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Deep learning techniques for gravitational-wave parameter estimation have emerged as a fast alternative
to standard samplers—producing results of comparable accuracy. These approaches (e.g., DINGO) enable
amortized inference by training a normalizing flow to represent the Bayesian posterior conditional on
observed data. By conditioning also on the noise power spectral density (PSD) they can even account for
changing detector characteristics. However, training such networks requires knowing in advance the
distribution of PSDs expected to be observed and therefore can only take place once all data to be analyzed
have been gathered. Here, we develop a probabilistic model to forecast future PSDs, greatly increasing the
temporal scope of trained deep learning models. Using PSDs from the second LIGO-Virgo observing run
(O2)—plus just a single PSD from the beginning of the third (O3)—we show that we can train a DINGO
network to perform accurate inference throughout O3 (on 37 real events). We therefore expect this
approach to be a key component to enable the use of deep learning techniques for low-latency analyses of
gravitational waves.

DOI: 10.1103/PhysRevD.107.084046

I. INTRODUCTION

Detector noise plays a crucial role in interpreting
observations of gravitational waves (GWs). In its simplest
form, noise is assumed to be additive, stationary, and
Gaussian. This means that it is characterized in frequency
domain by its power spectral density (PSD) SnðfÞ. The GW
likelihood for parameters θ is then the probability that, after
a proposed signal hðθÞ is subtracted from data d, the
residual is noise satisfying these assumptions, i.e.,

pðdjθ; SnÞ ∝ exp

�
−
1

2
ðd − hðθÞjd − hðθÞÞSn

�
; ð1Þ

where ð·j·Þ is the noise-weighted inner product,

ðajbÞSn ¼ 4
X
I

R
Z

fmax

fmin

â�I ðfÞb̂IðfÞ
Sn;IðfÞ

df: ð2Þ

Here, â denotes the Fourier transform of a, and the sum
runs over interferometers I.
Although the LIGO [1], Virgo [2], and KAGRA [3–5]

detectors are mostly stable during an observing run, the
noise spectrum does vary over time and across detectors.
Moreover, between observing runs, detectors are upgraded,
resulting in reduced noise levels and increased sensitivity.
The particular PSDs at the time of an event must therefore
be estimated and taken into account when performing
inference. Estimation of a PSD is typically carried out
using either data adjacent to an event (off-source, Welch
method [6]) or by jointly modeling the signal and noise
from the on-source data (e.g., BayesWave [7,8]). The PSD is
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then inserted into the likelihood and samples are drawn from
the posterior pðθjd; SnÞ using Markov chain Monte Carlo
[9] or nested sampling methods [10–12].
An emerging alternative to classical likelihood-based

inference is simulation-based inference using probabilistic
deep learning [13–22]. Technologies such as normalizing
flows enable neural networks to describe complex condi-
tional probability distributions. A conditional density
estimator qðθjdÞ can be trained using simulated data to
approximate pðθjdÞ such that once a detection is made,
samples can be drawn in seconds. To incorporate varying
noise PSDs into these methods, the estimate of Sn is
provided as additional context to the network, i.e.,
qðθjd; SnÞ. During training, random PSDs are drawn from
an empirical distribution pðSnÞ estimated from signal-free
data during an observing run. Simulated data are then
constructed based on these PSDs, and the PSD is provided
as context. At inference time, the network is effectively
“tuned” to the interferometers at the time of detection. This
approach (called DINGO [19]) fully amortizes training
costs across all detections within an observing run and has
been shown to produce results nearly indistinguishable
from classical samplers.
The approach described requires access to the empirical

distribution pðSnÞ of PSDs during an observing run. This
makes it unsuitable for online parameter estimation (e.g., to
provide alerts to electromagnetic telescopes) since the
distribution pðSnÞ covering future observations is unavail-
able at the time of network training. Thus, a network trained
with an empirical PSD distribution can only be used for a
limited time—once the PSDs change too much, the
measured data become out of distribution. Such a disagree-
ment between training and inference distributions can lead
to inaccurate results (Fig. 1). Here, we address this problem
and provide a solution for training DINGO models robustly
to better adapt to shifting distributions. Although our main
motivation is the DINGO pipeline, the proposed method
can in fact be used to improve the robustness of any
machine learning method for gravitational-wave search or
inference that requires noise PSDs for training.
During training, DINGO models qðθjd; SnÞ estimate a

distribution conditional on (as opposed to marginalized
over) the PSD Sn. We are therefore not restricted to using
(an approximation to) the real distribution pðSnÞ of PSDs;
instead, we can use a synthetic distribution qðSnÞ whose
support contains that of pðSnÞ. In other words, if
supppðSnÞ ⊆ supp qðSnÞ, then the DINGO model trained
with qðSnÞ can be used for the entire observing run.
In this work, we develop a parametrized latent variable

model for qðSnÞ, which we fit to PSDs from a previous
observing run. It is then straightforward to modify this
distribution of PSDs via operations on the latent space. In
particular, we use a one-shot observation from an upgraded
detector to shift the latent space distribution coarsely to the
expected noise level. Further, we broaden the spread of

