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I. THEORY

A. Systems in the Presence of a Near Field

Consider a system perturbed by a transverse electromagnetic field. Under the long-

wavelength approximation, the system is described by a Hamiltonian of the form

Ĥ = Ĥ0 − µ̂ ·En
⊥(t), (1)

where Ĥ0 refers to the unperturbed Hamiltonian, µ̂ the system dipole operator, and En
⊥(t) =

(λxn̂x +λyn̂y +λzn̂z) cos(ω0t), where λx,y,z are the electromagnetic field strengths and n̂x,y,z

are unit vectors in each Cartesian direction. For clarity, in the following we consider the

perturbation along a particular Cartesian direction α, since they are separable, but the

derivation is easily generalized. Moreover, we consider, for the current derivation, that

nuclei are clamped in space.

We shall consider that our system can be divided in two clearly distinguishable parts that

we name ‘sm’ (i.e. substrate plus molecule) and tip which allows us to write the Hamiltonian

of the full system as

Ĥα = Ĥsm
0 − λαµ̂

sm
α cos(ω0t) + Ĥtip

0 − λαµ̂
tip
α cos(ω0t) + Ĥ int, (2)

where the label ‘int’ refers to ‘sm-tip’ interaction.

We will assume that the tip is not influenced by the presence of the molecule, which allow

us to write a tip Hamiltonian,

Ĥtip
α = Ĥtip

0 − λαµ̂
tip
α cos(ω0t), (3)

and obtain the time-dependent wave function
∣∣Ψtip

α (rtip, t)
〉

without reference to the molecule

subsystem. Moreover, the lack of influence of the molecule on the tip implies that the

interaction is purely electrostatic (charge transfer or dispersion are not possible). This

approximation is reasonable for neutral molecules and for all but very small tip-molecule

distances. Under the previous assumptions the interaction Hamiltonian gets transformed in

an effective interaction Hamiltonian, Ĥ int,eff defined as the following expectation value

S2



〈
Ψtip

α (rtip, t;Rtip)
∣∣ Ĥ int(rtip, rsm, t)

∣∣Ψtip
α (rtip, t;Rtip)

〉
= Ĥ int

α (rsm, t;Rtip)

= e

∫
dr
ρtipα (r, t;Rtip)

|r̂sm − r|

= eΦ̂tip
α (rsm, t;Rtip)

(4)

where rsm (rtip) refers to the position of electrons that belong to the substrate-molecule

(tip) subsystem, Rtip refers to position of nuclei that belong to the tip subsystem, and the

’;’ symbol has been used to emphasis the parametric dependence. Φ̂tip
α (r, t;Rtip) is the time-

dependent Hartree potential generated by the tip upon interaction with the α component of

the far field, and it depends on the position operator and parametrically on the coordinates

of the tip. It represents the key quantity of the new approach. For reasons that will become

clear later, we shall expand the time-dependent Hartree potential around zero field strength,

Φ̂tip
α (r, t;Rtip) = Φ̂tip

α (r, t;Rtip)|λα=0 + λα
∂Φ̂tip

α (r, t;Rtip)

∂λα

∣∣∣∣
λα=0

+O(λ2)

≈ Φ̂tip
GS(r;Rtip) + λα

∂Φ̂tip
α (r, t;Rtip)

∂λα

∣∣∣∣
λα=0

(5)

where we used the fact that in the absence of an external field, the tip is in the electronic

ground state (GS). Since we consider a continuous laser and using the fact that linear

responses are local in the frequency domain (i.e. the density oscillates predominantly at the

frequency of the external field), we can conveniently write

∂Φ̂tip
α (r̂, t;Rtip)

∂λα

∣∣∣∣
λα=0

= ℜ
[
∂Φ̃tip

α (r, ω0;R
tip)

∂λα

∣∣∣∣
λα=0

]
cos(ω0t) (6)

where Φ̃tip denotes the Fourier transform the tip Hartree potential. We note that since we

are interested in the simulation of time-independent TERS spectroscopy which represents

a steady-state excitation, we have the freedom to arbitrarily define the initial time and

therefore keep either the real or imaginary part in Eq. 6. However, for later consistency, we

have chosen the former and will use this fact later on.

