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Abstract

Rotation with thermally induced buoyancy governs many astrophysical and
geophysical processes in the atmosphere, ocean, sun, and Earth’s liquid-
metal outer core. Rotating Rayleigh–Bénard convection (RRBC) is an
experimental system that has features of rotation and buoyancy,where a con-
tainer of height H and temperature difference � between its bottom and
top is rotated about its vertical axis with angular velocity �. The strength
of buoyancy is reflected in the Rayleigh number (∼H 3�) and that of the
Coriolis force in the Ekman and Rossby numbers (∼�−1). Rotation sup-
presses the convective onset, introduces instabilities, changes the velocity
boundary layers, modifies the shape of thermal structures from plumes to
vortical columns, affects the large-scale circulation, and can decrease or en-
hance global heat transport depending on buoyant and Coriolis forcing.
RRBC is an extremely rich system, with features directly comparable to
geophysical and astrophysical phenomena. Here we review RRBC studies,
suggest a unifying heat transport scaling approach for the transition between
rotation-dominated and buoyancy-dominated regimes in RRBC, and discuss
non-Oberbeck–Boussinesq and centrifugal effects.
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1. INTRODUCTION TO ROTATING RAYLEIGH–BÉNARD
CONVECTION

Rotating Rayleigh–Bénard convection (RRBC) (Chandrasekhar 1953,Nakagawa&Frenzen 1955,
Veronis 1959, Rossby 1969, Lucas et al. 1983, Boubnov & Golitsyn 1986, Zhong et al. 1993,
Boubnov & Golitsyn 1995, Julien et al. 1996, Knobloch 1998, Hart et al. 2002, Vorobieff &
Ecke 2002, Stevens et al. 2013, Kunnen 2021) is considerably more complex than its nonrotating
counterpart (Ahlers et al. 2009b). Instead of three dimensionless control parameters in classical
Rayleigh–Bénard convection (RBC)—the Rayleigh number Ra, the Prandtl number Pr, and the
container geometry, represented by its aspect ratio �—there are two additional parameters in
RRBC, the rotation rate in the Ekman number Ek (alternatively, the Taylor number T a or convec-
tive Rossby number Ro), and centrifugal acceleration in the Froude number Fr (see the sidebar
titledDimensionlessQuantities in RRBC). Some of the complexity of RRBC comes from the pres-
ence of two linear instabilities associated with the onset of convection: one from the conductive
state to convection in the bulk for a laterally infinite system (Chandrasekhar 1953) and another
occurring at smallerRa to a state of traveling wall modes localized near the vertical boundaries of
the container (Rossby 1969, Buell &Catton 1983, Pfotenhauer et al. 1987, Zhong et al. 1991, Ecke
et al. 1992). Another important feature of bulk RRBC is that the nonlinear state is subject to a non-
linear instability [e.g., the Küppers–Lortz instability (Küppers & Lortz 1969, Cox & Matthews
2000)] so that the observed states of bulk convection even near onset are always time depen-
dent (e.g., Zhong et al. 1993, Ning & Ecke 1993). Finally, there is a regime of quasi-geostrophic
convection and geostrophic turbulence [Boubnov & Golitsyn 1986; Sakai 1997; Sprague et al.
2006; Julien et al. 2012a,b; Kunnen 2021] where in the limit of rapid rotation the Coriolis force
is dominantly balanced by the pressure gradient. This regime is associated with astrophysical and
geophysical flows (Pedlosky 1987, Glatzmaier 2014).

RRBC has enjoyed a renaissance in the past decade, with numerous advances on theoretical,
experimental, and numerical fronts. This review aims to sort out the main complexities in

DIMENSIONLESS QUANTITIES IN RRBC

Dimensionless Control Parameters in RRBC

Rayleigh number: Ra ≡ τκτν/τff
2 = αg�H3/(κν ), the ratio of buoyancy to diffusion

Critical Rayleigh number for onset of bulk convection: ε ≡ R̃a− 1, with R̃a ≡ Ra/Rac
Prandtl number: Pr ≡ τκ/τν = ν/κ , the ratio of momentum diffusion to heat diffusion
Ekman number: Ek ≡ τ�/τν = ν/(2�H2), the ratio of viscous to Coriolis forces
Taylor number: T a ≡ (τν/τ� )2 = Ek−2, the ratio of Coriolis to viscous forces (an alternative to Ek)
Rossby number: Ro≡ τ�/τff = Ek

√
Ra/Pr, the ratio of buoyancy to rotation

Froude number: Fr ≡ (τff/τc )2�/2 = �2R/g, the ratio of centrifugal to gravitational forces
Centrifugal Rossby number: Roc ≡ τ�/τc = √

α�/2, the ratio of centrifugal to Coriolis forces
Aspect ratio: � � D/H, the ratio of diameter to height of a cylindrical convection cell

Dimensionless Global Response Quantities in RRBC

Reynolds number: Re ≡ τν/τi =UH/ν, the ratio of inertia to momentum diffusion
Nusselt number: Nu ≡ q/q0, the ratio of total to conductive heat flux; in the Oberbeck–Boussinesq case, Nu =
(〈uzT 〉z − κ∂z〈T 〉z )/(κ�/H ), with 〈·〉z time average over cross sections at height z; Nu0 is the Nusselt number in
nonrotating RBC for given Ra and fluid and container properties
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OB:
Oberbeck–Boussinesq

BC: boundary
condition

turbulent RRBC and put the subject on a firm foundation. For that purpose, we confine our
review to RRBC with Pr > 0.7 and leave out the very interesting topics of open-surface flows
(e.g., Boubnov & Golitsyn 1986, Fernando et al. 1991, Bouillaut et al. 2021), convection in
spherical geometry (Aurnou & Olson 2001, Busse 2002, Gastine et al. 2016, Guervilly & Cardin
2016, Kaplan et al. 2017, Long et al. 2020, Wang et al. 2021), and oscillatory convection for
low-Pr fluids, applicable to liquid metals that constitute the Earth’s outer core and the plasma in
the convective zone of stars (e.g., see Chandrasekhar 1953, Zhang & Roberts 1997, Aurnou et al.
2018, Grannan et al. 2022). We also do not discuss the traveling wave modes of RRBC (Zhong
et al. 1991, Ecke et al. 1992, Goldstein et al. 1993, Herrmann & Busse 1993, Kuo & Cross 1993)
associated with the instability at Ra < Rac, except with regard to their influence on the bulk
convective state. Finally, we concentrate on results for intermediate Pr ≈ 7, owing to the large
amount of data obtained in experiments using water. We also mention results for Pr ≈ 1 where
geostrophic turbulence seems to be most accessible ( Julien et al. 2012b).

In this section we formulate the governing equations in the Oberbeck–Boussinesq (OB)
approximation, introduce control and response parameters, and summarize the theoretical frame-
work and the overall experimental-numerical characteristics of RRBC. Sections 2 and 3 focus on,
respectively, the global flow structures and heat and momentum transport in different regimes
of RRBC. In Section 4 we discuss RRBC configurations that deviate from the classical OB case,
including the influence of strong centrifugation and different boundary conditions (BCs).We con-
clude with a discussion of open questions in RRBC and give an outlook on the experimental and
numerical studies desired to better understand geostrophic turbulence in RRBC and in astro- and
geophysical flows.

1.1. Governing Equations and Parameters

With a change of coordinate system from stationary to one rotating with angular velocity � =
�ez, additional Coriolis (−2� × u) and centrifugal (−� × � × r) accelerations occur as additional
effective body-force terms in the momentum equation:

∂tu + (u · ∇)u= −∇P/ρ + ν∇2u + g − 2� × u − � × � × r 1.

(for notational conventions, see the sidebar titled Dimensional Characteristics of RRBC). For
� ≡ �ez one obtains −� × � × r = �2rer .

In the simplest OB approximation that admits buoyancy (Oberbeck 1879, Boussinesq 1903), all
fluid properties are assumed to be constant except for the density in the buoyancy term, where it
is taken to be linearly dependent on temperature, ρ ≈ ρ0[1 − α(T− T0)]. Introducing the reduced
pressure, p ≡ P + ρ0gzez − (ρ0/2)�2r2er , from |α(T − T0)| ≤ α�/2 � 1, which holds in the OB
approximation, we obtain P/ρ ≈ (P/ρ0)[1 + α(T− T0)], as well as the momentum equation in the
OB approximation (e.g., Becker et al. 2006),

∂tu + (u · ∇)u=−∇ p/ρ0 + ν∇2u − 2�ez × u − α(T − T0)�2rer + α(T − T0)gez, 2.

which together with the continuity equation, ∇ · u = 0, and the heat equation,

∂tT + (u · ∇)T = κ∇2T , 3.

form the governing equations inOBRRBC.One can see from the last two terms in Equation 2 that
for RRBC there is gravitational buoyancy that acts in the vertical direction (as in nonrotatingRBC)
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DIMENSIONAL CHARACTERISTICS OF RRBC

Buoyancy timescale: τ ff � H/uff
Viscous timescale: τ ν � H2/ν

Thermal timescale: τ κ � H2/κ

Coriolis timescale: τ� ≡ 1/(2�)
Centrifugal timescale: τc ≡ 1/(

√
α��)

Inertial timescale: τ i � H/U, with U the reference velocity
Velocity field: u � (ur, uφ , uz), with radial er , azimuthal eφ , and vertical ez components
Convective free-fall velocity: uff ≡ √

αg�H
Pressure: P, with p ≡ P + ρ0gzez − (ρ0/2)�2r2er the reduced pressure
Temperature: T, with T = T+ (T = T−) at the bottom (top), � � T+ − T−, T0 � (T+ + T−)/2
Total vertical heat flux per unit area: q, with q0 � Cpκρ�/H the heat flux from conduction
Density: ρ, with ρ ≈ ρ0[1 − α(T − T0)] in the buoyancy term in the Oberbeck–Boussinesq approximation
Isobaric thermal expansion coefficient: α
Specific heat capacity: Cp

Kinematic viscosity of the fluid: ν
Thermal diffusivity of the fluid: κ
Angular velocity: � ≡ �ez, with � the angular rotation rate
Gravity vector: g ≡ −gez, with g acceleration of gravity

but also centrifugal buoyancy that acts in the radial direction and can only be neglected if �

is small. Note that in several textbooks, including that of Chandrasekhar (1961), the centrifu-
gal term is evaluated under the assumption that the density is constant, which allows one to put
the whole centrifugal term into the reduced pressure and thus leads to an equation similar to
Equation 2, but without the last term. To study the centrifugal effects within the OB approxi-
mation, however, one needs to consider the full momentum Equation 2 (as in, e.g., Becker et al.
2006;Marques et al. 2007; Lopez&Marques 2009; Scheel et al. 2010;Horn&Aurnou 2018, 2019,
2021). The standard BCs for Equations 2 and 3 are no slip for the velocity (u = 0) at all walls,
isothermal temperature at the bottom (T+) and top (T− < T+), and adiabatic (�T/�n = 0) at the
sidewall.

Flow dynamics, global structures, and scaling relations of the heat and momentum transport
in RRBC are determined by the dimensionless control parameters (see the sidebar titled Di-
mensionless Quantities in RRBC), which can be understood as ratios of involved forces or as
ratios of related timescales. The dominance of one force over others determines transitions from
one regime to another. These control parameters or suitable combinations occur explicitly in the
corresponding dimensionless governing equations, which depend on the choice of the reference
quantities. For example, taking as the reference quantitiesH/

√
αg�H for time,� for temperature,

H for length,
√

αg�H for velocity, and ρ0αg�H for the reduced pressure, one obtains dimen-
sionless equations that look similar to Equations 2 and 3, but with the following substitutions
for the viscosity ν → √

Pr/Ra, the thermal diffusivity κ → 1/
√
PrRa, the reduced pressure term

�p/ρ0 → �p, the Coriolis force term 2�ez × u → Ro−1ez × u, the gravitational buoyancy term
α(T − T0)g → T, and the centrifugal buoyancy term α(T − T0)�2rer → (2Fr/�)T rer . Compar-
ing the dimensionless gravitational and centrifugal buoyancy terms, one concludes that the latter,
−α(T − T0)�2rer , is negligible for Fr � 1. In the following, we focus on the case of Fr � 1 but
return to the influence of centrifugation in Section 4.
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BL: boundary layer

1.2. Theoretical Background, Main Features, and Scaling Properties

There are several perspectives that one may adopt for describing turbulent RRBC. The first
is to treat the system in the rotation-dominated limit beginning at the onset of convection,
where the Taylor–Proudman constraint and quasi-geostrophy play major roles, and to increase
the effect of buoyancy until it becomes dominant (i.e., maintain constant Ek while increasing
Ra). The second is to perturb the buoyancy-dominated state of turbulence by increasing ro-
tation (decreasing Ek) at constant Ra. We discuss both here but take as a starting point the
rotation-dominated limit because the major elements of RRBC—rotational suppression of con-
vection,Taylor–Proudman constraint, Ekman boundary layer (BL), quasi-geostrophic convection,
etc.—arise from that perspective.