PSDs by blurring the latent space distribution. Our model
qðSnÞ thereby represents a broad distribution over PSDs,
which is capable of capturing variations throughout an
observing run.
We evaluate our approach on the third LIGO-Virgo-

KAGRA (LVK) observing run (O3) by analyzing 390
simulated and 37 real GW events [24]. We train DINGO
with our PSD model and consistently find similar perfor-
mance to DINGO trained with real O3 PSDs. Since our
PSD model only uses O2 data and a single PSD from the
beginning of O3, this demonstrates that our approach is
indeed capable of preparing DINGO for unseen PSD
changes.

II. METHODS

In probabilistic modeling, a latent variable model [25–27]
enables efficient sampling of new data given an empirical
distribution. We define a latent variable model for the
PSDs as

qðSnÞ ¼
Z

qðSnjzÞqzðzÞdz ð3Þ

with latent variables z that we describe below. We use a
fixed parametrization for qðSnjzÞ to integrate knowledge
about the data generating process into the model. PSD data

FIG. 1. Posterior for GW200208_130117. Results from
DINGO models trained only with empirically estimated detec-
tor-noise PSDs from the beginning of an observing run (orange)
may deviate visibly from the reference (blue, obtained using
importance sampling [23]). DINGO models trained with our
proposed synthetic PSD model (red) achieve much more accurate
results, on par with using PSDs estimated throughout the entire
observing run (black). Our PSD model therefore enables DINGO
to adapt to unseen drifts of the PSDs without retraining.
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can then be fitted via the distribution qzðzÞ over the latent
variables. This provides an interpretable framework, ena-
bling systematic interventions on the PSD distribution.
Synthetic PSDs can then be generated by sampling z ∼
qzðzÞ and reconstructing z back to frequency space via
qðSnjzÞ. This pipeline is visualized in Fig. 2; next we
explain the individual components in detail.

A. Parametrization of qðSnjzÞ
We aim to design a model qðSnÞ with sufficient expres-

siveness to capture every realistic PSD. On the other hand,
the latent space should be low dimensional and maximally
disentangled, such that the distribution qzðzÞ partially
factorizes. In particular, the latent features z should model
those PSD characteristics that are likely to change over
time. This increases the data efficiency and robustness of
our model under distribution shifts. These requirements
inform our design of qðSnjzÞ. The following computations
are carried out in log space.
We leverage domain knowledge to parametrize the

latent feature space explicitly. Each PSD is represented
by a n-dimensional vector Sn ∈ Rn for uniformly distrib-
uted frequency bins f1;…; fn in the range ½fmin; fmax�.
According to [28], Sn can be decomposed into two
main components, the smooth broadband noise b ∈ Rn

and a sum of high-power spectral lines
P

i si ∈ Rn.
Improvements to the detectors are intended to reduce the

impact of the broadband noise, making it likely to change
over time. The position and shape of the spectral lines may
vary on much shorter timescales. We thus model these
components independently. We further assume independent
additive Gaussian noise with constant variance σ2 in each
frequency bin.
With these assumptions, our model reads

qðSnjzÞ ¼ N
�
bþ

Xl

i¼1

si; σ2In

�
; ð4Þ

where In denotes the n × n identity matrix. In latent space,
the broadband noise is represented by k values y1;…; yk ∈
Rþ on fixed log-spaced frequency nodes x1;…; xk. The
logarithmic distribution accounts for larger fluctuations of
the broadband noise in lower frequency regions. b is then
obtained from its latent representation via cubic spline
interpolation between the nodes.
Each spectral line si is represented by parameters

f0i; Ai; Qi, denoting the center, height, and width of a
truncated Cauchy distribution, respectively, i.e.,

si½f0i; Ai; Qi�ðfÞ ¼
wðf; f0iÞAif40i

ðf0ifÞ2 þ ðQiðf20i − f2ÞÞ2 ; ð5Þ

with

wðf; f0iÞ ¼
8<
:

1; if jf − f0ij ≤ δ;

exp
�
− jf−f0ij

δ

�
; otherwise;

