Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images

MPG-Autoren
/persons/resource/persons211605

Litman,  Y.
Yusuf Hamied Department of Chemistry, University of Cambridge;
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons246926

Bonafé,  F.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons232555

Akkoush,  A.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Fritz Haber Institute of the Max Planck Society;

/persons/resource/persons21304

Appel,  H.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;

/persons/resource/persons21421

Rossi,  M.
Simulations from Ab Initio Approaches, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Fritz Haber Institute of the Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

acs.jpclett.3c01216.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)

jz3c01216_si_001.pdf
(Ergänzendes Material), 3MB

Zitation

Litman, Y., Bonafé, F., Akkoush, A., Appel, H., & Rossi, M. (2023). First-Principles Simulations of Tip Enhanced Raman Scattering Reveal Active Role of Substrate on High-Resolution Images. The Journal of Physical Chemistry Letters, 14(30), 6850-6859. doi:10.1021/acs.jpclett.3c01216.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-78E8-9
Zusammenfassung
Tip-enhanced Raman scattering (TERS) has emerged as a powerful tool to obtain subnanometer spatial resolution fingerprints of atomic motion. Theoretical calculations that can simulate the Raman scattering process and provide an unambiguous interpretation of TERS images often rely on crude approximations of the local electric field. In this work, we present a novel and first-principles-based method to compute TERS images by combining Time Dependent Density Functional Theory (TD-DFT) and Density Functional Perturbation Theory (DFPT) to calculate Raman cross sections with realistic local fields. We present TERS results on free-standing benzene and C60 molecules, and on the TCNE molecule adsorbed on Ag(100). We demonstrate that chemical effects on chemisorbed molecules, often ignored in TERS simulations of larger systems, dramatically change the TERS images. This observation calls for the inclusion of chemical effects for predictive theory-experiment comparisons and an understanding of molecular motion at the nanoscale.