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Abstract: In this study, we present a purely data-driven method that uses the Loewner
framework (LF) along with nonlinear optimization techniques to infer quadratic with
affine control dynamical systems that admit Volterra series (VS) representations from
input-output (i/o) time-domain measurements. The proposed method extensively em-
ploys optimization tools for interpolating the symmetric generalized frequency response
functions (GFRFs) derived in the VS framework. The GFRF estimations are obtained
from the Fourier spectrum (phase and amplitude) of the quasi-steady state system
response under harmonic excitation. Appropriate treatment of these measurements
under the developed framework allows the identification of low-order quadratic state-
space models with non-trivial stable equilibria, such as in the Lorenz ’63 forced system.
We thus can achieve low-order global model identification for systems that can bifurcate
to multiple equilibria after solely collecting measurements from a local stable opera-
tional regime. The developed framework is tested for several examples of increasing
dimension and complexity, up to a test case of the viscous Burgers’ equation with Robin
boundary conditions. In the latter case, this study enforces new directions of employing
data-driven reduced model inference that successfully can provide low-order accurate
surrogate predictive models suitable for control. Future directions and open challenges
conclude this work.

Keywords: data-driven methods, model reduction, system identification, Loewner
framework, quadratic state-space modeling, Lorenz attractor, viscous Burgers’ equa-
tion, Volterra series, quadratic matrix and vector equations.

AMS subject classifications: 93B15, 93C15, 93C10, 65F45

Novelty statement: Inference of quadratic control models from input-output time-
domain data that serve the objectives of reduction and identification in non-trivial
equilibria.

1. Introduction

General model order reduction approaches and data-driven emerging Mathematical modeling
should be consistent with physical laws when considering engineering applications. Developing
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surrogate models for robust simulation, design, and control is a worthwhile engineering task, and
methods that can interpret or discover the governing equations [18] are essential. Numerical
discretization of partial differential equations (PDEs) results in large-scale systems of ordinary dif-
ferential equations (ODEs) [2]. Even with the recent development of high-performance computing
(HPC) environments, the resulting dynamical models after the spatial discretization of complex
PDEs still inherit high complexity to handle efficiently. Therefore, approximation of large-scale
dynamical systems [2] is crucial for efficient simulation. The technique to reduce complexity is
known as model order reduction (MOR) [24–26]. There are many ways of reducing large-scale
models, and each method is tailored to specific applications and aspects of complexity reduction.
A good distinction among methods is the accessibility to a high-fidelity model that discriminates
the methodological approaches into branches as intrusive or non-intrusive modeling, where various
data-driven methods continuously emerge for the latter. For the intrusive case where a high-
fidelity model is available, methods such as proper orthogonal decomposition (POD)[64], balanced
truncation (BT) (see the recent survey [16]) moment matching (MM) (recent survey [8], and the
references therein) were extensively used to build low-order surrogate models that approximate the
original full-order model (FOM) without significant loss in accuracy, offering an error bound, e.g.,
BT, and a guarantee on stability (BT and some variants of MM). Additional MOR methods for
nonlinear systems have also been developed (by extending the linear counterpart of BT, MM, or
others) [3, 7].

Data-driven snapshots based methods On the other hand, the ever-increasing availability of
data, i.e., measurements related to the original model, render non-intrusive techniques such as
machine learning (ML) combined with model-based methods [18] as a promising modeling alter-
native. ML has demonstrated remarkable success in specific tasks, e.g., pattern recognition or
feature extraction. However, issues such as interpretability and generalizability limit some existing
ML methods. Recent endeavors that connect physics with machine learning methods [59] and
learn the underlying operator as in [46] are very promising. Data assimilation with model-based
data from proprietary software through MOR techniques such as the dynamic mode decomposition
(DMD)[36, 58, 61], the operator inference (OpInf) [10, 44, 56] has become popular. The aforemen-
tioned methods (OpInf, DMD) and others, such as the sparse identification of dynamical systems
(SINDy)[19] assume state access, i.e., measurement availability for all system states, at all times.
Besides rendering the model inference input-dependent, this assumption might be impossible to
satisfy for many real-life applications.

Non-intrusive data-driven from i/o data Towards the same aim of model discovery using ex-
clusively input-output (i/o) data and for constructing models, the Loewner framework constitutes
a non-intrusive method that deals directly with i/o data (real-world measurements used in most
applied sciences, e.g., frequency, velocity, voltage, charge, or concentration). The Loewner frame-
work aims to the inference (or realization as often termed in the automatic control community) of
linear or nonlinear state-space systems and simultaneously offers the opportunity for data-driven
complexity reduction. Out of many existing methods available, we mention those based on rational
approximation; the Loewner framework [52], vector fitting (VF) [35], and the AAA algorithm [53].
We refer the reader to the extensive analysis provided in [3] for more details on such methods.
The realization aim in control theory refers to discovering the operators that define a dynam-

ical system in state-space representation from i/o measurements. Such realization of state-space
systems is not unique due to different coordinates as opposed to realizing a transfer function or
GFRFs that obey a unique representation. The linear case is introduced in [37] and has been
extended further from [39]. For the nonlinear case, extensions to the realization algorithm through
the subspace method and for the bilinear control system case can be found in [20,27,38,49] with the
references within, and for the linear parametric-varying (LPV) systems in [62] when the scheduling
signals can be measured. Other methods for data-driven system identification or reduction based
on nonlinear autoregressive moving average models with exogenous inputs (NARMAX) can be
found in [22,23] and in connection with the Koopman operator and the Wiener projection in [47].
A viable alternative is to devise methods that directly learn the continuous in-time operators

without introducing additional discretization errors over the temporal space. In particular, the
Fourier transform, which maps the time domain to the frequency domain, given that the Nyquist
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criterion is respected, allows continuous signal reconstruction from a finite spectrum when the
correct sampling frequency has been considered. Developing methods over the frequency domain
where interpolation can be enforced has the advantage that the model’s dimension scales mainly
with the state dimension (i.e., spatial) as opposed to existing time-domain methods (e.g., subspace
identification), where the model’s dimension scales in addition with the time discretization di-
mension and leads inevitably to exponential complexity. Importantly, processing the time-domain
output over the frequency domain has advantages in terms of sparse information and making it
possible to utilize methods such as the Loewner framework.

