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Abstract

We investigate the existence of solutions of weakly nonlinear periodic boundary

value problems for systems of ordinary differential equations with switchings and

the construction of these solutions. We consider the critical case where the

equation for the generating constants of a weakly nonlinear periodic

boundary-value problem with switchings does not turn into an identity. We

improve the classification of critical and non-critical cases and construct an

iterative algorithm for finding solutions of weakly nonlinear periodic boundary

value problems with switchings in the critical case. As examples of application of

the constructed iterative scheme, we obtain approximations to the solutions of a

periodic boundary value problem for the mathematical model of non-isothermal

chemical reactions. To check the accuracy of the proposed approximations, we

evaluate discrepancies in the original equation.

Keywords: periodic boundary value problem; equation for the generating

constants; critical case; nonlinear chemical reaction model

1 Introduction

A classical framework for studying periodic solutions of nonlinear ordinary differ-

ential equations, originating from the works by H. Poincaré and A.M. Lyapunov, is

based on the perturbation analysis in a neighborhood of a periodic solution of the

generating linear problem. The essence of this approach was summarized in [1] for

nonlinear systems containing a small parameter. In particular, under certain non-

singularity assumptions for systems with analytic right-hand sides, it was shown

that there exists a unique periodic solution of the perturbed nonlinear system,

which depends analytically on the small parameter. The method of small param-

eter has been developed in the paper [2] for an n-dimensional non-autonomous

system of ordinary differential equations on t ∈ [a, b] with n-dimensional bound-

ary form depending on values of the state vector at t = a and t = b. The crucial

assumption of this work concerns the solvability of the shortened boundary value

problem obtained by putting the small parameter ε to be zero. Then the existence

of solutions of the original boundary value problem is proved for sufficiently small

ε > 0, and the convergence of this solution to the shortened one is established as

ε → 0. The above result is obtained for systems whose vector fields are continuous

in time t and continuously differentiable with respect to the state vector and the

small parameter ε.

Perturbation theory is proved to be a powerful tool in the qualitative and

quantitative study of periodic solutions to the Hill, Mathieu, van der Pol equa-

tions, and many other important mathematical models in nonlinear mechanics and
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physics (see, e.g., [3]). Without pretending to be complete, we also mention the

existence results concerning periodic boundary value problems for nonlinear differ-

ential equations with singularities [4, 5], second-order non-autonomous nonlinear

equations on the positive cone [6], superlinear second-order equations with positive

solutions [7], first-order problem with resonance and nonlinear impulses [8], Hamil-

tonian systems with nonsmooth potentials [9], and second-order equations with a

convection term [10].

The present work addresses the issue of solution existence for nonlinear peri-

odic boundary value problems on t ∈ [a, b] with switchings at given time instants

a = τ0 < τ1 < ... < τp < τp+1 = b. Such problems arise naturally in the dynamic op-

timization of a variety of mathematical models in natural science and engineering.

Indeed, a typical framework in optimal control problems with non-convex costs and

input constraints results in bang-bang extremal controls because of Pontryagin’s

maximum principle. Then the characterization of optimal trajectories satisfying

prescribed boundary conditions becomes a non-trivial issue due to the coupled non-

linear structure of the corresponding Hamiltonian system. As an example, we refer

to the paper [11], where an isoperimetric optimal control problem has been studied

for nonlinear chemical reaction models under periodic boundary conditions. A class

of switching controls satisfying necessary optimality conditions has been obtained in

that paper and it is shown that the proposed control strategy improves the perfor-

mance of nonlinear chemical reactions in comparison to the steady-state operation.

It has been noted by several authors (see, e.g., [12] and references therein) that

the periodic operation of chemical reactions has a rich potential for applications in

chemical engineering, and the performance of periodic controllers has been validated

experimentally [13].

In the paper [14], a procedure for evaluating periodic trajectories with switch-

ings has been proposed based on the Chen–Fliess expansion of periodic solutions

corresponding to bang-bang control inputs. This procedure gives attractive alge-

braic relations of the initial data with the switching times in case of small periods,

however, to the best of our knowledge, the construction of periodic trajectories of

arbitrary periods remains open for nonlinear systems with switching controls. The

present work aims to fill this gap by proposing a general approach for characterizing

the existence of solutions and an iterative computation scheme for periodic bound-

ary value problems with switchings under nonlinear perturbations. Our study ex-

tends the methodology developed in [15] for boundary value problems with impulses

at given time instants τj . In contrast to previous publications on periodic bound-

ary value problems for nonlinear autonomous systems, dealing with parameter-

dependent periods (and thus parameter-dependent intervals [a, b(ε)], cf. [16] and

references therein), we assume the endpoint b to be fixed.