1.2.1. Onset of bulk convection, nonhydrostatic quasi-geostrophic balance, and the
Taylor–Proudman constraint. Rotation postpones the onset of convection in the bulk of
the domain. Linear stability analysis (Chandrasekhar 1953, Niiler & Bisshopp 1965, Homsy &
Hudson 1971) shows that bulk convection sets in at a critical Ra = Rac in the form of either
steady or oscillatory flow, depending on Pr:

Rac ≈
⎧⎨⎩

(
3 × 2−2/3π4/3 − 213/6π2/3Ek1/6

)
Ek−4/3 ≈ 8.7Ek−4/3, Pr � 0.68 (steady),

3 × 21/3π4/3 Pr4/3
(1+Pr)1/3 Ek

−4/3 ≈ 17.4 Pr4/3
(1+Pr )1/3 Ek

−4/3, Pr � 0.68 (oscillatory),
4.

where a reduction of 213/6π2/3Ek1/6 in the large-Pr case is a correction for no-slip BCs at the plates
(see also Homsy & Hudson 1971). The onset of bulk convection in the form of a steady flow is
preferred for 1 + Pr < 8Pr4 (i.e., for Pr � 0.6766 ≈ 0.68).

For rapid rotation (Ek → 0) there is approximate geostrophic balance between Coriolis and
pressure-gradient terms in Equation 1 (Boubnov & Golitsyn 1986, Sakai 1997, Sprague et al.
2006, Julien et al. 2012b, King & Aurnou 2013, Aurnou et al. 2020, Aguirre Guzmán et al. 2021).
Taking the curl of geostrophic balance, for an incompressible flow and � = �ez with a constant
�, one derives 0 ≈ ∇ × (� × u) ≈ −(� · ∇)u and, hence, the result �u/�z = 0, which is known
as the Taylor–Proudman constraint (Taylor 1921, Proudman 1916). In order to sustain convective
vertical motion, this constraint must be broken in cells of finite vertical extent. Nevertheless, the
constraint gives an intuitive sense of the suppression of the onset of convection and the strong
anisotropy between lateral and vertical length scales and timescales, as quantified below.Owing to
convection, the vertical force balance is nonhydrostatic and the lateral balance has smaller-order
nongeostrophic contributions leading to a state of approximate or quasi-geostrophy. We denote
the asymptotic description (Sprague et al. 2006, Julien et al. 2012b) of RRBC in the rapidly ro-
tating limit as nonhydrostatic quasi-geostrophic. A recent numerical study of the force balance
in RRBC (Aguirre Guzmán et al. 2021) quantifies the quasi-geostrophic balance for a consid-
erable region above the onset of convection in both the interior and BLs, with nongeostrophic
forces contributing at around the 10% level. Reflecting the high degree of vertical to horizontal
anisotropy, the length scale in the vertical direction at the onset of convection is the height H,
whereas the horizontal length is �c (1/2 the critical wavelength), given by

�c

H
≈

{
21/6π2/3Ek1/3 ≈ 2.4Ek1/3, Pr � 0.68,
21/6π2/3(1 + Pr−1)1/3Ek1/3 ≈ 2.4(1 + Pr−1)1/3Ek1/3, Pr � 0.68.

5.

This is obtained from linear stability analysis for Cartesian (Chandrasekhar 1953) or cylindrical
systems under the assumption that the first unstable mode is, respectively, a single normal mode
or a single mode of the form ∼Jn(kr)cos (nφ)sin (πz/H)exp (iω0t) (e.g., see Goldstein et al. 1993)
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Figure 1

(a) An RRBC setup: A container of height H is filled with a fluid and rotated about a vertical axis at angular rate �. The bottom (top) is
kept at temperature T+ (T−) with T− < T+. (b) Nu versus Ra for experimental runs at constant Ek and Pr ≈ 7. The right arrow
indicates decreasing Ek. The Nusselt number in the nonrotating case,Nu0 ∼ Ra0.3, is labeled with small differences in Nu0 for each data
set. (c) Nu/Nu0 versus Ro for runs at constant Ra ≈ 108. (d–i) Experimental images (Cheng et al. 2020) showing representative examples
of (d–f ) rotation-dominated, (g) rotation-affected, and (h–i) buoyancy-dominated or nonrotating states. Panels d–i adapted from Cheng
et al. (2020) with permission; copyright 2020 American Physical Society.

(Jn is the Bessel function of the first kind). For large � � D/H � 1, one obtains (Shishkina 2021)
the relations of Equations 4 and 5 in the limit Ek(1 + Pr)/Pr → 0. In the steady case we have
ω0 = 0, whereas in the oscillatory case, the oscillation frequency ω0 in the same limit Ek/Pr → 0
follows |ω0|/� = [2π/(1 + Pr)]2/3Pr−1/3(2 − 3Pr2)1/2 Ek1/3.

1.2.2. Main features. An overview of the features of RRBC starting at onset can be seen in heat
transport (Nu) measurements, covering almost 10 (5) decades in Ra (Ek) using water with Pr ≈ 7
(see Figure 1b).The rapid rise from the conduction valueNu = 1 represents the nonlinear growth
from onset and defines a region of rotation-dominated quasi-geostrophic dynamics with intrin-
sic time dependence arising from nonlinear instability (Küppers & Lortz 1969, Cox & Matthews
2000) at anyRa > Rac. As demonstrated by these data, the range ofNu spanned in this region in-
creases with decreasing Ek so that in the limit Ek → 0, the buoyancy-dominated state becomes out
of reach. In this limit, one can write a system of nonhydrostatic quasi-geostrophic equations valid
asymptotically as Ek → 0, Ro→ 0, and Ra → ∞ such that R̃a ≡ Ra/Rac ∼ Ek4/3Ra remains
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LSC: large-scale
circulation

finite (Sprague et al. 2006, Julien et al. 2012b). This approach holds promise to bridge to geo- and
astrophysical systems with extreme values of Ra and Ek and provides a theoretical framework for
describing the evolution of states in the rotation-dominated regime, often called the geostrophic
regime, in which states of cellular flows, Taylor columns, plumes, and geostrophic turbulence are
seen in experiments and solutions of the reduced equations (see Figure 1d–f ).

One common characteristic of the rotation-dominated regime is that thermal instability gives
rise to vortical motions through the Coriolis force,−2� × u (i.e., horizontal flows are deflected by
theCoriolis force, leading to vortices).The other important element of RRBC is the altered nature
of BLs. The vorticity in the interior interacts with the no-slip plates through kinetic BL of the
Ekman type (Greenspan 1968, Stellmach et al. 2014, Julien et al. 2016) and can generate Ekman
pumping where the interior vorticity is dissipated in the Ekman BL of thickness δE/H ∼ Ek1/2,
and positive (negative) vertical velocity is produced for cyclonic (anticyclonic) vorticity. In the
rotation-dominated regime, the kinetic BL (δu ∼ δE) is much thinner than the thermal BL, which
has a different structure from the nonrotating thermal BL, δθ/H ≈ (2Nu)−1, in which velocities
are assumed to be small and heat is effectively carried diffusively.Owing to Ekman pumping in the
rotation-dominated regime, advective processes in the thermal BL are significant so it is described
as a thermal wind layer ( Julien et al. 2016) to differentiate it from the nonrotating thermal BL.
An important aspect of this structure is that H/(2δθ ) underestimates Nu owing to a combination
of a finite mean gradient and contributions from Ekman pumping.

AsRa increases at constant Ek, the balance of rotation and buoyancy shifts, as measured by in-
creasingRo∼ Ra1/2 such thatNu approaches the nonrotating curveNu0 ∼ Ra0.3. For some ranges
of Ro,Ra, and Pr � 1, with δu ≈ δθ (King et al. 2009), Ekman pumping–amplified heat transport
results inNu ≥ Nu0 (e.g., Rossby 1969) (see Figure 1b). For other parameter ranges (e.g.,Pr � 1
andRa � 1010),Nu is always less thanNu0 and asymptotes to its buoyancy-dominated dependence
at some Rot � 1 that depends on various control parameters. Thus, we identify three regimes of
RRBC: rotation dominated forRo� 1, buoyancy dominated forRo� 1, and rotation affected for
Ro∼ 1. The transition from the buoyancy-dominated through the rotation-affected and into the
rotation-dominated zone is well represented by increasing rotation at fixed Ra. This approach,
when normalizing by the nonrotating Nu0, also most readily demonstrates the enhancement of
heat transport in the rotation-affected region for Pr � 1 and is shown in Figure 1c. The different
regions are indicated for this range ofRa ∼ 108, although, as we will see, these boundaries depend
onRa,Pr, and� as well.Characteristic experimental images inFigure 1 show rotation-dominated
(Figure 1d–f ), rotation-affected (Figure 1g), and buoyancy-dominated (Figure 1h–i) states.

1.2.3. Thermal, Ekman, and Stewartson boundary layers and Ekman pumping. The Nu
behaviors in different regimes of RRBC are intimately related to BLs at the top and bottom
of the convection cell. In the buoyancy-dominated state, the thermal BL thickness is given by
δθ ≈ H/(2Nu) and the kinetic BL is determined through the shear produced by the coherent ac-
cumulation of thermal plumes at the lateral boundaries into a large-scale circulation (LSC) (see
Ahlers et al. 2009b). The resultant BL becomes thinner as the shear velocity increases with Ra.
When the system rotates sufficiently rapidly, the nature of the kinetic BL changes dramatically to
an Ekman BL type. An Ekman BL is formed when a fluid in solid body rotation at angular rota-
tion rate � experiences a small differential angular rotation � ± �� (�� � �) on a horizontal
bounding surface (Greenspan 1968). In RRBC, the Ekman BL arises from the growth of thermal
perturbations that lead to vertical and horizontal motion. For weak forcing with R̃a ∼ 1, cellular
circulation takes place with cyclonic outflow away from the plates and anticyclonic reversal at the
midplane (Veronis 1959, Sakai 1997) (see Figure 2a). In the general case, at larger R̃a and for no-
slip BCs, near the top (bottom) surface, the converging hot (cold) horizontal flow is acted upon by
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DNS: direct numerical
simulations

a b c

Trms

urms

Pumping Suction

TWL

Quasi-
geostrophic

interior

Ekman BL

Ω

δθ

δu

δθ > δu

δθ

δu

> 0– дT
дz

Figure 2

(a) Cellular flow showing fluid parcel motion with anticyclonic and cyclonic vertical vorticity that reverses sign at mid-plane. Panel
adapted from Veronis (1959) with permission; copyright 1959 Cambridge University Press. (b) Vorticity production (not to scale).
Thermal instability pulls converging warm fluid laterally into an expanding plume where it spins up cyclonically, whereas cool
diverging return flow from the top (or interior) produces anticyclonic vorticity. Thermal (δθ ) and kinetic (δu) boundary layer (BL)
thicknesses are indicated. (c) Vertical profiles of BL structure. Warm (cool) upward (downward) plumes generate positive (negative)
cyclonic vorticity from inflowing fluid. The vorticity produced is fairly independent of z outside of the Ekman BL and produces Ekman
pumping with the vertical velocity uz ∼ EkHωz at the distance from the plate z = δu ∼ Ek1/2H , where ωz is the vertical component of
the vorticity and H is the cell height. Vorticity is dissipated in the Ekman BL per linear Ekman BL processes. The thermal (kinetic) BL
thickness is defined by where root-mean-square (rms) temperature Trms (velocity urms) is maximum with respect to z. The thermal wind
layer (TWL) is in quasi-geostrophic balance with significant Ekman pumping and differs from the thermal BL in nonrotating RBC.

the Coriolis force to generate cyclonic vorticity in the rotating frame so that the local rotation rate
of the fluid exceeds �. Similarly, the return flow from the bottom (top) to top (bottom) (where it
exists for R̃a ∼ 1) spreads out as it comes near the top (bottom) and spins down anticyclonically so
that the local rotation rate is less than�. Thus, in both regions an Ekman BL forms with thickness
δu ∼ δE to dissipate the interior flow vorticity at the no-slip horizontal boundary. Note that, as
opposed to the buoyancy dominated/nonrotating kinetic BL, the thickness of the Ekman BL only
depends on Ek and not on the strength of the velocity (i.e., on Ra). Near the onset of convection,
we have δu � δθ so that Ekman pumping produces additional uz ∼ EkHωz. The vertical velocity
amplification can be formulated as an effective Ekman pumping BC ( Julien et al. 2016) that yields
a much steeper variation ofNu with R̃a than one would expect for the rotation-dominated regime
with no Ekman BL (Ek → 0 or free-slip BCs) ( Julien et al. 2012b, Stellmach et al. 2014, Plumley
et al. 2016) and is consistent with measurements (Cheng et al. 2015, Lu et al. 2021) and direct
numerical simulations (DNS) (Stellmach et al. 2014, Aguirre Guzmán et al. 2021).