Existing literature on the Lowner framework The Loewner framework (LF) could be interpreted
as an interpolatory MOR technique that identifies state-space systems for certain generalized non-
linear classes, particularly: bilinear systems [5], linear switched systems [32], linear parameter
varying systems [33], quadratic-bilinear systems [4,29,30], and polynomial systems [9]. The afore-
mentioned nonlinear variants of the Loewner framework construct efficient surrogate models from
i/o data, sampled from a high-fidelity model. The challenge of the existing nonlinear approaches is
that they cannot be applied when the underlying model is inaccessible. In a natural measurement
environment where i/o time-domain measurements can be collected from an actual plant, a unique,
measurable set of kernels exists within the VS framework, i.e., the symmetric Volterra kernels. The
symmetric GFRFs can be derived with the growing exponential approach tailored to the probing
method [60], under the assumption that harmonic excitation leads to harmonic output. The LF
has already been extended to handle input-output time-domain data for the linear system case in
[55].

Scope of the proposed non-intrusive i/o method and applicability We introduce the scope
and generality of our new method, which uses i/o time-domain measurements to infer quadratic
state-space models with affine control after combining the Loewner and Volterra frameworks with
nonlinear optimization techniques. The quadratic model class assumption results from first prin-
ciples, where ODEs of a specific polynomial degree can be derived or efficiently approximated. In
particular, dynamical control systems that belong to the quadratic class contain a wide variety of
challenging problems with direct connection to engineering applications requiring efficient simu-
lation, such as the incompressible Navier Stokes and variants such as the viscous Burgers’ model
for investigating fluid mechanics, the Lorenz system for weather prediction, the Lotka-Volterra for
population dynamics, and SIRD models for epidemiology among others. Moreover, using algebraic
techniques such as lifting [28, 34], the class of quadratic systems could incorporate wider classes
of nonlinear systems with analytic nonlinearities, thus extending the applicability of the inference
task hereby pursued.
A wide class of nonlinear systems can be described through the Volterra Series (VS) (the Volterra

Series framework is also known as the Volterra-Wiener) approach [12, 60]. The VS framework
decomposes the nonlinear dynamics into an infinite series of convolutional operators involving
generalized kernels with input multiplication. It can model weakly nonlinear dynamics due to the
polynomial structure, potentially affecting its convergence properties. Thus, the VS representation
is limited to a subset of nonlinear systems, i.e., weakly nonlinear for which self-sustained dynamics,
phenomena such as sub-harmonic oscillations, continuous spectrum, or chaotic dynamics do not
emerge [13]. In line with the above limitation set by the VS representation, we further assume that
a harmonic input will eventually lead to a harmonic system response (referred to as a quasi-steady
state) associated with the so-called probing method.
The proposed method can be applied when harmonic forcing (potentially with non-zero initial

conditions) to a black box system reaches a stable equilibrium point with a quasi-steady state, and
discrete spectrum measurements from the processed steady-state profile can be obtained. These
measurements consist of the harmonics that the underlying system operates around the achiev-
able stable equilibrium. The derived harmonics are described within the VS framework, where
appropriate handling of those through kernel separation can lead to symmetric GFRF estimations.
Further, the estimations of the first three symmetric GFRFs are connected with the interpolatory
LF method, and together with nonlinear optimization methods, low-order quadratic models can
be inferred with the potential to achieve global identification.
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Compared to existing relevant literature In comparison with our prior studies in [31,41,43], the
advances in the newly proposed method are that we use generalized frequency measurements from
high-order kernels (first three GFRFs) of the symmetric type that interpret the propagating har-
monics in the time domain output, allowing for the inverse transformation (from time to frequency
domain) via the Fourier transform. Further, we solve the resulting nonlinear optimization prob-
lems to achieve quadratic model inference that implicitly interpolates the whole VS after explicitly
enforcing interpolation to a finite set of GFRFs (first three). Moreover, after measuring the local
dynamical behavior and computing the translated non-zero equilibrium point, we can identify the
global quadratic system that contains all the nontrivial equilibria.

Structure of the paper The rest of the paper is organized as follows: Section 2 presents the
analysis and employed methods, progressing with handy examples from the linear case in section 2.2
up to the nonlinear in section 2.3 and quadratic with the data acquisition process in section 2.4.
The method, along with the derived algorithms, is in section 2.5. The dynamics can be measured
around nonzero equilibrium points; thus, analysis for such systems is included in section 2.6. In
Section 3, we test the method in more challenging benchmarks. Firstly, we illustrate different cases
of identifying the forced Lorenz attractor with trivial and non-trivial equilibria, and the global
identification feature is analyzed. Secondly, the method is also tested for the reduction/accuracy
performance of the viscous Burgers’ model with Robin boundary conditions. Finally, Section 4
summarizes the findings and discusses potential future research directions.