The rest of this paper is organized as follows. The periodic boundary value problem

is formulated in Section 2 for a class of systems of ordinary differential equations in

R
n with nonlinear and discontinuous perturbations of the right-hand side depending

on a small parameter. The main theoretical contribution is summarized in Section 3

in the form of necessary solvability conditions (Lemma 1) and an iterative scheme

for the approximation of solutions (Theorem 1). These results are applied to a

nonlinear chemical reaction model in Section 4 to justify possible computational

benefits of the developed iterative scheme.
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2 Problem statement

Consider a nonlinear system of ordinary differential equations

dz

dt
= Az + ε h(ε) + εZ(z, ε), t ∈ [a, b], (1)

under the periodic boundary condition

ℓ0z(·, ε) := z(a, ε)− z(b, ε) = 0, (2)

where z = z(t, ε) ∈ R
n depends on time t and the small parameter ε ∈ [0, ε0], A is

a constant n× n matrix, h : [0, ε0] → R
n and Z : Rn × [0, ε0] → R

n are continuous

functions and, moreover, Z(z, ε) is continuously differentiable with respect to z for

each fixed ε ∈ [0, ε0].

Let us first analyze the solvability of the boundary value problem (1)–(2) in a

small neighborhood of a solution z0(t) of the generating linear problem

dz0
dt

= Az0, ℓ0z0(·) := z0(a)− z0(b) = 0. (3)

Let us denote by X(t) = e(t−a)A the fundamental matrix of (3) and consider the

non-critical case, i.e.

detQ0 ̸= 0, Q0 := ℓ0X(·) = X(a)−X(b).

In this case problem (3) admits only the trivial solution, so that all solutions of the

inhomogeneous periodic boundary value problem (1)–(2) are equilibrium points:

z(t, ε) := z̃(ε), A z̃(ε) + ε h(ε) + εZ(z̃(ε), ε) = 0.

The existence of such equilibria z̃(ε) for 0 ≤ ε ≤ ε∗ with some small enough ε∗ ∈

(0, ε0] follows from the implicit function theorem for

Φ(z̃, ε) := A z̃ + ε h(ε) + εZ(z̃, ε) = 0

and the conditions Φ(0, 0) = 0, detΦ′

z̃(0, 0) ̸= 0.

Starting from this observation, we pose the question about the existence of non-

equilibrium solution of the periodic boundary value problem under a time-varying

discontinuous perturbation of the right-hand side of (1). To be more precise, we

introduce a partition of [a, b] as

a = τ0 < τ1 < τ2 < ... < τp < τp+1 = b

and consider a switching scenario

f(t, ε) :=











µ0(ε), t ∈ [a, τ1[,

....... ............ ,

µp(ε), t ∈ [τp, b],

(4)



Benner et al. Page 4 of 12

where the functions µ0(ε), ... , µp(ε) ∈ R
n are continuous on ε ∈ [0, ε0]. We treat

the above f(t, ε) as the disturbance in the boundary value problem and rewrite the

resulting differential equation in the following way:

dz

dt
= Az + ε f(t, ε) + εZ(z, ε), t ∈ [a, b]. (5)

As it follows from the literature review, the above introduced class of switching

functions f(t, ε) has a straightforward relation to bang-bang controls in optimal

control problems. In this paper, we aim to develop efficient tools for the analysis

of such type of problems. Note that the solutions of differential equation (5) with

discontinuous right-hand side can be treated in the sense of Carathéodory (cf. [17,

Chap. 1]); however, due to well-developed techniques in the theory of boundary

value problems with continuous right-hand sides [18], we will “glue” piecewise-

differentiable periodic solutions z(t, ε) by imposing the following set of boundary

and interface conditions:

ℓz(·, ε) :=











z(a, ε)− z(b, ε)

z(τ1 + 0, ε)− z(τ1 − 0, ε)

...................................

z(τp + 0, ε)− z(τp − 0, ε)











= 0. (6)

Thus, by a solution of the periodic boundary value problem (5)–(6) we mean a

function z : [a, b]×[0, ε0] → R
n such that, for each fixed ε ∈ [0, ε0], z(t, ε) satisfies (5)

on each interval (τj , τj+1), j = 0, 1, ..., p, and ℓz(·, ε) = 0. In the subsequent study,

we will focus on the solutions z(t, ε) which are continuous in ε ∈ [0, ε0] at each fixed

t ∈ [a, b].

