
Nature Methods | Volume 19 | November 2022 | 1367–1370 1367

nature methods

https://doi.org/10.1038/s41592-022-01624-xBrief Communication

SyConn2: dense synaptic connectivity
inference for volume electron microscopy

Philipp J. Schubert   1, Sven Dorkenwald1,2,3, Michał Januszewski   4,
Jonathan Klimesch1, Fabian Svara5,8, Andrei Mancu   1, Hashir Ahmad   1,
Michale S. Fee   6, Viren Jain   7 and Joergen Kornfeld   1

The ability to acquire ever larger datasets of brain tissue using volume
electron microscopy leads to an increasing demand for the automated
extraction of connectomic information. We introduce SyConn2, an
open-source connectome analysis toolkit, which works with both on-site
high-performance compute environments and rentable cloud computing
clusters. SyConn2 was tested on connectomic datasets with more
than 10 million synapses, provides a web-based visualization interface
and makes these data amenable to complex anatomical and neuronal
connectivity queries.

The acquisition speed of state-of-the-art volume electron microscopy
(VEM) has increased about 100-fold during the past five years1, and
petabyte-scale datasets have been generated2,3. The associated com-
putational challenges can only be addressed with scalable analysis
frameworks, requiring either classical high-performance computing
environments or commercial compute cloud offerings, and are facili-
tated by open-source code that also increases reproducibility.

Despite these increases in acquisition speed and consider-
able advances in areas such as automated neuron reconstruction4,
proofreading5, synapse and organelle detection6,7, cell type clas-
sification8,9 and integrative processing in cloud environments10,11,
a pipeline that creates an annotated connectome and can also be
operated cost-efficiently on existing high-performance computing
infrastructure is lacking. Here we introduce SyConn2, which requires
existing dense neuron reconstructions and fundamentally upgrades
our earlier software package7 (see Supplementary Table 1 for a com-
parison) to allow neuroscientists to run queries against connectomes
with millions of synapses12,13. To be able to handle the large amounts
of data at reasonable cost, we focused on computationally efficient
processing at every step, for example by operating on lightweight
point cloud representations instead of dense data structures to ana-
lyze neuron morphology. The SyConn2 processing speed was about
34 megavoxels per hour per central processing unit (CPU) core and
4.4 gigavoxels per hour per graphics processing unit (GPU). This

leads to an approximate cost (evaluated on the Google Cloud Plat-
form using a zebra finch dataset) of about US$2,000 per teravoxel of
8-bit raw VEM data at a voxel size of 10 × 10 × 25 nm3 (approximately
US$800 per million µm3).

Taking advantage of the details visible in dense heavy-metal
stains of tissue, SyConn2 processing starts with multiple semantic
voxel-level annotations spanning the entire VEM dataset, including
a segmentation into cells, extracellular space, synaptic locations and
organelles, among others (Fig. 1). SyConn2 provides the option to
apply deep neural network segmentation models to an entire raw
three-dimensional (3D) image dataset for the classes of interest, by
splitting it into chunks that are processed in parallel by many CPU and
GPU workers, using the SLURM workload manager. To map synaptic
connectivity between neurons, contact sites between different cell
segmentations are detected (Fig. 1, top), which are then overlapped
with the neural network-generated synaptic junction segmentations
to form candidate synapse objects. Although the overlap of a con-
tact site between two neurons and a detected synaptic cleft could
be used, in theory, by itself to decide whether a contact is synaptic,
we found it helpful to add further quantitative ultrastructural infor-
mation from surrounding voxels. These synaptic features can either
be used directly for analyses or used for another classification stage
(for example, with a random forest classifier7) at each candidate
synaptic location.

Received: 30 November 2021

Accepted: 24 August 2022

Published online: 24 October 2022

 Check for updates

1Max Planck Institute of Neurobiology, Martinsried, Germany. 2Princeton Neuroscience Institute, Princeton, NJ, USA. 3Computer Science Department,
Princeton, NJ, USA. 4Google Research, Zurich, Switzerland. 5Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany. 6 Department of
Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. 7Google Research,
Mountain View, CA, USA. 8Present address: ariadne.ai ag, Buchrain, Switzerland.  e-mail: joergen.kornfeld@bi.mpg.de

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01624-x
http://orcid.org/0000-0003-1265-3028
http://orcid.org/0000-0002-3480-2744
http://orcid.org/0000-0002-5096-9835
http://orcid.org/0000-0002-5970-573X
http://orcid.org/0000-0001-7539-1745
http://orcid.org/0000-0003-1488-3505
http://orcid.org/0000-0002-2547-8700
http://crossmark.crossref.org/dialog/?doi=10.1038/s41592-022-01624-x&domain=pdf
mailto:joergen.kornfeld@bi.mpg.de

Nature Methods | Volume 19 | November 2022 | 1367–1370 1368

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

mitochondrial content of different cellular compartments7. With access to
thousands of synapses and their associated cell types, we tested whether
larger synapses preferentially recruit mitochondria presynaptically,
which could accommodate increased local energy demand20. As pre-
dicted, we observed that larger synapses were closer to mitochondria
than smaller synapses, with a cell type-dependent distance distribution
(Fig. 2e; distance to median lower half of synapses for medium spiny
neurons (MSN) 0.833 µm; globus pallidal-like neurons (GP) 0.267 µm;
median upper half MSN 0.339 µm, GP 0.232 µm; N synapses GP 7,482,
MSN 59,131; P = 0.0 for lower versus upper half size population in both cell
types using a two-sided Kolmogorov–Smirnov test). Pallidal-like neuron
types, which exhibit high firing rates, showed a smaller synapse–mito-
chondria distance compared to sparsely firing striatal spiny neurons.
Furthermore, synapse–mitochondria distance is similar for large and
small GP synapses, whereas mitochondria appear to be recruited selec-
tively to large MSN synapses (Fig. 2e and Extended Data Fig. 2). This analy-
sis demonstrates that queryable EM connectomic datasets with dense
ultrastructural annotation enable insights well beyond connectivity
analyses, and future analyses based on the spatial distribution of ultras-
tructure might shed light on topics ranging from synaptic plasticity rules
to neuromodulation.