By introducing Eq. 4, 5 and 6 into Eq. 2 and collecting all the terms that depend on the

molecular degrees of freedom and are linear on λ, we arrive at the following expression for
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the molecular Hamiltonian

Ĥsm
α = Ĥsm

0 + Ĥ int
α (r̂sm, t;Rtip) − λαµ

sm
α cos(ω0t)

=Ĥsm
0 + Φ̂tip

GS(r;Rtip) + λα

{
− µsm

α + ℜ
[
∂Φ̃tip

α (r, ω0;R
tip)

∂λα

∣∣∣∣
λα=0

]}
cos(ω0t)

(7)

We remark that the previous expression is origin independent and that Eq. 3 presented

in the main text represents its time-independent version.

B. Time Independent Density Functional Perturbation Theory

In the framework of Kohn–Sham (KS) DFT, the total energy can be expressed as func-

tional of the electron density, ρ, as

E(0)[ρ] = Ts[ρ] + Eext[ρ] + EH[ρ] + Exc[ρ] + Enn[ρ] (8)

where Ts, Eext, EH, Exc, and Enn are the kinetic energy of non-interacting electrons, the

external energy due to the the electron-nuclei electrostatic attraction, the Hartree energy,

the exchange-correlation energy, and the nuclei-nuclei electrostatic interaction energy , re-

spectively.

The ground-state total energy is obtained variationally under the constraint that the

number of electrons is constant which leads to the Kohn–Sham single-particle equations

ĥKSψp = ϵpψp, (9)

where ψp and ϵp are the KS single particle states and energies, and

ĥKS = t̂s + ν̂ext + ν̂H + ν̂xc (10)

is the KS single particle Hamiltonian. All the terms on the right hand-side of the previous

equation are single-particle operators which represent the kinetic energy, t̂s, the external

potential, ν̂ext, the Hartree potential, ν̂H and the exchange-correlation functional, ν̂xc. The

ground-state electronic density is computed by ρGS(r) =
∑

p f(ϵp)|ψp(r)|2 where f is the

occupation function.
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We now consider a perturbation due to an external electromagnetic field, in the framework

of time independent perturbation theory. The energy functional gets an extra term, EE[ρ],

and the perturbed KS single-particle Hamiltonian can be expressed as

ĥKS(ϵα) = ĥ
(0)
KS + ĥ

(1)
KSλα + . . . (11)

where λα is the strength of the external field along the direction α, ĥ
(1)
KS is the first order

response of the Hamiltonian operator given by

ĥ
(1)
KS = +ν̂

(1)
ext + ν̂

(1)
H + ν̂(1)xc + ν̂E, (12)

and ν̂
(1)
E is the (still not specified) coupling operator between the system and the external

electromagnetic field. By introducing analogous expansions for the single-particle states

(ψp = ψ
(0)
p + ψ

(1)
p ϵα + . . . ) and their eigenenergies (ϵp = ϵ

(0)
p + ϵ

(1)
p λα + . . . ) , one reaches the

well-known Sternheimer equation which reads

(ĥ
(0)
KS − ϵ0)ψ

(1)
p = −(ĥ

(1)
KS − ϵ1)ψ

(0)
p . (13)

The solution of the Sternheimer equation gives direct access to the density response defined

as

ρ(1)α (r) =
∂ρ(r)

∂λα
=

∑
p

f(ϵp)[ψ
(1)
p (r)ψ(0)

p (r) + ψ(0)
p (r)ψ(1)

p (r)], (14)

and allows for the calculation of the induced dipole as

µind
α =

3∑
β=1

λβ

∫
drρ

(1)
β (r)rα =

∑
β

λβααβ, (15)

in which we identify the components of the polarizability tensor as

ααβ =
∂µind

α

∂λβ
=

∫
drρ

(1)
β (r)rα. (16)

It is central to the following developments that we arrived to Eq. 16 without determining

the specific nature of the perturbation, ν̂E, besides the assumption that it is weak enough to

allow the omission of electrical non-linear effects. We now consider different suitable forms

for ν̂E.
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1. Homogeneous Field Perturbation

In most of the Raman experiments the frequency of the (monochromatic) external elec-

tromagnetic field falls in the visible range. In these cases, the field remains approximately

constant across the molecular dimensions and it is valid to apply the long-wavelength ap-

proximation. Thus, for this homogeneous and time-independent field, EE is expressed as

EE[ρ] = −λ ·
∫
drρ(r)r, (17)

and the corresponding single-particle operator becomes

ν̂E = −r. (18)