The main problem under consideration in this paper is formulated as follows:

describe solvability conditions of the nonlinear periodic boundary value problem (5)–

(6) and develop an iterative scheme for computing its solutions.

3 Solutions existence

Let us introduce the matrix

Q :=











Q0

On

...

On











∈ R
n(p+1)×n

and orthogonal projection matrices PQ, PQ∗ [18]:

PQ : Rn → KerQ PQ∗ : Rn(p+1) → KerQ∗,

where

PQ∗ =

(

O O

O Inp

)

, PQ∗

d
=
(

O Inp

)

, PQ = O, d := np,
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Id is the identity matrix of size d×d, and On is zero matrix of size n×n. As PQ∗ ̸= 0,

the perturbed nonlinear boundary value problem (5)–(6) exhibits a critical case. We

introduce the Cauchy type operator

K

[

g(s)

]

(t) :=



















X(t)
∫ t

a
X−1(s) g(s) ds, t ∈ [a, τ1[,

X(t)
∫ t

τ1
X−1(s) g(s) ds, t ∈ [τ1, τ2[,

.............................. ............ ,

X(t)
∫ t

τp
X−1(s) g(s) ds, t ∈ [τp, b],

(7)

for the initial value problems

dz/dt = Az + g(t), t ∈ [τi, τi+1[, z(τi) = 0, i = 0, 1, 2 , ... , p,

and define the generalized Green’s operator [18, 19]:

G

[

g(s)

]

(t) = K

[

g(s)

]

(t)−X(t)Q+ℓK

[

g(s)

]

(·)

for the linear periodic problem

dz/dt = Az + g(t), z(a)− z(b) = 0.

Here Q+ is the Moore–Penrose pseudoinverse matrix [20, 18].

Let z(t, ε) satisfy the differential equation (5) on each interval (τj , τj+1), j =

0, ..., p, for ε ∈ [0, ε0], then by applying the functional (6) to z, we obtain the

following necessary and sufficient condition for z to be a solution of the boundary

value problem (5)–(6):

PQ∗

d
ℓK

[

f(t, ε) + Z(z(t, ε), ε)

]

= 0. (8)

Recall that the values of f(t, ε) in (4) are defined in terms of the vector function

λ(ε) :=







µ0(ε)

......

µp(ε)






∈ R

n(p+1)

and define λ0 := λ(0), f0(t) := f(t, 0),

F (λ0) := PQ∗

d
ℓK

[

f0(t) + Z(0, 0)

]

. (9)

As we look for the solutions z(t, ε) of (5)–(6) which are continuous with respect to

ε, then by passing to the limit as ε → 0 in (8), we obtain F (λ0) = 0. Thus, we have

proved the following assertion.

Lemma 1. Let detQ0 ̸= 0, and let the perturbed nonlinear boundary value prob-

lem (5)–(6) admit a solution z ∈ C([a, b] × [0, ε0]) such that z(·, ε) ∈ C1([a, b] \
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{τ1, τ2, ..., τp}) for each ε ∈ [0, ε0]. Then

F (λ0) = 0, (10)

where F (λ0) is given by (9).

Similarly to the weakly nonlinear periodic problems in critical cases [18], we

call (10) the equation for the generating constants for problem (5)–(6). In the sequel,

we assume that (10) does not turn into an identity and has real roots. By fixing a

solution λ0 ∈ R
n(p+1) of (10), we can define the first approximation of a solution

of (5)–(6):

z1(t, ε) = εG

[

f0(s) + Z(0, 0)

]

(t).

The obtained solution λ0 ∈ R
n(p+1) of equation (10), as well as the first approx-

imation z1(t, ε) of a solution of the original boundary value problem (5)–(6) are

analogous to the generating solution of a regular periodic boundary value problem

in the critical case [18], in a small neighborhood of which the solutions of the original

boundary value problem may exist.

By formal substitution of the identity matrix In in place of g(s) in (7), we adopt

the notation K[In](t), t ∈ [a, b], for the n × n matrix obtained from (7). Then we

introduce the constant matrix

C0 := PQ∗

d
ℓK

[

In

]

∈ R
d×n(p+1),

and orthogonal projection matrices PC0
, PC∗

0
[18, 19]:

PC0
: Rn(p+1) → KerC0 PC∗

0
: Rd → KerC∗

0 .

In the considered case, the solvability conditon (8) leads to the equation

C0 λ(ε) = −PQ∗

d
ℓK

[

Z(z(t, ε), ε)

]

.

