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Abstract

Manymethods for haplotyping have materialized, but their application on a significant scale has been rare to
date. Here we summarize analyses that were carried out in 1092 genomes from the 1000 Genomes
Consortium and validated in an unprecedented number of 184 PGP genomes that have been experimen-
tally haplotype-resolved by application of the Long-Fragment Read (LFR) technology. These analyses
provided first insights into the diplotypic nature of human genomes and its potential functional implica-
tions. Thus, protein-changing variants were not randomly distributed between the two homologues of
18,121 autosomal protein-coding genes but occurred significantly more frequently in cis than in trans
configurations in virtually each of the 1276 phased genomes. This resulted in global cis/trans ratios of ~60:
40, establishing “cis abundance” as a universal characteristic of diploid human genomes. This phenomenon
was based on two different classes of genes, a larger one exhibiting cis configurations of protein-changing
variants in excess, so-called “cis-abundant” genes, and a smaller one of “trans-abundant” genes. These two
gene classes, which together constitute a common diplotypic exome, were further functionally distin-
guished by means of gene ontology (GO) and pathway enrichment analysis. Moreover, they were distin-
guishable in terms of their effects on the human interactome, where they constitute distinct cis and trans
modules, as shown with network propagation on a large integrated protein–protein interaction network.
These analyses, recently performed with updated database and analysis tools, further consolidated the
characterization of cis- and trans-abundant genes while expanding previous results. In this chapter, we
present the key results along with the materials and methods to motivate readers to investigate these
findings independently and gain further insights into the diplotypic nature of genes and genomes.
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1 Introduction

“Much of biology revolves around the number 2, or more precisely,
the repercussion of > 1. The number 1, by itself, establishes exis-
tence, whereas 2 and all other numbers > 1 suggest persistence”
(Wu C-T and Dunlap JC (2002), Homology effects: The difference
between 1 and 2) [1].

1.1 Moving from a

“World of 1” to a

“World of 2”

Human genomes are diploid by nature. Thus, as an indispensable
prerequisite for eukaryotic evolution and bisexual reproduction,
every individual has two genomes, that is, two sets of chromo-
somes, one from the father and one from the mother. This number
two guarantees the survival of the human species, the situation of
homology allowing evolution through the generation of diversity
and the regulation as well as maintenance of function. Where the
two homologues of a gene or any functional genomic unit are not
the same, but different, evolution chooses different from time to
time allowing adaptation to changing environments. The existence
of two (different) homologues of a gene not only facilitates a high
functional flexibility of genes and their products but also represents
a fail-safe system in the event that one of the two homologues
should be perturbed, preserving the function of the gene.

To study the human genome in its diploid nature, in an ideal
world with all technologies at hand, one would simply split open a
cell, separate all chromosomes from one another, and sequence
each one from end to end. This would allow a direct determination
of the specific combinations of genetic variants as they exist on each
of the two homologous chromosomes, also defined as haplotypes,
which as a pair constitute a diplotype. It is becoming increasingly
clear that the phase of the variants, that is, the way in which the
variants are distributed between the two homologous chromo-
somes, is of key importance [2–4]; whether variants reside on the
same chromosome, in cis, or on both chromosomes, in trans, can
critically impact gene/protein function and phenotype. Thus, Sey-
mour Benzer showed as early as 1957 that two null mutations in a
cis configuration leave at least the second form of the gene intact,
while in the case of a trans configuration, both forms of the gene
are defect, changing phenotype completely [5]. As an example of a
more complex scenario, Drysdale and colleagues [6] demonstrated
that different pairs of promoter and coding region β2-adrenergic
receptor gene (ADRB2) haplotypes elicit significantly divergent
in vitro and in vivo responses to β agonist in asthmatics, that is,
induce different biologic and therapeutic phenotypes. Concerning
the interaction between genes, e.g., when a mutation in the cell
essential gene Rpa1 and a closely linked mutant allele of the tumor
suppressor gene Trp53 were in cis, the tumor phenotype was atte-
nuated and survival prolonged, whereas in the trans configuration,



Rpa1L230P significantly enhanced tumorigenesis and reduced sur-
vival [7]. Established phenomena that attest to the importance of
phase include moreover compound heterozygosity in monogenic
disorders as well as numerous other specific (complex) diplotypes in
common diseases and pharmacogenetic phenotypes [3]. Further-
more, phase information is crucial where diploid organisms express
but one of the two homologues of a gene. This is for instance the
case in phenomena as widespread as allele-specific expression
(ASE), allele-specific methylation (ASM)/genomic imprinting
and monoallelic expression (MAE), and the loss of heterozygosity.
Thus, in differentially expressed transcriptomes and proteomes, the
specific combinations of variants situated on the expressed homo-
logues will be the ones that actually exert function. Thus, phase
information is essential to understand the diploid biology of genes
and genomes and establish meaningful relationships between DNA
sequence, gene/protein function, and phenotype. Ultimately,
DNA sequence and its variation can only be understood in phase
context.
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Although the diploid nature of the human genome is obvious,
it has been much too often ignored. Current genome biology still
relates both empirically and conceptually mostly to a “World of 1.”
The approaches to genome sequence analysis, documentation,
description, and annotation routinely rely on one single DNA
sequence readout per individual, ultimately the result of a key
strategic decision due to financial and technical limitations at the
dawn of the Human Genome Project. The DNA templates rou-
tinely prepared for sequence analysis actually represent a mixture of
both paternal and maternal chromosomes, resulting in the genera-
tion of “mixed diploid” sequence, that is, a composite of both
haploid parental sequences, instead of a separate readout of the
two parental homologues.

1.2 Many

Haplotyping Methods,

Not Much Application

To date, an estimated hundreds of thousands [8] to 30 million [9]
human genomes have been routinely generated as single readouts,
as have roughly about 700,000 exomes, with the largest studies
including 125,748 [10] and 454,787 exomes [11]. In stark con-
trast, at most about 300 (partially) haplotype-resolved genomes
have materialized since 2007 [12, 13]. Notably, the first direct
experimental haplotyping methods at the genome scale were
described in 2011 including fosmid pool-based next-generation
sequencing approaches [4, 14] or the use of a microfluidic device
[15]. The Long-Fragment Read (LFR) technology was reported
soon thereafter [16]. Many haplotyping methods or variations
thereof have followed since [17, 18], with the most recent one
producing a fully phased de novo genome assembly using single-
cell strand sequencing and long reads [19]. The majority of the
studies typically described one or a few genomes to illustrate a new
or improved haplotyping method. However, while each new
method has been hailed, too little attention has been paid to the



application of these methods at any significant scale. In only a few
studies, an experimental method has been applied to haplotype-
resolve a sizeable number of genomes in order to be able to address
obvious questions concerning the diplotypic nature of human gen-
omes or their structural variation. Thus, we have validated and
applied a fosmid pool-based next-generation sequencing approach
[4, 20, 21] to haplotype-resolve and comprehensively analyze a set
of 14 human genomes in 2014 [22], the largest data set produced
at the time. Over 100 personal genomes that were experimentally
phased by application of the LFR technology were reported in
2016 [23], and analyses including a total of 184 LFR haplotype-
resolved genomes (generously provided by Brock Peters and
Radoje Drmanac) were described by us in 2019 [24]. Finally,
32 diverse human genomes that were phased by means of a combi-
nation of long-read and strand-specific sequencing technologies
[19] to perform integrated analysis of structural variation were
reported in 2021 [25]. Thus, the stage is set to move from a
“World of 1” toward a “World of 2.”
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1.3 From Methods to

Insight

This requires, in addition to appropriate technologies, a reevalua-
tion of previously prevailing conceptual approaches to haplotype
analysis. With the development of experimental haplotyping meth-
ods, the obvious biological interpretation of haplotypes as the
molecular equivalents of the two homologues of a diploid gene
(or any functional region) has finally been gaining momentum.
This is worth mentioning because haplotypes have been conceived
for most of the time as genetic markers, particularly as the research
objects of the major human genome-related initiatives “Interna-
tional HapMap Project” and “1000 Genomes Project.” Accord-
ingly, a genome-wide map of “haplotypes,” that is, “blocks,” or
combinations of common SNPs in linkage disequilibrium (LD),
was developed to allow efficient inference by means of LD of
unobserved disease variants. A biological conception of haplotypes
far beyond the mainstream, the author (MH) has early on focused
on “gene-based functional haplotypes,” because it is “essential in
diploid organisms to determine the specific combinations of all
given gene sequence variants for each of the (2) chromosomes
defined as haplotypes” [2, 26]. “The correct determination of the
molecular haplotypes underlying each genotype . . . is essential to
make conclusions on the ‘functionality’ of both forms of the gene
and establish relationships between gene variation and gene
function. . .” [2]. In 2011, Tewhey and colleagues [3] elaborated
the importance of phase information in remarkable detail, particu-
larly at the example of settings in which the characterization of
haplotypes is “essential for understanding phenotypic expression. . .
and disease states.” At the same time, we illustrated many of these
considerations using “Max Planck 1” (MP1) then the most com-
prehensively haplotype-resolved and annotated individual human
genome [4].
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Researchers have since addressed an increasingly broad spec-
trum of specific instances, such as disease-related phenotypes,
where phase matters. Of particular importance in this context are
studies on clusters of two or more nearby variants that exist on the
same haplotype in an individual, so-called multinucleotide poly-
morphisms (MNPs) [27, 28], mutations (MNMs) [29–31], or
variants (MNVs) [10, 32]. Combinations of variants within a
codon can have different functional consequences than the individ-
ual variants. Because currently available tools do not correctly
classify MNVs, misannotations are common, resulting in missed
diagnoses or false-positive pathogenic candidates [28, 31]. In a first
large-scale study of MNVs, Wang et al. [10] examined the func-
tional impact of SNP pairs within 2 bp distance of each other in
125,748 exomes with local phase information. In total, 18,756
MNVs showed a novel, combined effect on protein sequence
including 407 gained nonsense and 1821 rescued nonsense muta-
tions, further underscoring the value of haplotype-aware annota-
tion. Thus, the “World of 1” consists of many exceptions already
that reflect a “World of 2.”

