa-
rameter is natural if the theory, where it is contained, acquires a symmetry when this
parameter is set to zero. For extended reviews on naturalness, see Refs. [24-27].

Applying Dirac’s criterion to the SM would then demand the observation of all the
fermion masses to be around the electroweak scale, i.e. m; = y;v with y¢ ~ O(1) and
v = 174 GeV the SM Higgs vev; which, as mentioned before, is only satisfied by the top
quark. The unnaturalness of the SM lighter fermions can then be described as:

yi~ 1> yy (f=cb,s,u,d,t,uce). (2.1)

However, the smallness in this set of small Yukawas could still be called natural accord-
ing to 't Hooft’s criterion. In fact, if we take the limit where all SM Yukawa couplings
are taken to zero, we recover a U(3)° flavour symmetry. This corresponds to a U(3)
symmetry for each type of right- and left-handed fermion

U(3)g, x U(3)r, X U(3) g, X U(B)ug X U(3)ey - (2.2)
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A caveat still exists: there is no common parameter among this set of masses that could
simultaneously bring all of them to zero. Although this is a subjective choice, it brings
many benefits. The main one is that the lightness of the whole set of fermion masses
is related to a single parameter in a minimalist approach. Note that the intricacies also
appearing within the set itself would require additional parameters but at the expense
of further complexities in the theory. As we are interested in the minimalist approach
we do not consider them here. Now, there are two ways to solve the aforementioned
caveat: 1) with a common Yukawa that would point to a symmetry or 2) the appearance
of other vevs which would be used to make the distinction between mass scales. Here,
we consider the second approach.

A theory with multiple Higgs doublets with all of them acquiring a vev would im-
ply for the fermion mass matrices

M/ = ZY}vi (2.3)

where f = u,d,eand }; v% =2 = (174GeV)2. In general, when moving to the mass
basis, one would expect the fermion masses to be given by a linear combination of
Yukawa parameters and vevs

i

It is only through the introduction of symmetries that a given vev could be made re-
sponsible for the masses in a certain fermion sector. In Sec. 2.8, we discuss such a
mechanism.

2.2 Scalar Extensions

The fact of having already observed a neutral scalar particle points towards the pos-
sibility of a richer scalar sector. These new scalars could then be used to tackle some
of the SM downsides, as the problem of mass or DM, as we will see in the upcoming
sections. Nevertheless, multi-scalar theories should satisfy severe constraints imposed
by the measured 125 GeV scalar.

There are several types of scalar multiplets, that could belong to the electroweak
symmetry breaking sector. In particular, scalar singlets and doublets under SU(2); are
among the safest options!. This because they do not spoil, at tree level, the well precise
measurement of p = My /(cos(6,)Mz) = 1. New contributions to this parameter
are constrained by the maximum allowed deviations from the SM-expectation [32], the
experimental value of the rho parameter is:

Pexp = 1.00040 = 0.00024 . (2.5)

IThe inclusion of larger SU(2); representations is possible under the right choice of hypercharges. In
general, these type of models have a richer scalar sector, e.g. adding a Higgs triplet with Y = 2 to the
SM one has doubly charged scalars apart from the known single charged ones which may give unique
phenomenology like the possibility of explaining the smallness of the neutrino masses, accommodating
DM candidates, and providing an interesting search channel for collider searches, as a recent example see
Ref. [28]. Nevertheless, they also bring up more subtleties into play [29-31].



14 Chapter 2. Natural 2HDMs without FCNCs

The tree-level contributions produced from a theory with N number of scalar multiplets
is [33]

N
L[T(T+1) - Y?]v;
Ptree = = N ’ (2.6)
2 Z Yizl),‘
i=0

where T denote the weak isospin and Y the hypercharge, i stands for the i-th scalar
multiplet respectively. Lastly, v; is the vev acquired by the neutral component of the
corresponding multiplet. At this point, is easy to note that if the scalar sector contains
only SU(2) singlets and doubletsi.e. T; = O and T; = 1/2 with Y; = 0 and £1/2,
respectively, then the requirement p = 1 at tree level is automatically fulfilled without
the need of any fine-tuning among the vevs.