In the nonlinear or turbulent regime, the impact of the Ekman BL depends on its interplay
with the thermal BL in a complicated manner ( Julien et al. 1996, 2012b, 2016; Sprague et al.
2006; King et al. 2009; Stevens et al. 2010a; Kunnen et al. 2011, 2013; Stellmach et al. 2014;
Plumley et al. 2016). Figure 2b,c provides a picture of Coriolis generation of vorticity and the
resultant Ekman pumping process. The Ekman pumping effect is strongest for δθ > δE because,
in that case, Ekman pumping produces higher thermal contrast and greater thermal fluctuations.
Ekman pumping also complicates theNu:δθ relationshipNuθ = H/(2δθ ) of nonrotating RBC. For
example, Aguirre Guzmán et al. (2022) showed for DNS with Ek ∼ 10−7 that Nu ≈ 2Nuθ over
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BZF: boundary zonal
flow

3 < R̃a � 100. Finally, Ekman pumping enhancement of Nu is most obvious when it results in
Nu > Nu0, where Nu0 is for nonrotating RBC. Numerous experimental and numerical studies
have shown this enhancement effect (Rossby 1969; Julien et al. 1996; Liu & Ecke 1997, 2009;
Kunnen et al. 2008; Zhong et al. 2009; Weiss et al. 2010, 2016; Schmitz & Tilgner 2010; Zhong
& Ahlers 2010; Stevens et al. 2010b; Horn & Shishkina 2014; Wei et al. 2015; Rajaei et al. 2016;
Chong et al. 2017; Cheng et al. 2020; Yang et al. 2020). For Pr � 1 or Ra � 1010, however, no or
negligibleNu enhancement relative toNu0 is observed (Niemela et al. 2010,Ecke&Niemela 2014,
Stellmach et al. 2014,Horn & Shishkina 2015, Cheng et al. 2015,Wedi et al. 2021, Kunnen 2021).

Another effect of note (Kunnen et al. 2011) is that a mean volume-averaged anticyclonic vortic-
ity is observed to form in the interior of the cell, which implies a net Ekman suction into the BL of
order 〈uz〉z=δE ≈ (Ek/2) 〈ωz〉H . A global circulation model (Kunnen et al. 2013) arises from these
considerations where the flow into the BLs induced by the interior anticyclonic circulation bal-
ances a flow at the vertical boundaries in the form of Stewartson BLs (Stewartson 1957,Greenspan
1968) of thickness ∝ Ek1/3 (Kunnen et al. 2011, 2013). This model explained the observed layer
formation but did not address the origins of the flows. Recently, however, it was demonstrated
that a boundary zonal flow (BZF) (Zhang et al. 2020, 2021; de Wit et al. 2020; Wedi et al. 2021)
arises over a wide range of Ra and Ek from the robustness of sidewall-traveling wall modes in the
presence of bulk convection (Favier & Knobloch 2020, Ecke et al. 2022). Furthermore, the side-
wall eigenfunctions for the vertical velocity of linear wall modes act mainly in the radial width that
scales as ∝ Ek1/3 (Herrmann & Busse 1993), in agreement with the results of Kunnen et al. (2011)
and Zhang et al. (2020, 2021). Strong bulk turbulence modifies the BZF in ways still to be ex-
plored, but to first order the origin of the ∝ Ek1/3 layer seems to result from the BZF as the source
of vertical motion near the sidewalls with nonlinearities feeding back to produce the anticyclonic
interior flow.The two descriptions seem to complement one another,with the Ekman–Stewartson
mechanism feeding back on the wall mode/BZF state in a self-consistent manner. It is interesting
that the wall mode vertical velocity profile, the Stewartson BL thickness, and the critical wave-
length of bulk instability all scale as Ek1/3. The thermal and kinetic BLs at the plates interact to
affect heat transport and other local properties of the flow. Prominent features include the finite
mean temperature gradient in RRBC resulting from enhanced (decreased) lateral (vertical) mix-
ing (e.g., Julien et al. 1996, 2012b; Hart & Ohlsen 1999; Kunnen et al. 2009; Zhong et al. 2009;
Stevens et al. 2010a; Liu &Ecke 2011; King et al. 2013; Horn& Shishkina 2014) and the character
of statistical moments of T, u, and ωz.

1.2.4. Scaling properties. Scaling relationships amongmeasured quantities and control param-
eters depend on the location in RRBC parameter space and can be derived in certain limiting cases
using approaches useful for nonrotating RBC.Under the assumption that the scaling relations for
Nu ≡ qH/(κ�) have the form Nu ∼ Prβ0Raγ in nonrotating/buoyancy-dominated regimes and
Nu ∼ Prβ (Ra/Rac )ξ in rotation-dominated regimes (for certain γ > 0 and ξ > 0), along with the
further assumption that the dimensional heat flow q is independent of diffusion in the BLs (i.e.,
of κ and ν), one immediately obtains

Nu = Nu0 ∼ Pr1/2Ra1/2 for nonrotating/buoyancy-dominated regimes, 6.

Nu ∼ Pr−1/2Ek2Ra3/2 for the rotation-dominated regime. 7.

The diffusion independence of the reference velocity U, and also of H in the rotation-dominated
geostrophic turbulence regimeU = √

αg�/(2�), yields

Re = Re0 ∼ Pr−1/2Ra1/2 for nonrotating/buoyancy-dominated regimes, 8.

Re ∼ Pr−1EkRa for the rotation-dominated regime. 9.
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Equations 6 and 8 for the buoyancy-dominated state are those of regime IV� of the Grossmann &
Lohse (2000) theory for nonrotating RBC (see also Kraichnan 1962, Spiegel 1971). Equations 7
and 9 for rotation-dominated RRBC are those of the geostrophic turbulence regime ( Julien et al.
2012b; also see Schmitz & Tilgner 2009). Equating the scaling relations for Nu (or Re) in the
buoyancy-dominated and rotation-dominated regimes, one obtains that the scaling quantity is
Ro. Thus, if the above assumptions are fulfilled, the transition from the buoyancy-dominated to
rotation-dominated geostrophic turbulence regimes scales withRo,Nu/Nu0 ∼ Ro2, andRe/Re0 ∼
Ro in the rotation-dominated regime and Nu/Nu0 ∼ 1 and Re/Re0 ∼ 1 in the buoyancy-
dominated regime. The same scalings of Equations 6–9 also follow from Aurnou et al.’s (2020) ap-
proach,where relevant scales for length �, velocityU, and temperature θ were introduced; the scal-
ings Nu ∼ θU/(κ�/H ) and Re ∼UH/ν were assumed; and terms in the vorticity equation were
analyzed. For the rotation-dominated regime,Aurnou et al. (2020) proposed a balance of the Cori-
olis term (estimated as 2�U/H), the inertial term (U2/�2), and the buoyancy (Archimedean) term
(gαθ/�), which together with θ/� ∼ �/H lead to U/uff ∼ Ro, �/H ∼ Ro and to Equations 7 and
9 for the rotation-dominated state. For the buoyancy-dominated regime, the inertia buoyancy
balances together with θ ∼ � and � ∼ H, and U ∼ uff leads to the scalings of Equations 6 and 8.

In other parameter ranges, different assumptions can be taken to derive scalings. Thus,
assuming that q is independent not of κ and ν but ofH, one derivesNu ∼ Ra1/3 for the buoyancy-
dominated regime (Malkus 1954, Priestley 1959) andNu ∼ (Ra/Rac )3 for the rotation-dominated
state. No experimental or numerical (under realistic conditions) evidence exists, however, to
support a scaling range of this latter type (also see Julien et al. 2012b).Finally wemention that a rig-
orous upper bound on the heat transport in RRBC derived byGrooms&Whitehead (2014),Nu ≤
20.56 Ek4Ra3, is obtained from the asymptotically reduced equations for Ek8/5Ra = O(1) in the
limit of rapid rotation (Ek → 0), strong thermal forcing (Ra → ∞), and infinite Prandtl number.
For free-slip BCs and infinite Pr, Tilgner (2022) suggests the upper bound Nu < 0.144 Ek2/3Ra.
Note that the existing theoretical upper bounds are much larger than the measured ones. In
Section 3 we check several hypotheses and suggest a unifying theoretical scaling model for the
transition between rotation-dominated and buoyancy-dominated regimes.

1.3. Experimental and Numerical Investigations of RRBC

RRBCexperiments (see examples inFigure 3) andDNS aim to capture a broad parameter range in
theRa–Ek plane in order to investigate the many regimes of RRBC. These approaches are highly
complementary with DNS, as they can access the full hydrodynamic fields and have the flexibility
to investigate different BCs and explore combinations of control parameters that are inaccessible
experimentally. Experiments, on the other hand, can easily accumulate statistical averages over
much longer times, reflect realistic limitations on idealized descriptions, and access a different
range of control parameters. Of particular interest is the rotation-dominated regime of very high
Ra and very small Ek, which reflects the nature of astrophysical and geophysical flows.

For a given container and a particular fluid, the range of experimental values of Ek is restricted
by the possible rotation rates�, and theRa range is restricted by themaximal andminimal temper-
ature differences � that can be imposed between the bottom and top plates. The requirement to
satisfy OB conditions puts additional restrictions on the imposed � and on the range ofRa (Gray
&Giorgini 1976,Horn & Shishkina 2014,Weiss et al. 2018) (see Figure 4a and Section 4 below).
The other two demanding requirements are minimizing centrifugal effects (Fr � 1) and limiting
the impact of vertical sidewalls so that the horizontal extent � of typical structures in RRBC is
much smaller than the cell diameter D (the recently discovered BZF complicates this latter cri-
terion). Therefore, the available � range is bounded from above by centrifugal effects (Fr ∝ �2)
and from below by the cell aspect ratio � because of � ∝ �−1/3 (Marques et al. 2007, Lopez &
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a

d

b c e
D = 0.2 mD = 0.2 m

H = 0.5 m D = 0.5 m

H = 1.0 m

D = 0.6 mD = 0.6 m

H = 1.8 m

D = 0.4 m

H = 4 m
D = 1.1 m

H = 2.2 m

Figure 3

Examples of RRBC facilities. (a) RoMag (Rotating Magnetoconvection Device) at the University of California, Los Angeles (UCLA)
(cell aspect ratio range 0.4 � � � 4, liquid Ga, 0.025 � Pr � 0.028, 2.1 × 10−7 � Ek � 1.1 × 10−4, 1.3 × 104 � Ra � 2.2 × 109) (King
& Aurnou 2013, Aurnou et al. 2018). (b) Trieste experiment at the International Centre for Theoretical Physics (� ≈ 0.5, cryogenic
liquid He, 0.69 � Pr � 0.72, 2.7 × 10−7 � Ek � 9.3 × 10−5, 3.3 × 109 � Ra � 1.1 × 1012) (Niemela et al. 2000, Ecke & Niemela
2014). (c) NoMag (Nonmagnetic Rotating Convection Device) at UCLA (0.11 � � � 6, water, 3.5 � Pr � 9.4, 1.5 × 106 � Ra �
9.2 × 1012, 4.2 × 10−8 � Ek � 1.3 × 10−3) (Cheng et al. 2015, Aurnou et al. 2018). (d) U-Boot of Göttingen at the Max Planck
Institute for Dynamics and Self-Organization (� ≈ 0.5 and � ≈ 1; pressurized gases SF6, N2, and He; 0.7 � Pr � 1.0;
7.9 × 10−9 � Ek � 6.2 × 10−1; 3.4 × 103 � Ra � 1.2 × 1015) (Ahlers et al. 2009a, Zhang et al. 2020,Wedi et al. 2021).
(e) TROCONVEX (turbulent rotating convection to the extreme) at Eindhoven University of Technology (0.1 � � � 0.5, water,
2.1 � Pr � 6.9, 4.8 × 10−9 � Ek � 5.2 × 10−6, 6.2 × 109 � Ra � 2.0 × 1014) (Cheng et al. 2018, Kunnen 2021). Figure reproduced
from Cheng et al. (2018); copyright 2018 the authors (CC BY-NC-ND 4.0).

Marques 2009, Cheng et al. 2018, Horn & Aurnou 2018). The resulting parameter range in a
realistic OB experiment is bounded for both Ra and Ek (see Figure 4b).