To move toward a more coherent, holistic view of the “World
of 2,” we first wanted to learn more about the diplotypic nature and
architecture of the human genome. To this end, we addressed the
following questions: (i) How are protein-coding variants, especially
variants of potential functional significance, distributed between
the two homologues of the autosomal genes? Can we distinguish
certain patterns based on the distribution of cis and trans config-
urations as the two major categories of (diplotypic) genetic varia-
tion? For instance, could cis configurations, leaving one form of the
gene intact, be expected to occur more frequently in human gen-
omes than trans configurations to preserve organismal function?
(ii) Moving from the analysis of whole genomes to the genes, can
we identify a specific, common subset of genes that preferentially
have cis or trans configurations, that is, that preferentially encode
two potentially functionally different homologues, diplotypes? If
so, does this concern specific functional classes of genes? (iii) Ana-
lyzing then the rates of cis and trans configurations per gene, can we
distinguish diplotypic genes further by an excess of either configu-
ration? (iv) If so, can we further functionally distinguish these
classes of genes at different levels of molecular organization such
as functional annotation terms, pathways, or protein–protein inter-
action networks?

In this chapter, we first start with an overview of the terms and
definitions that we have developed and applied to assess the “World
of 2.” Subsequently, we summarize the key results providing first
insights into the diplotypic nature and architecture of (diploid)
human genomes, as obtained in earlier studies [22, 24]; these
include global cis abundance as a universal characteristic of diploid
human genomes and the classification and characterization of cis-



and trans-abundant genes. (In this context, we would like to refer
the reader to these publications for further detail.) These results
have recently been consolidated and expanded using an updated
database and advanced analysis tools. Thus, we were able to sub-
stantiate the potential functional importance of these two gene
classes also at the higher hierarchical level of protein–protein inter-
action networks (PPI). Altogether, these results were obtained
through comprehensive bioinformatic analyses of multiple
haplotype-resolved genomes, generated by application of three
different experimental approaches, two of which were presented
in this series earlier [21, 33]. Here, we present the methods and
approaches we have developed and applied to analyze the large
numbers of phased genomes, along with lists of (cross-validated)
cis- and trans-abundant genes and information on their functional
annotation. This should enable researchers to conduct independent
investigations within different and much larger data sets, thus sub-
stantiating results and refining approaches that reveal more about
the “World of 2” that is the diploid human genome.
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2 Key Results

2.1 Genome-Based

Analysis of Cis and

Trans Configurations

of Coding Variants

To test our hypothesis of a nonrandom distribution of protein-
changing variants in 1092 genomes (Materials), we assessed the
cis/trans ratios of predicted protein function-altering non-synon-
ymous SNPs (PFA-nsSNPs) across 18,121 autosomal protein-
coding genes (primary transcripts) for each of the genomes and
derived the median of these ratios (see Fig. 1 and Methods).
Indeed, cis configurations of PFA-nsSNPs occurred significantly
more frequently than trans configurations, with a global cis/trans
ratio of 59.6:40.4 (P < 3.53E-21). Significant cis excess existed
moreover in each of the four ancestry groups that were contained in
the 1092 genomes, with cis fractions between 61.2% and 59.5% in
EUR, AMR, and EAS (P < 2.25E-21–1.46E-17) and 54.7% in
AFR (P< 1.66E-14). The same was true for each of the 14 popula-
tions contained in these four ancestry groups. When examining in
addition the entirety of nsSNPS and sSNPs existing within the
coding sequences, the results were again almost identical. Signifi-
cant cis abundance was strongly corroborated by analysis of the
184 experimentally haplotype-resolved PGP genomes (Materials),
with ratios of 60.4:39.6 (P < 1.66E-16) for PFA-nsSNPs, and
slightly higher ratios for nsSNPs and sSNPs, respectively. Thus,
protein-changing variants, and coding variants as a whole, are not
distributed randomly between the two homologues of a gene but
occur significantly more frequently on the same homologue, with
~60% of the phase-sensitive genes carrying their coding variants in
cis.

2.1.1 Global Abundance

of Cis Configurations
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Fig. 1 Toward a “World of 2.” Analysis of cis and trans configurations in genomes and genes: terms and
definitions
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2.1.2 Significant Cis

Abundance in Each

Individual Genome

When each of the 1092 genomes was examined individually, 99.7%
had more cis than trans configurations of PFA-nsSNPs (Fig. 2a).
Individual cis fractions varied within a limited corridor, e.g.,
between 55.7% and 67.1% in EUR and between 49.7% and 63.1%
in AFR. Importantly, every single genome had significantly larger
cis fractions than would be expected if the variants were distributed
randomly between the two homologues of a gene, with P< 2.55E-
29–2.30E-10 in EUR, EAS, and AMR and P < 8.83E-23–1.32E-
07 in AFR (see derivation of significance values below). The same
applied to the individual cis fractions of coding nsSNPs (Fig. 2b)
and sSNPs, their noticeably lower variance obviously due to the
~three-fold higher number of phase-sensitive genes per genome in
these cases. Likewise, each of the 184 experimentally phased PGP
genomes showed highly significant cis abundance (P < 2.54E-
26–7.99E-06), with cis fractions for PFA-nsSNPs between 49.4%
and 70.8% (Fig. 2c). Significant cis abundance was also observed
when nsSNPs (Fig. 2d), sSNPs, and all classes of coding variants
were analyzed together as they co-occur in many genes. Thus,
significant abundance of cis configurations of coding variants
could represent a universal characteristic of diploid human gen-
omes. As indicated by the decay of cis fractions in AFR, this phe-
nomenon most likely reflects a manifestation of LD.

2.1.3 Significant Cis

Abundance Driven by Pairs

of Coding Variants

Cis/trans ratios actually represent composite ratios. This is because
the genes have different numbers of variants, and the probability of
variants to occur in a trans configuration increases with the number
of variants in a gene. Thus, we calculated the cis/trans ratios in the
1092 genomes separately for configurations with 2 up to
5 PFA-nsSNPs, which comprised 95.7% of all configurations. The
vast majority of these, 66.7%, consisted of pairs of variants of which
65.8% existed in cis. About 18.6% of the configurations consisted of
combinations of 3 PFA-nsSNPs, with a ~50:50 ratio of cis to trans.
Comparatively small proportions of the configurations, 7.3% and
3.1%, respectively, had 4 and 5 PFA-nsSNPs, which as expected
exhibited larger trans than cis fractions, 53.4% and 60.3%, respec-
tively. Similar results were obtained when the composite cis/trans
ratios were dissected in each of the four ancestry groups. The same
applied to the 184 experimentally phased PGP genomes; again,
pairs of PFA-nsSNPs accounted for roughly two-thirds of the con-
figurations of which two-thirds resided in cis. Corresponding ana-
lyses of the cis/trans ratios calculated from the entirety of nsSNPs
and sSNPs, as well as of all types of coding variants together, also
confirmed these results. Thus, the excess of cis configurations is
mainly due to genes with pairs of coding variants that are predomi-
nantly in cis.
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Fig. 2 Individual fractions of cis and trans configurations of coding variants in 1000 Genomes and PGP. (a)
Results shown for predicted protein function-altering nsSNPs (PFA-nsSNPs). The fractions of cis configurations
(%) (number of cis configurations divided by total configuration count per genome) (y-axis) are presented in the
upper half, the complementary trans fractions (100% – cis fraction (%)) in the lower half. Results are shown
for each of the 1092 statistically haplotype-resolved genomes from the 1000 Genomes (1000G) database (x-
axis), ordered by ancestry group (as indicated on top; color-coded), and further subdivided into different
populations as indicated at the bottom (separated by vertical lines); horizontal black lines indicate median
values for each of these populations. (b) Correspondingly, individual fractions of cis and trans configurations
from the analysis of all nsSNPs. (c) Individual fractions of cis (blue) and trans (red) configurations of
PFA-nsSNPs shown for each of the 184 experimentally haplotype-resolved PGP genomes. (d) Correspondingly,
PGP results from the analysis of all nsSNPs. This figure has previously been published in reference [24]
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Fig. 3 Cis and trans configuration probabilities under random assumptions (y-axis) in relation to the number of
variants (x-axis). Cis fraction: blue; trans fraction: red. Dashed lines refer to the observed composite cis/trans
ratio of 60:40

2.1.4 Expected Versus

Observed Cis Fractions

Importantly, the dissection of the composite cis/trans ratios by
number of variants enabled a more precise evaluation of the signifi-
cance of cis excess by comparing theoretically expected to observed
cis/trans ratios. So if the variants in a gene were randomly
distributed between the homologues, that is, the chance for each
variant to occur on either homologue is equal, then the expected
fraction of cis configurations is 1/2n-1, with n being the number of
variants (Fig. 3). Accordingly, the expected cis fraction for pairs of
variants would be 50%, compared to the observed cis fractions of
66–70%; for combinations of 3 variants expected 25% versus
observed 50–54%; for combinations of 4 variants expected 12.5%
versus observed 45–47%, and for 5 variants 6.25% versus 39–41%.
This corresponds to a 1.32–1.4- up to 6.24–6.56-fold enrichment
of cis fractions.