Notation R, C fields of real and complex numbers and Rm×n, Cm×n real and complex m × n
matrices; |ξ| absolute value of real or complex scalar; imaginary unit j2 = −1; for s = a + jb,
Re(s) = a, Im(s) = b real and imaginary part of s, s̄ = a − jb conjugate of s; aij the (i, j)-th

entry of A; A(i : j, :) sub-matrix with rows i, . . . , j of A and all columns; A⊤ transpose of A;
A⋆ := (Ā)⊤, complex conjugate transpose; A−1 inverse of nonsingular A; In identity matrix
of dimension n; σmax(A) the largest singular value; ∥u∥p := (

∑
i=1 |ui|p)1/p for u ∈ Cn and

1 ≤ p < ∞; A ⊗ B the Kronecker product of A and B; vec(A) vectorization operator; gradient
∇f := (∂x1

f, . . . , ∂xn
f)⊤.

2. Analysis and methods

We start with linear system theory, providing explicit solutions and deriving the main mathematical
notions of our method. Next, we introduce the LF as an interpolatory tool in the linear case and
explain how one can identify minimal linear systems from time-domain measurements similar to
[55]. The approximation of nonlinear systems with the VS is introduced, focusing on the quadratic
state-space control system case. Analytical derivations are presented for extracting the symmetric
GFRFs with the probing method. Further, the analysis of addressing the issue of local equilibrium
measurements is detailed. Finally, the chapter concludes with the proposed method supported
with concise algorithms summarizing the computational techniques.

2.1. Linear time-invariant (LTI) systems

We start our analysis with the linear time-invariant1 (LTI) system in the single-input, single-output
(SISO) form as {

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t), x(0) = x0 = 0, t ≥ 0,
(1)

where the state-dimension is n, and the matrices are: E, A ∈ Rn×n, B,CT ∈ Rn×1, D ∈ R.
Concentrating in the ordinary differential equation (1), with a non-singular (i.e., invertible) E
matrix, we have the following explicit solution

1The invariant concept for the state-space system representation has to do with the fact that the operator of the
underlying system is temporal (time) independent.
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ẋ(t) = E−1Ax(t) +E−1Bu(t)⇒ d

dt

[
e−E−1Atx(t)

]
= e−E−1AtE−1Bu(t)⇒∫ t

0

d

dτ

[
e−E−1Aτx(τ)

]
dτ =

∫ t

0

e−E−1AτE−1Bu(τ)dτ ⇒

e−E−1Atx(t)− e−E−1A·0x(0) =

∫ t

0

e−E−1AτE−1Bu(τ)dτ ⇒

x(t) = eE
−1Atx(0)+

∫ t

0

eE
−1A(t−τ)E−1Bu(τ)dτ ⇒ (with σ = t− τ)

y(t) = CeE
−1Atx0+

∫ t

0

CeE
−1AσE−1B︸ ︷︷ ︸
h1(σ)

u(t− σ)dσ +Du(t).

(2)

The input-output solution of an LTI system with zero-initial conditions x0 = 0 and a zero feed-
forward term D = 0, results to the convolution integral y(t) =

∫ t

0
h1(σ)u(t − σ)dσ. On the other

hand, direct application of the Laplace transform L(·) in(1) with the complex frequency s ∈ C,
will give {

L [Eẋ(t)] = L [Ax(t)] + L [Bu(t)] ,

L [y(t)] = L [Cx(t)] + L [Du(t)] ,
⇒

{
sEX(s)−Ex0 = AX(s) +BU(s),

Y(s) = CX(s) +DU(s).
(3)

Solving the algebraic equation in (3) w.r.t X(s), and substituting to the output equation of the
system in (3) as Y (s) =

[
C(sE−A)−1B+D

]
U(s), we conclude to the definition of the transfer

function (1st GFRF in VS; thus, denoted H1) as

H1(s) :=
Y (s)

U(s)
=
[
C(sE−A)−1B+D

]
, H1 : C→ C. (4)

The important first observation is that the transfer function (4) involves all the matrices that
define a linear system in state-space form over the frequency-domain, e.g., the imaginary-axis of
the complex plane is with s = jω, ω ∈ R. The transfer function can also be considered an
invariant measure and thus unique under different state-space realizations obtained under different
coordinates. For the case where D = 0, the Laplace transform of the impulse response h1(σ), σ ∈
R+, is the transfer function H1(s), s ∈ C. For a concise representation of the following substantial
quantities, we introduce the resolvent as

Φ(s) = (sE−A)−1 ∈ Cn×n. (5)

2.2. The Loewner framework for LTI systems

We start with the Loewner framework (LF) in the linear case utilizing similar notions from [1,6,41].
The LF is an interpolatory method that infers potentially reduced models whose transfer function
matches/interpolates that of the underlying original system’s (FOM) transfer function at selected
interpolation points. To enforce this interpolation, and in the case of SISO systems, the following
rational scalar interpolation problem has to be formulated.
Consider the set of complex-valued data with f a complex rational function as {(sk, f(sk)) ∈

C× C : k = 1, . . . , 2n)}. We partition these data into two disjoint subsets:

S = [s1, . . . , sn︸ ︷︷ ︸
µ

, sn+1, . . . , s2n︸ ︷︷ ︸
λ

], F = [f(s1), . . . , f(sn)︸ ︷︷ ︸
V

, f(sn+1), . . . , f(s2n)︸ ︷︷ ︸
W

],

where µi = si, λi = sn+i, vi = f(si), wi = f(sn+i) for i = 1, . . . , n.

