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SyConn2: dense synaptic connectivity 
inference for volume electron microscopy
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The ability to acquire ever larger datasets of brain tissue using volume  
electron microscopy leads to an increasing demand for the automated 
extraction of connectomic information. We introduce SyConn2, an 
open-source connectome analysis toolkit, which works with both on-site 
high-performance compute environments and rentable cloud computing 
clusters. SyConn2 was tested on connectomic datasets with more  
than 10 million synapses, provides a web-based visualization interface  
and makes these data amenable to complex anatomical and neuronal 
connectivity queries.

The acquisition speed of state-of-the-art volume electron microscopy 
(VEM) has increased about 100-fold during the past five years1, and 
petabyte-scale datasets have been generated2,3. The associated com-
putational challenges can only be addressed with scalable analysis 
frameworks, requiring either classical high-performance computing 
environments or commercial compute cloud offerings, and are facili-
tated by open-source code that also increases reproducibility.

Despite these increases in acquisition speed and consider-
able advances in areas such as automated neuron reconstruction4, 
proofreading5, synapse and organelle detection6,7, cell type clas-
sification8,9 and integrative processing in cloud environments10,11, 
a pipeline that creates an annotated connectome and can also be 
operated cost-efficiently on existing high-performance computing 
infrastructure is lacking. Here we introduce SyConn2, which requires 
existing dense neuron reconstructions and fundamentally upgrades 
our earlier software package7 (see Supplementary Table 1 for a com-
parison) to allow neuroscientists to run queries against connectomes 
with millions of synapses12,13. To be able to handle the large amounts 
of data at reasonable cost, we focused on computationally efficient 
processing at every step, for example by operating on lightweight 
point cloud representations instead of dense data structures to ana-
lyze neuron morphology. The SyConn2 processing speed was about 
34 megavoxels per hour per central processing unit (CPU) core and 
4.4 gigavoxels per hour per graphics processing unit (GPU). This 

leads to an approximate cost (evaluated on the Google Cloud Plat-
form using a zebra finch dataset) of about US$2,000 per teravoxel of 
8-bit raw VEM data at a voxel size of 10 × 10 × 25 nm3 (approximately  
US$800 per million µm3).

Taking advantage of the details visible in dense heavy-metal 
stains of tissue, SyConn2 processing starts with multiple semantic 
voxel-level annotations spanning the entire VEM dataset, including 
a segmentation into cells, extracellular space, synaptic locations and 
organelles, among others (Fig. 1). SyConn2 provides the option to 
apply deep neural network segmentation models to an entire raw 
three-dimensional (3D) image dataset for the classes of interest, by 
splitting it into chunks that are processed in parallel by many CPU and 
GPU workers, using the SLURM workload manager. To map synaptic 
connectivity between neurons, contact sites between different cell 
segmentations are detected (Fig. 1, top), which are then overlapped 
with the neural network-generated synaptic junction segmentations 
to form candidate synapse objects. Although the overlap of a con-
tact site between two neurons and a detected synaptic cleft could 
be used, in theory, by itself to decide whether a contact is synaptic, 
we found it helpful to add further quantitative ultrastructural infor-
mation from surrounding voxels. These synaptic features can either 
be used directly for analyses or used for another classification stage 
(for example, with a random forest classifier7) at each candidate  
synaptic location.
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mitochondrial content of different cellular compartments7. With access to 
thousands of synapses and their associated cell types, we tested whether 
larger synapses preferentially recruit mitochondria presynaptically, 
which could accommodate increased local energy demand20. As pre-
dicted, we observed that larger synapses were closer to mitochondria 
than smaller synapses, with a cell type-dependent distance distribution 
(Fig. 2e; distance to median lower half of synapses for medium spiny 
neurons (MSN) 0.833 µm; globus pallidal-like neurons (GP) 0.267 µm; 
median upper half MSN 0.339 µm, GP 0.232 µm; N synapses GP 7,482, 
MSN 59,131; P = 0.0 for lower versus upper half size population in both cell 
types using a two-sided Kolmogorov–Smirnov test). Pallidal-like neuron 
types, which exhibit high firing rates, showed a smaller synapse–mito-
chondria distance compared to sparsely firing striatal spiny neurons. 
Furthermore, synapse–mitochondria distance is similar for large and 
small GP synapses, whereas mitochondria appear to be recruited selec-
tively to large MSN synapses (Fig. 2e and Extended Data Fig. 2). This analy-
sis demonstrates that queryable EM connectomic datasets with dense 
ultrastructural annotation enable insights well beyond connectivity 
analyses, and future analyses based on the spatial distribution of ultras-
tructure might shed light on topics ranging from synaptic plasticity rules  
to neuromodulation.