Connectome data accessibility is a key issue, especially for
researchers who have not originally produced and analyzed a VEM
dataset. We therefore developed a web client for datasets pro-
cessed with SyConn2, by building upon the Neuroglancer21 interface
(Fig. 2f). The web-based SyConn2 client allows neuroscientists to
inspect a connectome without downloading all reconstructed neurons
and synapses and to perform simple analyses (for example, visualizing
neurons synaptically connected in a row) directly in the web browser,
a feature that should help a larger research community find utility in
rapidly emerging connectomic datasets.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01624-x.

We previously introduced cellular morphology neural networks
(CMN) for morphology and type classification based on learning 3D
shape from two-dimensional projection images of a neuron14. Although
the CMN approach provides high accuracy, it suffers from low pro-
cessing speeds, which becomes increasingly important with grow-
ing datasets. To increase processing speed, we use a representation
in which cell membranes are represented by sparse discrete points
(Fig. 2a). Deep convolutional neural networks trained directly on sparse
point representations are well suited; thus, we used the ConvPoint
architecture15 as the basis for our experiments. The resulting morphol-
ogy classifier performed at the same accuracy level as our previous
CMN architecture14 (Fig. 2b,c, Supplementary Texts 1 and 2 and Supple-
mentary Table 2; see also ref. 16 for a dense 3D approach) with a 3.3-fold
higher throughput (Extended Data Fig. 1a). We conducted a detailed
throughput and scalability analysis of the entire pipeline (Extended
Data Fig. 1 and Supplementary Text 3).

We next explored whether the point-based morphology neu-
ral network could also be used for unsupervised (without requiring
handcrafted training data) cell type discovery17 through dimension-
ality reduction of a learned latent space. We extended our previous
approach of triplet-loss morphology learning14 to generate embed-
dings of entire neurons (Fig. 2d) directly from local point cloud con-
texts. A low-dimensional UMAP (uniform manifold approximation
and projection)18 projection of the latent feature space led to clus-
ters that contained known morphological neuron types of the ana-
lyzed tissue (zebra finch Area X), such as putative cholinergic and
pallidal-like neurons. This analysis revealed additionally that Area X
might harbor more cell types, for example local neurons that form
synapses with excitatory ultrastructural characteristics (Fig. 2d,
STN)—a neuron type in Area X that has so far only been physiologi-
cally identified19 but not anatomically characterized. This shows
that the dense morphology information collected from an elec-
tron microscopy (EM) connectomic dataset may eventually be as
powerful for the characterization of neuron types in a brain area as
single-cell gene expression data, while additionally containing full
connectivity information.

The upgraded pipeline allowed us to extend an earlier analysis
that relates the firing rates of striato-pallidal neuron classes to the

syn segmentation

3
1

2

Ultrastructure

sj predictionNeuron segmentation Contact sites

Overlap

MSN

EA

IA

0.89 µm2

1.71 µm2

CNN

mi segmentation

Inputs:
aligned raw data and FFN

segmentation

Fig. 1 | SyConn2 processing on the voxel level. Neuron segmentation and
ultrastructure prediction (synaptic junctions (sj) in red; mitochondria (mi) in
blue; vesicle clouds in green) derived from raw data. Contact sites and synaptic
junction are assigned as queryable instances to neuron reconstructions. 1, MSN

dendrite; 2, excitatory axon (EA); 3, inhibitory axon (IA). The scale bar is 1 µm and
refers to all electron microscopy images in the figure. CNN: convolutional neural
network ; FFN: flood-filling neural network.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-022-01624-x

Nature Methods | Volume 19 | November 2022 | 1367–1370 1369

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

UMAP 2

U
M

A
P

 1

Dendrite
Axon

a b

d e

c

0.980.94

F1-score

0.900.86

512

2,048

8,192

32,768

1 4 12 202 8 16 24 28 32

P
oints

Context (µm)

0.98

Combine on
cell level

Semantic
segmentation

Point sampling,
add ultrastructure

Context
generation

Dendritic shaftSpine head

Spine neck

Bouton en passant

Axon

C
D

F

0

0.2

0.4

0.6

1.0

0.8

f

10–1 100 101

Minimum mitochondria–
synapse distance (µm)

GP

MSN
Large

Small

Pre. type

Random

mi sj

STN

LTS TAN

GPNGF
Putative

FS

F
1-

sc
or

e

20
 µm

, 5
k

0.4

0.5

0.6

0.7

0.8

1.0

4
µm

, 2
5k

20
 µm

, 2
5k

20
 µm

, 5
0k

20
 µm

, 7
5k

0.9

50
20
10
1

Redundancy

Context parameters

750 nm

Fig. 2 | SyConn2 processing and analyses of neuron reconstructions.
a, Semantic segmentation of cell surfaces with point cloud neural networks.
Surface points of the cell and ultrastructure within an input context were
subsampled and presented to the model. Context predictions are then combined
on the cell level. b, Grid search for optimal context parameters (radius, number
of points) evaluated at synapse locations (88 spine head and 94 dendritic shaft)
with weighted average F1-score (dendritic shaft, spine head and a combined axon
and soma class). c, Classification performance of putative cell types dependent
on the context and the number of bootstrapping samples (redundancy). For
example, 20 µm, 5k refers to a 20 µm radius with 5,000 points. The confidence
interval is mean ± standard deviation of three training repetitions for each
parameter pair. d, UMAP dimensionality reduction of learned unsupervised
latent space of 531 neurons in the dataset that contained soma, axon and dendrite

(MSNs not considered). LTS, low-threshold spiker; FS, fast-spiking interneuron;
TAN, tonically active cholinergic neuron; NGF, neurogliaform interneuron;
STN, subthalamic nucleus-like neuron; GP, pallidal-like neuron. Colors indicate
putative cell type based on supervised classification. e, Cumulative distribution
function (CDF) of the minimal distance between axo-dendritic synapses (and
a random control) and mitochondria in GP and MSN split into small and large
synapses (less than or equal to and greater than median of mesh area; median
GP 1.16 µm2, MSN 0.75 µm2; N synapses GP 7,482, MSN 59,131; see also Extended
Data Fig. 2b for synapse size distributions; N random control locations: GP 37,149,
MSN 6,128,974). Pre. type, presynaptic cell type f, Example of a GP–GP synapse
visualized with the web-based SyConn2 client. Scale bars, 1 µm in EM section and
4 µm in renderings (a), 20 µm for the cell and 2 µm for the context (b) and 10 µm
sphere radius (d).

http://www.nature.com/naturemethods

Nature Methods | Volume 19 | November 2022 | 1367–1370 1370

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

References
1. Kornfeld, J. & Denk, W. Progress and remaining challenges

in high-throughput volume electron microscopy. Curr. Opin.
Neurobiol. 50, 261–267 (2018).