The objective is to find H(s) ∈ C such that:

H(µi) = vi, i = 1, . . . , n, and H(λj) = wj , j = 1, . . . , n. (6)

The left data set is denoted as: M = [µ1, · · · , µn] ∈ C1×n, and V = [v1, · · · , vn]T ∈ Cn×1, while

the right data set as: Λ = [λ1, · · · , λn]
T ∈ Cn×1, and W = [w1, · · · , wn] ∈ C1×n. The set of

interpolation points can be determined by the problem or selected to achieve the given model
reduction goals, e.g., approximation within a specific frequency bandwidth.
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2.2.1. The Loewner matrices

Given the row array of complex numbers (µj , vj), j = 1, . . . , n, and the column array, (λi, wi),
i = 1, . . . , n, (with λi and the µj mutually distinct) the associated Loewner matrix L and the
shifted Loewner matrix Ls are defined as:

L=


v1−w1

µ1−λ1
· · · v1−wn

µ1−λn

...
. . .

...
vn−w1

µn−λ1
· · · vn−wn

µn−λn

∈Cn×n, Ls=


µ1v1−λ1w1

µ1−λ1
· · · µ1v1−λnwn

µ1−λn

...
. . .

...
µnvn−λ1w1

µn−λ1
· · · µnvn−λnwn

µn−λn

∈Cn×n. (7)

Definition 2.1. If g is a rational function, i.e., g(s) = p(s)
q(s) , for appropriate polynomials p, q, the

McMillan degree or the complexity of g is deg (g) = max{deg(p), deg(q)}.

Now, if wi = g(λi), and vj = g(µj), are samples of a rational function g, the main property of
the Loewner matrices asserts in the following theorem 2.1 from [1].

Theorem 2.1. Let L be as above. If n ≥ deg g, then rankL = deg g.

The result in theorem 2.1 indicates that the rank of the matrix L, which is constructed di-
rectly from measurements, encodes the complexity of the underlying rational function g in terms
of the McMillan degree definition 2.1. Furthermore, the same result holds for matrix-valued func-
tions g that emerge in the multi-input multi-output (MIMO) case. Construction of the rational
interpolants associated with the revealed complexity degree follows.

2.2.2. Construction of interpolants

If the pencil2 (Ls, L) is regular, then the quadruple (E = −L, A = −Ls, B = V, C = W), is a
minimal realization of an interpolant for the data, i.e.,

H(s) = W(Ls − sL)−1V. (8)

Otherwise, as shown in [1], the problem in (6) has a solution provided that

rank [sL− Ls] = rank [L, Ls] = rank
[
L Ls

]T
= r,

for all s ∈ {µi} ∪ {λj}. Consider then the compact/thin singular value decomposition (SVD):

[L, Ls] = YΣ̂rX̃
∗
,
[
L Ls

]T
= ỸΣrX

∗, where Σ̂r, Σr ∈ Rr×r, Y ∈ Cn×r,X ∈ Cn×r, Ỹ ∈
C2n×r, X̃ ∈ Cr×2n. The order r can be chosen as the numerical rank (as opposed to the exact
rank) of the Loewner pencil. Performing the SVD, the minimal degree as the (numerical) rank of
the Loewner pencil can be revealed. Therefore, a selection of the truncation degree r comprises
a trade-off between the accuracy and dimensionality of the derived reduced model. Suppose the
neglected singular values are close to machine precision. In that case, the interpolation error is
close to machine precision, and identification has been achieved (given sufficient data). Still, the
degree of the ”reduced” model, in that case, could be high after including all the non-zero numerical
spectrum that the singular values encode, which can lead to an identified high-dimensional complex
model. On the other hand, if a truncation degree r is considered with the rest of the singular values
as σr+k ̸= 0, k = 1, ..., some interpolation error is introduced, but the model can benefit from the
low-dimensionality without affecting its accuracy significantly. The estimated ROM matrices of the
inferred model will be denoted with hats, e.g., Â. The LF realizes the operator of a linear system
at a specific random coordinate system. The transfer function stays invariant to any coordinate
transformation, similar to the Markov parameters [38]. We introduce the following theorem 2.2.

Theorem 2.2. The quadruple (Â, B̂, Ĉ, Ê) of size r × r, r × 1, 1× r, r × r, given by:

Ê = −YTLX, Â = −YTLsX, B̂ = YTV, Ĉ = WX,

2A linear matrix pencil, denoted by (A,B), plays an important role in linear algebra, i.e., in finding the eigenvalues
of (A,B) numerically.
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is a descriptor realization3 of an (approximate) interpolant of the data with McMillan degree r =
rank(L), where

Ĥ(s) = Ĉ(sÊ− Â)−1B̂. (9)

For more details on the construction/identification of linear time-invariant systems with the LF,
we refer the reader to [3,6,41] where both the SISO and MIMO cases are addressed together with
analysis on technical aspects such as distribution of interpolation points, splitting of measurements,
construction of real-valued models, etc.) together with concise algorithms.

2.2.3. An introductory linear example

Consider the following SISO minimal linear system of dimension n = 2 with non-zero initial
condition 

ẋ(t) =

[
−1 0
0 −2

]
x(t) +

[
1
1

]
u(t),

y(t) =
[
1 1

]
x(t), y0 = y(0) = Cx(0) =

[
1 1

] [ 0.5
0

]
= 0.5, t ≥ 0.

(10)

The task is to infer the system in (10) from time-domain input-output measurements obtained
under harmonic excitation.

Data acquisition in the linear case We excite the system in (10) with u(t) = α cos(2πω1t), and
we get the following power spectrum in fig. 1(right). After applying fast Fourier transform (FFT)
to the quasi-steady state profile, the single-sided power spectrum provides the complex phase from
which we estimate the transfer function (1st Volterra kernel) as H1(j2πω1) = 2P (2πjω1)/α ∈
C. We repeat the procedure until we obtain enough estimations for the H1. As the underlying
system has a minimal dimension n = 2, four (4) measurements are sufficient for the Loewner
framework to identify the system. Here, to illustrate how the LF method performs data-driven
reduction, we take more measurements and let the SVD algorithm decide on the minimal truncation
degree. Suppose we collect more measurements, i.e., six (6) pairs of complex points, thus, D :=
{(2πjω1, H1(2πjω1)) , (2πjω2, H1(2πjω2)) , . . . , (2πjω6, H1(2πjω6))} .
We split the data set D into two disjoint sets according to table 1, and we form the complex

Loewner matrices of dimension three (3) as in (7).