The expected composite probability of cis configurations to
occur in the genes was modeled using a Bernoulli experiment,
resulting in an expected probability of ~0.4 (see Methods). The
significance of a cis/trans ratio observed in an individual genome
was then computed with an exact Binomial test with P= 0.4. Thus,
even where cis fractions were minimally below 50%, which was the
case in two of the 1092 genomes and one of the 184 PGP genomes
(Fig. 2a, c), they are still significantly larger than would be expected
by chance. To assess the significance values for cis/trans ratios,
which were calculated for defined population sample sets, we
derived the median values for both cis and trans fractions across
all genomes. This “median genome” was then treated as an



individual genome as described above. Thus, the significance values
estimated for global cis/trans ratios most likely represent an
underestimation.
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In order to corroborate the expected composite probability of a
cis configuration to occur under random conditions, we simulated
1092 phased genomes, assigning to each variant in a protein-
coding gene a 50:50 chance to exist on either homologue (Meth-
ods). After our simulations proved to be valid, we were able to
derive confidently the expected composite cis fractions, ~39% for
PFA-nsSNPs, ~37% for nsSNPs and sSNPs, respectively, and 33%
for combining all types of coding variants. Thus, our simulation
studies resulted in expected composite cis ratios of approximately
40% and lower versus observed cis ratios of ~60% (see also Fig. 3).

2.1.5 Pairs of Variants in

Cis more Closely Spaced

than Pairs in Trans

As outlined above, significant cis abundance is primarily due to an
excess of pairs of PFA-nsSNPs in cis. These pairs were found to be
much closer together than pairs in trans, with inter-mutation
genome distances of 1607 bp (median) as opposed to 5125 bp in
the 1092 genomes (1570 bp versus 5290 bp in EUR, 1830 versus
4771 bp in AFR) and 2584 versus 5984 bp in PGP. These distances
were inversely related to the cis/trans ratios; the smaller the dis-
tance, the larger the cis fraction. To this end, the cis and trans
configurations, e.g., identified in EUR (83,432 cis, 39,687 trans),
were sorted by inter-mutation genome distance, binned per 6000
configurations, and for each bin, an average distance calculated
together with its corresponding cis/trans ratio. Accordingly, the
smallest average distance between the pairs of PFA-nsSNPs in
EUR, 11 bp, corresponded to the highest cis/trans ratio, 77:23.
Average distances of 25, 47 and 86 bp, respectively, were calculated
for the adjacent bins and a distance of 1017 bp for the tenth bin,
with a corresponding cis/trans ratio of 70:30. This ratio declined to
51:49 at an average distance of 54,281 bp and was ~49:51 at the
largest distance calculated, 81,099 bp, where a cumulative cis frac-
tion of 67.8% was reached (for more information, see Hoehe et al.
[24]). Thus, cis abundance is largely driven by distance.

2.1.6 Pairs of Variants in

Cis More Frequent than

Pairs in Trans

Furthermore, the pairs of PFA-nsSNPs in cis were more frequent
than the pairs in trans. To this end, we first calculated the average
minor allele frequencies (MAFs) for each pair of variants in EUR
and AFR. Notably, the PFA-nsSNPs that occurred together had
very similar MAFs (as derived from the 1000G database), and
combinations of such common PFA-nsSNPs with singletons were
very rare. In brief, the mean values of the average MAFs of the pairs
of PFA-nsSNPs in cis and trans, respectively, were 0.18 and 0.16 in
EUR and 0.143 and 0.128 in AFR. In theMAF spectra, the average
MAFs of the variant pairs in either configuration peaked between
0.1 and 0.25 (with a larger upper tail of cis compared to trans
configurations), a stark contrast to the MAF spectra derived from
the entirety of PFA-nsSNPs in the genome, with 56% in EUR and



45% in AFR having a MAF ≤ 0.01. “Taken together, these findings
could reflect the result of ancestral admixture as a potential under-
lying mechanism. Accordingly, the observed, significant cis abun-
dance results primarily from pairs of protein function-altering
variants and coding variants as a whole that are closely spaced and
have therefore been inherited together until present. Thus, they are
more common than pairs of coding variants in trans which, much
farther apart, have been subject to recombination, but also may be
due to evolutionary forces other than recombination, such as
genetic mutation and positive selection. So pairs of co-occurring
protein function-altering variants in cis, which are even closer
together than other pairs of coding variants in cis, may represent
ancestral signals of potential functional significance and mark small
ancestry segments in the ‘mosaic that is the human genome’ [34]”
(verbatim taken from [24]).
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2.2 Gene-Based

Analysis of Cis and

Trans Configurations

of Coding Variants

To investigate the potential functional implications of cis abun-
dance, we moved from whole genome analysis to the genes under-
lying this phenomenon. A first inspection showed that the numbers
of phase-sensitive genes with ≥2 PFA-nsSNPs, where phase most
likely has an impact, were very similar between the genomes. The
same was true for their cis and trans forms (for details, see Hoehe
et al. [24]). Thus, the questions arose: Is there a common, shared
set of phase-sensitive genes that underlie the phenomenon of cis
abundance? Furthermore, are there common subsets of genes that
preferentially have cis, or trans configurations? If so, which func-
tional gene classes are concerned?

2.2.1 A Global Set of

Phase-Sensitive Genes

In fact, we were able to identify a set of 2402 phase-sensitive
genes, which were common to all ancestry groups (Table S1a). To
this end, we intersected the genes with ≥2 PFA-nsSNPs in each of
these groups, 4000 in EUR, 3357 in EAS, 4005 in AMR, and 5217
in AFR, any two of which shared 80–87%. This global set of phase-
sensitive genes, which we also refer to as a common diplotypic
exome, showed a highly significant overrepresentation of 94 path-
ways (P < 1.24E-48–0.01; Table S1b) (see also Methods for use of
an updated database and analysis tools as described by Kamburov
and Herwig [35]). These pathways included, for instance, “olfac-
tory transduction” (P = 1.24E-48), “sensory perception”
(P = 9.13E-40), “extracellular matrix organization” (1.39E-09),
metabolic processes such as “xenobiotics metabolism” (P= 1.19E-
06), “androgen and estrogen biosynthesis” (P= 2.16E-05), “C21-
steroid hormone biosynthesis” (P = 3.19E-05), and infection/
immune response pathways such as “antigen processing and pre-
sentation” (P = 7.23E-07), “graft-versus-host disease”
(P = 5.90E-06), and “interferon gamma signaling” (P = 4.26E-
05). These results were complemented by a highly significant
enrichment of manifold GO terms (120 GO categories with
P < 9.21E-37–0.001; Table S1c). These included, for instance,



“detection of (chemical) stimulus” (P = 3.61E-43), “transmem-
brane signaling receptor activity” (P = 4.36E-28), “olfactory
receptor activity” (P= 3.29E-46) and “G protein-coupled receptor
activity” (P = 9.42E-23), “extracellular structure organization”
(P = 5.29E-10), and “nervous system process” (P = 1.64E-20).
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Fig. 4 Pathways and GO terms shared between the 1000G global set and PGP set
of phase-sensitive genes. (a) VENN diagram showing the overlap of pathways,
which were significantly enriched (P < 0.01) in the global set of 2402 phase-
sensitive genes (1000G) (red circle) and the set of 1627 phase-sensitive genes
(P < 0.01), which PGP shared with 1000G (blue circle). (b) VENN diagram
showing the overlap of GO terms, which were significantly enriched
(P < 0.001) in the global set of 2402 phase-sensitive genes (1000G) (red
circle) and the set of 1627 phase-sensitive genes (P < 0.001), which PGP
shared with 1000G (blue circle). The overlap of the sets can be quantified with
Sorensen’s similarity index, S = 2ab

aþb , where a is the number of genes in the first
set, b the number of genes in the second set, and ab the number of genes shared
by the two sets. This results in S = 0.78 for the similarity between pathways
(~78%) and S = 0.76 for the similarity between GO terms (~76%)

A fraction of 68% of the phase-sensitive genes (1627) contained
in this global set were shared by the 184 experimentally phased
PGP genomes (at about one-sixth of the population size). This set
of 1627 genes shared 78% of the overrepresented pathways
(P < 2.50E-42–0.01) (Fig. 4a; Table S1d) and 76% of the overrep-
resented GO terms (P < 1.18E-41–0.001) (Fig. 4b; Table S1e)
with the global set, allowing extraction of very similar functional
content. Thus, there exists a common diplotypic exome encoding
two potentially functionally different homologues, which may
modulate cell–environment interactions, cell–cell communication,
immune response, metabolism and biosynthesis, and the develop-
ment of disease.
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Remarkably, this common diplotypic exome was significantly
enriched with genes thought to be under balancing selection (BS),
as well as with monoallelically expressed (MAE) compared to bial-
lelically expressed (BAE) genes [36]. Like MAE, this gene set was
significantly enriched with genes with evidence of human–chim-
panzee trans-species polymorphisms or haplotypes (TSPs) and with
genes harboring at least one ancient protein-coding SNP or haplo-
type predating the human-Neanderthal split (HNS), underscoring
its old allelic age. The overrepresentation of evolutionarily signifi-
cant gene sets was even more pronounced in the 1627 phase-
sensitive genes cross-validated by PGP (see also Hoehe et al.
[24]). This suggests that this common set of diplotypes may play
an important role in preserving functional flexibility in evolutionary
processes. Having confirmed existence of a common set of diplo-
typic genes underlying cis abundance, can we further distinguish
within this set two groups of genes that preferentially have either cis
or trans configurations of PFA-nsSNPs?