Note that a clear disadvantage of extending the SM scalar sector with additional
scalar singlets is that they do not contribute to the flavour structure of the theory, as
scalar singlets do not couple to fermions (in a renormalizable theory) due to gauge in-
variance. Their only contributions are in the scalar sector. On the contrary, Higgs weak
doublets enrich the Yukawa sector of the theory. Hence, adding additional doublets
turns out to be the most compelling option, as they allow the study of an origin for the
mass hierarchies.

As the two dominant aspects in the fermion mass hierarchies are: i) top-quark dom-
inance, m; > my, and ii) the third fermion family mass being much larger than the first
two, m3 > my(y), then we only consider the introduction of one Higgs doublet that
could help us make the distinction between the two different energy scales. Therefore,
in the following, we focus on a minimal extension of the SM scalar sector with only
one additional scalar doublet with the same quantum numbers as the SM one called
two-Higgs-doublet model (2HDM).

2.3 The General 2HDM

We have introduced a second Higgs doublet to the SM framework with hypercharge?

1
YZE’

(o .
CI>]' - (Z)]' _}J_ QDJO) (] =1 2) ’ (2.7)

where v; represents the corresponding vev * and 4;? can be decomposed as 4)? = 3‘%((})?) +

i %(4)?). Note that we have doubled the amount of scalar fields, and so, the scalar spec-
tra is now made of two electrically charged scalars and four neutral ones. After EWSB,

2We are employing the following definition for the electric charge operator, Q = 1Y + 2 where 03 is
ploymg 8 &€ op 2
the diagonal Pauli matrix with the two eigenvalues £1.
3In general, v; can be complex, e.g. in a Charge-Parity (CP) violating potential [34].
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it is necessary to ensure that three of them remain massless (Goldstone bosons) and be-
come the longitudinal degrees of freedom of the weak gauge bosons (W* and Z°), thus
making us end up with five physical Higgs bosons to be later discussed in more detail.

The most general scalar potential for two scalar doublets, ®; and P, is written as
follows [34]

A

VZHDM = Z [mix(CD;CDX) + Tx(q);q)x)z — (m%ZCDICI)z + hC) (28)

x=1,2
+ A3 (D] 1) (PFD2) + Ay (P]D2) (DI P1)

1
+ [2)&5@’{@2)2 + Ao (@] 1) (DT D2) + A7 (PiD,) (D) + hoc.

The physical or nonphysical nature of the parameters can be deduced from the follow-
ing counting. First, as the potential should be real, the two mass parameters 1111, ma
are required to be real while the third one mj, can be, in general, complex. On the
other hand, {A1, Ay, A3, A4} are required to be real while {As5, A, A7} can also be, in gen-
eral, complex. That is, we have fourteen parameters (ten magnitudes and four complex
phases). To finally determine which of them is physical, we take into account the fact
that there is a nonphysical freedom in rotating the Higgs basis,

P P
=U , 29
(&) v (@) e
where U is a two-dimensional umtary matrix, UTU = UU' = I,,,. This unitary matrix
can be re-expressed as U = ¢“U where U is a special unitary matrix. The complex
phase gets automatically cancel out in the scalar potential, offering no reduction in the
number of parameters, while the three parameters implied by the remaining rotating

freedom, Ij, translates into the fact that, when moving to the mass basis or any other
special basis, there are 11 = 14 — 3 physical parameters.

There exists several conditions that the scalar potential should satisfy. The ones
required for minimizing the potential in Eq. (2.8) are

m3, = m3, tan B — v*[Ay cos? B+ Azgs sin® B + 3Ag sin B cos B+ A7sin® Btan B]  (2.10)

m3, = mi,tan"! B — v?[Aysin® B + Asys cos? B+ Ag cos® Btan" ! B -+ 37 sin B cos f]
where A3g5 = A3+ Ay 4+ A5, tan B = v/v; and v? = v% + ZJ%. On the other hand, the
scalar potential should be bounded from below (BFB), that is we require that there
should not be any directions in the field space in which the Higgs potential grows

infinitely negative, Voypm — —o0. To this end, the lambda parameters should meet
certain requirements as

Ap >0, A3 > —v/AMAy, A3+ Ay — |[As| > =/ AAs . (2.11)
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It has been shown in Refs. [35,36] that these are actually necessary and sufficient con-
ditions when A¢ = Ay = 0. However, when assuming these couplings as complex the
additional requirements do not follow a simple analytic formula. For simpler scenarios,
like when assumed real, one may find other necessary conditions like [37,38],

2’/\6 —|—/\7| <MFAA+A3+ AL+ A5, (2.12)

Further details on the constraints for the general 2HDM are out of the scope of this
work and instead, we refer the interested reader to Ref. [34].