Connectome data accessibility is a key issue, especially for 
researchers who have not originally produced and analyzed a VEM 
dataset. We therefore developed a web client for datasets pro-
cessed with SyConn2, by building upon the Neuroglancer21 interface  
(Fig. 2f). The web-based SyConn2 client allows neuroscientists to 
inspect a connectome without downloading all reconstructed neurons 
and synapses and to perform simple analyses (for example, visualizing 
neurons synaptically connected in a row) directly in the web browser, 
a feature that should help a larger research community find utility in 
rapidly emerging connectomic datasets.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01624-x.

We previously introduced cellular morphology neural networks 
(CMN) for morphology and type classification based on learning 3D 
shape from two-dimensional projection images of a neuron14. Although 
the CMN approach provides high accuracy, it suffers from low pro-
cessing speeds, which becomes increasingly important with grow-
ing datasets. To increase processing speed, we use a representation 
in which cell membranes are represented by sparse discrete points  
(Fig. 2a). Deep convolutional neural networks trained directly on sparse 
point representations are well suited; thus, we used the ConvPoint 
architecture15 as the basis for our experiments. The resulting morphol-
ogy classifier performed at the same accuracy level as our previous 
CMN architecture14 (Fig. 2b,c, Supplementary Texts 1 and 2 and Supple-
mentary Table 2; see also ref. 16 for a dense 3D approach) with a 3.3-fold 
higher throughput (Extended Data Fig. 1a). We conducted a detailed 
throughput and scalability analysis of the entire pipeline (Extended 
Data Fig. 1 and Supplementary Text 3).

We next explored whether the point-based morphology neu-
ral network could also be used for unsupervised (without requiring 
handcrafted training data) cell type discovery17 through dimension-
ality reduction of a learned latent space. We extended our previous 
approach of triplet-loss morphology learning14 to generate embed-
dings of entire neurons (Fig. 2d) directly from local point cloud con-
texts. A low-dimensional UMAP (uniform manifold approximation 
and projection)18 projection of the latent feature space led to clus-
ters that contained known morphological neuron types of the ana-
lyzed tissue (zebra finch Area X), such as putative cholinergic and 
pallidal-like neurons. This analysis revealed additionally that Area X 
might harbor more cell types, for example local neurons that form 
synapses with excitatory ultrastructural characteristics (Fig. 2d, 
STN)—a neuron type in Area X that has so far only been physiologi-
cally identified19 but not anatomically characterized. This shows 
that the dense morphology information collected from an elec-
tron microscopy (EM) connectomic dataset may eventually be as 
powerful for the characterization of neuron types in a brain area as 
single-cell gene expression data, while additionally containing full  
connectivity information.

The upgraded pipeline allowed us to extend an earlier analysis 
that relates the firing rates of striato-pallidal neuron classes to the 
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Fig. 2 | SyConn2 processing and analyses of neuron reconstructions.  
a, Semantic segmentation of cell surfaces with point cloud neural networks. 
Surface points of the cell and ultrastructure within an input context were 
subsampled and presented to the model. Context predictions are then combined 
on the cell level. b, Grid search for optimal context parameters (radius, number 
of points) evaluated at synapse locations (88 spine head and 94 dendritic shaft) 
with weighted average F1-score (dendritic shaft, spine head and a combined axon 
and soma class). c, Classification performance of putative cell types dependent 
on the context and the number of bootstrapping samples (redundancy). For 
example, 20 µm, 5k refers to a 20 µm radius with 5,000 points. The confidence 
interval is mean ± standard deviation of three training repetitions for each 
parameter pair. d, UMAP dimensionality reduction of learned unsupervised 
latent space of 531 neurons in the dataset that contained soma, axon and dendrite 