ð6Þ

similar to [28]. To efficiently treat a varying number of
spectral lines per PSD, we segment the frequency range
into l equally wide intervals and model a single spectral
line within each. Absence of a spectral line is modeled
with Ai ≈ 0. We do not find that restricting to one line per
interval hinders DINGO performance in practice, pro-
vided the number of intervals is sufficiently large;
see Fig. 3 (upper panel). In our experiments, we used
k ¼ 30 and l ¼ 400 over a frequency range of
½fmin; fmax� ¼ ½20; 2048� Hz. If desired, the model could
be extended to use overlapping intervals. In this case, each
spectral distribution would no longer be independent, but
rather conditional on the parameters of the preceding
frequency interval.
We found that σ2 does not vary significantly between

different PSDs. We therefore use a fixed value for σ2

(estimated from the variance of the observed broadband
noise) and do not consider it as part of our latent space.
Summarizing, our mapping from the latent space to
frequency space reads

FIG. 2. Overview of the PSD generation pipeline. The PSDs
from the previous observing run and a single PSD from the target
observing run are used for fitting the latent distribution qzðzÞ, as
indicated by the dashed arrows. We can then generate synthetic
PSDs by first sampling latent variables in z ∼ qzðzÞ. These are
then reconstructed back to frequency space via qðSnjzÞ, obtaining
a synthetic PSD distribution qðSnÞ.
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z ¼

0
BBBBB@

y1;…; yk;

f01; A1; Q1;

..

.

f0l; Al; Ql

1
CCCCCA

↦ Sn: ð7Þ

The dimensionality of our latent space is d ¼ kþ 3l.

B. Fitting the latent distribution qzðzÞ
We fit qzðzÞ based on an empirical distribution of PSDs

estimated from detector data. We estimate this collection of
PSDs using Welch’s method applied to signal-free data
stretches during the previous observing run. We then
project these onto the latent space using maximum-like-
lihood estimation and obtain qzðzÞ as the product of
Gaussian kernel density estimates (KDEs) of these projec-
tions. This gives a tractable approximation to the true latent
distribution. Importantly, having an analytic KDE provides

flexibility to widen qzðzÞ by increasing the KDE
bandwidth.
We perform the maximum-likelihood projection onto the

latent space in two steps. We first estimate the spline
parameters y1;…; yk for the broadband noise as the sample
mean of the PSD in the vicinity of the corresponding xi.
Since the broadband noise should not model the spectral
lines, we apply a filter before this step.1 Once the broad-
band noise is fitted, we subtract it from the PSD to fit the
spectral lines. Specifically, we obtain ðf0i; Ai; QiÞ by
solving the least-squares problem

ðf0i; Ai; QiÞ ¼ arg min
ðf̃;Ã;Q̃Þ

σ−2rr⊤;

r ¼ rðf; A;QÞ ¼ Sn − ðbþ siðf; A;QÞÞ; ð8Þ

over each interval i. Together, these two steps correspond to
a maximum-likelihood estimate of z for (4) with fixed σ2.
On eight CPU cores, it takes less than a minute to obtain the
latent maximum-likelihood estimate zMLE for each PSD,
and this procedure is straightforwardly parallelizable.
Indeed, this fast calculation (compared to ≈1 h for
BayesLine [28]) is one reason for choosing this simpler
approach when building our PSD model.
Having computed zMLE for each PSD from the empirical

distribution, we next use KDEs to obtain qzðzÞ. We use a
separate KDE for each “independent” noise source and then
combine them multiplicatively. For the broadband noise, we
partition the frequency range into three intervals according
to the most dominant noise source: F 1 ¼ ½fmin; 30 Hz� for
seismic noise,F 2 ¼ ½30 Hz; 100 Hz� for thermal noise, and
F 3 ¼ ½100 Hz; fmax� for shot noise [28]. Since these noise
sources should be largely independent of each other, we use
individual KDEs for each subset fyijxi ∈ F jg. These
subsets do not overlap, so the reconstructed spline naturally
agrees on the boundary between intervals F i. Similarly, the
spectral lines are modeled independently, so we use a
separate KDE for each set of parameters ðf0i; Ai; QiÞ.
The latent distribution is then given as the product of the
3þ l individual KDEs.
The independence assumption made above, and the

corresponding partial factorization of qzðzÞ into 3þ l
independent distributions, serves two purposes. First, it
provides broader coverage of the latent space compared to
an unfactorized KDE. Second, it decorrelates factors of
variation that are independent so that trained networks do
not learn to expect spurious correlations that exist in the
empirical PSDs. In particular, this allows the PSD model to
capture a greater variety of noise curves. Both of these
effects ensure that trained networks are generally more

FIG. 3. Upper: comparison of a real O2 PSD and its repre-
sentation under the latent variable model. Since l ¼ 400 is
sufficiently large, we can accurately model spectral lines that
are close together (at around 300 Hz). Lower: comparison of a
synthetic PSD (dark gray) and two real PSDs from O3a (blue) and
O3b (orange). The synthetic PSD was sampled from a model
trained on O2 noise, rescaled to O3. In the background (light
gray) we include the envelope (1st–99th percentile) of the
synthetic broadband distribution. By shifting the broadband
noise level (see Sec. II C), we match the overall scale of O3
PSDs. By broadening the distribution, we ensure that PSDs from
both O3a and O3b are covered.