2.2.2 Classification of

Cis- and Trans-Abundant

Genes

Analyzing the gene-based cis/trans ratios (see Fig. 1) for each of
the 2402 phase-sensitive genes across the 1092 genomes, we were
in fact able to identify a subset of 1227 genes that showed cis
configurations significantly more often (P < 1.05E-63–0.048)
and were therefore defined as “cis-abundant genes” (Table S2a).
A subset of 786 genes had significantly more frequently trans
configurations (P < 1.78E-15–0.049) and were therefore defined
as “trans-abundant genes” (Table S2b). Thus, 2013 of the 2402
autosomal genes with ≥2 PFA-nsSNPs (84%) could be classified
into the two major categories cis- and trans-abundant genes, while
the remaining 385 genes had almost the same proportions of both
configurations.

This classification of cis- and trans-abundant genes was derived
from the global set of 2402 phase-sensitive genes, which, viewed
closely, represents 46–72% of all autosomal protein-coding genes in
each of the intersected ancestry groups. To test whether this classi-
fication also applies to each of these populations as a whole, we
examined the ancestry groups individually. Thus, 1173 significantly
cis- and 670 trans-abundant genes were observed in EUR, 966 and
590, respectively, in EAS, 981 and 497 in AMR, and 1265 and
817 in AFR, accounting for 78–88% of all autosomal phase-
sensitive genes. Subsequent analysis of the 184 experimentally
haplotype-resolved PGP genomes further validated this classifica-
tion; accordingly, 83.5% of the phase-sensitive genes in this set of
genomes were grouped into 778 cis- and 436 trans-abundant
genes. Taken together, 78–88% of all phase-sensitive genes were
classifiable into cis- and trans-abundant genes in each of the sample
sets examined, underscoring the importance of these two gene
classes as major categories of variable autosomal genes. Obviously,
the group of cis-abundant genes was always larger than that of



trans-abundant genes, with ratios between 1.55:1 and �2:1. Thus,
global cis abundance is the net result of these two groups. Cis- and
trans-abundant genes were found distributed in different propor-
tions across all autosomes, with chromosomes 14, 20, and
22 showing the largest fractions of genes with cis configurations
(up to 73.5%) and chromosomes 6, 8, and 10 the largest fractions
of genes with trans configurations (up to 51.2%).
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In this context, the question arises as to whether, or to what
extent, the “configuration type” of a gene represents a constant
characteristic. Thus, we examined whether the “configuration
type” of genes as determined in the 1092 genomes was the same
in the set of PGP genomes. An expanded analysis (see Note 2)
showed that 8.7% of the cis- and 12.9% of the trans-abundant
genes in the 1092 genomes had a different configuration type in
PGP. Thus, cis and trans abundance represents a constant charac-
teristic in approximately 90% of the autosomal genes.

Finally, we examined the relationship between configuration
status and gene length, motivated by the marked differences in
inter-mutation genome distance observed between cis and trans
configurations (see above). While trans-abundant genes are on
average longer than cis-abundant genes (primary transcript lengths
35,969 versus 25,859 bp, P = 3.9E-08; protein lengths 1012
versus 875 amino acids; P = 0.001), the overall correlations
between gene-based trans fractions and primary transcript
(c = 0.07) as well as protein length (c = 0.01) were not significant.
This can be illustrated at the example of the relatively short HLA
genes, which were classified as members of a predominantly trans-
abundant gene family. Furthermore, although there is an overall
tendency for genes to reside in trans with increasing numbers of
variants, the opposite was true, e.g., for the highly diverse OR
genes, which were largely cis-abundant. In sum, configuration
status overall is not significantly influenced by either gene length
or the number of coding variants.

2.2.3 Functional

Enrichment Differs

Between Cis- and Trans-

Abundant Genes

We then analyzed the functional information contained in these
two gene classes for further characterization. Using the updated
content of the ConsensusPathDB [35], we were able to confirm the
recently reported enrichment of pathways and GO categories [24]
that suggested different functional roles of these two gene classes.
Thus, cis-abundant genes were found to enrich 37 pathways that
were annotated in different pathway databases (P < 3.96E-
49–0.01), while trans-abundant genes enriched 61 pathways
(P < 3.16E-08–0.01); both gene classes showed only little overlap
in six pathways and were differentially enriched for 93% of the
pathways (Table S2c, d; Fig. 5a). Furthermore, the two gene classes
enriched different GO terms, cis-abundant genes 41 GO terms
(P < 1.15E-46–0.001) and trans-abundant genes 68 GO terms
(P < 1.21E-10–0.001), with an overlap of 19 terms, indicating
fairly distinct functional classes (Table S2e, f; Fig. 5b).



Fig. 5 Overrepresentation of pathways and GO terms in cis- and trans-abundant genes. (a) VENN diagram
showing the differential enrichment of pathways, which are overrepresented (P < 0.01) in either cis- (left) or
trans-abundant genes (right); pathways listed in between, the numbers of which are indicated in the overlap,
are enriched in both gene categories. (b) VENN diagram illustrating the differential enrichment of GO terms,
which are overrepresented (P < 0.001) in either cis- (left) or trans-abundant genes (right); GO terms listed in
between are enriched in both gene categories
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Whereas cis-abundant genes were overrepresented mostly in
metabolic pathways, e.g., “xenobiotics metabolism” (1.03E-04)
including “cytochrome P450-mediated oxidation” (6.28E-04)
and other phase 1-related processes, trans-abundant genes were
enriched for numerous immune response-related processes and
diseases as well as autoimmune diseases, viral and infectious dis-
eases, cell surface interactions, ECM–receptor interaction, signal-
ing pathways, and drug transport (Table S2c, d). The two gene
classes were furthermore differentially enriched for 79% of the GO
terms, evaluated separately for their taxonomies: cis-abundant
genes, for instance, for GPCR activity and signaling, odorant bind-
ing, and activities involved in the metabolism of substrates; trans-
abundant genes, for instance, for MHC proteins/receptors, anti-
gen binding, ECM structural constituent and organization, and cell
adhesion (Table S2e, f). Thus, cis and trans-abundant genes may be
differentially involved in gene functions and pathways, which could
indicate different mechanisms for exerting gene functions.

2.2.4 Different

Distribution Patterns of

Variants in Cross-Validated

Cis- and Trans-Abundant

Genes

In the next step, we comparatively evaluated those genes that had
been classified as cis- or trans-abundant in both the 1092 statisti-
cally phased and the 184 experimentally phased PGP genomes.
Intersection of the corresponding data sets resulted in overlaps of
322 cis-abundant and 153 trans-abundant genes. Figure 6 presents
examples of these cross-validated genes. These examples highlight
that the two different methodological approaches lead to very
similar results. Furthermore, they illustrate that autosomal genes
with ≥2 PFA-nsSNPs can have cis or trans configurations in highly
significant excess. Notable fractions of cis- and trans-abundant
genes had solely cis or trans configurations, respectively, such as
PON2 and OR8D2 with cis fractions of 100% and MT1A with a
trans fraction of 100% (Fig. 6).

Examples of cis-abundant genes (Fig. 6) include members of
pathways and GOs that were found to be significantly overrepre-
sented in this gene category, such as CYP2D6, GSTZ1,MAP4, and
SULT1C3 involved in xenobiotics metabolism or OR8D2 and
OR2M7 involved in olfactory transduction. In addition, examples
include disease genes such as BRCA1, LRRK2, ADAM33, ADD1,
or PON2. Trans-abundant genes (Fig. 6) include genes involved in
immune response; immune and autoimmune diseases; viral and
infectious diseases, such as HLA-E, KIR3DL2, TPO, and
DDX58; and genes involved in cancer such as MTA1 and NAT2.