(MSNs not considered). LTS, low-threshold spiker; FS, fast-spiking interneuron; 
TAN, tonically active cholinergic neuron; NGF, neurogliaform interneuron; 
STN, subthalamic nucleus-like neuron; GP, pallidal-like neuron. Colors indicate 
putative cell type based on supervised classification. e, Cumulative distribution 
function (CDF) of the minimal distance between axo-dendritic synapses (and 
a random control) and mitochondria in GP and MSN split into small and large 
synapses (less than or equal to and greater than median of mesh area; median 
GP 1.16 µm2, MSN 0.75 µm2; N synapses GP 7,482, MSN 59,131; see also Extended 
Data Fig. 2b for synapse size distributions; N random control locations: GP 37,149, 
MSN 6,128,974). Pre. type, presynaptic cell type f, Example of a GP–GP synapse 
visualized with the web-based SyConn2 client. Scale bars, 1 µm in EM section and 
4 µm in renderings (a), 20 µm for the cell and 2 µm for the context (b) and 10 µm 
sphere radius (d).
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Methods
Input segmentation maps and ultrastructure predictions
A cell instance segmentation map was generated by M.J. using 
flood-filling neural networks as reported earlier4, with additional 
training data provided by annotators at the Max Planck Institute of 
Neurobiology and ariadne.ai AG. Synaptic junction (sj), sj type (sym-
metric and asymmetric), vesicle cloud (vc) and mitochondria (mi) voxel 
segmentation maps were also provided by M.J. using a 3D convolutional 
neural network model that predicts these classes on a per voxel level, 
followed by thresholding.

A myelin segmentation map (four-fold downsampled) was gener-
ated using SyConn’s neural network model chunk inference pipeline, 
which divides the dataset into a configurable number of data chunks 
(used here: cube size of [482, 481, 236] voxels with additional [20, 30, 
31] overlap on every side) to enable parallel processing. For the myelin 
inference, a model based on the 3D U-Net architecture22 was used, which 
had the following parameters: 32 output channels in the first layer; 
output channels increase by a factor of two in every downpath layer; 
four downpath layers; first and third layer had a z-kernel extent of 1; 
ReLU activation; batch normalization. This model was implemented in 
elektronn3 (https://github.com/ELEKTRONN/elektronn3/), a training 
and inference framework that builds on PyTorch23 and provides features 
for working with large-scale 3D image data.

SegmentationObject generation
The (binary) input segmentation maps for mitochondria and vesi-
cle clouds were transformed into an instance segmentation by a 3D 
watershed procedure (segmentation.watershed from the scikit-image 
package24), which was performed on the distance transform (filters.
distanceTransform from the vigranumpy package, https://ukoethe.
github.io/vigra/doc-release/vigranumpy/) of the input maps. The seeds 
for the watershed were generated from the morphologically modified 
(vc: binary opening, binary closing, binary erosion; mi: binary opening, 
binary closing, ×3 binary erosion) input maps using connected compo-
nent analysis (ndimage.label from the scipy package25). Compute tasks 
were distributed across the workers by chunking (512 voxels edge length; 
6, 2 voxels overlap for mi, vc). Chunk-wise identities (IDs) were made 
unique dataset-wide, and the overlap regions were used to unify IDs 
of objects that spanned multiple chunks. The resulting 3D connected 
components of voxels (supervoxels) were subsequently analyzed and 
stored in an accessible format, as described in the next paragraph.

The supervoxels formed the basis for SegmentationObjects (SO), 
which store additional properties (representative coordinate, voxel 
bounding box, voxel count, mesh, skeletons, mesh area and mesh bound-
ing box) of cells, ultrastructure (mi, vc), contact sites (cs; Synapse–cell 
association), and synapse fragments and agglomerates (syn; Synapse–
cell association) and are collected in SegmentationDatasets (SD), with 
separate SDs for each type. A SD is a key–value store that provides an 
interface to individual SOs. The SO property extraction was performed 
on 3D chunks (512 voxels edge length) of every ultrastructure’s instance 
segmentation. In a single pass, the mesh, voxel count, bounding box 
and representative coordinate of all segmentation IDs in a cube were 
computed, and the partial results were merged in a final reduction step. 
For every syn object, the fraction of overlapping symmetric and asym-
metric voxels was determined. Cell SOs also store the ID and fraction of 
overlapping ultrastructure segmentation voxels and were skeletonized 
using kimimaro26. Meshes of cells, mitochondria and vesicle clouds were 
computed with zmesh (https://github.com/seung-lab/zmesh).

Synapse–cell association
We performed synapse identification through a multistep extraction 
process.