24 FCNCs and the Introduction of a Z, Symmetry

Adding a second scalar doublet to the SM brings its own challenges. One of them is the
dangerous presence of flavour-changing-neutral-currents (FCNCs) at tree-level*. The
latter are interactions that change the flavour of fermions through a neutral mediator.
These interactions do not show up in the SM at tree level and get suppressed at the
loop level. This happens because the Z and vy bosons couple only diagonally in flavour
space. Additionally, the FCNCs present at the loop level have been experimentally
observed to be strongly suppressed [39,40]. The smallness of the FCNCs in the SM has
long been understood through the Glashow-Iliopoulos—-Maiani (GIM) mechanism [41].
However, its simplicity requires only considering one Higgs doublet; once two scalar
doublets are assumed, the fermion mass matrix

Mf =Y +vYs, (2.13)

has more than one contribution. As a consequence, the diagonalization of the mass
matrix, My, does not guarantee that any of the two Yukawa matrices conforming it also
become diagonal. Hence, there is nothing that may prevent potential flavour transitions
at the tree level. These FCNCs get mediated by the linear combination of the neutral
components of the doublets. Note that this undesirable aspect, in general, is a common
feature of multiscalar theories that have no clear mechanism to suppress FCNCs. To
overcome this situation, one must call for further assumptions.

A typical approach to avoid tree-level FCNCs, departing from the general 2HDM,
is to introduce a Z, symmetry under which both the scalar doublets and the fermions
get non-trivial charges [15,16]. Conventionally, the Z,-parities are assigned as

Dy — +Py and D — —Py. (214)

Note how this allows the separation into two different set of fermions, those which
only interact with ®; and those which only interact with ®,. This distinction reduces
the contribution of the Yukawa matrices to a single one per fermion-type, i.e the mass
matrix in Eq. (2.13) becomes My = vY;, where i = 1,2 depending on the assigned Z,

“The only kind of flavour-changing transitions occurring at tree level are those mediated by the charged
W bosons.
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charge of the given fermion type. Then the diagonalization of the mass matrix ensures
the diagonalization of the Yukawa matrix, preventing FCNCs at tree-level.

There are four common types of distributing the Z, charges and therefore four con-
ventional 2HDMs:

¢ Type I: Here all quarks and leptons couple to only one scalar doublet ®,.

¢ Type II: Here ®; couples to up-type quarks, while ®; couples to down-type
quarks and charged leptons.

* Type X (or lepton-specific): Here ®;, couples to all quarks, while ®; couples to all
leptons.

* Type Y (or flipped): Here ®, couples to up-type quarks and leptons, while &
couples to down-type quarks.

A summary of the Z, charge distribution for each of the aforementioned 2HDM
types is shown in Table 2.1. For a thorough assessment of 2HDMs please refer to [34]
and for more recent reviews to [33,42]. Note that, when introducing the Z, symmetry
in the 2HDM, this is usually applied only to the right-handed (RH) fermions. As an
example, let us consider the Type-II scenario, where the Z; assignments for the fermions
are,

dir = —dir,  €Rr— —E€R,

(2.15)
Ujr — T UiR,

with i = 1,2,3. Here, all left-handed fermions are even under the parity symmetry.
Then, ®; can only couple to up-type quarks, while ®; couples to down-type quarks
and charged leptons, shown in the second column of Table 2.1.