2. Shapson-Coe, A., Januszewski, M., Berger, D. R. & Pope, A. A
connectomic study of a petascale fragment of human cerebral
cortex. Preprint at bioRxiv https://www.biorxiv.org/content/
10.1101/2021.05.29.446289v4.abstract (2021).

3. Turner, N. L. et al. Reconstruction of neocortex: organelles,
compartments, cells, circuits, and activity. Cell 185,
1082–1100 (2022).

4. Januszewski, M. et al. High-precision automated reconstruction
of neurons with flood-filling networks. Nat. Methods 15,
605–610 (2018).

5. Dorkenwald, S. et al. FlyWire: online community for whole-brain
connectomics. Nat. Methods 19, 119–128 (2021).

6. Buhmann, J. et al. Automatic detection of synaptic partners in a
whole-brain Drosophila electron microscopy data set.
Nat. Methods 18, 771–774 (2021).

7. Dorkenwald, S. et al. Automated synaptic connectivity
inference for volume electron microscopy. Nat. Methods 14,
435–442 (2017).

8. Scheffer, L. K. et al. A connectome and analysis of the adult
Drosophila central brain. eLife 9, e57443 (2020).

9. Dorkenwald, S. et al. Multi-layered maps of neuropil with
segmentation-guided contrastive learning. Preprint at bioRxiv
https://www.biorxiv.org/content/10.1101/2022.03.29.486320v1.
abstract (2022).

10. Macrina, T. et al. Petascale neural circuit reconstruction:
automated methods. Preprint at bioRxiv https://www.biorxiv.org/
content/10.1101/2021.08.04.455162v1.abstract (2021).

11. Johnson, E. C. et al. Toward a scalable framework for reproducible
processing of volumetric, nanoscale neuroimaging datasets.
GigaScience 9, giaa147 (2020).

12. Kornfeld, J. et al. An anatomical substrate of credit assignment
in reinforcement learning. Preprint at bioRxiv https://www.biorxiv.
org/content/10.1101/2020.02.18.954354v1.abstract
(2020).

13. Svara, F. et al. Automated synapse-level reconstruction of neural
circuits in the larval zebrafish brain. Nat. Methods https://doi.org/
10.1038/s41592-022-01621-0 (2022).

14. Schubert, P. J., Dorkenwald, S., Januszewski, M., Jain, V. &
Kornfeld, J. Learning cellular morphology with neural networks.
Nat. Commun. 10, 2736 (2019).

15. Boulch, A. ConvPoint: continuous convolutions for point cloud
processing. Comput. Graph. 88, 24–34 (2020).

16. Li, H., Januszewski, M., Jain, V. & Li, P. H. Neuronal subcompartment
classification and merge error correction. Preprint at bioRxiv
https://doi.org/10.1101/2020.04.16.043398 (2020).

17. Scala, F. et al. Phenotypic variation of transcriptomic cell types in
mouse motor cortex. Nature 598, 144–150 (2021).

18. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform
manifold approximation and projection. J. Open Source Softw. 3,
861 (2018).

19. Budzillo, A., Duffy, A., Miller, K. E., Fairhall, A. L. & Perkel, D. J.
Dopaminergic modulation of basal ganglia output through
coupled excitation-inhibition. Proc. Natl Acad. Sci. USA 114,
5713–5718 (2017).

20. Vos, M., Lauwers, E. & Verstreken, P. Synaptic mitochondria
in synaptic transmission and organization of vesicle pools in
health and disease. Front. Synaptic Neurosci. 2, 139 (2010).

21. Maitin-Shepard, J. et al. google/neuroglancer. Zenodo
https://doi.org/10.5281/zenodo.5573293 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

http://www.nature.com/naturemethods
https://www.biorxiv.org/content/10.1101/2021.05.29.446289v4.abstract
https://www.biorxiv.org/content/10.1101/2021.05.29.446289v4.abstract
https://www.biorxiv.org/content/10.1101/2022.03.29.486320v1.abstract
https://www.biorxiv.org/content/10.1101/2022.03.29.486320v1.abstract
https://www.biorxiv.org/content/10.1101/2021.08.04.455162v1.abstract
https://www.biorxiv.org/content/10.1101/2021.08.04.455162v1.abstract
https://www.biorxiv.org/content/10.1101/2020.02.18.954354v1.abstract
https://www.biorxiv.org/content/10.1101/2020.02.18.954354v1.abstract
https://doi.org/10.1038/s41592-022-01621-0
https://doi.org/10.1038/s41592-022-01621-0
https://doi.org/10.1101/2020.04.16.043398
https://doi.org/10.5281/zenodo.5573293
https://doi.org/10.5281/zenodo.5573293
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

Methods
Input segmentation maps and ultrastructure predictions
A cell instance segmentation map was generated by M.J. using
flood-filling neural networks as reported earlier4, with additional
training data provided by annotators at the Max Planck Institute of
Neurobiology and ariadne.ai AG. Synaptic junction (sj), sj type (sym-
metric and asymmetric), vesicle cloud (vc) and mitochondria (mi) voxel
segmentation maps were also provided by M.J. using a 3D convolutional
neural network model that predicts these classes on a per voxel level,
followed by thresholding.

A myelin segmentation map (four-fold downsampled) was gener-
ated using SyConn’s neural network model chunk inference pipeline,
which divides the dataset into a configurable number of data chunks
(used here: cube size of [482, 481, 236] voxels with additional [20, 30,
31] overlap on every side) to enable parallel processing. For the myelin
inference, a model based on the 3D U-Net architecture22 was used, which
had the following parameters: 32 output channels in the first layer;
output channels increase by a factor of two in every downpath layer;
four downpath layers; first and third layer had a z-kernel extent of 1;
ReLU activation; batch normalization. This model was implemented in
elektronn3 (https://github.com/ELEKTRONN/elektronn3/), a training
and inference framework that builds on PyTorch23 and provides features
for working with large-scale 3D image data.