2. Linear Field

The next step towards the inclusion of spatial-dependent fields is to consider a field with

a non-vanishing gradient. The extra energy term becomes

EE[ρ] = −
∑
α

λα

[ ∫
drρ(r)rα −

∑
β

1

2

∫
dr
∂λα
∂rβ

ρ(r)rαrβ

]
, (19)

and the single-particle operator is given by

ĥ
(1)
KS = ν̂

(1)
ext + ν̂

(1)
H + ν̂(1)xc − rα −

∑
β

1

2

∂λα
∂rβ

rαrβ. (20)

It is clear to see that this approach becomes impractical rather quickly if one wants to

consider higher-order derivatives. Moreover, if the field is not strictly linear, the previous

expression becomes origin dependent since the value of ∂λα

∂rβ
is position dependent.

3. Inclusion of Near Fields

We now consider that the Hamiltonian is given by Eq. 7, but in its time independent

form. The perturbation up to the first order is given by

−µα + ℜ
[
∂Φ̃tip

α (r, ω0;R
tip)

∂λα

∣∣∣∣
λα=0

]
(21)
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and the energy gain can be expressed as

EE[ρ] =
∑
α

λα

[
−

∫
drρ(r)rα +

∫
drρ(r)ℜ

[
∂Φ̃tip

α (r, ω0;R
tip)

∂λα

∣∣∣∣
λα=0

]]
. (22)

The first order response of the Hamiltonian operator is given by

ĥ
(1)
KS = ν̂

(1)
ext + ν̂

(1)
H + ν̂(1)xc − rα + ℜ

[
∂Φ̃tip

α (r, ω0;R
tip)

∂λα

∣∣∣∣
λα=0

]
. (23)

We note that in this case, the ground-state KS Hamiltonian ĥ0KS also gets modified by

the addition of the Φtip
GS term.

Summary of approximations and assumptions in the derivation of Eq 7

What follows is a point-by-point summary of the approximation and assumptions em-

ployed in the previous section:

• Eq. 1: Dipole coupling between the system and the far-field.

• Eq. 2: The interaction between the tip and substrate is dictated by classical electro-

statics.

• Eq. 3: the tip is not influenced by the presence of the substrate.

• Eq. 5: the external far field strength is small enough, such that the response of the

tip lies in the linear regime.

• Eq. 11: the external far field strength is small enough, such that the response of the

substrate is linear with respect of the local field strength.

II. METHODS

A. DFT and DFPT calculations

All the electronic DFT and DFPT calculations were carried out using FHI-aims code1

with the ‘light’ default settings for numerical grids and basis sets. The calculations for the

benzene molecule were carried out with LDA exchange correlation functional as parame-

terized by Perdew and Wang2. The calculations for the TCNE molecule in the gas phase
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and adsorbed on Ag(100) were carried out with the PBEexchange-correlation functional in-

stead, to have a better description of the charge transfer between the metal substrate and

the molecule. A pair-wise van der Waals correction specifically tailored for hybrid organic-

inorganic systems was used in all the calculation containing the Ag(100) surface3. The

Ag(100) cluster was modeled by a 3-layer 4 × 4 cluster where only the first two top layers

were allowed to relax and the atoms on the bottom one were kept fixed in their bulk posi-

tions. Selected calculations were repeated with a 3-layers 5× 6 cluster model, see discussion

in section IV. The cluster models were created using the atomic simulation environment

(ASE)4 using a 4.157 Å lattice constant for Ag. The geometries were relaxed within FHI-

aims up to a maximum residual force component per atom of 0.005 eV/A. In Fig. S1,

the minimum energy structures of the TCNE molecule adsorbed in the cluster models are

depicted.

We compared the projected density of stated (PDOS) of the cluster calculations with

the ones obtained from periodic calculations using a 3-layer Ag 3 × 4 slab and a k-grid of

4 × 4 × 1. As shown in Fig. S2, the PDOS of TCNE on the cluster model is in reasonable

agreement with the periodic calculations and markedly different from the gas phase PDOS.

The calculation of the Raman intensities were performed by the evaluation of Eq. 4 in

the main text by a symmetric finite difference approach. All the atoms in the molecule were

displaced by 0.002 Å along all Cartesian directions. All the presented TERS images were

computed with 0.5 Å × 0.5 Å resolution after verifying with the benzene molecule that using

a 0.25 Å× 0.25 Å resolution does not result in significant changes on the image.