The avove equation is solvable iff

PC∗

0
PQ∗

d
= 0. (11)

Thus, under condition (11), the perturbed boundary value problem (5)–(6) has at

least one solution represented by the operator system

z(t, ε) = εG

[

f(s, ε)+Z(z(s, ε), ε)

]

(t), λ(ε) = −C+
0 PQ∗

d
ℓK

[

Z(z(t, ε), ε)

]

. (12)

We denote the vectors

λk(ε) :=







µ
(k)
0 (ε)

........

µ
(k)
p (ε)






∈ R

n(p+1), fk(t, ε) :=











µ
(k)
0 (ε) t ∈ [a, τ1[,

......... ............ ,

µ
(k)
p (ε) t ∈ [τp, b],

k = 0, 1, ...,
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and apply the simple-iteration method [18] for constructing an approximate solution

of (12) under condition (11). The result is summarized as follows.

Theorem 1. Let detQ0 ̸= 0, and let λ0 ∈ R
n(p+1) be a solution of (10) under

condition (11). Then, for some small enough ε∗ > 0, there exists a function λ ∈

C([0, ε∗]), λ(0) = λ0, and a solution z ∈ C([a, b] × [0, ε∗]), z(·, ε) ∈ C1([a, b] \

{τ1, ..., τp}) of the boundary value problem (5)–(6). The above solution z(t, ε) is

defined by the operator system (12) and can be obtained as the limit of the following

iterative scheme with ε ∈ [0, ε∗]:

zk+1(t, ε) = εG

[

fk(s, ε) + Z(zk(s, ε), ε)

]

(t), (13)

λk+1(ε) = −C+
0 PQ∗

d
ℓK

[

Z(zk(t, ε), ε)

]

, k = 0, 1, 2, ... .

The above assertion follows from the contraction property of the operator sys-

tem (12), and its proof is analogous to [21], where ε∗ > 0 is obtained from the

contraction condition

∥

∥

∥

∥

∥

∥

∥

∥

εG

[

Z(zk(s, ε), ε)

]

(t)

∂z

∥

∥

∥

∥

∥

∥

∥

∥

≤ λ∗ < 1, ε ∈ (0, ε∗] ⊆ (0, ε0]. (14)

4 Application to a nonlinear chemical reaction

As an application of the proposed theoretical framework, we consider an example of

non-isothermal chemical reaction with τ -periodic controls presented in [11, 14]. The

model is described by a boundary value problem for nonlinear differential equations

with respect to the reactant concentration and the temperature, which, after a

suitable rescaling in the case τ = 2, can be represented as follows:

dz

dt
= Az + ε f(t, ε) + εZ(z, ε), ℓz(·, ε) := z(0, ε)− z(2, ε) = 0, (15)

where

z =

(

x

y

)

, Z(z, ε) = (1 + x)e−
ε

1+y

(

1

1

)

.

Here A is a constant 2×2 matrix whose eigenvalues λa and λb are distinct negative

real numbers, and the vector function f(t, ε) corresponds to switching controls. We

assume that all variables in (15) are dimensionless and, for simplicity, the kinetic

parameters in Z(z, ε) are taken to be 1. Without loss of generality, we also assume

that the matrix A is diagonal, and for further computations we take λa = −1,

λb = −2.

In the considered case, the linear homogeneous problem (generating problem (3))

admits only the trivial solution z0(t) ≡ 0 because the matrix

Q0 =

(

1− 1
e2

0

0 1− 1
e4

)
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is nonsingular. Moreover, as it follows from the consideration in Section 2 for a

time-invariant term f(t, ε) ≡ h(ε), the problem (15) has only equilibrium solutions.

In particular, if

h(ε) =

(

1 + ε

1− ε

)

,

then the solutions of (15) can be represented as follows:

x(t, ε) = 2 ε+ 2 ε2 +
3 ε3

2
+

ε4

3
+

31 ε5

24
+

ε6

5
+

337 ε7

180
−

2801 ε8

5040
+ ... ,

y(t, ε) = ε+
3 ε3

4
+

ε4

6
+

31 ε5

48
+

ε6

10
+

337 ε7

360
−

2801 ε8

10 080
+ ... .

The asymptotic expansions and numerical simulations in this paper have been car-

ried out using Wolfram Mathematica 8.