DNS of RRBC are based on solving numerically nondimensionalized and discretized versions
of Equations 1–3 on computational grids that are sufficiently fine in space and time to resolve the
Kolmogorov and Batchelor scales within the bulk of the fluid and to provide a sufficient number
of grid points to resolve velocity and temperature BLs (Shishkina et al. 2010). There are sev-
eral numerical approaches: finite-volume [e.g., a fourth-order code Goldfish; see Shishkina et al.
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Figure 4

(a) Oberbeck–Boussinesq (OB) validity region in RBC in terms of the maximal temperature difference � and container height H, with
� the cell aspect ratio. (b) Accessible range in a rotating RBC experiment with fixed H in terms of � and rotation rate �. The text near
the restricting lines explains the origins of the restrictions.

(2015),Horn& Schmid (2017),Horn&Aurnou (2018, 2019, 2021),Vogt et al. (2021), Zhang et al.
(2020, 2021), and Ecke et al. (2022)], finite-difference [e.g., a second-order code AFID/RBflow;
see Verzicco & Camussi (2003), Stevens et al. (2009, 2010a,b, 2011, 2012), and Hartmann et al.
(2022)], spectral-element [e.g.,Nek5000; see Fischer (1997), Scheel (2007), and Scheel et al. (2003,
2010)], or spectral methods for periodic BCs (Stellmach & Hansen 2008, King et al. 2012) [Kooij
et al. (2018) provides a code comparison].

Another method to characterize the structures and properties of the rotation-dominated
regime is to asymptotically reduce the full OB RRBC equations in the limit Ek → 0 (Ro→
0) and Ra → ∞ while keeping laterally periodic BCs and finite Ek4/3Ra (Nieves et al. 2014,
Julien et al. 2016, Plumley et al. 2016, Plumley & Julien 2019). This results in nonhydrostatic
quasi-geostrophic model equations that can be solved numerically.

2. FLOW STRUCTURES IN RRBC

Fluid flow organizes itself in RRBC in rich and diverse ways. We begin our discussion with the
rotation-dominated regime and systematically vary control parameters to access domains with de-
creasing rotational influence.Taking Ek fixed (as in Figure 1b) and increasingRa, one sequentially
finds wall modes for Ek−1 � Ra � Ek−4/3; nonhydrostatic quasi-geostrophic features of RRBC in-
cluding cellular flows, convective Taylor columns, plumes, geostrophic turbulence, and large-scale
vortex condensates in the range 1 ≤ R̃a � 50 to 100; the transition to the rotation-affected region
with remnant spatial anisotropy and Ekman BL effects; and finally the buoyancy-dominated do-
main. Representative images from experiment, DNS, and the nonhydrostatic quasi-geostrophic
model for each region are shown in Figure 1d–g and Figure 5.

The first instability to a convecting state in rotation-dominated convection is to wall modes
(Zhong et al. 1991, Ecke et al. 1992, Goldstein et al. 1993,Herrmann & Busse 1993, Kuo & Cross
1993), which are confined near the sidewall, have azimuthal periodicity m, precess in a retrograde
direction, and have onset atRawm ≈ π2

√
6
√
3Ek−1.These states are important for considering how

the system enters the quasi-geostrophic regime and undergoes a transition to turbulence owing
to the surprising robustness of the wall modes as a BZF that appears to persist over the entire
rotation-dominated and rotation-affected regimes (Favier & Knobloch 2020; Shishkina 2020; de
Wit et al. 2020; Zhang et al. 2020, 2021; Wedi et al. 2021; Ecke et al. 2022). These states are
particularly influential for small �, where they contribute substantially to the total heat transport.
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Figure 5

Representative images of RRBC flow states. (a) Shadowgraph image (dark, hot; light, cold) of a wall mode with mode number m = 12
coexisting with a bulk-state structure in the center (R̃a ≡ Ra/Rac ≈ 1.04, with Rac the Rayleigh number for the onset of bulk
convection; Ek ≈ 2.3 × 10−4; Pr ≈ 6.4; and cell aspect ratio � ≈ 5). (b) Temperature field from direct numerical simulations (DNS)
(R̃a ≈ 5, Ek = 10−6, Pr = 0.8, � = 1/2). (c) Nonhydrostatic quasi-geostrophic volume render of temperature for the cellular state
(R̃a = 2.3, Pr = 7). (d) Thermochromic liquid crystal image of the temperature field (R̃a ≈ 4, Pr ≈ 7, Ek ≈ 9 × 10−5). (e–g) Volume
render of temperature: (e) convective Taylor columns state (Pr = 7, R̃a = 4.6), ( f ) plume state (Pr = 7, R̃a = 13.8), and (g)
nonhydrostatic quasi-geostrophic turbulence (Pr = 0.7, R̃a = 18.4). (h) Rheoscopic visualization of geostrophic turbulence (R̃a = 77,
Pr ≈ 4, Ek = 1.9 × 10−6, � = 1/4); the central section is shown. (i) Horizontal kinetic energy in the height range 0 < z/H < 3/4
(Ra = 1.7 × 107, Ek = 10−4, Pr = 1) from DNS. Panels adapted with permission from (a) Ning & Ecke (1993), (c, e–g) Julien et al.
(2012b), (d) Sakai (1997), (h) Cheng et al. (2015), and (i) de Wit et al. (2022).

2.1. Quasi-Geostrophic Convection

Several states of RRBC have been identified using the nonhydrostatic quasi-geostrophic approach
(Sprague et al. 2006, Julien et al. 2012b). Near onset, RRBC takes the form of cellular vortical
structures (Chandrasekhar 1953, Veronis 1959) (see Equations 4 and 5 and Figure 2a). These
structures (Figure 5a,c,d) are nonlinearly unstable to slow dynamics (Küppers & Lortz 1969,
Cox & Matthews 2000). With increasing R̃a and Pr � 3, the flow structures gradually change to
convective Taylor columns (Figure 1d and Figure 5e) with an interesting structure of T and ωz

(Grooms et al. 2010, Rajaei et al. 2017) around the Taylor column and efficient heat transport.
With further increase of R̃a, the vertical coherence of the convective Taylor columns is degraded
and plumes only partially penetrate across the fluid layer with an even shorter vertical correlation
length ( Julien et al. 2012b,Nieves et al. 2014, Rajaei et al. 2017) (see Figure 5f,g). For the highest
investigated R̃a ≈ 20 in the nonhydrostatic quasi-geostrophic model ( Julien et al. 2012b) and for
Pr = 1 (see Figure 5g), one reaches a state of geostrophic turbulence in which heat transport is
throttled by the interior rather than by thermal BLs. Experimental examples of geostrophic tur-
bulence are shown in Figure 5h with R̃a = 77 and Roc = 0.12 and in Figure 1f with R̃a = 27
andRoc = 0.024. Finally, in certain circumstances DNS have shown that a large-scale vortex con-
densate forms from the geostrophic turbulence state ( Julien et al. 2012b, Guervilly et al. 2014,
Guervilly & Hughes 2017, Julien et al. 2018, Favier et al. 2019, de Wit et al. 2022). The regions
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of geostrophic turbulence and large-scale vortex condensate have sufficiently large R̃a such that
for experiments and DNS one may no longer be in the quasi-geostrophic regime but rather in the
rotation-affected regime; large-scale vortex states have not been observed in experiments. Even-
tually, with increasingRa the flow enters the buoyancy-dominated regime, where the flow closely
resembles turbulent nonrotating convection (Nieves et al. 2014, Cheng et al. 2015, Julien et al.
2016, Cheng et al. 2018) (see Figure 1h,i). A detailed review of the quasi-geostrophic regime and
its different regimes has been given by Kunnen (2021). Although the qualitative and semiquantita-
tive features predicted from the quasi-geostrophic model agree fairly well with observations from
experiments and DNS, significant details remain to be determined, including how Ekman pump-
ing and non-quasi-geostrophic effects manifest in systems at finite Ek and Ro. As a starting point,
the solutions of the nonhydrostatic quasi-geostrophic equations exhibit for Pr = 7 transitions
from cellular to convective Taylor columns state at R̃a ≈ 2, transitions from convective Taylor
columns to plumes at R̃a ≈ 6, and plumes to geostrophic turbulence at R̃a > 17 (no transition is
observed).

2.1.1. Columnar regime (for Pr � 3). The columnar regime (Figure 5a–c) is characterized
by quasi-steady convective Taylor columns (Veronis 1959, Heard & Veronis 1971, Sakai 1997)
that are built of vertically coherent plumes emitted synchronously from the hot and cold BLs.
Each column consists of a hot (cold) central region with a cyclonic (anticyclonic) vortex core sur-
rounded by a region of opposite temperature contrast and oppositely signed vorticity (Sprague
et al. 2006; Grooms et al. 2010; Julien et al. 2012b; King et al. 2012; Rajaei et al. 2016, 2017). The
convective Taylor columns are nonuniformly distributed horizontally and the vortices undergo
complex interactions including vortex mergers (Zhong et al. 1993, Noto et al. 2019), a flux of
vortices away from the lateral boundary (Noto et al. 2019, Ding et al. 2021) attributed to centrifu-
gal effects, and a diffusive-like motion of individual vortices in the overall vortex array (Chong
et al. 2020, Ding et al. 2021). In this region, the shielding of the convective Taylor columns re-
duces vortex interactions and stabilizes the vortex array (Grooms et al. 2010, Rajaei et al. 2017).
For experimentally and computationally accessible Ek > 10−8, the effects of Ekman pumping are
large (Stellmach et al. 2014, Julien et al. 2016, Plumley et al. 2016) and lead to a very rapid in-
crease in Nu in this regime for Pr ≈ 7 compared to the expected asymptotic linear dependence,
Nu− 1 = aε + O(ε2), with a ≈ 2 (Bassom & Zhang 1994, Dawes 2001). Figure 6a shows Nu− 1
versus ϵ (reflectingNu = 1 at R̃a = 1) for a variety of data (after figure 5 of Stellmach et al. 2014).
The lowest values of R̃a are consistent with the weakly nonlinear solution with a≈ 2, but theO(ε2)
term is 20 times larger than the nonhydrostatic quasi-geostrophic results, indicating that Ekman
pumping is felt even very close to onset. The power law relationship for the data in the convective
Taylor columns regime isNu− 1 ∼ (R̃a− 1)5/3, as compared toNu ∼ R̃a3 (Stellmach et al. 2014);
the effective scaling exponent is very sensitive to subtracting 1 unless Nu � 1 and R̃a � 1. One
also notes from Figure 6a that the convective Taylor columns persist to higher R̃a for smaller
Ek. For Pr = 1, Ekman pumping has a similar effect on the slope of Nu near onset, although the
convective Taylor columns regime is not observed ( Julien et al. 2012b). Other characterizations
of the convective Taylor columns state include a rapid decrease in the mean temperature gra-
dient (Figure 6b) and increasing normalized root-mean-square (rms) averages ωzrms (Figure 6c)
and Trms (Figure 6e) for the nonhydrostatic quasi-geostrophic model. Available experimental data
(Vorobieff & Ecke 2002, Shi et al. 2020) agree with the increase of (ωzrms/�)Ek−1/3 in this regime.
Although there is no experimental data in this regime for Trms, DNS data (Aguirre Guzmán et al.
2022), when normalized as (Trms/�)Ek−1/3, show a similar increasing trend for small R̃a with a
similar magnitude.
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Figure 6 (Figure appears on preceding page)

(a) Nu− 1 versus ε ≡ R̃a− 1, with R̃a ≡ Ra/Rac − 1, for the nonhydrostatic quasi-geostrophic regions and approximate scalings.
(b) Normalized vertical temperature gradient −∂T/∂z (H/�)Pr versus R̃a for 4.4 ≤ Pr ≤ 8.8. Smaller Ra values have a smaller mean
gradient and a wider saturation region. (c) Normalized rms of the vertical vorticity component (ωzrms/�)Pr Ek−1/3 versus R̃a. (d) rms of
the temperature normalized by its maximum value Trms/(max zTrms) versus z/δθ , the distance from the plate normalized by the thermal
BL thickness. Arrows indicate the approximate locations of the normalized thicknesses of the kinetic BL δu/δθ for the nonhydrostatic
quasi-geostrophic (δ<

u ) and power law (δ>
u ) scaling regions for larger R̃a (Aguirre Guzmán et al. 2021). (e) rms of the temperature

normalized with �, the temperature difference between the plates, (Trms/�) Ek−1/3 [or (Trms/�)Ro−1/3] versus R̃a. ( f ) Vortex densities
λ2cN+ and λ2cN− versus R̃a: cyclonic (blue) and anticyclonic (red). For all panels, the Prandtl number is Pr ≈ 7. Abbreviations: BL,
boundary layer; C, cellular; CTC, convective Taylor columns; DNS, direct numerical simulations; exp., experiment; GT, geostrophic
turbulence; LSV, large-scale vortices; P, plumes; QG, quasi-geostrophy; rms, root-mean-square.