1We compute a running median over the neighborhood sets of
each xi. Every data point that deviates by more than 3 standard
deviations from the running median is marked as an outlier and
ignored for the fit of the broadband noise.
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robust with respect to changes in the PSD so that they can
adapt to unseen data.

C. Interventions in latent space

The latent space is much lower dimensional than the raw
PSD space and has features that correspond to the main
components comprising a PSD. By intervening in this
space (i.e., changing the PSD distribution at the level of the
latent space) we can therefore naturally adapt the PSD
distribution to changing detector-noise characteristics. We
perform two such types of interventions: (1) we shift the
broadband noise to account for improved detector sensi-
tivity, and (2) we broaden the distribution to account for
uncertainty in the estimated broadband shift and other
unmodeled detector changes.
For (1), we rescale the latent distribution over y1;…; yk

according to an estimated PSD from early in the target run.
Given a single PSD Stargetn from the target run, we shift the
distribution over yi so that its mean corresponds to the
target PSD, i.e.,

yi ↦ yi − E½yi� þ ytargeti : ð9Þ

Here, ytargeti refers to the latent features corresponding to
Stargetn . The resulting distribution corresponds to variations
in all latent variables inferred from past data, but with
broadband noise level shifted to that of the target observing
run. Note that this works even when Stargetn is not close to the
mean of the target run, as long as the difference is small
compared to the variance of the estimated distribution.
Such shifts are particularly useful to flexibly change the
shape of the noise curves, which may be required after
major detector upgrades.
The broadening (2) is controlled by the KDE bandwidth

parameter, and it improves the robustness of DINGO
networks trained with the synthetic noise distribution. A
larger bandwidth parameter can compensate for more
significant shifts in the PSD distribution, although it
may require higher learning capacity.
In Fig. 3, we illustrate how these interventions on the

latent space ensure that synthetically generated PSDs match
the broadband noise level of O3 PSDs (lower panel),
despite the difference in scale between O2 and O3.

III. RESULTS

We prepare DINGO networks with the settings
from [19]. In particular, we use the waveform model
IMRPhenomPv2 [29–31] with frequency-domain data in
the range [20, 1024] Hz, Δf ¼ 0.125 Hz, and the same
prior. We train three networks, each with a different noise
PSD dataset: (1) the Oracle dataset consists of PSDs
estimated from real O3a and O3b detector noise
(∼5000 PSDs per detector); (2) the Synthetic dataset is
sampled with our proposed method, using only O2 data

and a single PSD from the start of O3 (50,000 PSDs
per detector); and (3) the Naive baseline dataset consists of
real PSDs from the first four days of O3a (100 PSDs per
detector). The Oracle dataset encompasses the real PSDs
that DINGO encounters at inference time, so this should be
an upper bound for the performance of our method. On the
other hand, the Naive dataset is based only on data
available at the beginning of O3, so to be useful our
method should significantly outperform this baseline.
We evaluate the three DINGO networks on simulated and

real strain data. To assess performance, we compare against
reference posteriors. Since we analyze more than 400 events,
generating these using stochastic samplers is not feasible.
Instead, we generate reference posteriors by importance
weighting the DINGO results produced with the Oracle PSD
dataset, which provides verified inference results at low
computational cost (DINGO-IS) [23]. To save computational
time, we further use phase marginalization when calculating
the likelihoods [9,32,33]. We note that with precessing
waveforms this is only an approximation, but for
IMRPhenomPv2 the error introduced is small. See [23]
for an alternative approach to generate the phase in the
presence of higher modes. For a comparison of DINGO-IS
against BILBY-DYNESTY see Appendix A.