SegmentationObject generation
The (binary) input segmentation maps for mitochondria and vesi-
cle clouds were transformed into an instance segmentation by a 3D
watershed procedure (segmentation.watershed from the scikit-image
package24), which was performed on the distance transform (filters.
distanceTransform from the vigranumpy package, https://ukoethe.
github.io/vigra/doc-release/vigranumpy/) of the input maps. The seeds
for the watershed were generated from the morphologically modified
(vc: binary opening, binary closing, binary erosion; mi: binary opening,
binary closing, ×3 binary erosion) input maps using connected compo-
nent analysis (ndimage.label from the scipy package25). Compute tasks
were distributed across the workers by chunking (512 voxels edge length;
6, 2 voxels overlap for mi, vc). Chunk-wise identities (IDs) were made
unique dataset-wide, and the overlap regions were used to unify IDs
of objects that spanned multiple chunks. The resulting 3D connected
components of voxels (supervoxels) were subsequently analyzed and
stored in an accessible format, as described in the next paragraph.

The supervoxels formed the basis for SegmentationObjects (SO),
which store additional properties (representative coordinate, voxel
bounding box, voxel count, mesh, skeletons, mesh area and mesh bound-
ing box) of cells, ultrastructure (mi, vc), contact sites (cs; Synapse–cell
association), and synapse fragments and agglomerates (syn; Synapse–
cell association) and are collected in SegmentationDatasets (SD), with
separate SDs for each type. A SD is a key–value store that provides an
interface to individual SOs. The SO property extraction was performed
on 3D chunks (512 voxels edge length) of every ultrastructure’s instance
segmentation. In a single pass, the mesh, voxel count, bounding box
and representative coordinate of all segmentation IDs in a cube were
computed, and the partial results were merged in a final reduction step.
For every syn object, the fraction of overlapping symmetric and asym-
metric voxels was determined. Cell SOs also store the ID and fraction of
overlapping ultrastructure segmentation voxels and were skeletonized
using kimimaro26. Meshes of cells, mitochondria and vesicle clouds were
computed with zmesh (https://github.com/seung-lab/zmesh).

Synapse–cell association
We performed synapse identification through a multistep extraction
process.

In a first step, a contact site instance segmentation was generated
by iterating over the cell segmentation and storing adjacent supervoxel
IDs. At every boundary voxel (6-connectivity) of the cell segmentation,

a partner cell ID was identified by finding the majority ID within a win-
dow of [7,13] voxels (voxel size 10, 10, 25 nm). If a majority ID was found
(background and the source boundary voxel ID were excluded), the
contact site voxel was assigned a value that allowed the retrieval of the
two partner cells (bit shift combination to uint64 in case of uint32 cell
segmentation; tuple of uint64 in case of uint64 cell segmentation). The
resulting thin boundary instance segmentation was morphologically
closed (N = 7 iterations; this is sufficient to close the maximum distance
of adjacent cells found through the adjacency filter) and dilated twice
afterwards. Note that one instance in this segmentation represents all
contact sites between a cell supervoxel pair, as the contact instance ID
is the same, even if the supervoxels touch at different locations.

In a second step, synapse fragments and agglomerates on the
supervoxel level (sv-syns) were generated by intersecting voxels of the
sj foreground prediction and of the contact site instances. Individual
putative synapses between two cells were obtained by computing
connected components on a graph that was built with the voxels of
sv-syns of all the cells’ supervoxels that form such sv-syns between the
cell pair. Within sv-syns between the same supervoxel pair, edges were
added between voxels not farther apart than two voxels, and sv-syns of
different supervoxel pairs were connected if their closest voxels were
within a distance of at most 250 nm. For generating synapse meshes, the
function ‘create_from_point_cloud_poisson’ from open3D27 was applied
on the voxels of the individual synapse objects. The resulting synaptic
objects were further assigned a probability value using a random forest
classifier (N = 10 features: synapse size in voxels, mesh area, numbers
and voxel counts of presynaptic and postsynaptic mitochondria and
vesicle clouds; trained on 300 putative synapse objects, manually
annotated into 156 synaptic and 144 nonsynaptic), with 0 meaning
least synaptic and 1 meaning most synaptic. The voxel count features
for nearby (maximum representative coordinate distance of 4 µm) mi
and vc objects were calculated by finding the number of mi or vc mesh
vertices with a maximum distance of 2 or 1 µm to the synapse voxels,
followed by dividing this vertex count by the total object vertex count
to obtain a fraction that could then be multiplied by the object voxel
count, resulting in the number used as features (mesh vertices and
synapse voxels were 2-fold subsampled).

SuperSegmentationObject generation
The SuperSegmentationObject (SSO) class was implemented to repre-
sent agglomerated cell reconstructions. Based on a supervoxel graph
that defines which cell fragments belong to the same biological cell, an
SSO aggregates the properties of the corresponding cell SOs (representa-
tive coordinate, bounding box, mesh, skeleton) and contains associated
ultrastructure SO IDs and further analysis results (cell type predictions
and certainties, vertex and skeleton node compartment prediction, local
morphology embeddings, spine head volumes, myelination status).

SO properties were merged as follows. Representative coordi-
nate: first SO representative coordinate; bounding box: minimum and
maximum values of all SO bounding boxes; meshes: concatenation of
vertices and indices; skeleton: concatenation of nodes and edges, add-
ing edges between the closest skeleton nodes of skeleton fragments
(resulting either from chunked processing or not agglomerated SOs)
until the whole-cell skeleton was a single connected component.

Myelin predictions were mapped onto cell skeletons by storing
the fraction of myelin voxels within a cube of size [11, 11, 5] voxels (voxel
size (nm): 40, 40, 100) at every skeleton node and thresholding (per
voxel probability threshold 0.5 and classification via majority vote).
The node predictions were smoothed using a running majority vote on
all neighboring nodes collected within a 10 µm path traversal starting
from the source node.