In a first step, a contact site instance segmentation was generated 
by iterating over the cell segmentation and storing adjacent supervoxel 
IDs. At every boundary voxel (6-connectivity) of the cell segmentation, 

a partner cell ID was identified by finding the majority ID within a win-
dow of [7,13] voxels (voxel size 10, 10, 25 nm). If a majority ID was found 
(background and the source boundary voxel ID were excluded), the 
contact site voxel was assigned a value that allowed the retrieval of the 
two partner cells (bit shift combination to uint64 in case of uint32 cell 
segmentation; tuple of uint64 in case of uint64 cell segmentation). The 
resulting thin boundary instance segmentation was morphologically 
closed (N = 7 iterations; this is sufficient to close the maximum distance 
of adjacent cells found through the adjacency filter) and dilated twice 
afterwards. Note that one instance in this segmentation represents all 
contact sites between a cell supervoxel pair, as the contact instance ID 
is the same, even if the supervoxels touch at different locations.

In a second step, synapse fragments and agglomerates on the 
supervoxel level (sv-syns) were generated by intersecting voxels of the 
sj foreground prediction and of the contact site instances. Individual 
putative synapses between two cells were obtained by computing 
connected components on a graph that was built with the voxels of 
sv-syns of all the cells’ supervoxels that form such sv-syns between the 
cell pair. Within sv-syns between the same supervoxel pair, edges were 
added between voxels not farther apart than two voxels, and sv-syns of 
different supervoxel pairs were connected if their closest voxels were 
within a distance of at most 250 nm. For generating synapse meshes, the 
function ‘create_from_point_cloud_poisson’ from open3D27 was applied 
on the voxels of the individual synapse objects. The resulting synaptic 
objects were further assigned a probability value using a random forest 
classifier (N = 10 features: synapse size in voxels, mesh area, numbers 
and voxel counts of presynaptic and postsynaptic mitochondria and 
vesicle clouds; trained on 300 putative synapse objects, manually 
annotated into 156 synaptic and 144 nonsynaptic), with 0 meaning 
least synaptic and 1 meaning most synaptic. The voxel count features 
for nearby (maximum representative coordinate distance of 4 µm) mi 
and vc objects were calculated by finding the number of mi or vc mesh 
vertices with a maximum distance of 2 or 1 µm to the synapse voxels, 
followed by dividing this vertex count by the total object vertex count 
to obtain a fraction that could then be multiplied by the object voxel 
count, resulting in the number used as features (mesh vertices and 
synapse voxels were 2-fold subsampled).

SuperSegmentationObject generation
The SuperSegmentationObject (SSO) class was implemented to repre-
sent agglomerated cell reconstructions. Based on a supervoxel graph 
that defines which cell fragments belong to the same biological cell, an 
SSO aggregates the properties of the corresponding cell SOs (representa-
tive coordinate, bounding box, mesh, skeleton) and contains associated 
ultrastructure SO IDs and further analysis results (cell type predictions 
and certainties, vertex and skeleton node compartment prediction, local 
morphology embeddings, spine head volumes, myelination status).

SO properties were merged as follows. Representative coordi-
nate: first SO representative coordinate; bounding box: minimum and 
maximum values of all SO bounding boxes; meshes: concatenation of 
vertices and indices; skeleton: concatenation of nodes and edges, add-
ing edges between the closest skeleton nodes of skeleton fragments 
(resulting either from chunked processing or not agglomerated SOs) 
until the whole-cell skeleton was a single connected component.

Myelin predictions were mapped onto cell skeletons by storing 
the fraction of myelin voxels within a cube of size [11, 11, 5] voxels (voxel 
size (nm): 40, 40, 100) at every skeleton node and thresholding (per 
voxel probability threshold 0.5 and classification via majority vote). 
The node predictions were smoothed using a running majority vote on 
all neighboring nodes collected within a 10 µm path traversal starting 
from the source node.

Context generation for point cloud processing
The reconstructed cells were split into regions of overlapping surface 
meshes (mesh contexts), controlled by parameters for vertex count 
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and context radius. This was done by choosing skeleton nodes as pivot 
locations around which a subgraph of adjacent nodes within a maxi-
mum distance (here called context radius) was constructed. For a fast 
lookup from skeleton node to mesh vertices, each skeleton node was 
assigned a set of mesh vertices by finding the nearest node for every 
vertex (Voronoi partitioning). The local mesh context corresponding 
to the pivot location was built by combining the vertices of all skeleton 
nodes in its subgraph.