A. Simulated data

We first evaluate inference results when solely the PSD is
varied in the strain data. To this end, we sample gravita-
tional-wave parameters from the prior and inject the signal
into identical noise realizations that are scaled with differ-
ent PSDs. Specifically, we choose 26 real PSDs from O3,
evenly spaced in time over the course of one year. The
injection strains are then analyzed using each of the three
DINGO networks.
Figure 4 shows the mean Jensen-Shannon divergence

(JSD) [34] between DINGO and DINGO-IS posteriors for
chirp mass (M), luminosity distance (dL), and sky
position (α, δ). These parameters have been found to be
most significantly impacted by conditioning the network
on an incorrect PSD at inference time [19]. (We find a
similar trend for training with incomplete PSD informa-
tion.) Results for all 15 parameters are provided in
Appendix B, showing a similar qualitative behavior to
the parameters reported here.
At the beginning of the observing run, we observe

similar accuracy for all three networks. This is not
surprising, as the PSDs are still captured by the Naive
dataset at this point. However, as PSDs drift away from
their initial distribution, the performance of the Naive
baseline decreases substantially, with JSDs increasing by
1–2 orders of magnitude. The effect is particularly striking
at the transition from O3a to O3b. This demonstrates that
the Naive baseline indeed fails to generalize well to unseen
PSDs. The Oracle network on the other hand shows
excellent performance throughout the entire duration of
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O3, with JSDs around 2 × 10−3 nat.2 This is also expected,
since the Oracle network has access to PSDs from the entire
duration of O3 during training.
Finally, with the Synthetic PSD dataset, DINGO accu-

racy approaches that of the Oracle network—even for PSDs

recorded almost a year after the PSD used to recalibrate the
Synthetic dataset (enlarged parts in Fig. 4). It far outper-
forms the Naive baseline, demonstrating that, with our
proposed method, DINGO can indeed be trained to general-
ize to unseen PSDs, with at most a small decrease in
accuracy.
In the same experiment, we study the sample efficiency ϵ

when using the inferred DINGO posterior as a proposal

FIG. 4. JSDs between DINGO and reference samples. Injections use noise PSDs estimated at various times throughout O3 (indicated
on horizontal axis). Results are averaged over injections with five random sets of source parameters (fixed for all PSDs). Day 0 marks the
beginning of O3a. The gap indicates the period when detectors were off-line between O3a and O3b.

FIG. 5. Importance sampling efficiency ϵ for DINGO models. Injections use noise PSDs estimated at various times throughout
O3 (indicated on horizontal axis). Results are averaged over injections with five random sets of source parameters (fixed for all PSDs).
Day 0 marks the beginning of O3a. The gap indicates the period when detectors were off-line between O3a and O3b.

2For comparison, a maximum JSD of 2 × 10−3 nat has been
established as a bound for indistinguishability in [10].
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distribution for importance sampling [23] (Fig. 5). Small
values of ϵ have been found to flag failure cases of the
inference network, e.g., caused by out-of-distribution data,
establishing it as another quality measure of the DINGO
posteriors. For the Naive baseline, ϵ decreases with time
and plummets after the transition from O3a to O3b. In
contrast, the Oracle and Synthetic networks provide a
consistently high sample efficiency of ϵ ≈ 30%. As a
performance metric, ϵ is sensitive to deviations in full
parameter space, including high-dimensional correlations.
Figure 5 thus confirms the trend observed for the JSDs and
demonstrates that the Synthetic PSD dataset can be used to
ensure a high efficiency of DINGO-IS throughout an
observing run.

B. Real data

We now perform a large study on real data [24],
analyzing all 37 binary black hole events from GWTC-2
and GWTC-3 that are consistent with the training prior.
Here, we use four different DINGO models with distance
priors [0.1, 2], [0.1, 4], [0.1, 6], and [0.1, 12] Gpc. The
mean JSDs over all 15 parameters are reported in Table I.
Generally, the scores fluctuate more compared to the highly
controlled simulated data, in that the noise realizations vary
and can be nonstationary or non-Gaussian, and real signals
do not precisely match models. GW190527_092055, for
example, is more difficult for the Oracle network even
though the PSD is covered by the training dataset. We see
that the trend observed for simulated data translates to real
events and all 15 parameters. The decreasing accuracy for
the Naive baseline becomes particularly apparent after the
transition from O3a to O3b. With our proposed Synthetic
noise model, however, the accuracy is maintained through-
out the entire observing run and on par with the Oracle
performance. This showcases, once again, that our
approach is indeed capable of forecasting shifts in the
PSD distribution and to enable robust inference.
GW190517_055101 has a high mean JSD for all three

datasets, suggesting that the poor performance is not due to
an out-of-distribution PSD. Across all events (except
GW190517_055101) and parameters, we obtain average
JSDs of 1.2 × 10−3 nat for the Oracle noise dataset,
1.4 × 10−3 nat with the Synthetic noise dataset, and
2.7 × 10−3 nat with the Naive noise dataset. We thus
conclude that our approach serves as a convincing replace-
ment to the empirical PSD distribution when full PSD
information is unavailable.
We report the importance sampling efficiency for all

analyzed events in Table II. We see that high overall scores
are achieved with all PSD datasets, although scores are
usually lowest with the Naive noise dataset. Compared to
the simulated events of Sec. III A, the downward trend in
sampling efficiency for the Naive noise dataset is somewhat
less clear. This is likely due to varying noise realizations
and source parameters across real events, which introduce

additional complications when comparing sampling effi-
ciencies. For visual comparison, we include corner plots of
selected events in Appendix B.