The introduction of the parity symmetry reduces the number of parameters in the
scalar potential, m%z, As7 = 0. Then, the most general Z,-invariant scalar potential is
expressed as

A
Viiow = £ |[n(@10,) + 3 (@107 + a(@lon) @l
x=1,2

1
+ Aa(@[R2)(@FD1) + 5 [As(@f@2) + A3 (@F@ 2] . 216)

Note that after demanding hermiticity, A5 remains as the only complex parameter in
the potential, while m?,, m3,, and A1534 are real. However, performing the now al-
lowed phase redefinition® the complex phase of A5 can be turned to zero without loss
of generality. Therefore, as all parameters are real we conclude that the potential is
CP-symmetric and only has seven physical parameters.

5The parity distinction between the two Higgses brings the complex phase back.
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Type- 1 1 X Y
Ui R D D P, D
di R D, P D, Py
lir D D P D

TABLE 2.1: The four different types of 2HDMs without tree-level FC-

NCs. The allowed couplings between each fermion and a certain Higgs

doublet are imposed by a group symmetry, e.g. a Z,. Note that only the
right-handed components obtain a non-trivial charge assignment.

Another set of options to evade FCNCs include, next to arranging the additional
scalar particles to be very heavy, suppressing dangerous Yukawa couplings [43], sep-
arating the Yukawa matrices, by introducing a Z, symmetry, such that only one scalar
doublet couples to a given right-handed fermion field [15, 16], or Yukawa alignment
[44,45], in which the different Yukawa matrices are proportional to each other. In par-
ticular, the new models proposed in this chapter, assume a generalized version of the
Yukawa alignment, where their parameters are assumed to be in a certain region of
flavour space. There, both Yukawa matrices become diagonal in the mass basis, irre-
spective of the fact that they were initially not proportional to the mass matrix. The sim-
plest case assumption is known as the Yukawa alignment anzat [44] while the flavour
non-universal realization of the latter is called singular alignment [8,45] and it is ex-
plained in detail in Sec. 2.7.

2.5 Soft-Breaking Z, and Hierarchical vevs

The problem of mass has many facets as aforementioned in Chapter 1. To understand
them all, within a renormalizable approach, would actually require having more than
two Higgs doublets, e.g. the most extreme case would require a nine Higgs doublet
model [46] while the minimal one, requires only four Higgs doublets [8]. With two
scalar doublets there are only two vevs, allowing a single split in the fermion mass
spectrum. This split can be either use as a way to understand the top-dominance aspect,
where m; > my (f stands for all other fermions except the top quark), or the third-
generation-dominance where m3 > m;, where the sub-index indicates the fermion
generation.

Now, there are two requirements that are necessary in order to guarantee the sepa-
ration of the fermion masses into two energy scales: i) to be able to express a given set
of eigenmasses in terms of a chosen vev regardless of the fermion type, for example:

my = ytvz and mc(u) = yc(u)vl , (2.17)

and ii) to be able to produce and control the hierarchy between the vevs, v2 > v;.
To this end, singular aligning the Yukawa matrices with the right Z, assignments will
guarantee the first condition. However, the second requirement is not a conventional
procedure in 2HDMs. In the following, we discuss the subtleties and details on the
mechanism.
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We want the following two scales:
v ~ O0(100) GeV  and  ©v1 ~O(1) GeV. (2.18)

The energy scale of each vev should correspond to the heaviest mass of the set of
fermions with which they are coupled. In order to create such a hierarchy, we then
guarantee that in the first stage only ®, develops a vev by assuming

mi <0 and w3 >0. (2.19)

Therefore, the Z, symmetry is preserved, and

2
—Myp»
Ay

vy = (2.20)

while v; = 0. The second stage then requires to softly-break the Z, symmetry by adding
the term
— iy (PP, + PIDy) (2.21)

to the potential in Eq. (2.16). Choosing m3, to be real ensures that these terms preserve
CP. If the condition m%zt,g > Alv% with g = v; /01 is met, then @, induces a small vev
to ®; of the form
2
mi,v
vy ~ 1292

~ £ = 2.22
m%l -+ /\3450% ( )

where Azy5 = A3 + A4 + As. One can show that in this case the heavy scalar masses are
above the EW scale. The two minimization conditions from which Egs. (2.20) and (2.22)
were derived are: 5 5 s 5
M5V = M0 — A205 — A3450207 , 2.23)
m%lvl = m‘%sz — Alv% — A345vlv% .
Note that, in the limit where v; — 0 and m%z — 0 we recover the vev in Eq. (2.20). For
the sake of illustration, we can simplify the expression for v; by assuming Azss ~ O(1)

and my; ~ vy, thus obtaining
2

01~ —12 (2.24)