B. TD-DFT calculations

The real-time TDDFT calculations were carried out with the Octopus code5,6 , employing

the adiabatic local density approximation (ALDA) to describe exchange-correlation effects

unless stated otherwise. The field perturbation was introduced by a Dirac delta perturbation

in time, also known as ‘kick ’, at the initial time with field strength k, E = −ℏk/eδ(t), which

causes the initial wavefunction to instantaneously acquire a phase factor. We utilized a time

step of 0.0065 atomic units of time to integrate the time-dependent Kohn-Sham equations

of motion and run the simulations for 30000 steps, saving the Hartree potential every 10

steps in cube file format. We employed field strengths between 5×10−4 Å−1 and 1.5×10−3
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FIG. S1: Top and lateral view of 4 x 4 (top) and 5 x 6 (bottom) cluster models employed

to study the adsorption of the TCNE molecule adsorbed at Ag(100).

Å−1, and verified to be within the linear-response regime (see Fig. S4 ). The derivative of

Φtip with respect to the field strength was obtained as

∂Φ̃tip(r, ω)

∂λfarγ

=

∫
dteiωtϕtip(r, t)∫
dteiωtℏk/eδ(t)

,

=

∫
dteiωtϕtip(r, t)

ℏk/e
.

(24)

In all the TERS calculations the plasmonic frequency was chosen, i.e. ω = 3.22eV .

III. VALIDATION TEST

In Fig. S3, we show Φ̃tip obtained for different tip sizes. The overall shape of Φ̃tip below

the tip apex is not significantly modified. However, the plasmonic peak approaches the

visible range in agreement with previous studies7.
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FIG. S2: Projected density of states of TCNE molecule adsorbed at Ag(100) periodic slab

(top), TCNE molecule adsorbed at Ag(100) cluster (center), and TCNE molecule in the

gas phase (bottom). Carbon, nitrogen and silver atomic PDOS are depicted by black, red

and blue curves, respectively. A baseline depicted as a gray line has been added for clarity

in all the panels.

In Fig. S4 we show the dependence of Φ̃tip with respect to the kick strength. At all the

considered positions below the the tip apex, a linear dependence is observed

We studied the dependence of the molecular induced dipole, µind, with respect to the kick

strength by performing TD-DFT simulations with a kick for a system composed of tipA and

a benzene molecule at 4 Å below it. Fig. S5a shows the three different tip-molecule relative

positions considered for this test. To isolate the molecular contribution from the much larger

tip contribution, we computed µind by integrating a region containing only the molecule (see

Fig. S5b). We verified that in this region, the electronic density integrates to the number of

electrons in the molecule. In Fig. S5, we show the dependence of µind with respect to the kick
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FIG. S3: Comparison Φ̃tip for different tip sizes. a) Tip smaller than tip-A (20 Ag atoms)

b) tip-A (35 Ag atoms) c) Tip bigger than tip-A (84 Ag atoms). The tip apex was set at

the origin of coordinates as depicted in Figure 2a in the main text.
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FIG. S4: Linearity of Φ̃tip with respect to the kick strength. Dots corresponds to Φ̃tip

values at different distances, d, below the tip apex. Dashed lines are linear fits of the data

points.

strength and find a linear dependence. This confirms that we are within the applicability

realm of first-order perturbation theory. Moreover, the change of intensity of the induced

dipole follows the same trend as the TERS image presented in the main text (see Fig3 g)

with a maximum at d=2.5Å.

To analyze the shape of the local electromagnetic field, ∂Φ̃tip/∂z, we fitted it by a Gaus-

sian function defined as

f(x, y) = A0e
−( 1

2σ2
x
(x−x0)2+

1

2σ2
y
(y−y0)2)

+B0, (25)
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FIG. S5: a) Visual representation of the benzene molecule and the the 3 lateral positions

of the tip apex considered for this test. b) Electronic density along the z-direction (main

tip axis) integrated along the orthogonal xy plane. Molecular induced dipoles, µind, were

obtained by integrating the electronic density for ∞ < z < −1.8 Å (gray area) c)

Dependence of |µind| at 532 nm with respect to the kick strength at different tip-molecule

relative positions.

where (x0, y0) are the coordinates of maximum, and A0 and B0 are a normalization constant

and an offset, respectively.