TABLE I. Thirty-seven binary black hole events from GWTC-2
and GWTC-3 analyzed with DINGO trained with three different
PSD datasets. We report the JSD (in units of 10−3 nat) between
DINGO and reference posteriors, averaged over all inferred
source parameters.

Noise datasets

Event Oracle Synthetic Naive

GW190408_181802 2.1 4.0 3.1
GW190413_052954 0.2 0.5 0.4
GW190413_134308 0.9 0.6 2.0
GW190421_213856 0.3 0.4 0.5
GW190503_185404 1.1 2.7 1.6
GW190513_205428 2.1 3.7 2.9
GW190514_065416 0.5 0.5 0.7
GW190517_055101 21.3 25.4 14.2
GW190519_153544 1.2 1.4 1.2
GW190521_074359 1.4 2.4 2.7
GW190527_092055 5.5 2.1 1.4
GW190602_175927 1.9 1.9 3.3
GW190701_203306 1.2 1.4 1.4
GW190719_215514 0.7 0.3 0.4
GW190727_060333 0.3 0.6 0.6
GW190731_140936 0.3 0.4 1.1
GW190803_022701 0.6 0.3 1.4
GW190805_211137 0.3 0.4 1.1
GW190828_063405 0.7 2.1 2.6

Noise datasets

Event Oracle Synthetic Naive

GW190909_114149 0.4 0.5 0.9
GW190915_235702 0.8 0.7 1.4
GW190926_050336 1.7 1.8 1.8
O3b ↓
GW191127_050227 3.5 1.7 3.2
GW191204_110529 3.1 4.4 6.1
GW191215_223052 0.8 1.1 2.8
GW191222_033537 0.4 0.5 1.4
GW191230_180458 0.3 0.4 0.7
GW200128_022011 0.6 1.0 2.9
GW200129_065458 2.6 1.6 5.3
GW200208_130117 0.5 0.6 5.5
GW200208_222617 2.3 2.3 3.1
GW200209_085452 1.3 1.8 2.2
GW200216_220804 0.4 0.9 3.5
GW200219_094415 0.8 1.0 4.0
GW200220_124850 0.2 0.3 0.7
GW200224_222234 0.7 1.4 14.5
GW200311_115853 1.6 2.6 10.2
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C. Discussion

We compared the performance of DINGO inference
networks trained with empirical and synthetic PSD dis-
tributions. In training, these distributions are represented
as a finite set of PSD samples, and the empirical

distributions consist of far fewer samples per detector
(Naive, 100 PSDs; Oracle, ∼5000 PSDs) than the
Synthetic distribution (50,000 PSDs). The unbalanced
nature of these datasets may impact our results, since
more training samples naturally lead to better generaliza-
tion. However, the effectively unlimited number of syn-
thetic samples available should be viewed as an advantage,
and in practice, the number of available samples will
always depend on the estimation method. Indeed, for the
Naive dataset, which consists of PSDs from the first four
days of O3, the data scarcity severely limits the number of
available PSDs. Therefore, using unbalanced datasets
correctly reflects the practical considerations. Generally,
however, our results showing a time-dependent perfor-
mance decay for the Naive dataset indicate that the
distribution shift has a far more significant effect on
performance than the size of the dataset.

IV. CONCLUSIONS

We developed a probabilistic model for detector-noise
PSDs to improve training for flow-based GW inference and
enable low-latency analyses. The PSD model can be fitted
to empirical distributions and then rapidly sampled to
obtain synthetic PSDs. By design, the PSD model operates
on an interpretable latent space, such that samples can be
modified in a physically meaningful way. This allows for
data-efficient modeling of distribution shifts, as may occur
between LVK observing runs.
In our experiments, we fitted a PSD distribution based on

data from the second observing run (O2) and predicted the
updated distribution for O3 based on only a single PSD
from the beginning of O3. We demonstrated on simulated
and real GW events that DINGO models trained with these
synthetic O3 PSDs perform accurate inference throughout
the entire run (∼1 yr). We found comparable performance
to DINGO models that have direct access to the entire O3
PSD distribution. This is in stark contrast to DINGO
models trained with PSDs from the first few days of O3,
for which the accuracy strongly degrades over time.
Our approach crucially hinges on the conditioning of