Further inspection of some of these cross-validated genes
revealed different, potentially functional relevant distribution pat-
terns of PFA-nsSNPs in cis- and trans-abundant genes. Thus, cis-
abundant genes appeared to be characterized by presence of a
closely spaced pair of PFA-nsSNPs that occurred in numerous
individuals, which we termed a “major configuration.” In contrast,
two or more less frequent and more distant pairs of PFA-nsSNPs



were observed in trans-abundant genes. Subsequent systematic
analyses (Note 3) in both the cross-validated sets and the larger
sets of 1227 cis- and 786 trans-abundant genes derived from the
1092 genomes confirmed that “major configurations” were typical
for substantial fractions of cis-abundant genes. Thus, over 40% of
this gene class had a major configuration that accounted for>90 up
to 100% of the total number of cis configurations scored for a gene
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Fig. 6 Examples of cis- and trans-abundant genes. Genes were selected from the cross-validated sets of
322 cis- and 153 trans-abundant genes, which were shared by both 1000 Genomes (1000G) and PGP. Top left
trans-abundant genes, lower right cis-abundant genes; blue bars indicate the gene-based cis- and trans
fractions (%) derived from the 184 experimentally phased PGP genomes, and red bars the corresponding
fractions derived from the 1092 statistically phased genomes (1000G). This figure has previously been
published in reference [24]



in PGP, while less than 13% of the cross-validated trans-abundant
genes in PGP showed such a configuration. Correspondingly,
31.2% of the cis-abundant genes in the 1092 genomes had such a
major configuration, in contrast to less than 13% of the trans-
abundant genes. Thus, significant cis abundance seems to be related
to a substantial fraction of cis-abundant genes that have highly
frequent pairs of closely spaced, protein function-altering variants
co-occurring on the same homologue (Note 4). In addition, the
different distribution patterns in cis- and trans-abundant genes
could indicate further functional differences between the two
gene classes.
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2.2.5 Cis- and Trans-

Abundant Genes Affect

Different Parts of the

Human Interactome

Potential functional differences between cis- and trans-abundant
genes can be further investigated at the level of their gene products,
the proteins. Because proteins interact with other proteins in net-
works, it is through these interactions that they perform their
functions. Therefore, as a complement to pathway and GO enrich-
ment, we wanted to investigate whether cis- and trans-abundant
genes map to different parts of the human interactome. To this end,
we initially weighted the proteins according to their probability of
belonging to cis- and trans-abundant gene classes, and we then
propagated these weights through a large protein–protein interac-
tion network integrated from different resources (Methods). Such
network propagation results in subgraphs that agglomerate high cis
or trans load, and these subgraphs, or modules, represent parts of
the interactome that are affected by either cis- or trans-abundant
genes.

We performed network propagation with the P-value scores
derived from the Binomial test for cis- and trans-abundance,
respectively (Methods). We used the program NetCore to infer a
protein–protein interaction network consisting of 10,560 genes
and 139,267 interactions integrated from 18 different resources
(Methods). This network proved to be a good approximation to
the human interactome and is specifically suited for network infer-
ences [37]. Network propagation of cis-abundant genes resulted in
20 modules (subgraphs with high cis load; Table S3a) with a total of
112 genes (Fig. 7a) and trans-abundant gene network propagation
resulted in nine modules with a total of 110 genes (Table S3b;
Fig. 7b). The largest modules, of size 55 (cis) and 91 (trans), are
shown in Fig. 7c, d. It is evident that the trans-abundant genes are
more densely connected than the cis-abundant genes, resulting not
only in a larger major module but also in a lesser number of smaller
modules. This is because the underlying protein–protein interac-
tion (PPI) network tends to reflect signaling events that are domi-
nant in the trans-abundant genes such as immune-related signaling
pathways, compared to the cis-abundant genes that were consider-
ably enriched for metabolic reactions.
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Fig. 7 Network propagation results with cis- and trans-abundant genes. (a) Histogram of computed cis-
modules; x-axis: module Id; y-axis: size of module. (b) Histogram of computed trans-modules; x-axis: module
Id; y-axis: size of module. (c) Largest cis-module of size 55. Orange nodes correspond to seed genes that were
among the 100 most significant cis-abundant genes, while genes that were inferred during network
propagation are colored in gray. (d) Largest trans-module of size 91. Orange nodes correspond to seed
genes that were among the 100 most significant trans-abundant genes, while genes that were inferred during
network propagation are colored in gray. (e) VENN diagram showing the overlap of cis-module genes
(112 genes, blue circle) and trans-module genes (110 genes, red circle). Similarity index S = 0.027. (f)
VENN diagram showing the overlap of highly significantly enriched pathways (P < 0.001) with cis-module
genes (37 pathways, blue circle) and trans-module genes (95 pathways, red circle). Similarity index S = 0.18
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In addition to the functional enrichment results described
above (Sect. 2.2.3), we can show that also at the interactome
level, cis- and trans-abundant modules are very distinct both in
gene content (99% different genes; Fig. 7e) as well as pathway
enrichment of the inferred module genes (90% different enriched
pathways; Fig. 7f). In particular, trans-abundant module genes
enrich more than 3x as many pathways than cis-abundant module
genes, in particular immune-related processes such as “allograft
rejection” (P = 4.63E-11), the “complement system”
(P = 1.78E-08), or “antigen processing and presentation”
(P = 1.24E-06) (Table S3c, d). Thus, this additional functional
(interaction) layer highlights the fact that the two gene classes map
to distinct parts of the interactome and that in particular, trans-
abundant genes are connected in network modules, with multiple
functional consequences for human signaling pathways.

3 Materials

3.1 Data Sets and

Phasing Quality

These genomes [38] were generated by routine second-generation
sequencing techniques, statistically haplotype-resolved and origi-
nally downloadable from ftp.1000genomes.ebi.ac.uk/vol1/ftp/
phase1/analysis results/shapeit2 phased haplotypes/. The total
set of 1092 genomes consisted of four different ancestry groups,
European (EUR), n = 379; East Asian (EAS), n = 286; American
(AMR), n = 181; and African (AFR), n = 246, which in turn
consisted of a total of 14 different populations (see also Fig. 2).
Thus, cis and trans configurations were evaluated comparatively in
the total set and in each of the ancestry groups as well as the
different populations.

3.1.1 Haplotype Data

from 1092 Genomes

Generated by the 1000

Genomes (1000G)

Consortium

Phasing Quality Phased data were available for all 1092 genomes,
with “no call” rates between 2.1 and 6% and routine use of impu-
tation in the case of missing data. Concerning the accuracy of the
inferred haplotypes, a phasing switch error every 300–400 kb on
average has been estimated [38]. Importantly, exome data had a
very high coverage due to the addition of deep (50–100×) exome
sequence and dense SNP genotype data, enhancing accuracy (see
Abecasis et al. [38]).

3.1.2 Data from 184

Experimentally Phased

Genomes from the

Personal Genome Project

(PGP)

The haplotype data from an unprecedented set of 184 experimen-
tally haplotype-resolved genomes from the Personal Genome Proj-
ect (PGP) database [39] were generated by application of the
Long-Fragment Read (LFR) technology [16] and generously
provided by Brock A. Peters and Radoje Drmanac, Complete
Genomics Inc. & BGI-Shenzen. The individuals were ascertained
as part of PGP [23, 39]. They gave full consent to have their
genotypic and detailed phenotypic data as well as self-reported



ethnicity made freely and publicly available. The documents were
reviewed and signed by each participant and can be found at http://
www.personalgenomes.org/harvard/signup.
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Phasing Quality The LFR technology enabled >98% of all het-
erozygous SNPs to be placed into contigs with an average N50 of
800 kb [23]. Phasing error rates of this technology were shown to
be exceedingly low [16], with average short and long switch error
rates (SERs) of 0.00068 and 0.00051, respectively. These SERs
were obtained from the analysis of overlapping blocks between the
(independent) replicate samples from 35 individual genomes, with
~86% of the overlapping blocks being completely error-free [23],
and were much lower than those determined for other experimen-
tal and computational phasing approaches [18]. Importantly, a
contig filter was applied to the analyses in our study to ensure
that phase configurations were only determined for those coding
variants that were contained within the same contig. For additional
analyses of phasing quality, see Subheading 4.1.

3.2 Gene Sets (i) A set of 226 genes reported to evolve under balancing selection
(BS); (ii) a set of 60 genes with evidence of human–chimpanzee
trans-species polymorphisms or haplotypes (TSPs); (iii) a set of
104 genes harboring at least one ancient protein-coding SNP or
haplotype shared between humans and Neanderthals (HNS).
These gene sets had been described and used for analysis by Savova
et al. [36], which we used as the source.

4 Methods

4.1 Evaluation of

Phasing Quality of

Experimentally

Haplotype-Resolved

Genome Data

We performed additional analyses to control that the level of poly-
morphism within the genes does not affect the phasing accuracy to
an extent that could bias the cis/trans ratio results. To this end, we
identified the (heterozygous) positions of switch errors from the
35 PGP samples with replicates [23]. Then we mapped these posi-
tions onto the subsets of those cis- and trans-abundant genes that
are difficult to phase, that is, where switch errors are likely to occur.
Thus, we extracted from the total of cis- and trans-abundant genes
those genes that were among the top and bottom 10% with the
highest and lowest density of PFA-nsSNPs. Where we identified
switch errors within these genes, we checked a possible influence on
the configuration type. For the reader’s information, we identified
switch errors in 6.9% of the cis- and trans-abundant genes with the
highest PFA-nsSNP density; these were found to change configu-
ration type in one case, that is, in ~1% of these genes. Examining the
extreme group of cis- and trans-abundant genes with the lowest
PFA-nsSNP density resulted in switch errors affecting 8.9% of these
genes, also changing configuration type in one case. Examining the

http://www.personalgenomes.org/harvard/signup
http://www.personalgenomes.org/harvard/signup


genes that did not belong to either of the two extreme groups
uncovered switch errors in 6.8% of the genes. Thus, the switch
errors that occurred in particularly difficult-to-phase genes did
not appear to affect the key results in any way; that is, they affected
neither the global cis/trans ratios nor the distinction of cis- and
trans-abundant genes.
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4.2 Annotation of

Coding Variants

First, RefSeq genes were downloaded from UCSC table browser
(Hg19). All transcripts that belong to an autosomal gene were
merged and the coordinates that mark the entire gene region
extracted. This resulted in a final set of 18,121 autosomal
protein-coding genes in our study. It is worth mentioning that we
were able to confirm that pseudogenes were indeed excluded from
analysis. With this, we wanted to refute the assumption that small
imperfections in the pseudogene detection algorithm could
account for false significances, for instance, attributable to the
olfactory receptors (see Note 5).