Hence, if myp ~ O(10GeV) then v; ~ O(1GeV), as expected. Realize that the small-
ness of v; is natural regarding "t Hooft’s criterion, as if setting it to zero we recover the
initial Z, symmetry. Now, as both vevs contribute to the W-boson mass, they satisfy
the condition

v® = v} +v3 = (174GeV)?. (2.25)

As we still need one of the scalars to be responsible for the top-quark mass, it is straight-
forward to realize that the large vev will be close to the EW scale, i.e. v, ~ v. The latter
is a direct consequence of taking the hierarchical nature between the vevs, v, > v;.
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2.6 The Scalar Potential and its Theoretical Constraints

The physical states of the CP-symmetric potential are: two CP-even (h, H) and one CP-
odd (A) in the neutral scalar sector, and a pair of scalars (H +)in the charged sector. The
transition from the interaction to the mass basis, i.e. from

(Re(¢),), Im(¢1,), ¢1,) = (b, H, A, H*,G°,G)
depends on only two mixing angles («, 8), and is parametrized as follows:
h\ _ [cosa —sina) (Re(¢9)
H) — \sina cosa ) \Re(¢?})) ’
A\ _ (cosp —sinB) (Im(¢9)
<GO> - <sin,8 cos 8 ) < Im(¢?) ) ~ (226)
HT\ _ [(cosp —sinB\ (¢5
Gt ) \sinp cosB ) \¢; )"’
where G? and GT denote the required two massless SM Goldstone bosons. In the fol-
lowing, we refer to h as the SM-like Higgs with mass m;, = 125 GeV. Furthermore we

know that tan(B) = v2/vy, therefore, v; = vsin(B) and v; = vcos(p) . Through the
invariants of the scalar mass matrices and

2(02)\345 SZﬁ — m%z)
by = >

, (2.27)
mi,(tg — tﬁ_l) + 2vz(c%)x1 - s%/\z)

the quartic couplings of the scalar potential in Eq. (2.16) can be expressed in terms of
the Higgs mass eigenvalues [47-49]

1 2
AM = 202% (mhc +miys2 — M ﬁ>

_ 2%2 [Zz(m%l B Mz] , (2.28)
Ay = 212 (M2 4y —2md,s ),
As = 2:;2 (2 =)

where M? = Zm%2 /$2p, Mma, my+ are the masses for the neutral CP-odd and charged
scalars and mj,, my are the masses of the SM-like and heavy Higgs, correspondingly.
We note that Agys = [M? + (m3; — m?)saa/s28]/ (207).

For the scalar potential to be bounded from below, the quartic couplings should
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fulfil the conditions in Eq. (2.11) [35,50] Moreover, from imposing unitarity and pertur-
bativity conditions, the coefficients have to satisfy the following relations [33,51]

|)\3 +2)\4:t3/\5| < 1671',
|/\3:|:/\4| §167'L', |/\3:|:/\5| §167'L',

1
‘E (/\1 + A+ \/(/\1 — Ap)? +4A§) < 167,
(2.29)

’% (/\1—|—/\2:|:\/(/\1 —/\2)24—4/\%) < 1leérm,

‘% (3)\1 + 34, £+ \/9()\1 — )\2)2 + 4(2)\3 + )\4)2> <1leérm.

These constraints indirectly ensure that the potential remains perturbative up to very
high scales. Any additional constraint on the sizes of the A; will make the analysis more
restrictive.

For last, in order to guarantee a global minimum, we need to fulfill the constraint

[52]
A A
m3, (m%l —m3, Al) (tﬁ — )\;> >0. (2.30)

2.7 Singular Alignment

The right implementation of the parity symmetry Z,, starting from a general 2HDM,
avoided the appearance of tree-level FCNCs and produced four types. This class of
theories, in which symmetries are adequately used to complement the GIM mecha-
nism when going beyond the SM, are said to possess Natural Flavour Conservation
(NFC) [15,16].