2.1.2. Plume regime. The convective Taylor columns lose vertical coherence in the plume
regime for Pr � 3 (Figure 5f ) so that individual vortical structures terminate in the interior. In
losing their coherence (King & Aurnou 2012), the plumes become increasingly desynchronized
across the layer at larger R̃a (Sprague et al. 2006, Julien et al. 2012b, King & Aurnou 2012, Rajaei
et al. 2017). Nieves et al. (2014) and Cheng et al. (2020) suggested that a transition from columnar
convection to a plume regime for largePr (Pr ≈ 7) takes place at about R̃a ≈ 6.This identification
is consistent with DNS and experiments for 10−8 � Ek � 10−4 in terms of the following features:
a change in slope of Nu versus R̃a, a saturation of �T/�z, a reversal in the slope of Trms (see
Section 2.1.3), and a trend toward equalization of cyclonic and anticyclonic vortex density, as
illustrated in Figure 6a,b,e, and f, respectively.

2.1.3. Geostrophic turbulence. The nonhydrostatic quasi-geostrophic model ( Julien et al.
2012b) predicts that at Ra ≈ 5Rac (for Pr � 3), there is a transition to geostrophic turbulence
where the geostrophic balance is maintained with the interior of the flow, as well as in the BL. In
this regime, the vortical structures are very short and attached to the BLs, whereas the bulk flow
is well mixed laterally and turbulent. Owing to geostrophic balance, the flow structures maintain
a degree of vertical alignment (Figure 1f ) and an interior control of heat transport, as opposed
to a BL-controlled process. The boundary separating plumes and geostrophic turbulence is more
complex than the transition from convective Taylor columns to plumes (Cheng et al. 2020). For
Pr = 7, geostrophic turbulence was not found in the nonhydrostatic quasi-geostrophic simula-
tions. In Figure 6b. the structure of the finite mean temperature gradient shows a saturated region
in the range 10 � R̃a � 300 corresponding to 108 ≤ Ra ≤ 109, which decreases in range as Ra
increases or Ek decreases (the Pr factor multiplying −�T/�z yields a better collapse of the data,
with lower saturatedmean gradient increasing with increasingRa).The rapid decrease in slope for
R̃a ≈ 300 corresponds toRo≈ 1. For the largest 1011 � Ra � 1012, there is a R̃a−1/2

scaling over
about 1.5 decades in R̃a and a maximum at the slightly smaller R̃a ≈ 50 [a shallower slope was fit
(Cheng et al. 2020) to a subsection of the data close to the maximum with an effective slope of
−0.21, rather than the −1/2 identified here, which is consistent with Hart & Ohlsen (1999)]. For
this Ra range, R̃a is greater than 5,000 for Ro≈ 1. The nature of the saturation, the maximum,
and the power law decrease are not fully understood; perhaps geostrophic turbulence modified
by ageostrophic contributions exists for the lower R̃a range of these observations, although the
Nu scaling is not consistent in this range with the nonhydrostatic quasi-geostrophic prediction of
R̃a3/2 (Figure 6a). There is a striking difference in the trends of Trms evaluated at its maximum
value (with respect to z) versus R̃a (Figure 6e). The nonhydrostatic quasi-geostrophic model sug-
gests normalizing Trms with Ek−1/3, and the experimental results are similar in magnitude when
normalized in this manner, although the trends with R̃a are the opposite. DNS data (Aguirre
Guzmán et al. 2022) for 5 × 109 ≤ Ra ≤ 1.5 × 1012 span the range 1.3 < R̃a < 80 and bridge the
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gap between nonhydrostatic quasi-geostrophic predictions and experiment. The lower R̃a values
agree well with the nonhydrostatic quasi-geostrophic results, whereas the R̃a = 80 value is signifi-
cantly (by about a factor of 3) larger than the corresponding experimental data. For nonhydrostatic
quasi-geostrophic results, one has (Trms/�)Ek−1/3 ∼ R̃a7/4 for R̃a ≤ 7 approaching a constant for
higher values, whereas the data from experiments with 3 × 108 � Ra � 5 × 109 show scaling to
be approximately ∼R̃a−2/5

up to about R̃a ≈ 500. A scaling that better collapses the DNS and ex-
perimental data is (Trms/�)Ro−1/3, implying that there is a remnant Ra (and Ek) dependence that
accounts for the magnitude shift. The maximum of Trms at R̃a ≈ 7 indicates that the scaling for
larger R̃a ≤ 7 results from the plume transition and is not affected by the crossover to geostrophic
turbulence. A final feature of Trms, for δu ≥ δθ , is that its variation with z takes on a universal shape
of a maximum value at the thermal BL thickness with different effective power law scalings inside
and outside that layer (Ding et al. 2019, figure 6d). For z/δθ < 1, we have Trms(z) ∼ z0.9, indepen-
dent of rotation, whereas outside the BL one has an Ro-dependent effective scaling going from
∼z−0.6 for the nonrotating case to ∼z−0.25, where the effective scaling exponent is approximately
constant for Ro� 0.5 (Ding et al. 2019, figure 2b). For these data, one has δθ ≈ δu, indicating
that they are not in the quasi-geostrophic limit. The nonhydrostatic quasi-geostrophic results are
quite different for δθ � δu, with similar magnitude but without an effective power law scaling for
z/δθ > 1, but with much larger fluctuations and again no power law scaling for z/δθ < 1, where
presumably Ekman pumping effects play a leading role (Stellmach et al. 2014, Julien et al. 2016).

Geostrophic turbulence can support an inverse energy transfer process that results in the for-
mation of large-scale vorticity. Although similar in outcome (i.e., a large-scale vortex condensate),
the energy transfer is a direct one from small scales to large scales via 3Dmodes and thus is differ-
ent from a purely 2D inverse energy cascade (Boffetta & Ecke 2012). These flows have been seen
in DNS ( Julien et al. 2012b; Favier et al. 2014; Guervilly et al. 2014; Rubio et al. 2014; Stellmach
et al. 2014; Kunnen et al. 2016; Kunnen 2021) for a variety of � (Guervilly & Hughes 2017,
Julien et al. 2018), for different Pr (Maffei et al. 2021), and for free-slip and no-slip BCs at the
plates (Aguirre Guzmán et al. 2020). Such large-scale vortices, however, have only been observed
in simulations with periodic BCs in horizontal directions, and the formation of these vortices de-
pends on � (Guervilly & Hughes 2017, Julien et al. 2018) and on initial conditions (Favier et al.
2019). Whether these large-scale vortex states persist in real experiments with sidewalls and with
significant R̃a � 1, where other physics may dominate, remains an open question.

2.1.4. Boundary zonal flow and transitions to the rotation-affected regime. RRBC turbu-
lence in a laterally confined geometry is also characterized by the presence of a BZF located close
to the container sidewall (de Wit et al. 2020; Zhang et al. 2020, 2021; Wedi et al. 2021), which
can be understood as the remnant of wall modes (Favier & Knobloch 2020, Ecke et al. 2022).
The BZF has been directly and indirectly observed from the onset of bulk convection up to the
transition to buoyancy-dominated flows at Ro≈ 2. It is especially influential in systems with � ≤
1, which have been utilized for experimental purposes to reach extremes of system parameters.
The fluid motion within the BZF is cyclonic (prograde) whereas the temperature pattern drifts
anticyclonically (retrograde). Within the BZF the vertical heat flux can be �60% larger than the
averageNu,making the BZF particularly significant (Zhang et al. 2021).DNS by Ecke et al. (2022)
for a fixed Ek = 10−6 and varyingRa showed a direct connection between pure wall modes, which
occur prior to bulk convection, and the BZF that coexists with turbulent convective flow in the
bulk. The impact of the BZF on flows in realistic physical geometries is only recently beginning
to be appreciated, and its existence may offer explanations for several observations, such as the
varying slope ofNu versusRa near onset [DNS by Lu et al. (2021)] and the attribution of a deficit

www.annualreviews.org • Turbulent RRBC 619

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
3.

55
:6

03
-6

38
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
02

/1
5/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



of vortex density at the walls to centrifugal (Noto et al. 2019) or proximity (Weiss & Ahlers 2011b)
effects.

2.2. Rotation-Affected and Buoyancy-Dominated Turbulence

Here we detail the transition from the rotation-dominated regime to the rotation-affected regime
and the transition to buoyancy-dominated turbulence. The characteristics of these transitions are
a change in slope of dNu/dRa and the parameters for which Nu → Nu0. For fixed Pr, one takes
the quantity Ekα0Ra as the combined transition parameter, where α0 is chosen to provide the
best collapse of the data—one typically uses Nu as the indicator of the transitions. Theory and
experiment provide several choices in the range 4/3 ≤ α0 ≤ 2, with the limits corresponding to
R̃a ∼ Ek4/3Ra and Ro2 ∼ Ek2Ra. These transitions are discussed in detail by Kunnen (2021).

2.2.1. Rotation-affected regime. As seen in Figure 1b, Nu at constant Ek increases rapidly
withRa from its unity value at onset toward an asymptotic value corresponding to its nonrotating
value Nu0. For Ra � 1010 and Pr � 1, Nu exceeds Nu0 owing to Ekman pumping, which gives a
concrete transition point,Nu(Rat, Ek) = Nu0. For largerRa and smaller Ek, we haveNu ≤ Nu0, so
that the transition value is given by a sharp decrease in the slope dNu/dRa. This rotation-affected
regime, which separates the rotation-dominated and buoyancy-dominated regimes, is character-
ized by the presence of vortical thermal plume emission from the BLs and the absence of an LSC
(Vorobieff & Ecke 2002; Kunnen et al. 2008;Weiss & Ahlers 2011a,b,c).The heat transport can be
more efficient than it is for nonrotating convection owing to Ekman pumping (e.g., Rossby 1969;
Zhong et al. 1993; Julien et al. 1996; Liu & Ecke 1997, 2009; Zhong et al. 2009; Stevens et al.
2010a; King et al. 2009) for Pr � 1 and, if Ra is sufficiently small, Ra � 1010. King et al. (2009)
suggested that the transition value into the rotation-affected regime forPr ≈ 7 was determined by
an approximate equivalence of thermal and Ekman BL thicknesses [i.e., δθ ≈ (2Nu)−1 ≈ δE with
an empirical transition Rat ≈ 1.4Ek−7/4, which was later modified to Rat ≈ 10Ek−3/2 (see King
et al. 2012, 2013; King & Aurnou 2013)]. Liu & Ecke (2009) suggested Ro= 0.1, correspond-
ing to Rat ≈ 0.06Ek−2. The nonhydrostatic quasi-geostrophic approach predicts a breakdown of
geostrophic balance at Rat ∼ Pr3/5Ek−8/5. Measurements for Pr ≈ 0.7 (Ecke & Niemela 2014)
gave Rat ≈ 0.25Ek−1.8 and recast the results of Liu & Ecke (2009) as Rat ≈ 1.3Ek−1.65, in close
agreement with results of King et al. (2009). Recent results (Lu et al. 2021) for Pr ≈ 4 indicated
Rat ≈ 0.2Ek1.7, while Wedi et al. (2021) found Rat ≈ 0.8Ek−2. Finally, Cheng et al. (2018, 2020)
identified a transition to a so-called unbalanced BL regime, which is associated with a breakdown
of quasi-geostrophy in the thermal BL, while the quasi-geostrophic condition is maintained in
the interior at Rot ≈ 0.06. How exactly factors such as aspect ratio �, Pr, or the contributions
of a BZF in finite containers affect this transition has yet to be worked out in detail. Neverthe-
less, the rotation-affected regime is rich with interesting crossovers from the quasi-geostrophic to
buoyancy-dominated flow.

2.2.2. Buoyancy-dominated regime. The final regime is the rotation-unaffected buoyancy-
dominated regime. Extensive measurements by Weiss & Ahlers (2011a,b) and Weiss et al. (2016)
have indicated that the transition whereNu → Nu0 occurs forRot2 ≈ 1.3Pr0.41 is within the range
3 � Pr � 35 and 109 � Ra � 1012. Lu et al. (2021) suggested for this transition Rat2 ≈ 3.4Ek−1.7

(water), whereas Wedi et al. (2021) indicated Rot2 = 1.3 for Pr ≈ 0.8. This transition was also
found empirically to vary with � asRo−1 = c1�−1(1 + c2�−1), with c1 ≈ 0.38 and c2 ≈ 0.06 (Weiss
& Ahlers 2011a,b). It can be argued that at this transition the buoyant and the Coriolis timescales
become similar, τff ∼ τ� (i.e., Ro∼ 1). In the buoyancy-dominated regime, the flows and the
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scalings are similar to those in nonrotating turbulent RBC (Ahlers et al. 2009b) because the effect
of the Coriolis forces becomes negligible.