For analysis of the 1092 genomes, annotated potentially pro-
tein function-altering nsSNPs (PFA-nsSNPs) as well as nsSNPs and
sSNPs, respectively, were available from the 1000G database. To
predict a potentially significant effect of nsSNPs on protein struc-
ture and function in PGP, a combination of PolyPhen-2 [40] and
SIFT [41, 42] (see also [24]) as well as GERP conservation scores
[43] were applied to ensure comparability with the 1000G annota-
tions. Default threshold values for PolyPhen-2 and SIFT, and
GERP scores >2, were used. The annotation of nsSNPs and
sSNPs in PGP data was provided by the PGP database [23]. Impor-
tantly, the annotation of the variants and thus the determination of
their cis and trans configurations always relate to the minor allele
(see Fig. 1 and Note 1). Furthermore, our approach implies that
each of the non-reference alleles of each autosomal gene with ≥2
coding variants is scored independently of its allele frequency in the
population. Thus, none of the minor alleles were ignored and no
frequency cut-off filter was applied.

4.3 Scoring Cis and

Trans Configurations

In the first step, those genes that have PFA-nsSNPs are extracted
from each of the 1092 genomes, and 1092 intermediate data
output files are prepared. It is important that these are organized
in table format as follows: “Haplotype 1” and “Haplotype 2” are
contained in two adjacent columns and together represent an indi-
vidual diploid genome. The rows represent the heterozygous geno-
mic positions, with their corresponding gene IDs assigned; the
heterozygous positions are sorted 50 to 30 in a gene. (Homozygous
variants are excluded from the analysis.) Within each row, the two
neighboring cells in the columns “Haplotype 1” and “Haplotype
2” contain the two alleles at the heterozygous position of a gene as
assigned to the two haplotypes 1 and 2, respectively. Thus, one of
the cells contains the reference allele designated “0,” and the other



the non-reference allele designated “1.” Thus, each of the two
columns/haplotypes consists of a unique combination of “1’s”
and “0’s”. Both haplotype columns have as many rows per gene
ID as there are heterozygous positions (i.e., in this case heterozy-
gous PFA-nsSNPs) in this gene. It is important to note that
although a gene can have many heterozygous positions in a popula-
tion, the number of its heterozygous positions in an individual
genome is usually limited to a few. For a more detailed information,
see Note 6.
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For the analysis of the PGP haplotype data, PolyPhen-2 and
SIFT in combination with GERP (as described above) are applied
to the PGP output files generated from each of the 184 experimen-
tally phased genomes, and intermediate output files prepared
accordingly (see Note 7).

In the next step, all genes that have only one row assigned, that
is, only one heterozygous position, are removed from the interme-
diate output files to ensure that only genes with ≥2 PFA-nsSNPs
are present in these files. Then the alleles, which are assigned to the
same gene ID and sorted 50 to 30 within both “Haplotype 1” and
“Haplotype 2” columns, are stored as units. These units are then
subjected to the assessment of phase configurations. Importantly,
while it is a pair of haplotypes that underlie a cis or trans configura-
tion, it is sufficient to inspect only one haplotype, per definition
“Haplotype 1,” to be able to score a gene “cis” or “trans.” Thus,
a gene is classified “cis” if every allele in “Haplotype 1” is either 1 or
0 (non-reference or reference), otherwise “trans.” This will allow
immediate calculation of global as well as gene-based cis/trans
ratios (see below and Fig. 1). It is needless to say that information
on these key bioinformatic steps provides the necessary basis for
automation to enable large-scale analyses.

4.4 Calculation of

Global and Gene-

Based Cis/Trans

Ratios

Global cis/trans ratios refer to one or multiples of diploid gen-
omes. The global cis/trans ratio of an individual genome as the unit
of analysis is defined as the ratio of cis fraction to trans fraction (see
also Fig. 1). The cis fraction (%) is calculated as the number of
(autosomal) genes with cis configurations divided by total number
of genes with ≥2 variants, also referred to as “total configuration
count” (equivalent to 100%); the trans fraction is calculated analo-
gously and equivalent to 100% – cis (%).

4.4.1 Global Cis/Trans

Ratios

To determine the cis/trans ratios for many genomes, for
instance, the 1092 or 184 genomes, or any subsets of these, the
median values of the cis and trans fractions are calculated across a
defined number of genomes.

4.4.2 Gene-Based Cis/

Trans Ratios

Gene-based cis/trans ratios are determined to identify cis- and
trans-abundant genes, that is, genes with ≥2 PFA-nsSNPs that
exhibit either cis or trans configurations in significant excess. The
gene-based cis/trans ratio is defined as the ratio of cis fraction to
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trans fraction of a given gene in a defined population sample. The
gene-based cis fraction (%) is calculated as follows: number of cis
configurations of functionally annotated nsSNPs observed for the
gene across all genomes in the population sample divided by total
number of genomes in which the gene has ≥2 variants, that is, total
configuration count of this gene in the population sample (equiva-
lent to 100%). The gene-based trans fraction (%) is calculated
analogously and equivalent to 100% – cis (%).
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The distinction of cis- and trans-abundant genes was carried
out by demonstrating a significant abundance of one of the two
configurations with a Binomial test (P < 0.05) (see also Fig. 1).

4.5 Modeling the

Expected Composite

Probability of a Cis

Configuration

The probability of an observed cis or trans configuration in a gene
with i variants can be modelled with a Bernoulli experiment,
Pi(X = 1) and Pi(X = 0), where X = 1 denotes a cis configuration
and X = 0 a trans configuration. Thus, we have Pi X =1ð Þ= 1

2i-1

and Pi(X = 0) = 1 - Pi(X = 1) taking into account the genomic
order of the variants. Among the number of genes with ≥2 variants
that have either cis or trans configurations, let wi be the relative
frequency of genes with exactly i variants. Thus, we have
∑i ≥ 2wi = 1. The probability of observing a cis configuration
among all phase-sensitive genes in a genome is then given by the
weighted sum of the above defined Bernoulli probabilities: P-
(X = 1) = ∑i ≥ 2wiPi(X = 1). Thus, inserting the observed relative
frequencies, wi, from the 1000G data yielded an expected probabil-
ity of 0.4 for a cis configuration to occur.

As outlined earlier, the significance of a cis/trans ratio calcu-
lated for an individual genome is computed with an exact Binomial
test with P = 0.4. To assess the significance values for cis/trans
ratios calculated for population samples, the median values for both
cis and trans fractions across all genomes are derived and the
“median genome” treated as an individual genome.

4.6 Simulating

Phased Genomes

Under Random

Assumptions to Derive

the Expected

Composite Cis/Trans

Ratios

To corroborate the theoretical assumptions on the composite prob-
ability of a cis or trans configuration as modeled by a Bernoulli
experiment, simulations of phase were performed in addition,
assuming that the variants are distributed randomly between the
two homologues of a gene. Thus, we simulated diploid genomes as
follows: In the first step, a virtual set of 1092 phased genomes was
generated. For each virtual genome, random numbers of
PFA-nsSNPs were drawn within the range observed in the 1092
genomes data set (~2500–3500) [38]; the PFA-nsSNPs were sam-
pled from the total of ~300,000 PFA-nsSNPs annotated in this data
set. Then phase was simulated by assigning a 50:50 chance to each
individual SNP in a gene to exist on either homologue. In practice,
this was achieved by randomly drawing a phase, that is, “homo-
logue 1” or “homologue 2” attached, from the 1000G database
with each individual PFA-nsSNP. Accordingly, a second virtual set



of 1092 phased genomes was generated, simulating a random
distribution of all nsSNPs between the two homologues. To this
end, between ~5500 and ~7500 nsSNPs with either homologue
1 or 2 attached were drawn from the entire pool of ~1.5 million
nsSNPs annotated in the 1092 “real” genomes. Two additional
virtual sets of 1092 phased genomes were generated, simulating
analogously a random distribution of all sSNPs, and of all nsSNPs
and sSNPs combined. Subsequently, the cis/trans ratios were cal-
culated for these simulated phased genomes as described above.
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To test the validity of our approach to simulate phase under
random assumptions, we assessed the cis/trans ratios separately for
two up to five variants in all virtual data sets. Then we compared
these ratios to the probabilities P for these numbers of variants to
occur in cis under conditions of random distribution, which is
1/2n-1, with n the number of variants. The comparative evaluation
showed that the cis/trans ratios, which were generated for defined
numbers of variants by simulation, were virtually identical to those
expected. Accordingly, the simulated cis fraction for pairs of variants
was approximately 50%, for combinations of three variants ~25%,
for combinations of four variants ~12.5%, and for five variants
~6.25%. These results validated our simulation studies, and we
were able to derive confidently the expected composite cis ratios:
~39% for PFA-nsSNPs; ~37% for nsSNPs and sSNPs, respectively;
and 33% for combining all types of coding variants. Overall, these
proved to be in excellent agreement with the theoretically derived
composite probability of a cis or trans configuration to occur. In
sum, our simulation studies resulted in expected composite cis
ratios of approximately 40% and lower versus observed cis ratios
of about 60% (see also graph in Fig. 3).