Context generation for point cloud processing
The reconstructed cells were split into regions of overlapping surface
meshes (mesh contexts), controlled by parameters for vertex count

http://www.nature.com/naturemethods
https://github.com/ELEKTRONN/elektronn3/
https://ukoethe.github.io/vigra/doc-release/vigranumpy/
https://ukoethe.github.io/vigra/doc-release/vigranumpy/
https://github.com/seung-lab/zmesh

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

and context radius. This was done by choosing skeleton nodes as pivot
locations around which a subgraph of adjacent nodes within a maxi-
mum distance (here called context radius) was constructed. For a fast
lookup from skeleton node to mesh vertices, each skeleton node was
assigned a set of mesh vertices by finding the nearest node for every
vertex (Voronoi partitioning). The local mesh context corresponding
to the pivot location was built by combining the vertices of all skeleton
nodes in its subgraph.

Pivot nodes were spaced regularly on the cell skeleton until the full
neurite was chunked into mesh contexts, either one or multiple times,
depending on the chosen redundancy of mesh context generation.
Meshes of ultrastructure (mi, vc) and synapses (plain or separated into
excitatory and inhibitory) were combined with the neurite mesh and
distinguished using a one-hot-encoded feature vector. Some experi-
ments also included an additional binary input channel encoding the
presence of myelin layers around axons. All meshes were downsampled
by defining a voxel grid and selecting only one vertex per voxel (voxel
edge length: cell 80 nm, mitochondria 100 nm, vesicle clouds 100 nm,
synapses 100 nm; downsampling was performed by the ‘voxel_down_
sample’ method of the open3D27 PointCloud class) to standardize
point densities and remove artifacts from the reconstruction process.

Point cloud model training
Unless stated otherwise, models were trained until training loss con-
vergence, using random point samples of the extracted mesh contexts,
mini-batches, Adam optimizer (betas: 0.9, 0.999), cross-entropy loss,
a stepwise learning rate decay and ReLU activation after each layer.
All models were implemented using PyTorch23 and LightConvPoint
(https://github.com/valeoai/LightConvPoint) and trained via the ele-
ktronn3 framework.

Mesh contexts used as training samples were transformed by
multiple point cloud augmentations. These augmentations consisted
of random noise added to the point positions, random rotations and
flipping, elastic transformations28 and anisotropic scaling. All point
cloud processing methods were implemented in the MorphX package.

Semantic segmentation of dendrites
For the surface segmentation of dendrites into dendritic shaft, spine
neck and spine head, we applied a hierarchy of two models. The
coarse-level model was used to separate dendrite from axon and soma,
and the predictions of the second model further distinguished the
dendritic parts into dendritic shaft, spine neck and spine head. Both
high-level (classes: 2, dendrite versus a combined axon and soma class)
and fine-level models (classes: 3, dendritic shaft versus spine neck
versus spine head) were trained and tested on the ground truth of the
high-resolution surface segmentation task from ref. 14.

To analyze the effects of point number and context radius on the
dendritic inference task (one-dimensional input features using only cell
surface points), we conducted a grid search varying these two param-
eters while keeping the results of the coarse-level morphology model
(input parameters: 15,000 points, 15 µm context, four-dimensional
input features using one-hot encoding of cell, mi, vc and synapse
points) fixed. For the coarse-level model, the architecture was the same
as the one used for the fine-level model with more than 2,048 input
points (see below), and predictions were performed on cell surface
points only, excluding vertices of ultrastructure (mi, vc) and synapses.

For the grid search of the dendritic model, we only generated
matrix entries in which most mesh contexts would still hold more
points than requested by the point sampling. In the case that the
number of points in the extracted mesh context was fewer than the
requested volume, the missing points were randomly sampled from
the original set of points. Each cell in the training set was split five
times. We used four different architectures, depending on the point
number. All architectures used kernels with 16 points each. For matrix
entries with 512 points, we used architectures with the following layer

specifications: (1: 32 kernels, 32 neighbors, no reduction), (2: 32, 32,
reduction to 256 points), (3: 64, 32, reduction to 64 points), (4: 64, 16,
16), (5: 64, 8, 8), (6: 64, 4 deconvolution, deconv, to 16, residual to 5),
(7: 64, 4 deconv to 64, residual to 4), (8: 32, 8, deconv to 256, residual to
3), (9: 32, 16, deconv to original point cloud, residual to 2), (10: fully con-
nected shared across all points, residual to 1). Two more layers between
layer 1 and 2 and layer 8 and 9, respectively, were added for 1,024 input
points: (1 and 2: 32, 32, reduction to 512), (8 and 9: 32, 16, deconv to
512 + residual). For 2,048 points, two layers (additional to the 1 and 2, 8
and 9 layers) were added: (1 and 2: 32, 32, reduction to 1,024), (10 and 11:
32, 16, deconv to 1,024 + residual). Models with more than 2,048 input
points shared the same architecture as for 2,048 points but changed
the reduction pathway to no reduction, 2,048, 1,024, 256, 64, 16, 8. The
total number of trainable parameters was in the range from 541,603 to
593,699, depending on the model architecture, as described above.

All models used GroupNorm29 after each layer (except the fully
connected ones). The point cloud reduction was done by efficient
point sampling with space quantization30. All fine-level morphology
models were trained until convergence (after 1,400–3,000 epochs,
training time from 4 h to 30 h, training speed from 3.1–1.4 samples
per second) with batch sizes 32 (fewer than 2,048 points), 16 (fewer
than 8,192), 8 (fewer than 16,384) and 4 (fewer than 32,768) using an
initial learning rate of 1 × 10−3 (scheduler step size of 1,000, decay 0.99).
The coarse-level morphology model was trained using a batch size of
4, DiceLoss (class weights dendrite: 2, combined axon and soma class:
1), AdamW optimizer and an initial learning rate of 2 × 10−3 (scheduler
step size of 100, decay of 0.996); input points were normalized to a
unit sphere.