2.2.3. From large-scale circulation to boundary zonal flow. When rotation is slow, the tur-
bulent RBCflow looks similar to the nonrotating case. In nonrotating turbulent RBC in containers
of � ∼ 1, an LSC develops (Ahlers et al. 2009b). There is a vertical central cross section (an LSC
plane), in which a large LSC roll fills the core part with secondary rolls in the corners. The LSC
can undergo twisting, sloshing, and other motions (see, e.g., Cioni et al. 1997; Funfschilling &
Ahlers 2004; Xi et al. 2004, 2006; Wagner et al. 2012). Since the LSC is always tilted, in another
vertical cross section orthogonal to the LSC plane, the flow typically looks like a four-roll struc-
ture, with an inflow in the central horizontal cross section (Shishkina et al. 2013, 2014). Under
slow rotation, at mid-height, the flow toward the center is affected by the Coriolis force in such a
way that a cyclonic (prograde) fluid motion is induced there (Kunnen et al. 2011). Near the plates,
however, the LSC flow toward the sidewall under the action of the Coriolis force leads to an anti-
cyclonic (retrograde) fluid motion there (see Zhang et al. 2021, figure 2). Near the centerline and
close to the plates, the flow remains anticyclonic for all �. As rotation increases, the mean flow
structure tends to be homogeneous in the vertical direction (according to the Taylor–Proudman
constraint), which results in the following: The region of the anticyclonic motion grows from the
plates toward the bulk and finally occupies the core part of the domain, whereas the region of cy-
clonic motion, which forms the BZF, is pushed toward the sidewall and shrinks with increasing �

(Ro−1). Thus, at a certain constantRo of order one, a breakdown of the LSC happens (Vorobieff &
Ecke 2002; Kunnen et al. 2008; Weiss & Ahlers 2011a,b,c) and a BZF becomes the most promi-
nent system-spanning global structure (de Wit et al. 2020; Zhang et al. 2020, 2021; Ecke et al.
2022).

2.3. Other Characteristics of RRBC Flows

There are many other characteristics of RRBC flows that have been either computed from DNS
or measured directly in physical experiment. Our review has selected what we view as the central
quantities that represent the problem. Here we discuss several others of interest.

2.3.1. Toroidal and poloidal energies. The change of flow structures is also tracked in the
evolution of the toroidal (et) and poloidal (ep) kinetic energies (Horn & Shishkina 2015). For
moderate Ra, et is less than ep if buoyancy dominates and ep gradually decreases with stronger
rotation.With increasingRo−1, et increases in the rotation-affected regime until it achieves et = ep;
this location can be interpreted as the beginning of rotation dominance where et is greater than ep.

2.3.2. Statisticalmoments of temperature, velocity, and vorticity. The statisticalmoments of
the convective fields (T, u, and ωz) are important indicators of the physics of RRBC and elucidate
its similarities and differences with nonrotating RBC ( Julien et al. 1996, 2012b). In experiments,
single point probes of T are utilized (Liu & Ecke 1997, 2011; Hart & Ohlsen 1999; Hart et al.
2002; Ding et al. 2019) and the dependence on the distance to the plate z can be determined.
Similar measurements can be performed using DNS (Kunnen et al. 2010a, Aguirre Guzmán et al.
2022). There is a maximum of Trms at z = δθ and larger fluctuations at z = δθ , as well as at the
mid-plane z = H/2, compared to the nonrotating case. Both the skewness (sign preference) and
kurtosis (Gaussianity measure) of T are smaller than they are for nonrotating RBC at a particular
z, and they are small near the thermal BL and increase with z, reaching a max value at about 10δθ

(Liu & Ecke 2011, Ding et al. 2019); the skewness is approximately 0 at the mid-plane owing
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to symmetry [cf. Aguirre Guzmán et al. (2022) for the Taylor columns state]. In DNS (Aguirre
Guzmán et al. 2022), it is possible to evaluate statistics and average over horizontal planes, which
are very difficult to obtain in experiments. The DNS show that the skewness is preferentially
negative for δu < δθ but becomes positive for the reverse. This is consistent with single point
measurements (Liu & Ecke 2011, Ding et al. 2019) inside the thermal BL for the conditions
δθ ≈ δu. The kurtosis of T is uniformly greater than 3, indicating stretched exponential probability
density functions (PDFs). The skewness of horizontal velocity and ωz are ≈0 (Vorobieff & Ecke
2002, Kunnen et al. 2010b, Aguirre Guzmán et al. 2022) at the mid-plane, with exponential tails
rather than the Gaussian PDFs for nonrotating RBC. Near the plates there is skewness toward
cyclonic vorticity and positive uz with strong non-Gaussianity. This is consistent with the picture
in Figure 2 regarding cyclonic vorticity generation and Ekman pumping–induced upward flow,
uz > 0. The nature of fluctuations near the plates is an important subject that needs additional
study to further elucidate the interactions of the thermal and kinetic BLs in the presence of Ekman
pumping (Stellmach et al. 2014, Julien et al. 2016, Plumley et al. 2016).

3. HEAT TRANSPORT IN RRBC

The global measure of RRBC is the convective enhancement of heat transport Nu. There are
clear scaling relationships in the limits of rotation-dominated and buoyancy-dominated regimes,
as discussed above. In between, the situation is less clear cut.We assume for the sake of comparison
that there is power law scaling in the range of convective Taylor columns/plumes 2 � R̃a � 10 (see
Figure 6a), although Ekman pumping contributes significantly here. There are no theoretical
predictions for this region.

3.1. Measurements and Simulations of Heat Transport in RRBC

Experimental measurements of Nu require fine system control and precision in heat flow [e.g.,
accurately measuring the heat flow through the fluid as opposed to measuring through sidewalls,
evaluating non-OB effects, introducing proper heat shielding, and measuring control variables
such as temperature difference and heat current (Ahlers et al. 2009b)].DNSmeasures complement
experiments by allowing access to the full fields of temperature and velocity but require very fine
grids and long computing times to obtain good statistical averages. To properly interpret Nu one
must be aware of wall modes that contribute at the onset of bulk convection and continue to
influence total Nu through the coexisting BZF. This contribution can be fractionally large for
convection in small � (e.g., Zhang et al. 2020, de Wit et al. 2020, Ecke et al. 2022). We now
describe the evolution of Nu in different regimes, starting from onset R̃a = 1 and ending with
Ro� 1 (i.e., the nonrotating limit).

After a small region of weakly nonlinear growth for ϵ � 1, Nu rises steeply owing to Ekman
pumping (Stellmach et al. 2014, Julien et al. 2016, Plumley et al. 2016) for Pr = 1 and Pr = 7,
as Nu− 1 scales as ϵ5/3—or, without the subtracted value of 1, as Nu ∼ R̃a3 [earlier analysis and
explanations did not include the important Ekman pumping effect (Boubnov & Golitsyn 1995;
Canuto & Dubovikov 1998; King et al. 2009, 2012; Ecke 2015)]. The initial steepening increases
with decreasing Ek (Cheng et al. 2015), but the modified nonhydrostatic quasi-geostrophic model
suggests that Ekman pumping reaches its maximum at R̃a ≈ 3 for Ek = 10−7 (see Plumley et al.
2016, figures 4 and 14), with factors of 2.5 and 10 of higher Nu compared to the nonhydro-
static quasi-geostrophic prediction for Pr = 1 and Pr = 7, respectively. The latter is in the same
range as the data presented in Figure 6a, where the maximum amplification factor is about 6.
The region where the maximum enhancement occurs is within the convective Taylor columns or
plume regime, depending on Pr. Following the rapid increase, the effective scaling ofNu with R̃a
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continuously decreases toward an asymptotic buoyancy-dominated effective scaling ofNu ∼ Ra0.3
(Cheng et al. 2020), although less slowly for smaller Ek (see Figure 6a). The same trend is seen in
figure 3 of Lu et al. (2021), with the observation that there is an apparent wall mode/BZF contri-
bution �Nu ≈ 10, as per Ecke et al. (2022). How much of Nu in this region is contributed by the
BZF is a matter of current research. In contrast, for Ek � 10−6, Nu undergoes a rapid transition
to BL-controlled convection with Ekman pumping enhancement with approximate Ra1/3 scal-
ing for 10 � R̃a � 100. For smaller Ek, the transition is to ∼R̃a1/2 and ∼R̃a5/8 for Ek ≈ 10−7 and
10−8, respectively. This may indicate a transition toward geostrophic turbulence with an expected
Ekman pumping–adjusted dependence of Nu ≈ 0.04(1 + 5.97Ek1/8)Pr−1/2Ek2Ra3/2 ( Julien et al.
2012b, Plumley et al. 2017) for smaller Ek.

As Ra increases further, one arrives in a region where Ro is no longer small. The condition
Ro≈ 1 then yields an upper bound on the rotation-affected regime of R̃at ≈ (Pr/A)Ek−2/3, where
we have A = RacEk4/3. For Pr = 7, one has 2,000 � R̃at � 2 × 105 for 10−8 � Ek � 10−5. Based
on the earlier quasi-geostrophic analysis, one can estimate that the transition from the quasi-
geostrophic to rotation-affected regime is in the range 100 � R̃at � 2 × 105, depending on Ek.
Within this range, different scalings and data-collapse strategies have been proposed.The effective
scaling exponents are very sensitive to the Ra and Ek ranges where the fits are made, as this is
exactly the region that connects very different scaling regimes of the dominance of rotation and
of buoyancy. In the rotation-affected regime, for Pr � 1 and not too largeRa � 1010,Nu is larger
than it is for the nonrotating case (Nu0), owing to the positive Ekman pumping effect noted above
and the relatively low value ofNu0 (Stevens et al. 2010b, 2013; Horn & Shishkina 2014). Based on
DNS for 4.38 ≤ Pr ≤ 100 and 107 ≤ Ra ≤ 109, Yang et al. (2020) obtained the optimal Ro−1

o ≈
0.12Pr1/2Ra1/6, at which, for fixed Ra and varying Ro, the maximal Nu/Nu0 was observed. The
optimal heat transport relative to Nu0 was obtained for this range of Ra when the thicknesses
of the thermal BL (estimated as ∼Ra−1/3) and the viscous Ekman BL (∼ Ek1/2) are similar. For
comparison with data in Figure 6a, one also has the result for optimalNu at R̃a ≈ 3Ek−1/6, which
yields something in the range of 10 � R̃a � 20 for 8 × 10−6 � Ek � 2 × 10−4. As one can see from
Figure 6a, this brackets a quite narrow range in the nonhydrostatic quasi-geostrophic diagram
and severely limits access to quasi-geostrophic states.

In the buoyancy-dominated regime, the asymptotic scalings are independent of Ek, as in non-
rotating turbulent RBC (Ahlers et al. 2009b). For measurements in experiments used for RRBC,
the nonrotating effective scalings Nu0 ∼ Raγ with γ ≈ 0.308 (Cheng et al. 2020), γ ≈ 0.317 (Lu
et al. 2021), and γ ≈ 0.322 (Cheng et al. 2015) forRa � 1014 are consistent with nonrotating mea-
surements in the same ranges; smaller effective exponents γ ≈ 0.29 are seen at lower Ra (Rossby
1969, Zhong et al. 1993, Liu & Ecke 1997, King et al. 2009, Cheng et al. 2015). With rotation of
these devices,Nu approaches Nu0 in the limit Ro−1 → 0.

The transitions between different regimes may depend on �. For example, a rotation-affected
to buoyancy-dominated transition scales empirically as Ro−1 = c1�−1(1 + c2�−1) with c1 ≈ 0.38
and c2 ≈ 0.06 (Weiss & Ahlers 2011a,b). Although � is very important in nonrotating convection
(Shishkina 2021, Ahlers et al. 2022), the argument has been made (e.g., Liu & Ecke 1997, Julien
et al. 2012a, Kunnen 2021) that from the nonhydrostatic quasi-geostrophic perspective, � should
not play a large role provided the lateral horizontal scale �/H is much less than D/H = �, which
is well satisfied in most RRBC experiments given � ∼ Ek1/3. Thus, tall thin experiments have been
constructed with 1/20 ≤ � ≤ 1/2 (Cheng et al. 2018) (Figure 3). This assumption has been chal-
lenged by the unexpected robustness of wall mode/BZF states that contribute more strongly for
small � (deWit et al. 2020; Zhang et al. 2020, 2021; Ecke et al. 2022), approximately as ∼�−1, and
that centrifugal effects scale withH (Horn & Aurnou 2018). An example of the BZF contribution
is that the increasing slope of Nu with increasing � from Lu et al. (2021) is well explained by a
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decreasing wall mode/BZF contribution ∝�−1. An important note here is that for any finite �,
even for � � 1, numerical solutions for periodic BCs at the lateral boundaries of the compu-
tational domain are different from the solutions for experimental BCs. Although the difference
vanishes in the limit � → ∞, in realistic simulations with periodic BCs,� is relatively small, which
causes significant differences in results compared to experiments or DNS with experimental BCs.