4.7 Gene Set

Enrichment and

Protein–Protein
Interaction Integration

with

ConsensusPathDB

ConsensusPathDB is a meta-database for molecular interactions
and pathways that currently integrates 31 public resources (see
Note 8). With more than 850,000 different, experimentally
derived molecular interactions, it represents one of the most com-
prehensive models of the human interactome [44]. Consensus-
PathDB is accessible via a Web server (http://consensuspathDB.
org) with functionality for characterizing genes, proteins, metabo-
lites, and other types of biomolecules at the level of pathways and
interaction networks. ConsensusPathDB is used in this study to
compute the overrepresentation of pathways and GO categories for
the classes of cis- and trans-abundant genes using Fisher’s exact
test. Test p-values are adjusted for multiple testing with the
Benjamini–Hochberg correction.

Besides information on 5578 biological pathways, the Consen-
susPathDB holds an integrated network of molecular interactions
that was constructed from 19 different databases comprising more
than 522,618 binary protein–protein interactions (PPIs) [35]. The

http://consensuspathdb.org
http://consensuspathdb.org


integrated ConsensusPathDB PPI network is available from the
download section of the Web server (http://cpdb.molgen.mpg.
de/download/ConsensusPathDB_human_PPI.gz).
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Since PPI networks can contain a large share of false-positive
interactions, the quality assessment of individual PPIs is particularly
critical. In ConsensusPathDB, we provide a quality check for PPIs
consisting of different methods [45]. Only interactions with a high-
quality score >0.95 were used in this study, which results in an
interaction network comprising 10,560 genes and 139,267 binary
interactions.

4.8 Network

Propagation

Network propagation is a theoretical framework for network ana-
lyses. It describes a set of analysis tools that use experimental data
such as genotype data, expression data, or categorical data to ini-
tialize node weights and subsequently distribute these weights
simultaneously to the network neighborhoods of the nodes
[46]. This process converges to a steady state and leads to a
re-ranking of the original network nodes. This re-ranking typically
amplifies functional associations and is used to identify hot-spot
subnetworks that agglomerate much of the experimental weights
and can be associated with specific biological pathways or parts
thereof. Typical applications are to draw inference on genotype–
phenotype relations from mutation data [47] or to identify func-
tional networks from gene and protein expression data [48]. The
integrated ConsensusPathDB PPI described above has been used in
the past as a resource for network propagation [49], and it has been
evaluated as one of the best performing networks for disease gene
identification in an independent benchmark comparison among
21 publicly available networks [37].

Network propagation has been carried out with the tool Net-
Core [50]. This is a semi-supervised workflow, which applies ran-
dom walk with restart on a robust node metric (node core) in order
to derive a re-ranking of the network nodes and, in a second step,
the identification of subnetworks agglomerating highly re-ranked
nodes with seed genes supplied by the user. A documentation of the
algorithm can be found at https://github.molgen.mpg.de/barel/
NetCore (Note 9).

We applied network propagation separately with the list of cis-
and trans-abundant genes. Gene node scores, si were initialized as
follows

s i = - log 10pi,

where pi is the p-value of the Binomial test for testing cis- and trans-
abundant genes (Sect. 2.2.2). All other nodes were set to zero.
After the re-ranking step, subnetworks were derived by connecting
the significantly re-ranked nodes with the top 100 cis- and trans-
abundant genes, respectively.

http://cpdb.molgen.mpg.de/download/ConsensusPathDB_human_PPI.gz
http://cpdb.molgen.mpg.de/download/ConsensusPathDB_human_PPI.gz
https://github.molgen.mpg.de/barel/NetCore
https://github.molgen.mpg.de/barel/NetCore
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5 Conclusions and Outlook

Our work represents an analysis of the largest body of experimen-
tally haplotype-resolved genomes to date, complementing the anal-
ysis of 1000 Genomes statistical haplotype data. We were able to
show that the systematic investigation of cis and trans configura-
tions as two major categories of diplotypic genetic variation can lead
to biologically relevant results that provide first insights into the
nature and architecture of diploid human genomes. Thus, we have
distinguished and further functionally characterized two classes of
autosomal protein-coding genes, so-called cis- and trans-abundant
genes, which together constitute a “common diplotypic exome.”
We have thus described those parts of the human exome that
preferentially exist as diplotypes, in contrast to a set of invariable
genes under strong mutational constraint ([51]; seeNotes 10, 11).
These diplotypes may encode two functionally different homolo-
gues of the genes and play an important role in the diploid biology
of genes and genomes. Our results have implications for the con-
ceptual and functional characterization of autosomal genes in the
context of a diploid biology and highlight the importance of phase
information for the interpretation of protein-coding genetic varia-
tion. (A detailed discussion of our results and their implications can
be found in Hoehe et al. [24]).

For our analyses, we used, on the one hand, established bioin-
formatic tools, such as for the prediction of potentially protein-
altering coding variants, and on the other hand, we have developed
first approaches to the large-scale analysis of experimentally
haplotype-resolved genomes. These include the efficient scoring
of cis- and trans configurations and the simulation of phased gen-
omes to allow evaluation of composite cis/trans ratios under ran-
dom assumptions. This served to assess the significance of the
observed cis/trans ratios. Moreover, for advanced functional anno-
tation, we applied a most recently updated database, which allowed
expanding the functional analyses onto a higher hierarchical level of
genome organization, protein–protein interactions, while substan-
tiating the previous results. Because there were no precedents for
some of our research approaches, we have attempted to develop
new terms and approaches to describe and quantify the distribution
of cis and trans configurations, such as the global and gene-based
“cis/trans ratio.”

The available extensive, cross-validated phase-information on
protein-coding genetic variation in a sizeable number of genomes
allowed a more confident, accurate assessment of the phase-
sensitive part of diploid human exomes. Thus, more than
one-third (6287) of the 18,121 autosomal protein-coding genes
showed ≥2 protein-changing variants in fractions of the 1092
genomes and therefore could be either cis- or trans-abundant.
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Almost half (47%) of all protein-changing variants were found to
exist in phase, 25% in a cis and 22% in a trans configuration;
correspondingly, 62% of the entirety of nsSNPs existed in phase,
half each in cis and trans (see also Note 11). Finally and most
importantly, the analysis of extensive phase information enabled
the detection of cis- and trans-abundant genes and thus the com-
mon diplotypic exome as characteristic features of diploid genome
organization. In contrast, only few exome studies have addressed
phase issues, mainly related to MNVs, defined as two or more
nearby variants existing on the same haplotype. These included
variants within 2 bp, that is, within a codon [10, 32], up to
10–100 bp distance [27, 29–31] of each other, identified mostly
by use of read-based phasing, that is, local phase information. In the
largest study of MNVs in 125,748 exomes, a total of 18,756MNVs
with functional impact were described [10], corresponding to 0.15
MNVs per genome. In our work, we surveyed protein-changing
variants in phase up to observed maximum distances of ~81 kb,
with an average of >2.7 protein-changing variants per gene. Thus,
our work represents an advance in the phase-informed analysis of
protein-coding genetic variation.

Importantly, comprehensive phase information allowed classi-
fication and further functional characterization of cis- and trans-
abundant genes. For this, we applied functional enrichment to
distinguish these gene classes in terms of general functions and
different levels of organization such as gene pathways and interac-
tion networks. Thus, cis-abundant genes were, for instance,
involved in numerous metabolic functions, and trans-abundant
genes in many immune response-related processes and diseases.
The enriched functions overall appear to concern cell–environment
and cell–cell communication, membrane-related processes, metab-
olism and biosynthesis, and (disease-related) immune processes. By
encoding two potentially functionally different homologues, cis-
and trans-abundant genes can exert great functional flexibility and
thus modulate these functions, allowing adaptation of the organism
to external and internal stimuli. Their potential role as modulators
and adaptive agents is supported by the observation of substantial
overlap with monoallelically expressed (MAE) genes; this also refers
to the functional classes and evolutionarily significant gene sets that
were overrepresented, as well as the shift in allele frequency dis-
tributions toward those consistent with common variation (i.e.,
greater allelic age on average). These results support the hypothesis
that cis- and trans-abundant genes, in constituting a common
diplotypic exome, may play an important role in adaptive and
evolutionary processes and generate widespread cell-to-cell, organ-
ismal, and phenotypic diversity.