Interestingly, the four conventional models can actually be contained as particular
cases of an ansatz called Yukawa alignment [44]. It is a generalized approach to pro-
hibit FCNCs at tree level, without choosing a particular type, and consistent with NFC
theories. The ansatz states that the two Yukawa matrices, contributing to a given mass
matrix, should be proportional to each other

Yl X Y2 ’ (231)

guaranteeing the simultaneous diagonalization of both Yukawa matrices, Y;(;), when
moving to the mass basis.

Realize how the Yukawa alignment and the four models it may represent, are flavour
universal regarding how the parity symmetry was employed. A flavour non-universal
approach has been already proposed [8,45]. This kind of alignment in flavour space
does not have any specific symmetry protection at the Lagrangian level. Therefore,
one-loop quantum corrections may induce misalignment in the Yukawa matrices and
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bring about FCNCs at the loop level. In Ref. [45], it was shown that the induced mis-
alignment is a quite small effect, as the initial alignment in the multi-Higgs Lagrangian
has some residual flavour symmetries, which tightly limit the type of FCNC operators
that can be generated at higher orders. This can be easily understood as both the flavour
universal Yukawa alignment and its generalization are a linear realization of the mini-
mal flavour violation hypothesis [53] and could be derived from it [54]. This hypothesis
states that the only source of flavour breaking should come from the Yukawa matrices,
even in the presence of new particles and interactions [55-57]. Lastly, this kind of ap-
parently adhoc ansatz could originate from a family symmetry as shown in Ref. [58] or
from an effective approach with additional hidden scalars [59].

In order to explain the singular alignment ansatz, let us first introduce a key con-
cept: the Singular Value Decomposition (SVD). In general, a complex matrix M can be
decomposed as

M =L'ZR, (2.32)

where X = diag(m, mp, m3) with m; > 0 and L and R are unitary matrices which rotate
independently the left and right-handed fermion fields. Notice how the SVD in Eq.
(2.32) can also be written as a sum of three rank 1 matrices,

M=) mL'PR, (2.33)
i

where P; are three projector operators, Plz = P;and }; P; = 13.3. Here each P; reads

100 000 000
P,=(0 00|, P,=(0 10|, Ps=(00 0]. (2.34)
000 000 00 1

In the following, we denote each rank 1 matrix by
A; =L'PR, (2.35)

and we refer to it as a singular matrix.

Now, let us apply the aforementioned and continue with the discussion on the sin-
gular alignment ansatz. The latter takes, as starting point, the singular value decompo-
sition in Eq. (2.32) and apply it to Eq. (2.13). The mass matrix then takes the form

L+MdiagR =101Y1+0Y;. (2.36)
Note that Mj.g can be expressed in terms of the projection operators as

Myiag = Y miPi  with [Pl = &i0u  (i,j,k=1,2,3) (2.37)
i
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then, it is possible to redefine the Lh.s of Eq. (2.36) as

Y mihi = v1Y1 +02Ys, (2.38)

1

where recall A; = L'P;R.
Now the ansatz of singular alignment is defined by demanding that each Yukawa
matrix satisfies
Y = arAq + BrDo + YAz, (k =1, 2) . (2.39)

In return, we would obtain,

Y miA; = (Z‘kak> A + (Zﬁk%) A + (Z’Yk%) As (2.40)
i k k k

giving the relations for the masses
my =Y g, my =Y Bkox, mMz=Y VUk. (2.41)
k k k

Realize that, by substituting the ansatz defined in Eq. (2.39) into Eq. (2.36), each Yukawa
matrix becomes diagonal in the mass-basis and therefore, it guarantees the absence of
tree-level FCNCs. The new diagonal Yukawa matrix can be written as follows

Y; = LY, R" = 0Py + By Py + 1 P3. (2.42)

Moreover, we recover the Yukawa alignment in the limit where aj o< B o 7 [44]. It
is clear from here how the singular alignment can be seen as the generalized version of
the Yukawa alignment [44] and thus equivalent to [45].