Fig. S6 and S7 show two-dimensional Gaussian fits of ∂Φ̃tip/∂z for tip-A model structure

at 4 Å and 1.5 Å below the tip apex, respectively. On the former case, the Gaussian fit

reproduces to some extent the reference TD-DFT data, but the fit presents a more moderate

increase at its center and underestimates the maximum intensity by 20%. On the latter case,

a Gaussian fit completely misses the rapid variation and sign change of local field observed

in the reference data. In Fig. S8 and S9, we show analogous plots for the tip-B model

structure. While a Gaussian fit for the data at 1.5 Å is clearly inadequate, at 4.0 Å the

fit looks acceptable besides the fact that it cannot capture the radial asymmetry present in

the reference data. We remark that in this work only tip-molecule distances greater than

4 Å have been considered.
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FIG. S6: Gaussian fit of a two-dimensional slice of ∂Φ̃tip/∂z for tip-A model structure at

4 Å below the tip apex. a) Normalized two-dimensional heat map. Dashed lines represent

0.5 isocontours. b) One dimensional cuts along x=0 Å and y=0 Å. Solid black line and

gray dashed line represent the reference and Gaussian fit data, respectively. The tip apex

was set at the origin of coordinates as depicted in Figure 2a in the main text.

FIG. S7: Same as figure S6 for a slice taken at 1.5 Å below the tip apex.
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FIG. S8: Same as figure S6 for a tip-B model structure.
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FIG. S10: Comparison of Φ̃tip of Tip-A computed using a) LDA and b) PBE exchange

correlation functionals.
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molecule-tip distance.

S15



IV. ADDITIONAL TERS IMAGES

In Fig. S12 and S14, we show further TERS images for the benzene and TCNE molecules,

respectively.

a) b)

0.0 5.0-5.0

0.0

5.0

-5.0

X ( ) 

Y
 (

) 

Int. (a.u)

 0.06

 0.12

FIG. S12: TERS simulation of gas-phase benzene from local-field DFPT calculations.

Normal mode displacements (a) and TERS images (b) of the the 1015 cm−1 (a1g) mode for

a molecule-tip apex distance of 4 Å.

To further verify the convergence of the TERS calculations with respect to the cluster

size, we performed TERS simulations at some representative tip-molecule relative positions.

In Fig. S13, we show the position dependence of the TERS signal along the molecular axis

for six vibrational normal modes. In all cases, the results obtain with the small cluster are

in semi-quantitative agreement with the ones obtained with the larger cluster.

V. COMPUTATIONAL SAVING OF THE PROPOSED METHOD

The reduced computational cost of the DFPT calculation with respect to the full real-time

TDDFT simulations can be easily verified by comparing the two methods. However, as two

different implementations are used for both methods, a completely fair, code-independent

comparison is not possible at the moment. Instead, we state the cost of a typical calculation

of each type with both codes, operating at optimal conditions of parallelization in CPUs.

The timing for the TDDFT run (using the Octopus code) with a Dirac-delta perturbation to

calculate the polarisability of a system comprising a silver tip A plus a benzene molecule (47

atoms) is of 324 core-hours (Intel Xeon IceLake-SP processors), in the Raven supercomputer
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FIG. S13: a) Schematic depictions of the axis along which the TERS calculations were

performed. b)-g) Normalized TERS intensity for selected vibrational modes.

installed at the Max-Planck Computing and Data Facility (https://docs.mpcdf.mpg.de).

The computational cost of the DFPT calculations (using the FHI-aims code) on the equiv-

alent system and machine is 0.02 core hours. While it is true that the DFPT calculation

needs as input the Hartree potential obtained from the TDDFT run, the same potential

can be used for any tip position, while each tip position demands a separate TDDFT cal-

culation. The comparison of the cost demonstrates an approximately 15000-fold increase

in computational efficiency, which will become larger for tip models containing more metal

atoms. Furthermore, while the DFPT calculations have a N log(N) scaling with respect

to the number of atoms (N) up to systems with an ≈ size of around 1000, the TDDFT

implementation scales as N3.
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FIG. S14: Simulated TERS images of TCNE in isolation, but at the adsorbed geometry

with the addition of 1 electron to the molecule without further geometry relaxation

(TCNEads-1e). a), b), c) and d) Normal mode displacements of selected vibrational modes

of TCNE@Ag(100). The surface has been deleted for clarity. e), f), g) and h) TERS

images of the depicted normal modes for TCNEads. In all cases a molecule-apex distance

of 4 Å was employed. Frequency within square brackets in panel e) denotes the lack of an

equivalent normal mode eigenvector in the TCNEads1e calculation.
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