Furthermore, cis-abundant genes were characterized by fre-
quently occurring pairs of protein-altering variants that were close
together. Thus, these could represent “evolutionary signals” going



266 Margret R. Hoehe and Ralf Herwig

back to ancient populations. Reasons for their preservation could
be epistatic or compensatory interactions between their
corresponding amino acid substitutions that maintain or enhance
the functionality of the protein [52–54], coevolution [55], or
hitchhiking effects [56]. Further examination of these results
could provide valuable information for studying protein evolution,
structure, and functionality. Finally, cis-abundant genes were 1.6-
to two-fold more common than trans-abundant genes, resulting
overall in a significant, global cis-abundance at a ~60:40 cis/trans
ratio as a universal characteristic of diploid human genomes. Thus,
the apparently old, co-occurring protein-changing coding variants
characterizing cis-abundant genes underlie this phenomenon to a
considerable extent.

These findings open up many avenues of research for further
exploration. To begin with, studies in much larger samples and
different populations are desirable to further substantiate and refine
these findings. Under this precondition, an in-depth examination
of the entirety of protein-changing variants that (in combination)
constitute the cis and trans configurations will be of great interest.
For instance, it can be clarified to what extent co-occurring variants
can modify each other and/or cause cis-suppression of pathogenic
variants. Then there is a need for population and evolutionary
genetics studies to gain a better understanding of the likely com-
mon underlying mechanisms of our findings, which were observed
equally in all populations studied. These could involve processes of
ancestral admixture and ancient (balancing) selection as well as
other evolutionary forces. The common pairs of protein-altering
variants that characterize cis abundance and possibly represent
“ancestral signals” may help trace the ancient origins of the phe-
nomena described. Another important issue is which of the two
homologues of cis- and trans-abundant genes are active in differen-
tially expressed transcriptomes and proteomes as well as higher
(omics) levels of genome organization. Overall, future questions
concern the role of diplotypic genes in transcriptome, proteome,
and phenotype diversity within and between cells, tissues, indivi-
duals, populations, and species, at various developmental and phys-
iological stages, as well as health and disease [24]. Finally, as far as
the functional annotation of diplotypic genes is concerned, future
approaches to the analysis of sequence–structure–function relation-
ships must focus on combinations of variants, that is, haplotypes,
both in silico and in vitro. Thus, these approaches must account for
three potentially different states per gene, that is, express and
characterize each of the two molecular haplotypes of a gene sepa-
rately, and together as a pair [2, 4, 6, 22]. Overall, these are just a
few of many important questions arising from our attempt to
capture the diplotypic genome architecture as the basis for a diploid
biology that is inherently allelically biased at all levels of genome
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organization. Our work raises even more intriguing questions for a
more distant future, such as whether and how biology and pheno-
type might change with cis/trans ratios or whether cis abundance
might represent a general phenomenon across all diploid species.

6 Notes

1. For the reader’s information, the fraction of non-reference
alleles that have an allele frequency >0.5 and therefore are
not minor alleles has been estimated genome-wide to about
2.5% (https://www.biostars.org/p/119420/). Thus, the frac-
tion of such alleles in the coding exome seems to be extremely
small. The given link provides further information on the
correspondence of non-reference and reference alleles with
minor and major alleles.

2. We proceeded as follows: First, we identified those phase-
sensitive genes, which were shared by the global set (1000G)
and PGP, resulting in 1627 phase-sensitive genes. Then we
determined the configuration types in this overlap separately
for 1000G and PGP. Then we intersected the genes, which
were cis-abundant in 1000G with the genes trans-abundant in
PGP, and vice versa, the genes trans-abundant in 1000G with
those cis-abundant in PGP. The identification of overlaps of
71 and 72 genes, respectively, indicated that 8.7% of the cis-
and 12.9% of the trans-abundant genes had changed configu-
ration type in PGP.

3. We examined the question, whether our initial case observa-
tions could represent a more general picture, as follows: First,
we identified the “major configuration,” that is, the most
frequently occurring pair of functionally annotated nsSNPs,
for each of the 1227 cis- and 786 trans-abundant genes. We
then calculated for each gene the “major configuration fre-
quency” (MCF) (%) defined as follows: number of times the
major configuration is observed in a population sample divided
by the total number of cis configurations counted for this gene
in the sample. The MCFs were calculated separately (i) for the
1227 cis- and 786 trans-abundant genes, (ii) for the cross-
validated 322 cis-abundant and 153 trans-abundant genes
from 1000G, and (iii) for the cross-validated 322 cis-abundant
and 153 trans-abundant genes from PGP. Subsequently, the
genes were binned by MCF into 10% intervals up to a MCF of
100%, which were then related to the number of genes (see also
Hoehe et al. [24]).

4. Referring to the recent reports of MNVs as outlined in the
Introduction, our findings could raise questions about the
presence of MNVs of functional impact in our experimentally

https://www.biostars.org/p/119420/
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haplotype-resolved genomes. Referring to the report by Wang
et al. [10], we expected that the number of MNVs likely to be
found in the 184 PGP genomes would be very small. Given
that a total of 18,756 MNVs (pairs of SNPs within 2 bp dis-
tance of each other) with a novel, combined effect on protein
sequence were identified in 125,748 exomes, equivalent to
0.15 MNVs per genome, a total of ~28 MNVs could be
expected in our sample. Thus, our sample, although the largest
set of experimentally haplotype-resolved genomes generated to
date, does not promise to provide new insights into this issue,
apart from the fact, that appropriate phenotypic data are not
readily available, and our capacities limited.

5. Since pseudogenes could interfere with the analysis of the
derived set of autosomal protein-coding genes, we have
excluded them from analysis. To this end, we have downloaded
from BioMart the two types of human pseudogenes, that is,
“processed” (retro-transposed) pseudogenes and “unpro-
cessed” pseudogenes generated through imperfect duplication.
For the reader’s information, BioMart identified 10,440 pro-
cessed and 2937 unprocessed pseudogenes in the human
genome build at the time of our analyses. Both “processed”
and “unprocessed” pseudogenes generated minimal overlap
with all 18,121 autosomal protein-coding genes in study. Fur-
thermore, we were able to exclude an impact of pseudogenes
on olfactory receptors (ORs), which could account for the
significance attributed to the olfactory receptors, by intersec-
tion. Accordingly, only 8 of the total 372 OR genes that have
been analyzed in our study were found to overlap with the
364 Ors comprised in the unprocessed pseudogenes. Thus,
these pseudogenes did not contribute to the statistics for the
OR gene family in our approach.

6. For the reader’s information, the number of heterozygous
PFA-nsSNPs per gene, averaged over all 1092 genomes, was
2.73, with a maximum of 26 PFA-nsSNPs per gene. If all
heterozygous nsSNPs in the protein-coding regions of the
autosomal genes were taken into account, the average was 3.2
nsSNPs per gene.

7. PGP intermediate output files should be consistent with
1000G output file format.

8. Pathway enrichment in this study is performed with the Con-
sensusPathDB resource, which integrates 31 human resources
and pathways annotated from multiple resources such as
KEGG, Reactome, or WikiPathways. Similarly, we have
integrated protein–protein interactions from multiple
resources such as BioGrid, Intact, or DIP. We find in all cases
that working with multiple resources is beneficial since the
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pathway content in different databases is still largely comple-
mentary. Thus, to explore the full functional information inher-
ent in a gene list, integration of pathway and interactome
information is important.

9. Network propagation was carried out with the tool NetCore.
There are many alternatives for these kinds of analyses; how-
ever, most tools consist of two steps, node re-ranking and
module identification. In NetCore, the node re-ranking step
is done with a random walk with restart procedure in which
initial node weights are distributed across the network until a
convergence state is reached. At the end of this step, each node
contains a re-ranked weight and the significance of this weight
is assessed with random graph models. In contrast to other
tools that utilize node degree in the propagation step, NetCore
relies on the cores of the nodes. Node core is a measure for the
density of the node neighborhood and has been shown to be
more robust against degree bias in protein–protein
interactions.

10. A total of 5040 genes did not contain any potentially protein-
changing variants at all in the 1092 genomes and were signifi-
cantly enriched for numerous essential cellular functions that
may not tolerate variability (P < 6.15E-25–9.51E-11 for the
top 50 pathways; P < 2.35E-24–2.12E-14 for the top
50 GOs). This finding is in agreement with other reports on
mutational constraint that classify autosomal protein-coding
genes along a spectrum of tolerance to inactivation [51].

11. In our results section, we have not included analyses of genes
with 1 PFA-nsSNPs. Although these are not phase-sensitive,
they encode two potentially functional different homologues
of a gene and thus represent biologically molecular diplotypes.
We have included these “molecular diplotypes” in our
expanded analyses reported recently [24].
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mings BB, Alföldi J, Wang Q, Collins RL, Lar-
icchia KM, Ganna A, Birnbaum DP (2020)
The mutational constraint spectrum quantified
from variation in 141,456 humans. Nature
581(7809):434–443. https://doi.org/10.
1038/s41586-020-2308-7

52. DePristo MA, Weinreich DM, Hartl DL
(2005) Missense meanderings in sequence
space: a biophysical view of protein evolution.
Nat Rev Genet 6(9):678–687. https://doi.
org/10.1038/nrg1672

53. Ferrer-Costa C, Orozco M, de la Cruz X
(2007) Characterization of compensated
mutations in terms of structural and physico-
chemical properties. J Mol Biol 365(1):
249–256. https://doi.org/10.1016/j.jmb.
2006.09.053
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