3.2. Hypothesis-Testing: Comparison of Measurements and Simulations

Let us now consider examples of heat transport data for RRBC in cylindrical containers with � ≈
1/2 using working gases He,N2, or SF6 for 0.7 ≤ Pr ≤ 0.9 and water for 4 ≤ Pr ≤ 6. In Figure 7,
the data are plotted in two classical ways: at constantRa and varying Ek (orRo) (Figure 7a,c) and
at a constant Ek and varyingRa (Figure 7b,d). In most modelsNu ∼ Raγ is assumed with γ = 1/3
in the buoyancy-dominated regime, whereas the proposed values of ξ in Nu ∼ (Ra/Rac )ξ in the
rotation-dominated regime are different. For example, assuming that heat flux q is independent
of H (or of ν and κ), one obtains ξ = 3 (or ξ = 3/2).

In Figure 8 we tested different hypotheses using the data from Figure 7 and plotted them
as Nu/Raγ ∼ [Ek(4/3)ξ/(ξ−γ )Ra]s, with s = 0 in the buoyancy-dominated regime and s = ξ − γ

in the rotation-dominated regime, for gases (Figure 8a–e) and water (Figure 8f–j); for ξ = 1
(Figure 8a,f ), ξ = 3/2 (Figure 8b,e,g, j), ξ = 2 (Figure 8c,h), and ξ = 3 (d,i); and for γ = 1/3
(Figure 8a–d,f–i) and γ = 1/2 (Figure 8e, j). The transition from the buoyancy-dominated to
the rotation-dominated regimes then takes place at constant Ek(4/3)ξ/(ξ−γ )Ra. It is remarkable that
both combinations, γ = 1/3 and ξ = 1 and γ = 1/2 and ξ = 3/2, imply a transition at constant
Ek2Ra (i.e., at constant Ro; see also Section 1.2.4). For the available data for gases one has 1 <

ξ < 3/2 (Figure 8a,b), and ξ = 3/2 nicely represents the slope in the rotation-dominated regime
for water (Figure 8g, j). For different measurements and DNS, however, the rotation-affected
and buoyancy-dominated data look quite different, being strongly overestimated with γ = 1/2
(Figure 8e, j). Thus, a better way to represent the Nu data in RRBC is needed, and in the next
section we suggest such a description.

3.3. Scaling Theory for Heat Transport in Turbulent RRBC

Here we develop a unifying scaling approach for the transition from rotation-dominated to
buoyancy-dominated regimes in turbulent RRBC. Summarizing different approaches to estimate
heat transport scalings in these regimes, we identify two main ideas. First, in the rotation-
dominated regime we haveNu− 1 ∼ (Ra/Rac )ξ , and in the buoyancy-dominated regime we have
Nu− 1 ∼ Raγ for ξ > 0 and γ > 0. Second, there is a balance of the thicknesses of the viscous
Ekman BL, δE/H ∼ Ek1/2, which is thinner in the rotation-dominated regime, and of the ther-
mal BL, δθ/H ∼ Nu−1, which is thinner in the buoyancy-dominated regime. Usually considered
as independent, these ideas are, however, naturally connected because the change of the scaling
regimes in RRBC is related to the change in the BL thickness balance. We thus combine these
two ideas, leaving the exponents ξ and γ unspecified, and assume that in turbulent regimes Nu is
large (i.e.,Nu � 1). These arguments give us the following relations, valid for the transition from
rotation-dominated to buoyancy-dominated regimes:

Nu ∼ Raγ ∼ (Ek4/3Ra)ξ and Nu−1 ∼ δθ/H ∼ δE/H ∼ Ek1/2. 10.

From Equation 10 we find the desired relations between the scaling exponents ξ and γ :

ξ = 3γ /(3 − 8γ ) or, equivalently, γ = 3ξ/(3 + 8ξ ). 11.
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Ra ≈ 7.5 × 109, Pr ≈ 0.72, gas N2 (Wedi et. al. 2021)
Ra ≈ 1.0 × 1010, Pr ≈ 0.72, gas N2 (Wedi et. al. 2021)
Ra ≈ 2.0 × 1010, Pr ≈ 0.72, gas N2 (Wedi et. al. 2021)
Ra ≈ 1.9 × 1011, Pr ≈ 0.78, gas SF6 (Wedi et. al. 2021)
Ra ≈ 9.8 × 1011, Pr ≈ 0.79, gas SF6 (Wedi et. al. 2021)
Ra ≈ 8.2 × 1012, Pr ≈ 0.80, gas SF6 (Wedi et. al. 2021)
Ra ≈ 2.4 × 1013, Pr ≈ 0.80, gas SF6 (Wedi et. al. 2021)
Ra ≈ 4.7 × 1013, Pr ≈ 0.84, gas SF6 (Wedi et. al. 2021)
Ra ≈ 7.6 × 1013, Pr ≈ 0.84, gas SF6 (Wedi et. al. 2021)
Ra ≈ 1.4 × 1014, Pr ≈ 0.84, gas SF6 (Wedi et. al. 2021)
Ra ≈ 3.7 × 1014, Pr ≈ 0.94, gas SF6 (Wedi et. al. 2021)
Ra ≈ 4.7 × 1014, Pr ≈ 0.96, gas SF6 (Wedi et. al. 2021)
Ra ≈ 7.5 × 1014, Pr ≈ 0.94, gas SF6 (Wedi et. al. 2021)

Ek ≈ 10–6, 0.7 ≤ Pr ≤ 0.8, gas N2, SF6 (Wedi et. al. 2021)
Ek ≈ 10–7, 0.8 ≤ Pr ≤ 0.9, gas SF6 (Wedi et. al. 2021)
Ra ≈ 108, Ro = 0.1, 0.8 ≤ Pr ≤ 4.3, DNS (Zhang et. al. 2020)
Ra ≈ 109, Pr = 0.8, DNS (Zhang et. al. 2021)
Ek ≈ 10–6, Pr = 0.8, DNS (Ecke et. al. 2022)
Ek ≈ 2.1 × 10–7, Pr ≈ 0.7, gas He (Ecke & Niemela 2014)
Ek ≈ 3.1 × 10–7, Pr ≈ 0.7, gas He (Ecke & Niemela 2014)
Ek ≈ 5.9 × 10–7, Pr ≈ 0.7, gas He (Ecke & Niemela 2014)
Ek ≈ 1.1 × 10–6, Pr ≈ 0.7, gas He (Ecke & Niemela 2014)
Ra = 2.0 × 108, Pr = 4.38, DNS (Hartmann et. al. 2022)
Ra ≈ 2.9 × 108, Pr = 4.38, DNS (Stevens et. al. 2011)
Ra ≈ 4.5 × 109, Pr = 4.38, DNS (Stevens et. al. 2012)
Ek ≈ 2.9 × 10–7, 5.2 ≤ Pr ≤ 5.9, H2O (Cheng et. al. 2020)

Ek = 1.85 × 10–6, Pr = 4.38, DNS (Lu et. al. 2021)
Ek = 4.63 × 10–7, Pr ≈ 4.38, H2O (Lu et. al. 2021)
Ra ≈ 2.3 × 109, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ra ≈ 4.5 × 109, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ra ≈ 9.0 × 109, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ra ≈ 1.8 × 1010, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ra ≈ 3.6 × 1010, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ra ≈ 7.2 × 1010, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ek ≈ 1.1 × 10–5, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ek ≈ 7.4 × 10–5, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ek ≈ 1.5 × 10–6, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
Ek ≈ 5.4 × 10–6, Pr ≈ 4.38, H2O (Weiss & Ahlers 2011b)
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Figure 7

Typical ways to present heat flux measurements in RRBC: (a,c) for constant temperature difference between the plates � (or Ra) and
varying rotation rate � (or Ek−1,Ro−1) and (b,d) for constant � (or Ek−1) and varying � (or Ra). All shown data are for cylindrical
containers with aspect ratio � ≈ 1/2 and (a,b) gases He, N2, or SF6 (0.7 ≤ Pr ≤ 0.9) or (c,d) water (4 ≤ Pr ≤ 6). Abbreviation: DNS,
direct numerical simulations.

Thus, a larger exponent γ in the buoyancy-dominated regime leads to a larger exponent ξ in the
rotation-dominated regime. This relation is illustrated in, for example, Figure 7c: Larger values
ofNu in the buoyancy-dominated region at smallRo−1 indicate more efficient heat transport with
larger values of γ , leading to a steeper decrease of theNu values in the rotation-dominated regime
at large Ro−1.
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Figure 9

Scalings of Nu− 1 versus (a) Ek−1 and (b) Ra, according to our theory.

Because of limξ → ∞3ξ/(3 + 8ξ ) = 3/8 and since 3ξ/(3 + 8ξ ) is a monotonically increasing
function for ξ ≥ 0, we conclude that for extremely large Ra, the maximum γ (after transition) is
γ = 3/8 = 0.375. The smallest ξ = 1 corresponds to the smallest γ = 3/11 ≈ 0.27 for relatively
small Ra. The geostrophic turbulence regime with ξ = 3/2, which requires larger Ra and Ek−1,
matches the turbulent buoyancy-dominated regime with γ = 3/10. Finally, the asymptotic regime
with ξ = 3, which is only feasible for very large Ra and Ek−1, should match γ = 1/3. Although
even higher values of ξ are theoretically possible, they must satisfy γ ≤ 3/8. The proposed scaling
relations for Nu versus Ek−1 and Ra are presented in Figure 9. Once we know how ξ and γ

are related (see Equation 11), we can collapse in one plot the data for any specific Pr and � by
plotting (Nu− 1)/Raγ versus Ek1/(2γ )Ra, as in Figure 10a. The choice of the x-axis follows from
the transition happening at constant Ek4ξ/[3(ξ−γ )]Ra = Ek1/(2γ )Ra (see Equations 10 and 11). If γ

(or ξ ) is known, then the data should follow a scaling law (Nu− 1)/Raγ ∼ (Ek1/(2γ )Ra)s, as in
Figure 10a, showing a slope s = 0 in the buoyancy-dominated regime and s = 8γ 2/(3 − 8γ ) in
the rotation-dominated regime. The transition then takes place at Ra ∼ Ek−1/(2γ ).
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(a) Representation of Nu displaying the transition from Nu− 1 ∼ (Ra/Rac )ξ (rotation-dominated regime) to Nu− 1 ∼ Raγ
(buoyancy-dominated regime). According to our theory, the scaling exponents ξ and γ follow the relation ξ = 3γ /(3 − 8γ ). (b,c) Data
from Figure 7, which are plotted as suggested in panel a, for (b) 0.7 ≤ Pr ≤ 0.9, under the assumptions γ = 2/7 ≈ 0.286 and ξ = 6/5
(an intermediate regime between cellular flow and geostrophic turbulence), and (c) 4 ≤ Pr ≤ 6, under the assumptions γ = 3/10 and
ξ = 3/2 (geostrophic turbulence).
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For � = 1/2 and 0.7 ≤ Pr ≤ 0.9, Figure 8a,b suggests that ξ satisfies 1 < ξ < 3/2 with a
preference toward 1. If we assume ξ ≈ 6/5, this would imply γ ≈ 2/7≈ 0.286 (cf. King et al. 2009).
Indeed, all the data from Figure 7a,b begin to follow the same dependence if plotted with γ =
2/7 and ξ = 6/5, as in Figure 10b. Analogously, for � = 1/2 and 4 ≤ Pr ≤ 6, Figure 8f suggests
ξ = 3/2,which together with Equation 11 yields γ = 3/10. Again, all data from Figure 7c,d, which
are plotted with ξ = 3/2 and γ = 3/10 in Figure 10c, collapse in both the rotation-dominated
and buoyancy-dominated regimes. The data plotted in this way not only follow one curve but
also support our theoretical conjecture through the relation between slopes in the two regimes
(Equation 11). These slopes are indicated by the blue and pink straight lines in Figure 10b,c.
For Pr � 1 (Figure 10c), in the rotation-affected regime (for values of Ek5/3Ra slightly above the
transitional value,Ek5/3Ra � 0.6), there is a scatter of the data owing to the Ekman pumping effect,
which can lead to Nu values even larger than those in nonrotating RBC. This effect, however,
vanishes with increasing Ra and decreasing Pr, as discussed above.