2.8 Model Setups

We have gathered all the requirements to build a successful model where the hierarchy
between the two vevs can be directly transferred as two dominant mass scales in the
fermion spectrum. We use this to explain two independent aspects of the problem of
mass. Each aspect gives place to a different model setup as follows:

* Type A (or top-quark dominance): It offers a clear distinction between the top
quark and all the other fermion masses as motivated by the large mass splitting,

my ~ v > My . (2.43)

* Type-B (or third-fermion-family dominance): It creates a distinction between the
whole third fermion family and the two lighter ones

msz > mip, (2.44)

where this relation holds for each kind of fermion.
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From the point of view of naturalness, ‘'t Hooft’s criterion is fulfilled in both models,
as in the limit where the small vev, connected to all light fermion masses is taken to be
zero, v1 — 0, then the Z, symmetry is recovered. On the other hand, Dirac’s criterion
gets realized slightly different in each model. Type-A has four natural Yukawa cou-
plings, {y+, Y, e, Y=} ~ O(1), while Type-B has only two, {y:, y.} ~ O(1). Thus, even
though both types have a certain degree of naturalness in action, overall, Type-A offers
a more natural scenario than Type-B.

The field content of both models is that of a general 2HDM with a softly-broken
Z symmetry as discussed in Sec. 2.2. Also, in both of them we employ the singular
alignment ansatz to guarantee the absence of FCNCs at tree level.

The Z; assignments for Type-A are:

ug,r — +us,r

(2.45)
{ujr,dir,ejr} = —{ujr, djr €jRr}

whereas Type B:

{usr,dsr,e3r} = +{usr dar, e3r}

(2.46)
{ujr,djr ejr} = —{ujr,djr ejRr} -

Here, j denotes the remaining RH fermions. All left-handed ones are chosen even under
the Z, symmetry. We summarize the charge distribution of the two models in Table 2.2.

Then, the Yukawa Lagrangian for Type-A reads
3 —_ ~ ~
—ﬁﬁ,y =) Qs [yfq’zua,zz + @1 (yjus,r + y?ul,R)]
i=1

Qi1 ®1(yidsr + yidar + yidir) +hec.

C e

Ay—zszq)l ylesr +Viear +yfer) +hec., (2.47)
i=1

while for Type-B reads

3
—ﬁg,y =) Qir [yf<1>zu3,R + @1 (Yfua,r + ]/?“1,1%)}
i—1

_|_

Q,L [y?q’zds,zz + 1 (yidar + yid R)} +h.c

B y = Z El L @263,1{ + Py (yl%lEz,R + yf@LR)] + h.c.. (2.48)

In general, the two models presented here, feature FCNCs at tree level. However, as
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Type- A B
Uz R D, Py
d3r, €3rR P P

Other RH fermions & &4

TABLE 2.2: Each column shows the fermions with the same Z; charge

assignment as a certain Higgs doublet, @ 5. This defines the new types

A and B. Note that a flavour conserving ansatz is required in order to
avoid tree-level FCNCs.

discussed before, through the introduction of the singular alighment ansatz we choose
the right parameter region of family space such that the Yukawa matrices become diag-
onal in the mass basis. Thus, FCNCs are absent at tree level. For further details on the
application of the singular alignment in a multi-Higgs scenario, we refer to Ref. [8].

Note that, as the fermion mass matrices are given in terms of two hierarchical vevs,
U1 K U2, we can explore the scenario where the smaller vev is set to zero and study the
possible consequences. In Type-A all mass matrices are equal to zero except the one for
the up-type quarks which takes the form

0 0 v
M,=v,|0 0 v5]. (2.49)
0 0 v

As the down-type quarks have a null mass matrix, a simultaneous unitary transforma-
tion in the quark weak doublet leaves the kinetic terms invariant and simultaneously
brings us to the mass basis. Therefore, at this level the quark mixing matrix is given by
the identity which is a good first approximation to the observed CKM mixing matrix.

In order to discuss lepton mixing in our models, we must introduce massive neu-
trinos to the setup. For the moment, we let open the possibility of Dirac or Majorana
nature. Under this circumstance, as the mass matrices for both the charged leptons and
neutrinos depend on the same vev (even in the Majorana scenario), the mixing among
them is expected to strongly deviate from the identity and behave more anarchically
which is aligned with the observations of the PMNS matrix [60].