Left data Right data
µ1 = 2πjω1 υ1 = H1(2πjω1) λ1 = 2πjω4 w1 = H1(2πjω4)
µ2 = 2πjω2 υ2 = H1(2πjω2) λ2 = 2πjω5 w2 = H1(2πjω5)
µ3 = 2πjω3 υ3 = H1(2πjω3) λ3 = 2πjω6 w3 = H1(2πjω6)

Table 1: Complex data and a splitting scheme for the Loewner framework.

The underlying system is real; thus, for any measurement s ∈ C, it holds H(s) = −H̄(s̄) where
s̄ denotes the conjugate of s. With this real symmetric property, we can transform complex data
to real as in [41].
The conversion from complex to real data holds for both the Loewner matrices. More details on

deriving the equivalent real Loewner model can be found in [41]. In our example, we proceed by
including the six conjugate pairs of measurements to produce a real Loewner model of dimension
six (6). To obtain the interpolant in (8), we first perform the SVD of the Loewner matrices.
Suppose the measurements are ωi = 5i, i = 1, . . . , 6.
In fig. 1(left), the singular value decay gives the minimal degree of the underlying linear model

as r = 2. Thus, we use the left and right singular matrices to project the singular Loewner model

3A descriptor realization is the quadruple of the matrices that define a linear system (A,B,C,E). Usually, we
refer to such systems as descriptor systems when E is not the identity matrix or is non-invertible (differential
algebraic equations). The Loewner framework provides a descriptor realization. Alike the pencil (A,E), the
Loewner pencil is (Ls,L), and both contain the same eigenvalues.
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Figure 1: Left: The decay of singular values of Loewner matrices that exploit the minimal degree
r = 2. Right: Output evolution y(t) with input as u(t) = 30 cos(2π · 10 · t) where
α = 30, ω1 = 10 (Hz).

of dimension 6 to r = 2. By using the theorem 2.2, the reduced linear system has the following
matrices with 5-digits precision

Âr =

[
5.2775 −0.30554
149.52 −8.2775

]
, B̂r =

[
−63.79
4.4346

]
, Ĉr =

[
−0.031254 0.0014167

]
. (11)

The reduced system is {
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t), x̂(0) = x̂0 =?
(12)

The linear matrix in (11) has the following eigenvalues eig(Â) = (−1,−2) that match the original
in (10) with machine precision. To compare the two systems (original and identified), we need to
align the two coordinate systems to make any use of the original observable initial conditions y0.
To infer x̂0, transient response data is necessary because they encode information on the system’s
initial conditions, in contrast to steady-state system response. Thus, we simulate the corresponding
autonomous system with u(t) = 0. The transient response of the original system until the dynamics
converge to the zero equilibrium is y(t) = CeAtx0. We must enforce ŷ(t) = y(t),∀t. To infer the
initial conditions x̂0, we need to specify unknowns equal to the discovered dimension r and can

be easily generalized for any r ∈ Z+. In our case, where r = 2, we write x̂0 =
[
x̂01 x̂02

]T
. To

specify 2 degrees of freedom, we need at least 2 equations. We enforce identical transient phases
in the absence of the controller u(t) = 0 as

ŷ(t) = y(t)⇔ ĈeÂtx̂0 = y(t)⇔ ĈeÂt

[
x̂01

x̂02

]
= y(t), by using t1, t2 ⇒[

ĈeÂt1

ĈeÂt2

]
︸ ︷︷ ︸

∈R2×2

[
x̂01

x̂02

]
=

[
y(t1)
y(t2)

]
︸ ︷︷ ︸

measurements

⇒
[

x̂01

x̂02

]
=

[
ĈeÂt1

ĈeÂt2

]−1 [
y(t1)
y(t2)

]
.

(13)

For our example, we use t1 = 0, t2 = 1. Thus, the above inversion is well-conditioned, and we
compute the initial condition to the hatted system with five-digit precision as

x̂0 =

[
−232.79
−4782.8

]
. (14)

The original system in (10) and the identified (12) together with the inferred initial conditions
(14) are equivalent in all dynamical regimes (transient and steady state). They differ only by one
similarity transform (appendix A). To illustrate this argument, we construct such a transformation
from appendix A, that the system’s coordinates are aligned (and thus identical to) the original
system’s operator, it remains

Ψ−1x̂0 = Ψ−1

[
−232.79
−4782.8

]
=

[
0.5
0

]
. (15)
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Note that in the linear case, with only one multi-harmonic excitation, an injenctive input-output
harmonic map with enough measurements to realize the transfer function from a single input within
the LF method similar to [57] can be obtained. In contrast, for the nonlinear case, due to harmonic
intermodulation, the harmonic indexing and kernel separation make the task of estimating GFRFs
with a multi-harmonic excitation challenging. Finally, as we have analyzed the mechanism in
dealing with linear system identification via the LF, which will play a significant role in identifying
the minimal linear subsystem from the nonlinear class under consideration, nonlinear analysis is
ready to emerge.