Model performances were evaluated on a set of manually labeled
synapses in four neuron reconstructions (94 on dendritic shaft and 88
on spine head; the same as in ref. 14). These neurons were split five times
with different context locations and processed by the coarse-level and
all fine-level models. Vertices with multiple predictions (for example,
because they were part of multiple mesh contexts) were assigned the
result of a majority vote on all their predictions. The final synapse
label was found by majority vote on the predictions of the 20 closest
vertices with respect to the representative coordinate of the synapse.
Each matrix entry presents the mean weighted (by synapse support)
average F1-score of three fine-level models with the same architecture
and input settings, but trained with different random seeds.

Cell type classification
For the supervised type classification of neurites, 253 neuron recon-
structions were manually labeled by an expert, not necessarily
covering all distinguishable cell types of this brain area (number of
labeled classes: 11). These included three interneuron classes (puta-
tive low-threshold spiking interneuron (LTS), putative fast-spiking
neuron (FS) and putative neurogliaform interneuron (NGF) in Fig. 2d)
forming inhibitory synapses and one local neuron class with excita-
tory synapses (putative excitatory subthalamic nucleus-like (STN) in
Fig. 2d). The ground truth was split into training and test data using
10-fold cross validation. Each split was used to train three models, each
starting with a different random seed for training batch generation and
initial weights to estimate the model variance. The context generation
was parameterized by radius and number of points (Context generation
for point cloud processing), and seed nodes were sampled uniformly.
Vertex features were represented via a six-dimensional one-hot encod-
ing of mitochondria, vesicle clouds, inhibitory and excitatory synapse,
and myelinated and unmyelinated cell surface. The myelination infor-
mation was propagated from the skeleton node associated with a cell
surface vertex (Voronoi partitioning). Input point coordinates were
centered and scaled by 10% of the context radius.

Model architecture: five ConvPoint layers each using 16 kernel
elements; group normalization before swish activation31 with the fol-
lowing parameters (number of output channels, reduction to N points,

http://www.nature.com/naturemethods
https://github.com/valeoai/LightConvPoint

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

k nearest neighbors): (64, 4,096, 32), (128, 1024, 32), (256, 512, 16),
(256, 256, 16), (512, 128, 16). The resulting 512 features were averaged
across the anchor 128 points. An additional dropout (rate 0.3) was
applied before the final two fully connected layers with 128 and 11
output channels. Convolutions with point reduction used heuristic
point sampling15.

The default training configuration was modified as follows: initial
learning rate 5 × 10−4, learning rate scheduler step size 100, and decay of
0.99. To speed up the data preparation during training, a single batch
(batch size 10) contained random contexts of only one cell reconstruc-
tion. Parameter updates were performed after accumulating gradients
of 10 batches to improve the learning signal.

For the whole dataset inference, we used N = 20 editions each
with 50,000 points and a context radius of 20 µm for the type clas-
sification of a neuron reconstruction. During inference a fixed num-
ber of seed nodes was used, and the resulting per-class logits were
accumulated and normalized to 1. The resulting pseudo-probabilities
pi for each class, indexed by i (with C denominating all classes) were
used for classification of the cell type (class with the maximum prob-
ability) and to calculate a certainty estimate of the prediction based
on its entropy H:

certainty = 1 − H/Hmax = 1 + 1
Hmax

C
∑
i=1

pi log2 pi = 1 +
C
∑
i=1

pi logC pi with

Hmax = −
C
∑
i=1

1
C log2

1
C = log2C.

Self-supervised cell embeddings
Furthermore, we trained a model (same architecture as for the super-
vised task; context: 15 µm and 25,000 points; ten-dimensional (10D)
output) via triplet loss32 to embed the morphology of two proximal
locations of the same cell (first context location drawn randomly
from all cell skeleton nodes; second context center drawn uni-
formly within 15 µm distance along the cell skeleton) closer in a 10D
latent space than a cutout of a different cell (drawn randomly). This
self-supervised training procedure did not require any additional
manual annotations and was performed on all sufficiently large
neuron reconstructions (SSO). Neurons (or fragments) that had a
bounding box diagonal less than two times the input context of the
model (less than 30 µm) were excluded. The local embeddings (rep-
resented by their source nodes used for context generation, termed
context center) were aggregated to cell level by calculating their
mean within the same compartments (axon, dendrite) and adding
the two resulting vectors. Context centers of a cell were generated
using voxel downsampling of the mesh vertices with a voxel size of
half the context size and drawn randomly.

Training configuration: Initial learning rate 5 × 10−4; learning rate
scheduler step size 250 and decay of 0.995; margin ranking loss with
a margin of 0.2 and a batch size of 16. Every cell skeleton node was
assigned the morphology embedding vector associated with the spa-
tially closest context center.

We only considered cell reconstructions with a soma skeleton
length more than 10 µm, axon and dendrite skeleton lengths more
than 200 µm, and those that were additionally not classified as MSN
or an axon class only projecting to Area X for the unsupervised cell
type analysis (Fig. 2d), to focus the embedding on the rare cell types
of Area X. Overall, 531 cells passed these criteria, and for each cell
we constructed a compound 10D latent space by averaging the local
triplet-loss embeddings generated at cell skeleton nodes along each
embedding dimension for the axon and dendritic compartments sepa-
rately, followed by summation of the two vectors. These 531 10D vec-
tors were then reduced to two dimensions with the following UMAP18
parameters: n_neighbors=60, metric=‘euclidean’, random_state=0,
min_dist=0.05, n_epochs=1,000.

Analysis of the minimal mito–synapse distances
The minimal distances between presynaptic MSN and P (predicted GPi
and GPe combined) synapses and mitochondria were calculated as the
Euclidean distance between a representative synapse coordinate and
the closest mesh vertex (point on the surface; downsampled to a voxel
size of 200 nm) of the cell’s mitochondria. Cells were filtered as follows:
minimum axon, dendrite and soma path length of 100 µm, 50 µm and
5 µm, respectively, and cell type certainty (definition above) of at least
0.75. Only axo-dendritic synapses with a probability (random forest clas-
sifier; Synapse–cell association) above 0.8 were included. Path lengths
were calculated by summing the edges between cell skeleton nodes that
were labeled as the respective compartment type. For this analysis, the
compartment predictions were performed with the same model that
was used in ref. 14 for spine predictions (spine head, spine neck, den-
dritic shaft, combined axon and soma class) and a second model using
the same architecture for larger structures and axonal compartments
(dendrite, soma, axon, bouton en-passant, terminal bouton; context
size: 40.96 µm × 20.48 µm × 40.96 µm captured with three renderings
per location at a resolution of 1,024 by 512 pixels; rendering locations
were sampled using a voxel downsampling of the mesh vertices with a
voxel size of 13.65 µm; trained on 45 manually labeled reconstructions).
Vertex predictions were propagated to skeleton nodes by calculating
the majority vote of the k nearest prediction locations (compartments
with k = 50, separately stored for the two models) and which were in
turn smoothed using a running majority vote on all neighboring nodes
collected within a 10 µm path traversal starting from the source node.