DINGO models on the PSD. Indeed, we do not need to
predict specific distribution shifts; instead, it is merely
necessary that PSDs encountered at inference time lie
within the support of the training distribution. Anticipated
distribution shifts are addressed in two ways: first, the
broadband noise is shifted to better match the target;
second, the PSD distribution is artificially broadened to
account for unknown (future) variations. Our synthetic
distribution thereby captures unseen distribution shifts, at
the cost of being somewhat broader than necessary. While
this may generally require increased learning capacity, we
have not observed this as a limiting factor in our
experiments.
These systematic interventions on the PSD distribution

are enabled by the design of our PSD model. We

TABLE II. Importance sampling efficiency ϵ for DINGO net-
works trained with three different PSD datasets, based on
100,000 samples per analysis. Since the variance of ϵ between
identical importance sampling runs can be high, we here report
median scores over ten runs for each event.

Noise datasets

Event Oracle Synthetic Naive

GW190408_181802 28.5 19.4 17.3
GW190413_052954 44.6 45.0 41.9
GW190413_134308 41.0 49.3 43.6
GW190421_213856 51.1 46.2 44.7
GW190503_185404 46.9 40.4 35.4
GW190513_205428 28.4 28.0 16.0
GW190514_065416 34.5 37.5 37.3
GW190517_055101 20.5 13.6 23.0
GW190519_153544 41.0 41.7 25.3
GW190521_074359 30.9 27.8 18.9
GW190527_092055 25.8 33.6 28.6
GW190602_175927 41.7 46.0 38.8
GW190701_203306 27.5 33.5 26.4
GW190719_215514 24.3 22.9 23.4
GW190727_060333 42.7 48.7 31.1
GW190731_140936 46.5 47.7 33.9
GW190803_022701 51.8 45.5 48.0
GW190805_211137 50.1 51.8 39.2
GW190828_063405 50.8 35.4 34.2

Noise datasets

Event Oracle Synthetic Naive

GW190909_114149 32.9 17.6 22.5
GW190915_235702 49.3 48.7 45.1
GW190926_050336 30.8 22.1 27.7
O3b ↓
GW191127_050227 2.8 3.9 2.5
GW191204_110529 19.3 20.1 17.1
GW191215_223052 45.0 44.1 28.9
GW191222_033537 46.6 47.6 39.7
GW191230_180458 41.3 40.3 40.5
GW200128_022011 33.9 29.8 29.8
GW200129_065458 27.4 30.9 8.2
GW200208_130117 48.7 47.8 41.7
GW200208_222617 9.5 15.5 13.9
GW200209_085452 16.7 13.1 16.6
GW200216_220804 33.7 32.5 30.6
GW200219_094415 25.4 22.6 23.3
GW200220_124850 49.9 47.7 46.6
GW200224_222234 49.5 36.0 9.5
GW200311_115853 43.9 41.8 16.3
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disentangle independent factors of variations by separating
spectral lines from the broadband noise, both of which are
represented in a latent space.
Our framework further provides a tractable evidence of

PSDs under the estimated distribution, which can be used
to quantify distribution shifts. Going forward, this metric
could be used to verify that our PSD model continues to
work well between future observing runs, e.g., O3 and O4.
A low evidence would then flag a distribution shift and
indicate that retraining the network may be required.
Moreover, for individual events, results can be validated
using importance sampling [23].
Techniques for parametrizing and estimating PSDs such

as BayesWave [7] and BayesLine [28] have been success-
fully applied to spectral estimation and accurate posterior
inference, and our method indeed draws inspiration from
these. However, our goal is to model a distribution of PSDs,
whereas these methods are designed to estimate a single
PSD. Our work in fact complements these methods: by
setting σ2 ¼ 0, we can model smooth broadband noise,
such that our synthetic PSDs closely resemble those of
BayesWave (as opposed to noisier Welch PSDs). By
training DINGO networks using σ2 ¼ 0 synthetic PSDs,
we therefore hope to enable inference with BayesWave
PSDs as context.
Our PSD model represents a key component in training

flow-based inference networks for low-latency analysis of
GW data—enabling complete parameter estimation in real
time, with no retraining even for unseen PSD distribution
shifts (as expected during an observing run). Once DINGO
is extended to binary neutron stars, this will play a crucial
role in delivering rapid and accurate multimessenger alerts.