It is natural to address the question of existence of non-equilibrium solutions

under switching perturbations f(t, ε). For this purpose we take

f(t, ε) =

{

µ0(ε), t ∈ [0, τ1),

µ1(ε), t ∈ [τ1, 2], τ1 = 1,
(16)

and investigate the solvability of the boundary value problem (15) in the class of

functions z(t, ε) such that z ∈ C([0, 2]× [0, ε]), z(·, ε) ∈ C1([0, 2] \ {1}). According

to the methodology of Section 3, we compute the following matrices:

Q :=

(

Q0

O2

)

, PQ∗ =

(

O O

O I2

)

̸= 0, PQ∗

d
=
(

O I2

)

, PQ = O.

The equation (10) is not a trivial identity and has a real solution

λ0 =
1

10











−10

−10

1

0











,

which defines the matrix

C0 =
1

e

(

e− 1 0 0 0

0 sinh 1 0 0

)

.

Since the condition (11) is satisfied, the perturbed boundary value problem (15) in

the case of has at least one solution. Let us denote the vectors

µ
(1)
0 (ε) :=

(

µ
(1a)
0 (ε)

µ
(1b)
0 (ε)

)

, µ
(1)
1 (ε) :=

(

µ
(1a)
1 (ε)

µ
(1b)
1 (ε)

)

.
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The iterative scheme (13) determines the first approximation of a solution of (15)

in a neighborhood of z0 = 0:

x1(t, ε) =
11 ε e1−t

10(1 + e)
, y1(t, ε) =

ε e2(1−t)

2(1 + e2)
, t ∈ [0, 1],

x1(t, ε) =
11ε(1 + e− e2−t)

10(1 + e)
, y1(t, ε) =

(

1 + e2 − e4−2 t
)

ε

2 (1 + e2)
, t ∈ [1, 2].

In addition, the iterative scheme (13) defines a first approximation to the compo-

nents of (16):

µ
(1a)
0 (ε) ≈ −1 +

(

−10− 11e+ 10 e2
)

ε

10(−1 + e)(1 + e)
+

(

5 + 16 e+ 6 e3 − 5 e4
)

ε2

10(−1 + e)(1 + e) (1 + e2)
+

+

(

−20− 103 e− 30 e2 − 132 e3 + 30 e4 − 29 e5 + 20 e6
)

ε3

120(−1 + e)(1 + e) (1 + e2)
2 ,

µ
(1b)
0 (ε) ≈ −

(−1 + e)(1 + e) cosh 1

2e
+

ε (−1 + e)
(

5− e+ 5e2
)

cosh 1

10e(1 + e)
+

+
ε2
(

5− 17e+ 12e2 − 32e3 + 17e4 − 5e5
)

cosh 1

20e(1 + e) (1 + e2)
+

+
ε3(−10 + 56e+ 35e2 + 101e3 + 19e4 + 85e5 − 56e6 + 10e7) cosh 1

(120 e (1 + e)(1 + e2))
2 + ... ,

µ
(1a)
1 (ε) = µ

(0a)
1 (ε), µ

(1b)
1 (ε) = µ

(0b)
1 (ε).

The corresponding first approximation of the trajectory of the boundary value prob-

lem (15) is illustrated by Figure 1.
Since Z(z, ε) is continuously differentiable with respect to z in a neighborhood of

z0 = 0, we are able to check the contraction condition (14). In this case

∂G

[

Z(z0(s), ε)

]

(t)

∂z
≈

≈

(

e−1−t−ε
(

−1 + e1+t
)

e−1−t−ε
(

−1 + e1+t
)

ε
e−2−2t−ε

4

(

−1 − e2 + 2e2+2t
)

e−2−2t−ε

4

(

−1 − e2 + 2e2+2t
)

ε

)

, t < 1,

∂G

[

Z(z0(s), ε)

]

(t)

∂z
≈

≈

(

e−1−2t−ε
(

e2 − et − e2+t + e1+2t
)

e−1−2t−ε
(

e2 − et − e2+t + e1+2t
)

ε
e−2−4t−ε

4

(

e4 − e2t − e4+2t + e2+4t
)

e−2−4t−ε

4

(

e4 − e2t − e4+2t + e2+4t
)

ε

)

,

t ∈ [1, 2],
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Figure 1 Phase portrait of an approximate solution of (15) in the xy-plane.