The control for the minimal syn–mito distances was performed by
sampling locations on the cell’s axonal compartment surface randomly
and calculating the distance to the closest mitochondria mesh vertex
(downsampled to a voxel size of 200 nm). For each cell, up to 1,000
skeleton nodes that belonged to the axon (fewer if the cell contained
fewer nodes) were drawn. For each node a random vertex from all cell
mesh vertices, that were assigned to that node via Voronoi partitioning,
was chosen as the control location.

The two-sided Kolmogorov–Smirnov test (using the ks_2samp
method from the scipy package in ‘asymp’ mode and with
alternative=‘two-sided’) returned P values of 0.0 for lower versus upper
half size population (split using median) for GP (test statistic 0.154)
and MSN (test statistic 0.245) and for lower versus control for GP (test
statistic 0.195) and MSN (test statistic 0.206); N synapses GP 7,482 and
MSN 59,131; N random control locations: GP 37,149 and MSN 6,128,974.

A manual synapse assessment was performed by J.K. and P.S. on 52
randomly selected synapse objects (12 GP and 13 MSN from the lower half
of synapse area distributions, and 13 GP and 14 MSN of the upper half; 51
were classified as true synapse, 1 upper MSN as false). The synapse objects
were selected from a subset of 100 randomly selected MSN and 38 GP cells.
The assessment was performed blind; that is, it was hidden during the
annotation as to which cell type and synapse size a synapse belonged to.

Cost estimation
The timing experiments were performed with a dynamically created
SLURM cluster on the Google Cloud Platform using elasticluster
(https://github.com/elasticluster/elasticluster). In total, 24 compute
nodes (n1-highmem-32), each with 2 Tesla P100 GPUs, 32 virtual cores
and 208 GB RAM, were used in combination with a Gluster filesystem
(https://www.gluster.org/, four server nodes with SSD) and a 10 TB per-
sistent disk to store the input data (aligned EM data, cell segmentation,
myelin, sj, mi, vc and synapse type predictions). The timed processing
steps were grouped into CPU-only (data store, synapse extraction,
synapse enrichment; 68.56 h at 1.812 teravoxels) and CPU + GPU (mor-
phological analysis; 8.44 h point based, 27.51 h multiview based at 1.812
teravoxels). See Supplementary Text 3 and Extended Data Fig. 1 for
details about timings and executed steps. Assuming GPU nodes only for
GPU-relevant processing steps, the cost per teravoxel for the different
categories summed to approximately US$1,200 for CPU-only (US$1.325

http://www.nature.com/naturemethods
https://github.com/elasticluster/elasticluster
https://www.gluster.org/

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

hourly rate for one CPU node, based on https://cloud.google.com/
products/calculator), US$380 for GPU + CPU (point-based; US$1,200
for multi-view models; US$3.36 hourly rate for one GPU node) and
US$260 for infrastructure (US$4.84 hourly rate for persistent disk and
US$0.348 per file system server node); in total US$1,840 per teravoxel.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All datasets are available at syconn.esc.mpcdf.mpg.de and licensed
under the Creative Commons Attribution 4.0 International CC-BY
license. Source data are provided with this paper.

Code availability
All source code, implemented in Python 3.7, is available on GitHub:
SyConn2: https://github.com/StructuralNeurobiologyLab/SyConn
(GPL-2.0 license); MorphX: https://github.com/StructuralNeuro-
biologyLab/MorphX/ (GPL-2.0 license); elektronn3: https://github.
com/ELEKTRONN/elektronn3/ (MIT license).

References
22. Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger,

O. 3D U-Net: learning dense volumetric segmentation from
sparse annotation. Lecture Notes in Computer Science,
vol. 9901. In Medical Image Computing and Computer-Assisted
Intervention – MICCAI 2016 (eds Ourselin, S. et al.) 424–432
(Springer, 2016).

23. Paszke, A. et al. PyTorch: an imperative style, high-performance
deep learning library. In Advances in Neural Information
Processing Systems Vol. 2, 8024–8035 (eds Wallach, H. et al.)
(Curran Associates, Inc., 2019).

24. van der Walt, S. et al. scikit-image: image processing in Python.
PeerJ 2, e453 (2014).

25. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific
computing in Python. Nat. Methods 17, 261–272 (2020).

26. Silversmith, W., Bae, J. A., Li, P. H. & Wilson, A. M. Kimimaro:
skeletonize densely labeled 3D image segmentations. Zenodo
https://doi.org/10.5281/zenodo.5539912 (2021).

27. Zhou, Q.-Y., Park, J. & Koltun, V. Open3D: a modern library for
3D data processing. Preprint at arXiv https://doi.org/10.48550/
arXiv.1801.09847 (2018).

28. Simard, P. Y., Steinkraus D. & Platt, J. C. Best practices for
convolutional neural networks applied to visual document
analysis. In Proc. Seventh International Conference on Document
Analysis and Recognition 958–963 (2003).

29. Wu, Y. & He, K. Group Normalization. Lecture Notes in Computer
Science, vol. 11217. In Computer Vision – ECCV 2018 (eds Ferrari,
V. et al.) (Springer, 2018).

30. Boulch, A., Puy, G. & Marlet, R. FKAConv: feature-kernel alignment
for point cloud convolution. Computer Vision – ACCV 2020.
Lecture Notes in Computer Science, vol. 12622. In Proceedings of
the Asian Conference on Computer Vision (eds Ishikawa, H. et al.)
(Springer, 2020).

31. Ramachandran, P., Zoph, B. & Le, Q. V. Searching for Activation
Functions. Preprint at arXiv https://arxiv.org/abs/1710.05941
(2017).