Pivot nodes were spaced regularly on the cell skeleton until the full 
neurite was chunked into mesh contexts, either one or multiple times, 
depending on the chosen redundancy of mesh context generation. 
Meshes of ultrastructure (mi, vc) and synapses (plain or separated into 
excitatory and inhibitory) were combined with the neurite mesh and 
distinguished using a one-hot-encoded feature vector. Some experi-
ments also included an additional binary input channel encoding the 
presence of myelin layers around axons. All meshes were downsampled 
by defining a voxel grid and selecting only one vertex per voxel (voxel 
edge length: cell 80 nm, mitochondria 100 nm, vesicle clouds 100 nm, 
synapses 100 nm; downsampling was performed by the ‘voxel_down_
sample’ method of the open3D27 PointCloud class) to standardize 
point densities and remove artifacts from the reconstruction process.

Point cloud model training
Unless stated otherwise, models were trained until training loss con-
vergence, using random point samples of the extracted mesh contexts, 
mini-batches, Adam optimizer (betas: 0.9, 0.999), cross-entropy loss, 
a stepwise learning rate decay and ReLU activation after each layer. 
All models were implemented using PyTorch23 and LightConvPoint 
(https://github.com/valeoai/LightConvPoint) and trained via the ele-
ktronn3 framework.

Mesh contexts used as training samples were transformed by 
multiple point cloud augmentations. These augmentations consisted 
of random noise added to the point positions, random rotations and 
flipping, elastic transformations28 and anisotropic scaling. All point 
cloud processing methods were implemented in the MorphX package.

Semantic segmentation of dendrites
For the surface segmentation of dendrites into dendritic shaft, spine 
neck and spine head, we applied a hierarchy of two models. The 
coarse-level model was used to separate dendrite from axon and soma, 
and the predictions of the second model further distinguished the 
dendritic parts into dendritic shaft, spine neck and spine head. Both 
high-level (classes: 2, dendrite versus a combined axon and soma class) 
and fine-level models (classes: 3, dendritic shaft versus spine neck 
versus spine head) were trained and tested on the ground truth of the 
high-resolution surface segmentation task from ref. 14.

To analyze the effects of point number and context radius on the 
dendritic inference task (one-dimensional input features using only cell 
surface points), we conducted a grid search varying these two param-
eters while keeping the results of the coarse-level morphology model 
(input parameters: 15,000 points, 15 µm context, four-dimensional 
input features using one-hot encoding of cell, mi, vc and synapse 
points) fixed. For the coarse-level model, the architecture was the same 
as the one used for the fine-level model with more than 2,048 input 
points (see below), and predictions were performed on cell surface 
points only, excluding vertices of ultrastructure (mi, vc) and synapses.

For the grid search of the dendritic model, we only generated 
matrix entries in which most mesh contexts would still hold more 
points than requested by the point sampling. In the case that the 
number of points in the extracted mesh context was fewer than the 
requested volume, the missing points were randomly sampled from 
the original set of points. Each cell in the training set was split five 
times. We used four different architectures, depending on the point 
number. All architectures used kernels with 16 points each. For matrix 
entries with 512 points, we used architectures with the following layer 

specifications: (1: 32 kernels, 32 neighbors, no reduction), (2: 32, 32, 
reduction to 256 points), (3: 64, 32, reduction to 64 points), (4: 64, 16, 
16), (5: 64, 8, 8), (6: 64, 4 deconvolution, deconv, to 16, residual to 5),  
(7: 64, 4 deconv to 64, residual to 4), (8: 32, 8, deconv to 256, residual to 
3), (9: 32, 16, deconv to original point cloud, residual to 2), (10: fully con-
nected shared across all points, residual to 1). Two more layers between 
layer 1 and 2 and layer 8 and 9, respectively, were added for 1,024 input 
points: (1 and 2: 32, 32, reduction to 512), (8 and 9: 32, 16, deconv to 
512 + residual). For 2,048 points, two layers (additional to the 1 and 2, 8 
and 9 layers) were added: (1 and 2: 32, 32, reduction to 1,024), (10 and 11: 
32, 16, deconv to 1,024 + residual). Models with more than 2,048 input 
points shared the same architecture as for 2,048 points but changed 
the reduction pathway to no reduction, 2,048, 1,024, 256, 64, 16, 8. The 
total number of trainable parameters was in the range from 541,603 to 
593,699, depending on the model architecture, as described above.