On the other hand, the Type-B mass matrices in the limit where v; — 0 take the
form

0 0 y 0 0 yf 0 0 v
M,=v{0 0 5|, My=0[0 0 y3|, Me=02 [0 0 y5] . (250
00 u5 00 yi 0 0 v3

This implies that all fermion should mix anarchically, and therefore in disagreement
with the experimental observations. Nevertheless, this undesired issue can be solved
by reassigning all Z, odd charges to the left-handed fermions instead of the right-
handed ones. Thereafter, a weak-basis transformation in the RH fields would be enough
to diagonalize the Yukawa matrices and recover the trivial quark mixing. However, in



26 Chapter 2. Natural 2HDMs without FCNCs

the lepton sector one would have anarchic mixing, but only under the assumption of a
Majorana neutrino nature.

To summarize the discussion on fermion mixing, both models are able to predict
trivial mixing for the quark sector under the right Z, charge assignment. Additionally,
we predict anarchic mixing for the lepton sector if neutrinos are considered to have
Majorana nature. Additionally, fermion mixing can be explicitly related to tg in the
recent study in Ref. [61]. We achieve similar conclusions for the Type-B scenario as
in [62] where a similar model is investigated.

2.9 Scalar Couplings

The Yukawa Lagrangian in the mass basis is expressed by:
_ myg hF Hiery  ixAF
£ Y Gigcev) (hffn+ el FrH —ic} FrsfA)

CKM
+ v2 Lij Vij
(246 GeV)

V2my
(246 GeV)

7K (mu;CqHH+PL + md].{jf;PR) d]'

_Hf oy ik + hec. (2.51)

VCKM

where is the quark mixing matrix (See Appendix A for further details). The SM

is recovered for CJ}} = 1 and leLI’A’Pﬁ = 0. In Table 2.3 we show the corresponding
couplings for the conventional NFC scenarios, while in Table 2.4 the respective ones for
our Types-A and B. The two tables show great similarities, as the main change from the
conventional ones is breaking their family universality.

To derive the Yukawa couplings shown in Tables 2.3 and 2.4 we first insert ®; , from
Eq. (2.7) into Egs. (2.47) and (2.48). Then we perform a rotation in the neutral and charge
scalar sector to move to the mass basis as in Eq. (2.26). The resulting terms depend on
B and « as well as on the two vevs, v;,. In addition, we use the relations between the
fermionic Yukawa couplings and masses,

ny ny
yr = 250 or yr= 57 (2.52)
The former relation is then used if the given fermion couples to ®; whereas the latter
if it couples to ®,. For an example where the couplings acquire a completely different
behaviour when enlarging the flavour symmetry to a larger group refer to Ref. [63].
For other related phenomenological applications of the Yukawa alignment see for ex-
ample [64].

Moving forward, the couplings of the CP-even scalars, i and H, to a pair of vector
bosons, V. = W+, Z, are modified by

&y =sin(B—a) and &, = cos(p—«). (2.53)
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Type- 1 11 X Y

& cu/sg  calsp  Ccalsp  CalSp
ng Ca/Sp  —Sa/Cp  Ca/Sp  —Sa/Cp
&l cu/sp  —salcpg —Su/cp  CalSp
C su/sg sa/sp  sa/sg  Sa/sp
C% sa/Sp  Ca/Cp  Su/Sp  cCulCp
Cﬁl Sa/Sp  Ca/Cp  Cu/Cp  Su/Sp
1ty 1/tg 1ty 1/t

cj,;: —1/t5 tﬁ —1/f‘3 tﬁ
gt —1/tg tg tg —1/tg
gl 1/tg 1/t 1/tg 1/tg
gt 1/t —tg 1/tg —tg
&l Uty —tp —tg 1/t

TABLE 2.3: Flavour universal Yukawa couplings of the charged fermions
to the Higgs bosons h, H, A, and H™ in the four conventional 2HDMs.

Nevertheless, SM values are favored by present data, meaning that to a very good de-
gree of approximation,

sin(fp—a) ~1. (2.54)

This is the so called alignment limit (AL) and whenever satisfied, the CP-even neutr