This research has made use of data or software obtained
from the Gravitational Wave Open Science Center [24].
The code underlying the proposed method is available as

part of the DINGO package at Ref. [35].
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APPENDIX A: COMPARISON TO
OTHER SAMPLERS

In our experiments,weused importance sampling toverify
the accuracy of DINGO networks trained with various noise
PSD datasets. This approach, called DINGO-IS, has been
shown to generate accurate posterior distributions, given a
high effective sample size [23]. To validate this claim, and to
compare our proposed method with nested sampling, we ran
BILBY [11] with the DYNESTY [12] sampler for all 37 real
events in Sec. III B. The box-and-whisker plot of the JSDs
between all one-dimensional marginal distributions is pre-
sented in Fig. 7. In most cases, the maximum divergences
between DINGO-IS and BILBY are well below the indis-
tinguishability threshold of 2 × 10−3 nat. For events exceed-
ing this threshold, only a small number of parameters are
problematic, and the effective sample size is relatively low;
see Table II. Overall, we obtain an average maximum JSD of
1.3 × 10−3 nat and an average mean JSD of 0.4 × 10−3 nat
between DINGO-IS and BILBY, confirming the effectiveness
ofDINGO-IS for producing reference posterior distributions.
Figure 8, row 3, further compares typical- and worst-case
deviations qualitatively. In the typical case, the deviation
between DINGO-IS and BILBY is barely visible. While
results with DINGO-IS are not perfectly aligned with
BILBY’s prediction in the worst case, our proposed method
still produces distributions that are very close to those
of BILBY.

APPENDIX B: ADDITIONAL RESULTS

Figure 6 shows the mean (top) and maximum
(bottom) JSDs between various DINGO posteriors and
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reference samples, across all inferred parameters, for the
study on simulated data in Sec. III A. We see that the
network trained with Synthetic PSDs on average per-
forms similar to that trained with full PSD infor-
mation (Oracle), with minor deviations for those
parameters that are estimated the worst. The average
JSD for the Oracle dataset is ð1.6� 0.7Þ × 10−3 nat, for
Synthetic is ð2.0� 0.9Þ × 10−3 nat, and for Naive is
ð19.1� 18.8Þ × 10−3 nat.
In Fig. 8, we compare posterior marginal distributions

of selected O3 events between the reference posterior and
our DINGO models. The events in the top row corre-
spond to small and average JSDs between DINGO
trained with the Synthetic noise PSD dataset and the
reference posterior in Table I. With the Synthetic PSD
distributions, we obtain excellent visual agreement with
the reference, even improving upon the Oracle PSD
distribution in the case of GW190413_134308. By

contrast, the Naive noise model can lead to significant
deviations. In the middle row, we selected two events for
which DINGO’s predictions with the Synthetic noise
dataset deviate the most from the reference distributions.
However, we do not believe that these inaccuracies are
related to the PSD dataset since they are present even
when using Oracle.

FIG. 7. Comparison of posterior distributions obtained with
DINGO-IS and BILBY DYNESTY. We here report the median,
quartiles and 1.5 interquartile range whiskers of the JSDs
between all one-dimensional marginal distributions. The dotted
line marks the indistinguishability threshold for the maximum
JSD established in [10].

FIG. 6. Average (top) and maximum (bottom) JSDs over all
parameters between DINGO samples and reference samples.
Injections use noise PSDs estimated at various times throughout
O3 (indicated on horizontal axis). Results are averaged over
injections with five random sets of source parameters (fixed for
all PSDs). Day 0 marks the beginning of O3a. The gap indicates
the period when detectors were off-line between O3a and O3b.
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GW190413 134308
Reference
Naive Noise
Synthetic Noise
Oracle Noise

GW200224 222234
Reference
Naive Noise
Synthetic Noise
Oracle Noise

GW190517 055101
Reference
Naive Noise
Synthetic Noise
Oracle Noise

GW191204 110529
Reference
Naive Noise
Synthetic Noise
Oracle Noise

GW200219 094415
Reference
Bilby
Synthetic Noise

GW191127 050227
Reference
Bilby
Synthetic Noise

FIG. 8. Marginalized one- and two-dimensional posterior distributions for selected O3 events. Contours represent 50% and 90%
credible regions. In the first two rows, we compare DINGO models trained with different PSD datasets to the reference posterior (blue,
obtained with importance sampling [23]). Events were chosen to represent small to average deviations between Synthetic and the
reference (top row) and worst-case deviations (middle row). In the bottom row, we further compare our reference results to BILBY (gray),
showing an event with average deviation (left) and the event with the largest deviation (right).
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