There are some caveats to our scaling approach. First, the data for the wall mode regime (seen
in the very left of Figure 10b) are ignored in the present analysis. Here we assumed Nu = 1
at the onset of bulk convection, whereas wall mode convection, which occurs prior to the bulk
convection, can lead to Nu values significantly larger than 1 at Rac in the case of small-� con-
tainers (Ecke et al. 2022, Zhang et al. 2021). Nevertheless, a reduction by 1 or slightly more in
the Nu values in plots like Figure 10a would not significantly influence the scalings, provided
Nu � 1. Second, the values of γ that are chosen to represent theNu data for small and large Pr in
Figure 10b and Figure 10c, respectively, are, of course, not universal. Here they are chosen em-
pirically, as they better represent the data fromFigure 7.The values of γ in RRBC vary, in general,
between 3/11 and 3/8 and are larger for larger Ra. To predict the value of ξ in a particular case,
one should first estimate γ in the nonrotating/buoyancy-dominated regime [using the theory of
Grossmann & Lohse (2000, 2001)] and then calculate ξ using Equation 11. The data should then
collapse onto onemaster curve if plotted as suggested in Figure 10a.Third, themaximal exponent
γ = 3/8 in buoyancy-dominated RRBC does not contradict the maximal γ → 1/2 in nonrotating
highly turbulent RBC. In the latter case [as in the regime IVl of Grossmann & Lohse (2000)], the
velocity BL becomes thinner than the thermal BL, which determines the buoyancy-dominated
regime in RRBC. Finally, � and Fr should also affect the scaling relations, and this needs fur-
ther investigation. For the data discussed here,Fr is less than 0.15 for both considered Pr ranges,
0.7 ≤ Pr ≤ 0.9 and 4 ≤ Pr ≤ 6. Additionally, � is an influential parameter that can shift the prin-
cipal scaling regimes within the parameter plane (Shishkina 2021, Ahlers et al. 2022), although it
acts in a different manner for RRBC owing to wall mode/BZF contributions and to the decreas-
ing horizontal length scale with increasing rotation. Here we mainly discuss the case of � = 1/2.
Measurements and DNS data of RRBC in water for a broad range of � are given by Lu et al.
(2021) and Hartmann et al. (2022).

4. FURTHER TOPICS IN TURBULENT RRBC STUDIES

4.1. Non-Oberbeck–Boussinesq Effects

The validity of the OB approximation in RBC was studied by, for example, Spiegel & Veronis
(1960) and Veronis (1962), but most comprehensively by Gray & Giorgini (1976). To derive
Equations 1–3 from the continuity, momentum, and energy equations for a Newtonian fluid with
zero second viscosity (Batchelor 1967), one assumes (a) that all fluid properties are constant except
the density in the buoyancy force term in the momentum equation, which is taken to be linearly
dependent on the temperature, and (b) that the pressure work and the viscous dissipation terms in
the heat equation are negligible.The OB validity means that all terms in the residual equations are
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negligible. Taking a certain small threshold for the residuals, from assumptions a and b one de-
rives the region of the OB validity in terms of the upper bounds for � and H, respectively. The
OB validity region for any common fluid is sketched in Figure 4a. Thus, within the OB validity
region for any reasonable threshold, both � and H < C� are bounded, where C depends on the
fluid properties alone. This means that for any chosen fluid,Ra larger than a certain value will no
longer satisfy the OB criterion. This is a problem that RRBC and nonrotating RBC share.

Non-OB effects in RRBC in water, where the fluid properties are considered temperature de-
pendent, have been studied by Horn & Shishkina (2014). Without rotation, the non-OB effects
lead to a global asymmetry of the flow, which is reflected, in particular, in an increased bulk tem-
perature. With increasing rotation, the central temperature approaches that of the OB case, but
the asymmetry of the BLs remains.

4.2. Centrifugal Buoyancy Effects

Centrifugal buoyancy changes the flow structure and the response characteristics in RRBC
(Homsy & Hudson 1971). This holds for both the buoyancy-dominated and rotation-dominated
regimes. For example, in a weakly nonlinear rotation-dominated regime, the complex Ginzburg–
Landau equation (van Saarloos&Hohenberg 1992,Aranson&Kramer 2002) predicts the scalings
of the correlation length as ∼ϵ−1/2 and precession frequency as ∼ϵ1, which is also consistent with
the numerical solutions of the Swift–Hohenberg equation (Cross et al. 1994). Measurements by
Hu et al. (1995, 1998) for large � = 46 and 80, however, deviate from these theoretical predic-
tions, suggesting scaling exponents that are about two times smaller in both cases. Simulations
by Becker et al. (2006) have clarified this discrepancy: They show that if the centrifugal term is
removed from the momentum equation, the numerical results are consistent with theory (which
neglects the centrifugal buoyancy), but inclusion of the centrifugal term leads to results consistent
with experiments. Note that the derivation of an OB amplitude equation that includes the cen-
trifugation is nontrivial, as the required toroidal-poloidal decomposition cannot adjust the radial
dependency (see Küppers & Lortz 1969,Knobloch 1998,Marques et al. 2007, Scheel 2007, Scheel
et al. 2010).

In DNS by Horn & Aurnou (2018, 2019, 2021) and in experiments by Hu et al. (2021, 2022),
centrifugal buoyancy effects were investigated over broad ranges ofRo and Fr. Centrifugal buoy-
ancy causes warm (cold) fluid near the bottom (top) plate to move inward (outward) from the
centerline with downward flow at the sidewalls, which leads to strongly asymmetric mean tem-
perature profiles in the vertical and radial directions: In the core part of the domain the fluid
is always warmer along the centerline than it is near the sidewalls (Hart 2000, Horn & Aurnou
2019). These effects increase with increasing Fr. Horn & Aurnou (2018, 2019) suggested differ-
ent rotation-dominated regimes in centrifugal buoyancy where the flow can be quasi-geostrophic
or quasi-cyclostrophic such that the primary force balance is between the pressure gradient and
the Coriolis force or centrifugal buoyancy, respectively. In the cyclostrophic state, tornado-like
large-scale structures can form. A triple balance between pressure gradient, Coriolis, and cen-
trifugal forces gives the so-called gradient wind balance,which is particularly important in tropical
cyclones (Willoughby 1990).

Different regimes of the dominance of gravitational or centrifugal buoyancy, or of Coriolis
forces, can be extracted by analyzing the corresponding timescales τ ff, τ c, and τ� in each regime
(see the sidebar titled Dimensional Characteristics of Rotating RRBC): The smallest timescale
determines the dominance of the corresponding force. Transitions between the regimes are de-
termined by equating the timescales of the neighboring regimes. This way one obtains regime
diagrams, as in Figure 11. The dominance of centrifugation over buoyancy is expected for
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τΩ < τc < τff

τΩ < τc < τff

Ro–2 ≈ 1

Figure 11

Phase diagrams of RRBC with centrifugal effects, in terms of (a) Fr and Roc ≡ √
α�/2, where α is the thermal expansion coefficient

and � is the temperature difference between the plates, and (b) Fr and Ro. Buoyancy-, Coriolis-, and centrifugal-dominated regimes are
shown with pink, blue, and white shading, respectively. This is determined by the smallest timescales in the regimes τ ff, τ�, or τ c (see
the sidebar titled Dimensional Characteristics of RRBC for definitions). According to Hu et al. (2022), centrifugal effects become
apparent earlier, at Fr ∼ Ra0.5 (light blue line with arrow). Regions of the Oberbeck–Boussinesq validity, according to Gray & Giorgini
(1976), are marked with dark magenta lines. Examples of temperature fields (after Horn & Aurnou 2018) marked as subpanels i–v in
panels a and b are presented in panel c for Ra = 108, Pr = 6.52, and � = 0.73 and for the following values: (i) Ro−1 = 20 and Fr = 0.1
(α� ≈ 2.7 × 10−3, Ek ≈ 1.3 × 10−5), (ii) Ro−1 = 20 and Fr = 0.5 (α� ≈ 1.4 × 10−2, Ek ≈ 1.3 × 10−5), (iii) Ro−1 = 2 and Fr = 0.1
(α� ≈ 2.7 × 10−1, Ek ≈ 1.3 × 10−4), (iv) Ro−1 = 2 and Fr = 0.5 (α� ≈ 1.4 and Ek ≈ 1.3 × 10−4), and (v) Ro−1 = 2 and Fr = 2 (α� ≈
5.5, Ek ≈ 1.3 × 10−4).

Fr > �/2 (the transition is marked in Figure 11). For a given cell height H, only the rotation
rate � determines the onset of centrifugal dominance, and not the aspect ratio �, since Fr > �/2
implies�2H/g> 1. Experiments by Hu et al. (2022) show, however, that the centrifugal effects be-
come apparent much earlier (atFr ∼ Ra0.5); this is indicated in Figure 11b. The dominance of the
centrifugal over Coriolis force occurs for Roc > 1 (Figure 11), which means that this region lies
outside the region of the OB validity, given Roc = √

α�/2. Thus, to study in DNS regimes dom-
inated by centrifugation, one is forced to consider non-OB governing equations. Another feature
is that the gravitational buoyancy time considered here is universally based on H and the free-fall
velocity uff. This implies that for any small Fr, the transition from the rotation-dominated to the
buoyancy-dominated regime always takes place at a constantRo−1. As we have seen in Section 3.3,
however, this is not universal; thus a further inspection of the phenomena of centrifugal effects in
RRBC is needed.

630 Ecke • Shishkina

A
nn

u.
 R

ev
. F

lu
id

 M
ec

h.
 2

02
3.

55
:6

03
-6

38
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

W
IB

64
17

 -
 M

ax
-P

la
nc

k-
G

es
el

ls
ch

af
t o

n 
02

/1
5/

23
. S

ee
 c

op
yr

ig
ht

 f
or

 a
pp

ro
ve

d 
us

e.
 



4.3. Boundary Conditions in RRBC

Schmitz & Tilgner (2010), Stellmach et al. (2014), and Kunnen et al. (2016) showed in different
simulations for a broad range of Ek that free-slip BCs at the plates lead to several times smaller
values of Nu. The no-slip BCs at the plate allow the formation of the Ekman BLs; thus, Ekman
pumping leads to more efficient heat transport in large-Pr fluids. This effect is also reflected in
simulations using the extended asymptotic model with the Ekman pumping BCs (Plumley et al.
2017). DNS by Kunnen et al. (2016) for different BCs at the plates, for the same Ra ≈ 1010 and
Ek ≈ 10−6, showed that the flows with the free-slip BCs follow the geostrophic turbulence scaling
Nu ∼ Ek2, whereas flows with no-slip BCs still follow the scaling Nu ∼ Ek1.2, which indicates that
the transitions between different regimes in RRBC depend on the BCs at the plates (for the no-
slip case, a higherRa is required). For the same control parameters in the simulations with no-slip
and free-slip BCs, Stellmach et al. (2014) and Kunnen et al. (2016) observed the formation of
large-scale vortices only in the former case. Aguirre Guzmán et al. (2020) showed that large-scale
vortices are formed for the no-slip BCs for largerRa/Rac values than are required for the free-slip
case.

SUMMARY POINTS

1. The nonhydrostatic quasi-geostrophic model gives a compelling qualitative description
of rotation-dominated rotating Rayleigh-Bénard Convection (RRBC), but how it breaks
down asRa/Rac increases, including the role of Ekman pumping and turbulent boundary
layers, remains unresolved quantitatively. Although there is much evidence accumulating
during a very active campaign by multiple groups worldwide, there remain significant
questions about both heat transport and local quantities of RRBC.

2. The phenomenology of heat transport scaling in rotation-dominated and buoyancy-
dominated regimes that we introduced in Section 3.3 and Figure 10a expresses how
the crossover from scaling in one domain puts limits on the scaling in the other. The
boundaries of different qualitative domains remain somewhat uncertain.

3. The Oberbeck–Boussinesq (OB) validity region is quite restricted for any fluid
(Figure 4). Large H, �, or � unavoidably leads to nonnegligible non-OB effects. It
seems that in both direct numerical simulations (DNS) and experiments, we have ar-
rived at the limits of the OB approximation in RRBC and in nonrotating RBC, and
proper adjustments of the governing equations are needed.

4. The presence of remnant wall modes and boundary zonal flow (BZF) in experiments on
RRBC poses interesting challenges to separate the contributions of the BZF from the
bulk RRBC convection process. Understanding the contributions of each will improve
our understanding of both in realistic containers.

FUTURE ISSUES

1. The great challenge of laboratory and DNS investigations of RRBC is determining
which aspects of the model system are applicable to similar problems in geophysical
and astrophysical manifestations of RRBC, such as the outer core of the Earth and the
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convective zone of stars.We are partway along that path, but incorporating more realis-
tic governing equations, geometries, and boundary conditions and exploring a broader
parameter range remain exciting challenges for the future.

2. The experimental challenges for the future remain being able to fully probe the domain
of quasi-geostrophic RRBCwhile maintaining the asymptotic conditions associated with
the model. Better experiments are being developed, and the measurement tools are be-
coming increasingly powerful. DNS continue to push the envelope of extended range
and flexibility. The next decade should be an exciting one for advances in RRBC.
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An online log of corrections to Annual Review of Fluid Mechanics articles may be found
at http://www.annualreviews.org/errata/fluid
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