2.3. Nonlinear systems theory with the Volterra series (VS) representation

In this section, we introduced the VS representation of nonlinear systems that admit such polyno-
mial series expansion, i.e., weakly nonlinear, where the energy comes from the controller and the
dynamics evolve after possible bifurcation around achievable local stable equilibrium points. For

the SISO case, i.e., u→ ΣNL → y, the mathematical notion of the VS contains an infinite series
expansion based on multi-convolution operations as

y(t) =

∞∑
n=1

yn(t), yn(t) =

∫ ∞

0

· · ·
∫ ∞

0

hn(τ1, . . . , τn)

n∏
i=1

u(t− τi)dτi, (16)

where hn(τ1, . . . , τn) is a real-valued function of τ1, . . . , τn known as the nth-order time-domain
Volterra kernel. After a multivariate Laplace transform to the time-domain kernels hn(τ1, . . . , τn),
the nth-order generalized frequency response function (GFRF) is defined as

Hn(s1, . . . , sn) =

∫ ∞

0

· · ·
∫ ∞

0

hn(τ1, . . . , τn)e
−

∑n
i=1 siτidτ1 · · · dτn. (17)

The above mathematical formulation is general and covers many nonlinear systems. One way to
derive closed forms of GFRFs is to assume a physics-based structure of the underlying system. In
this direction, quadratic systems are of particular interest. This is due to the variety of applications
where the analytical state nonlinearity is quadratic (e.g., Navier Stokes, Burgers’, etc.), as well
as the possibility of embedding any system with analytical nonlinearity to a quadratic structure
through lifting techniques [28, 34]. As detailed in [34], lifting strategies can result in polynomial
ODEs systems of quadratic order or in systems of differential-algebraic equations (DAEs) where
the non-invertible E in the latter case makes the problem quite challenging even when state access
measurements (snapshots) can be accessed [44]. We proceed with general nonlinear systems that
result after possible lifting embedding to quadratic ODEs.

2.4. The quadratic dynamical system

We continue our analysis with the general state-space representation of the quadratic dynamical
system and for the SISO case as{

ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Bu(t),

y(t) = Cx(t), x(0) = x0 = 0, t ≥ 0,
(18)

where the state dimension is n, and the matrices are: A ∈ Rn×n, Q ∈ Rn×n2

, B,CT ∈ Rn×1.
The term Q(x(t)⊗x(t)) denotes the product of the quadratic matrix with the Kronecker product.
The Kronecker product ⊗ is defined as in the following simple case

[
x1 x2

]
⊗
[
x1 x2

]
=[

x2
1 x1x2 x2x1 x2

2

]
. Due to the commutative property, the matrix Q denotes the Hessian of

the right-hand side in (18) and exhibits a symmetric structure. In particular, for any two arbitrary
vectors u,v ∈ Rn, we can always ensure that it holds

Q(u⊗ v) = Q(v⊗ u). (19)

We now focus on systems with quadratic nonlinearities (18). Different ways of deriving general-
ized frequency response functions (GFRFs) exist. We want to obtain closed formulations of GFRFs
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that can be measured under harmonic excitation, interpreted in the frequency domain, and then
associated with the quadratic operator matrices. To be more mathematically precise, suppose a
two-tone excitation signal like u(t) = cos(ω1t) + cos(ω2t); thus, the measurement should correlate
with H2(ω1, ω2). If we interchange the frequencies, the input stays the same, and the measurement
correlates with H2(ω2, ω1). Consequently, these two measurements cannot differ, which explains
precisely the symmetric property. Therefore, our first aim is to derive the symmetric GFRFs for
the quadratic case that can be processed from the time domain to the frequency domain. The
second aim is to use these measurements to infer the matrices (A, Q, B, C) that define the
assumed quadratic system class.

2.4.1. Deriving higher-order transfer functions for the quadratic system

As detailed in [60], different ways exist to extract different types of GFRFs. One way is the varia-
tional approach, where the structure of the triangular kernels (or regular kernels) can be revealed
through Picard iterations. In particular, regular GFRFs can be derived after shifting the frequency
domain of triangular GFRFs. Despite the ease of using intrusive models, the regular Volterra ker-
nels cannot be measured directly from the time domain. Therefore, we continue deriving GFRFs,
namely with the growing exponential approach (i.e., the probing method) for treating the issue of
kernel estimation from time domain harmonic data. By probing the system and after processing
the quasi-steady state time evolution in the frequency domain via the Fourier (a special case of
Laplace over the imaginary axis) transform, the time domain signal is decomposed to harmonics
that scale and shift w.r.t. the symmetric GFRFs. Methods for estimating these symmetric GFRFs
(e.g., kernel separation) were introduced in [15,40,63].

The Probing method It was shown by Rugh [60] and Billings [12] that for nonlinear systems
which are described by the VS (16) and excited by a combination of complex exponentials u(t) =∑R

i=1 e
sit, 1 ≤ R, the output response can be written as

y(t) =

∞∑
n=1

R∑
i1=1

· · ·
R∑

in=1

Hn(si1 , . . . , sin)e
(si1+···+sin )t

=

∞∑
n=1

∑
m(n)

H̃m1(n)···mR(n)(s1, . . . , sR)e
(m1(n)s1+···+mR(n)sR)t,

(20)

where
∑

m(n) indicates an R-fold sum over all integer indices m1(n), . . . ,mR(n) such that 0 ≤
mi(n) ≤ n, m1(n) + · · ·+mR(n) = n, and

H̃m1(n)···mR(n)(s1, . . . , sR) =
n!

m1(n)! · · ·mR(n!)
Hn(s1, . . . , s1︸ ︷︷ ︸

m1(n)

, . . . , sR, . . . , sR︸ ︷︷ ︸
mR(n)

). (21)

Note that H̃n is the weighted GFRF, corresponding to Hn as in (21); The former scales with
the factor n!