∂G

[

Z(z1(s, ε), ε)

]

(t)

∂z
≈







−
e−t

(

−1+et+e1+t
)

(−1+ε)

1+e

e−t
(

−1+et+e1+t
)

ε

1+e

−
e−2t

(

−1+e2t+e2+2t
)

(−1+ε)

2(1+e2)

(

1+e2−e−2t
)

ε

2(1+e2)






, t < 1,

∂G

[

Z(z1(s, ε), ε)

]

(t)

∂z
≈







−
e−t

(

−e2+et+e1+t
)

(−1+ε)

1+e

(

1+e−e2−t
)

ε

1+e

−
e−2t

(

−e4+e2t+e2+2t
)

(−1+ε)

2(1+e2)

(

1+e2−e4−2t
)

ε

2(1+e2)






, t ∈ [1, 2].

The contraction condition (14) holds for ε ∈ [0, ε∗]; the value of ε∗ > 0 for which

the iterative scheme (13) is applicable can be found numerically. For the considered

problem, practical convergence is preserved up to ε∗ ≈ 1.09:

∥

∥

∥

∥

ε ∂G[Z(z0(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.00864 622 < 1, ε ∈ [0, 0.01],

∥

∥

∥

∥

ε ∂G[Z(z1(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.00901 042 < 1, ε ∈ [0, 0.01].

∥

∥

∥

∥

ε ∂G[Z(z0(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.0629 163 < 1, ε ∈ [0, 0.1],

∥

∥

∥

∥

ε ∂G[Z(z1(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.0730 063 < 1, ε ∈ [0, 0.1].

∥

∥

∥

∥

ε ∂G[Z(z0(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.662 227 < 1, ε ∈ [0, 1.09],

∥

∥

∥

∥

ε ∂G[Z(z1(s, ε), ε)](t)

∂z

∥

∥

∥

∥

∞

≤ 0.983 498 < 1, ε ∈ [0, 1.09].
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The computed approximations of the solution to the periodic boundary value prob-

lem (15) are characterized by the discrepancies

∆k(ε) = ∥∥z′k(t, ε)−Azk(t, ε)− ε fk(t, ε)− εZ(zk(t, ε), ε)∥∞ ∥
C[0,2]

, k = 0, 1.

In particular, we have

∆0(0.1) ≈ 0.148 661, ∆1(0.1) ≈ 0.0478 012,

∆0(0.01) ≈ 0.0148 661, ∆1(0.01) ≈ 0.0044 412.

5 Conclusion and future work

The above simulation results confirm that the proposed iterative scheme can be used

for approximating periodic solutions of the perturbed boundary value problem (15)

with acceptable accuracy. Note that the main contribution of this paper (Theo-

rem 1) allows constructing approximate solutions of the nonlinear problem (5)–(6)

in case of discontinuous perturbations f(t, ε) with an arbitrary number of switch-

ings. Although the applicability of our theoretical framework has been illustrated

with a two-dimensional model of controlled chemical reaction, the efficiency of this

approach for higher-dimensional systems with complicated switching scenario is

considered as a topic for further numerical analysis.

Acknowledgements

Not applicable.

Funding

The third author was supported by the German Research Foundation (DFG) under Grant ZU 359/2-1.

Availability of data and materials

The datasets used and analysed during the current study are available from the second author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to the study conception and technical content. The first draft of the manuscript was written

by Sergey Chuiko and Alexander Zuyev, and all authors commented on further versions of the manuscript. All

authors have read and approved the final manuscript.

Author details
1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany. 2Otto von Guericke

University Magdeburg, Magdeburg, Germany. 3Donbass State Pedagogical University, Sloviansk, Ukraine.
4Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Ukraine.

References

1. Malkin, I.G.: Some Problems in the Theory of Nonlinear Oscillations. US Atomic Energy Commission, Technical

Information Service, Maryland (1959)

2. Vejvoda, O.: On perturbed nonlinear boundary value problems. Czechoslovak Mathematical Journal 11(3),

323–364 (1961)

3. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. John Wiley & Sons, Weinheim (1995)

4. Chu, J., Torres, P.J., Zhang, M.: Periodic solutions of second order non-autonomous singular dynamical

systems. Journal of Differential Equations 239(1), 196–212 (2007)

5. Chu, J., Sun, J., Wong, P.J.: Existence for singular periodic problems: a survey of recent results. Abstract and

Applied Analysis 2013, 1–17 (2013)

6. Graef, J.R., Kong, L., Wang, H.: Existence, multiplicity, and dependence on a parameter for a periodic

boundary value problem. Journal of Differential Equations 245(5), 1185–1197 (2008)

7. Ma, R., Xu, J., Han, X.: Global structure of positive solutions for superlinear second-order periodic boundary

value problems. Applied Mathematics and Computation 218(10), 5982–5988 (2012)
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