All models used GroupNorm29 after each layer (except the fully 
connected ones). The point cloud reduction was done by efficient 
point sampling with space quantization30. All fine-level morphology 
models were trained until convergence (after 1,400–3,000 epochs, 
training time from 4 h to 30 h, training speed from 3.1–1.4 samples 
per second) with batch sizes 32 (fewer than 2,048 points), 16 (fewer 
than 8,192), 8 (fewer than 16,384) and 4 (fewer than 32,768) using an 
initial learning rate of 1 × 10−3 (scheduler step size of 1,000, decay 0.99). 
The coarse-level morphology model was trained using a batch size of 
4, DiceLoss (class weights dendrite: 2, combined axon and soma class: 
1), AdamW optimizer and an initial learning rate of 2 × 10−3 (scheduler 
step size of 100, decay of 0.996); input points were normalized to a 
unit sphere.

Model performances were evaluated on a set of manually labeled 
synapses in four neuron reconstructions (94 on dendritic shaft and 88 
on spine head; the same as in ref. 14). These neurons were split five times 
with different context locations and processed by the coarse-level and 
all fine-level models. Vertices with multiple predictions (for example, 
because they were part of multiple mesh contexts) were assigned the 
result of a majority vote on all their predictions. The final synapse 
label was found by majority vote on the predictions of the 20 closest 
vertices with respect to the representative coordinate of the synapse. 
Each matrix entry presents the mean weighted (by synapse support) 
average F1-score of three fine-level models with the same architecture 
and input settings, but trained with different random seeds.

Cell type classification
For the supervised type classification of neurites, 253 neuron recon-
structions were manually labeled by an expert, not necessarily 
covering all distinguishable cell types of this brain area (number of 
labeled classes: 11). These included three interneuron classes (puta-
tive low-threshold spiking interneuron (LTS), putative fast-spiking 
neuron (FS) and putative neurogliaform interneuron (NGF) in Fig. 2d) 
forming inhibitory synapses and one local neuron class with excita-
tory synapses (putative excitatory subthalamic nucleus-like (STN) in  
Fig. 2d). The ground truth was split into training and test data using 
10-fold cross validation. Each split was used to train three models, each 
starting with a different random seed for training batch generation and 
initial weights to estimate the model variance. The context generation 
was parameterized by radius and number of points (Context generation 
for point cloud processing), and seed nodes were sampled uniformly. 
Vertex features were represented via a six-dimensional one-hot encod-
ing of mitochondria, vesicle clouds, inhibitory and excitatory synapse, 
and myelinated and unmyelinated cell surface. The myelination infor-
mation was propagated from the skeleton node associated with a cell 
surface vertex (Voronoi partitioning). Input point coordinates were 
centered and scaled by 10% of the context radius.

Model architecture: five ConvPoint layers each using 16 kernel 
elements; group normalization before swish activation31 with the fol-
lowing parameters (number of output channels, reduction to N points, 
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k nearest neighbors): (64, 4,096, 32), (128, 1024, 32), (256, 512, 16), 
(256, 256, 16), (512, 128, 16). The resulting 512 features were averaged 
across the anchor 128 points. An additional dropout (rate 0.3) was 
applied before the final two fully connected layers with 128 and 11 
output channels. Convolutions with point reduction used heuristic 
point sampling15.

The default training configuration was modified as follows: initial 
learning rate 5 × 10−4, learning rate scheduler step size 100, and decay of 
0.99. To speed up the data preparation during training, a single batch 
(batch size 10) contained random contexts of only one cell reconstruc-
tion. Parameter updates were performed after accumulating gradients 
of 10 batches to improve the learning signal.

For the whole dataset inference, we used N = 20 editions each 
with 50,000 points and a context radius of 20 µm for the type clas-
sification of a neuron reconstruction. During inference a fixed num-
ber of seed nodes was used, and the resulting per-class logits were 
accumulated and normalized to 1. The resulting pseudo-probabilities 
pi for each class, indexed by i (with C denominating all classes) were 
used for classification of the cell type (class with the maximum prob-
ability) and to calculate a certainty estimate of the prediction based 
on its entropy H:

certainty = 1 − H/Hmax = 1 + 1
Hmax

C
∑
i=1

pi log2 pi = 1 +
C
∑
i=1

pi logC pi with

Hmax = −
C
∑
i=1

1
C log2

1
C = log2C.

Self-supervised cell embeddings
Furthermore, we trained a model (same architecture as for the super-
vised task; context: 15 µm and 25,000 points; ten-dimensional (10D) 
output) via triplet loss32 to embed the morphology of two proximal 
locations of the same cell (first context location drawn randomly 
from all cell skeleton nodes; second context center drawn uni-
formly within 15 µm distance along the cell skeleton) closer in a 10D 
latent space than a cutout of a different cell (drawn randomly). This 
self-supervised training procedure did not require any additional 
manual annotations and was performed on all sufficiently large 
neuron reconstructions (SSO). Neurons (or fragments) that had a 
bounding box diagonal less than two times the input context of the 
model (less than 30 µm) were excluded. The local embeddings (rep-
resented by their source nodes used for context generation, termed 
context center) were aggregated to cell level by calculating their 
mean within the same compartments (axon, dendrite) and adding 
the two resulting vectors. Context centers of a cell were generated 
using voxel downsampling of the mesh vertices with a voxel size of 
half the context size and drawn randomly.

Training configuration: Initial learning rate 5 × 10−4; learning rate 
scheduler step size 250 and decay of 0.995; margin ranking loss with 
a margin of 0.2 and a batch size of 16. Every cell skeleton node was 
assigned the morphology embedding vector associated with the spa-
tially closest context center.

We only considered cell reconstructions with a soma skeleton 
length more than 10 µm, axon and dendrite skeleton lengths more 
than 200 µm, and those that were additionally not classified as MSN 
or an axon class only projecting to Area X for the unsupervised cell 
type analysis (Fig. 2d), to focus the embedding on the rare cell types 
of Area X. Overall, 531 cells passed these criteria, and for each cell 
we constructed a compound 10D latent space by averaging the local 
triplet-loss embeddings generated at cell skeleton nodes along each 
embedding dimension for the axon and dendritic compartments sepa-
rately, followed by summation of the two vectors. These 531 10D vec-
tors were then reduced to two dimensions with the following UMAP18 
parameters: n_neighbors=60, metric=‘euclidean’, random_state=0, 
min_dist=0.05, n_epochs=1,000.

Analysis of the minimal mito–synapse distances
The minimal distances between presynaptic MSN and P (predicted GPi 
and GPe combined) synapses and mitochondria were calculated as the 
Euclidean distance between a representative synapse coordinate and 
the closest mesh vertex (point on the surface; downsampled to a voxel 
size of 200 nm) of the cell’s mitochondria. Cells were filtered as follows: 
minimum axon, dendrite and soma path length of 100 µm, 50 µm and 
5 µm, respectively, and cell type certainty (definition above) of at least 
0.75. Only axo-dendritic synapses with a probability (random forest clas-
sifier; Synapse–cell association) above 0.8 were included. Path lengths 
were calculated by summing the edges between cell skeleton nodes that 
were labeled as the respective compartment type. For this analysis, the 
compartment predictions were performed with the same model that 
was used in ref. 14 for spine predictions (spine head, spine neck, den-
dritic shaft, combined axon and soma class) and a second model using 
the same architecture for larger structures and axonal compartments 
(dendrite, soma, axon, bouton en-passant, terminal bouton; context 
size: 40.96 µm × 20.48 µm × 40.96 µm captured with three renderings 
per location at a resolution of 1,024 by 512 pixels; rendering locations 
were sampled using a voxel downsampling of the mesh vertices with a 
voxel size of 13.65 µm; trained on 45 manually labeled reconstructions). 
Vertex predictions were propagated to skeleton nodes by calculating 
the majority vote of the k nearest prediction locations (compartments 
with k = 50, separately stored for the two models) and which were in 
turn smoothed using a running majority vote on all neighboring nodes 
collected within a 10 µm path traversal starting from the source node.

The control for the minimal syn–mito distances was performed by 
sampling locations on the cell’s axonal compartment surface randomly 
and calculating the distance to the closest mitochondria mesh vertex 
(downsampled to a voxel size of 200 nm). For each cell, up to 1,000 
skeleton nodes that belonged to the axon (fewer if the cell contained 
fewer nodes) were drawn. For each node a random vertex from all cell 
mesh vertices, that were assigned to that node via Voronoi partitioning, 
was chosen as the control location.

The two-sided Kolmogorov–Smirnov test (using the ks_2samp 
method from the scipy package in ‘asymp’ mode and with 
alternative=‘two-sided’) returned P values of 0.0 for lower versus upper 
half size population (split using median) for GP (test statistic 0.154) 
and MSN (test statistic 0.245) and for lower versus control for GP (test 
statistic 0.195) and MSN (test statistic 0.206); N synapses GP 7,482 and 
MSN 59,131; N random control locations: GP 37,149 and MSN 6,128,974.