m1(n)!···mR(n!) . Note also that different input amplitudes can be considered, as in [12,65]

where the amplitude shift allows the kernel separation.
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Following the derivations in appendix B, we obtain the set of the first three symmetric GFRFs

H1(s1) = CΦ(s1)

R1︷︸︸︷
B︸ ︷︷ ︸

G1(s1)

,

H2(s1, s2) = C
1

2
Φ(s1 + s2)Q

R2(s1,s2)︷ ︸︸ ︷
[G1(s1)⊗G1(s2) +G1(s2)⊗G1(s1)]︸ ︷︷ ︸

G2(s1,s2)

,

H3(s1, s2, s3) = C
1

6
Φ(s1 + s2 + s3)Q

R3(s1,s2,s3)︷ ︸︸ ︷
[+ G1(s1)⊗G2(s2, s3) +G2(s2, s3)⊗G1(s1)+

+ G1(s2)⊗G2(s1, s3) +G2(s1, s3)⊗G1(s2)+

+ G1(s3)⊗G2(s1, s2) +G2(s1, s2)⊗G1(s3)] .

(22)

At this point, we illustrate some properties the symmetric GFRFs in (22) inherit.

• Symmetry: As it is evident, any permutation of the set (s1, s2, . . . , sn) will result to the
same evaluation of the Hn(s1, s2, . . . , sn) and Gn(s1, s2, . . . , sn).

• Decompositions: In control theory, the reachability and observability conditions are con-
nected theoretically with the minimality degree [2, 3]. In simple terms, reachability signifies
the ability to reach a state by applying suitable input to the system. On the other hand,
observability signifies the ability to observe some system state. Introducing the general reach-
ability R and observability O matrices similar to [3], and for the symmetric GFRFs case, a
more concise representation of the GFRFs (22) can be derived. As we have introduced the
generalized reachability matrices in appendix B and in (22) asR1, R2, R3, the corresponding
general observability matrices remain

O1(s1) = CΦ(s1),

O2(s1, s2) =
1

2
CΦ(s1 + s2),

O3(s1, s2, s3) =
1

6
CΦ(s1 + s2 + s3).

(23)

Based on the above observations and notions, we can better represent the input to state
symmetric GFRFs by exploiting their structure. To distinguish the position of the quadratic
matrix in the 3rd GFRFs, the superscripts (·)ℓ-left and (·)r-right are introduced.

G1(s1) = Φ(s1)R1,

G2(s1, s2,Q) =
1

2
Φ(s1, s2)QR2(s1, s2),

G3(s1, s2, s3,Q
ℓ,Qr) =

1

6
Φ(s1, s2, s3)Q

ℓR3(s1, s2, s3,Q
r)

(24)

and for the input to output GFRFs as

H1(s1) = O1(s1)R1,

H2(s1, s2,Q) = O2(s1, s2)QR2(s1, s2),

H
(ij)
3 (s1, s2, s3,Q

(i),Q(j)) = O3(s1, s2, s3)Q
(i)R3(s1, s2, s3,Q

(j)).

(25)

• The generalized reachability matrix R3(Q) is linear w.r.t the quadratic operator

Q. Assume λ1, λ2 ∈ R and Q1, Q2 ∈ Rn×n2

. Then, it holds

– Linear property: R3(λ1Q1 + λ2Q2) = λ1R3(Q1) + λ2R3(Q2).
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Proof. By neglecting the similar-structured terms (s.s.t), we can prove the following:

R3(s1, s2, s3, λ1Q1 + λ2Q2) = G1(s1)⊗G2(s2, s3, λ1Q1 + λ2Q2) + s.s.t.

= G1(s1)⊗
1

2
Φ(s1, s2)(λ1Q1 + λ2Q2)R2(s1, s2) + s.s.t.

= G1(s1)⊗
1

2
Φ(s1, s2)λ1Q1R2(s1, s2) +G1(s1)⊗

1

2
Φ(s1, s2)λ2Q2R2(s1, s2) + s.s.t.

= λ1G1(s1)⊗G2(s2, s3,Q1) + λ2G1(s1)⊗G2(s2, s3,Q2) + s.s.t.

= λ1R3(s1, s2, s3,Q1) + λ2R3(s1, s2, s3,Q2).

Starting from the quadratic dynamical system in (18), we have derived all the quantities of
interest (with their corresponding properties) for setting up our method in what follows. Equivalent
descriptions between the time and frequency domain representations have been addressed for this
problem using the VS. Closing this section, as we deal with a data-driven method, we proceed in
explaining the data acquisition process starting from a solid, consistent theoretical background that
was exploited in the previous derivations and in the Volterra framework for representing nonlinear
systems.

2.4.2. Data acquisition with harmonic probing

For a given multi-harmonic input in the time domain with driving frequencies (s1, s2, . . . , sn) ∈ Cn,
the idea is to estimate the GFRFs, i.e., Hn(s1, s2, . . . , sn) from the processed frequency power
spectrum. These GFRFs encode system-invariant information that can lead to identification or, in
general, inference since they are directly associated with the operator matrices from the underlying
quadratic system. When the excitation signal is u(t) =

∑R
i=1 e

sit, the output can be decomposed
to a VS (20). We showcase the following representative cases:

• Case 1: A single complex harmonic

u(t) = e2πjωt → ΣNL →
∞∑

n=0

Hn(ω, . . . , ω︸ ︷︷ ︸
n times

)e2πnjωt,

where the harmonic indexing and GFRFs (kernels) separation are direct.