32. Schroff, F., Kalenichenko, D. & Philbin, J. FaceNet: a unified
embedding for face recognition and clustering. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
815–823 (IEEE, 2015).

Acknowledgements
We thank W. Denk for enabling this work in his department and
feedback on the manuscript, H. Baier for manuscript feedback,
E. Perlman for help with interfacing SyConn2 and Neuroglancer,
J. Maitin-Shepard for developing Neuroglancer, and Google Research
for providing cloud computing resources. We would also like to thank
C. Guggenberger and his team at the MPCDF computing facility in
Garching, Germany for support.

Author contributions
P.S., S.D., J. Klimesch and J. Kornfeld designed and implemented
SyConn2, with code contributions from F.S.. H.A. and A.M.
implemented the SyConn2 web-client based on Neuroglancer.
M.J. and V.J. contributed the FFN segmentation and other input
segmentation maps. P.S. and J. Kornfeld wrote the manuscript, with
contributions from all other authors.

Funding
Funding was provided by NIH grant no. RF1 MH117809-01 (M.S.F., J.K.)
and the Max Planck Society. Open access funding provided by Max
Planck Society.

Competing interests
F.S. and J.K. disclose financial interests in ariadne.ai ag. S.D.,
M.J. and V.J. are employees of Google LLC, which sells cloud
computing services. The remaining authors declare no
competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41592-022-01624-x.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41592-022-01624-x.

Correspondence and requests for materials should be addressed to
Joergen Kornfeld.

Peer review information Nature Methods thanks Udaranga
Wickramasinghe and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work. Peer reviewer reports are
available. Primary Handling Editor: Nina Vogt, in collaboration with the
Nature Methods team.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/naturemethods
https://cloud.google.com/products/calculator
https://cloud.google.com/products/calculator
https://github.com/StructuralNeurobiologyLab/SyConn
https://github.com/StructuralNeurobiologyLab/MorphX/
https://github.com/StructuralNeurobiologyLab/MorphX/
https://github.com/ELEKTRONN/elektronn3/
https://github.com/ELEKTRONN/elektronn3/
https://doi.org/10.5281/zenodo.5539912
https://doi.org/10.48550/arXiv.1801.09847
https://doi.org/10.48550/arXiv.1801.09847
https://arxiv.org/abs/1710.05941
https://doi.org/10.1038/s41592-022-01624-x
https://doi.org/10.1038/s41592-022-01624-x
http://www.nature.com/reprints

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

Extended Data Fig. 1 | Timings of the different pipeline steps. Timings
are grouped into synapse extraction, data store, synapse enrichment and
morphology analysis (m.a.) with multi-views (views) and point clouds (points).
a Compute time as a function of the processed volume (in teravoxels, TVx). Pie
charts show the fraction of the different steps relative to the total time at the
smallest and largest test cube (i: 0.29 million µm3, syn. extraction: 0.45, data

store: 0.22, syn. enrichment: 0.18, m.a. (points): 0.14; ii: 4.53 million µm3, 0.58,
0.19, 0.12, 0.11). The ‘views’ step was excluded for the ‘total’ timings and the
pie charts (i, ii). Compute resources: 24 google cloud computing nodes (n1-
highmem-32), each with 32 virtual cores (threads), 2 Tesla P100, 208 GB memory.
b Compute time as a function of the number of available compute nodes (8, 12, 16,
20, 24). Processed volume: 0.391 teravoxels. Color code as in a.

http://www.nature.com/naturemethods

Nature Methods

Brief Communication https://doi.org/10.1038/s41592-022-01624-x

Extended Data Fig. 2 | GP and MSN synapse properties. a Box plot (median,
lower and upper quartile; whiskers, 1.5x interquartile range above upper
and below lower quartile; points, outlier) of the average synapse count per
micrometer for cell types MSN (N = 6327, median: 0.017 µm−1, Q1: 0.012 µm−1,

Q3: 0.022 µm−1) and GP (N = 38, 0.057 µm−1, 0.033 µm−1, 0.066 µm−1). Two-sided
Mann-Whitney U test statistic: -9.71 and p-value: 2.57e-22. b Histogram of synapse
mesh area (N synapses GP: 7,482, MSN: 59,131).

http://www.nature.com/naturemethods

1

nature portfolio | reporting sum
m

ary
M

arch 2021

Corresponding author(s): Jörgen Kornfeld

Last updated by author(s): Jun 25, 2022

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software has been used for data collection.

Data analysis SyConn 2.0 (https://github.com/StructuralNeurobiologyLab/SyConn), MorphX 0.1 (https://github.com/StructuralNeurobiologyLab/MorphX),
python 3.7, slurm 20.02.6, cuda 10.2, pytorch 1.8, open3d 0.9.0, LightConvPoint 0.2, kimimaro 3.0.0, zmesh 0.5.1, elektronn3 alpha, scikit-
image 0.18.3, vigra 1.11.1, scipy 1.6.3, elasticluster 1.3.dev28, Neuroglancer 2.19

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Due to large storage requirements, the data sets cannot be made available in a repository but are available at syconn.esc.mpcdf.mpg.de for online viewing and
inspection. Please contact the authors to obtain a copy upon reasonable request.

2

nature portfolio | reporting sum
m

ary
M

arch 2021

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes for the analysis of the minimal mito-synapse distances included all neuron reconstructions from the data set as described in
the methods.

Data exclusions Neuron reconstructions were excluded based on minimum compartment size filters as described in the methods.

Replication The mito-synapse distance analysis was performed on a single connectomic data set and were selected from 100 randomly selected MSN and
38 GP cells.

Randomization The order of the synapses for the manual evaluation in the mito-synapse distance analysis was shuffled.

Blinding The annotation of synapses during synapse evaluation for the analysis of the minimal mito-synapse distances was done without knowledge
about associated groups (lower/upper half, cell type).

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	SyConn2: dense synaptic connectivity inference for volume electron microscopy
	Online content
	Fig. 1 SyConn2 processing on the voxel level.
	Fig. 2 SyConn2 processing and analyses of neuron reconstructions.
	Extended Data Fig. 1 Timings of the different pipeline steps.
	Extended Data Fig. 2 GP and MSN synapse properties.