A manual synapse assessment was performed by J.K. and P.S. on 52 
randomly selected synapse objects (12 GP and 13 MSN from the lower half 
of synapse area distributions, and 13 GP and 14 MSN of the upper half; 51 
were classified as true synapse, 1 upper MSN as false). The synapse objects 
were selected from a subset of 100 randomly selected MSN and 38 GP cells. 
The assessment was performed blind; that is, it was hidden during the 
annotation as to which cell type and synapse size a synapse belonged to.

Cost estimation
The timing experiments were performed with a dynamically created 
SLURM cluster on the Google Cloud Platform using elasticluster 
(https://github.com/elasticluster/elasticluster). In total, 24 compute 
nodes (n1-highmem-32), each with 2 Tesla P100 GPUs, 32 virtual cores 
and 208 GB RAM, were used in combination with a Gluster filesystem 
(https://www.gluster.org/, four server nodes with SSD) and a 10 TB per-
sistent disk to store the input data (aligned EM data, cell segmentation, 
myelin, sj, mi, vc and synapse type predictions). The timed processing 
steps were grouped into CPU-only (data store, synapse extraction, 
synapse enrichment; 68.56 h at 1.812 teravoxels) and CPU + GPU (mor-
phological analysis; 8.44 h point based, 27.51 h multiview based at 1.812 
teravoxels). See Supplementary Text 3 and Extended Data Fig. 1 for 
details about timings and executed steps. Assuming GPU nodes only for 
GPU-relevant processing steps, the cost per teravoxel for the different 
categories summed to approximately US$1,200 for CPU-only (US$1.325 
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hourly rate for one CPU node, based on https://cloud.google.com/
products/calculator), US$380 for GPU + CPU (point-based; US$1,200 
for multi-view models; US$3.36 hourly rate for one GPU node) and 
US$260 for infrastructure (US$4.84 hourly rate for persistent disk and 
US$0.348 per file system server node); in total US$1,840 per teravoxel.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
All datasets are available at syconn.esc.mpcdf.mpg.de and licensed 
under the Creative Commons Attribution 4.0 International CC-BY 
license. Source data are provided with this paper.

Code availability
All source code, implemented in Python 3.7, is available on GitHub: 
SyConn2: https://github.com/StructuralNeurobiologyLab/SyConn 
(GPL-2.0 license); MorphX: https://github.com/StructuralNeuro-
biologyLab/MorphX/ (GPL-2.0 license); elektronn3: https://github.
com/ELEKTRONN/elektronn3/ (MIT license).
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Extended Data Fig. 1 | Timings of the different pipeline steps. Timings 
are grouped into synapse extraction, data store, synapse enrichment and 
morphology analysis (m.a.) with multi-views (views) and point clouds (points). 
a Compute time as a function of the processed volume (in teravoxels, TVx). Pie 
charts show the fraction of the different steps relative to the total time at the 
smallest and largest test cube (i: 0.29 million µm3, syn. extraction: 0.45, data 

store: 0.22, syn. enrichment: 0.18, m.a. (points): 0.14; ii: 4.53 million µm3, 0.58, 
0.19, 0.12, 0.11). The ‘views’ step was excluded for the ‘total’ timings and the 
pie charts (i, ii). Compute resources: 24 google cloud computing nodes (n1-
highmem-32), each with 32 virtual cores (threads), 2 Tesla P100, 208 GB memory. 
b Compute time as a function of the number of available compute nodes (8, 12, 16, 
20, 24). Processed volume: 0.391 teravoxels. Color code as in a.
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Extended Data Fig. 2 | GP and MSN synapse properties. a Box plot (median, 
lower and upper quartile; whiskers, 1.5x interquartile range above upper 
and below lower quartile; points, outlier) of the average synapse count per 
micrometer for cell types MSN (N = 6327, median: 0.017 µm−1, Q1: 0.012 µm−1, 

Q3: 0.022 µm−1) and GP (N = 38, 0.057 µm−1, 0.033 µm−1, 0.066 µm−1). Two-sided 
Mann-Whitney U test statistic: -9.71 and p-value: 2.57e-22. b Histogram of synapse 
mesh area (N synapses GP: 7,482, MSN: 59,131).
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