• Case 2: A double complex harmonic with ω1, ω2 > 0

u(t) = e2πjω1t + e2πjω2t → ΣNL →
∞∑

n=0

Hn(ω1, . . . , ω1︸ ︷︷ ︸
m1(n) times

, ω2, . . . , ω2︸ ︷︷ ︸
m2(n) times

)e2πj(m1(n)ω1+m2(n)ω2)t,

where the propagating harmonics are infinite and precisely the integer multiples of m1(n)ω1+
m2(n)ω2, m1(n),m2(n) ∈ Z+ with m1(n)+m2(n) = n. For instance, if n = 2, the combina-
tions are (2, 0), (1, 1), (0, 2). These correspond to the separable kernels H2(2ω1), H2(ω1, ω2),
H2(2ω2) that can be inferred directly from the power spectrum. Of course, the wise choice
of ω1, ω2 can make the kernel separation exact.

• Case 3: A single real harmonic 2a cos(2πωt) where from Euler’s formula with ω > 0, we have

u(t) = ae2πjωt+ae−2πjωt → ΣNL →
∞∑

n=0

anHn( ω, . . . , ω︸ ︷︷ ︸
m1(n) times

,−ω, . . . ,−ω︸ ︷︷ ︸
m2(n) times

)e2πj(m1(n)−m2(n))ω)t,

where the propagating harmonics are infinite and precisely with values of integer multiples
of (m1(n) − m2(n))ω, m1(n),m2(n) ∈ Z+ with m1(n) + m2(n) = n. Immediately, each
harmonic is a superposition of infinite kernels as for ω holds

Y1(ω) = aH1(ω) + a3w3H3(−ω, ω, ω︸ ︷︷ ︸
2ω−ω=ω

) + a5w5H5(−ω,+ω,−ω, ω, ω︸ ︷︷ ︸
3ω−2ω=ω

) + ... (26)
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In practice, one could excite the system with a multi-tone input of low amplitude such that
higher harmonic intermodulation is negligible. When the excitation activates more harmonics,
kernel separation with the known techniques from [14,15,42] are available. Equation (26) suggests
kernel separation by sweeping the amplitude, which can be done up to a degree with multi-tone
input. The polynomial structure in the amplitude a easily can lead to ill-conditioning due to
the Vandermonde construction, but such an issue can be addressed from [17]. Moreover, to this
direction of harmonic detection and kernel separation, machinery such [63] can make this process
applicable even for more complex cases based on small signal multi-harmonic perturbations that
lead to thorough linearization in handling efficiently the harmonic distortion.

2.5. Method for quadratic modeling from i/o time domain data

Next, we introduce the proposed method for computing quadratic state-space models from the
first three symmetric GFRFs (22), which can be measured from time-domain harmonic excitation
in two steps. The first step infers the minimal linear subsystem with the LF, and the second step
employs linear and nonlinear optimization schemes to infer the quadratic matrix. Combining these,
a realization of the operator that defines the quadratic system can be achieved.

2.5.1. Identification of the linear subsystem with the Loewner framework

Using measurements of the 1st harmonic, we can identify the minimal linear subsystem of order
r ≤ n, as (Â, B̂, Ĉ) (Ê invertible) with the Loewner framework as illustrated in section 2.2.3.
Further, using the identified linear subsystem, we can formulate optimization problems where
estimations of the quadratic operator can be achieved after incorporating higher-order harmonics
associated with the higher-order GFRFs, i.e., H2, H3. We acquire and solve these optimization
problems in two steps: solving an under-determined linear optimization problem that obeys infinite
parameterized solutions due to non-empty null space within a least-squares setting and solving a
non-linear optimization problem with the Newton method for fixing the remaining parameters.

2.5.2. Estimation of the quadratic operator from the 2nd kernel

Identification of the minimal linear subsystem (Â, B̂, Ĉ) of order r as described in section 2.5.1

allows the construction of the reduced resolvent Φ̂(s) = (sÎ − Â)−1 ∈ Cr×r, and the 2nd GFRFs

with the unknown operator Q̂ can be written as:

Ĥ2(s1, s2) =
1

2
ĈΦ̂(s1 + s2)︸ ︷︷ ︸
Ô2(s1,s2)

Q̂
[
(Φ̂(s1)B̂)⊗ (Φ̂(s2)B̂) + (Φ̂(s2)B̂)⊗ (Φ̂(s1)B̂)

]
︸ ︷︷ ︸

R̂2(s1,s2)

=

= Ô2(s1, s2)Q̂R̂2(s1, s2) =
(
Ô2(s1, s2)⊗ R̂

T

2 (s1, s2)
)
vec(Q̂).

(27)

The way of estimating the quadratic operator Q̂ comes after enforcing interpolation with the 2nd

harmonic (2nd kernel) over a 2D grid of selected measurements
(
s
(k)
1 , s

(k)
2

)
. Thus, we enforce

H2

(
s
(k)
1 , s

(k)
2

)
︸ ︷︷ ︸
kth measurement

= Ĥ2

(
s
(k)
1 , s

(k)
2

)
, (28)

and we construct the following linear optimization problem that is solvable by minimizing the
2-norm (least-squares) similarly to the quadratic-bilinear case in [43]. Collecting k pairs of mea-

surements (s
(k)
1 , s

(k)
2 ), we conclude to:

H2(s
(1)
1 , s

(1)
2 )

H2(s
(2)
1 , s

(2)
2 )

...

H2(s
(k)
1 , s

(k)
2 )


︸ ︷︷ ︸

(k×1)

=


Ô

(1)

2 ⊗ R̂
T (1)

2

Ô
(2)

2 ⊗ R̂
T (2)

2

...

Ô
(k)

2 ⊗ R̂
T (k)

2


︸ ︷︷ ︸

M: (k×r3)

vec(Q̂)︸ ︷︷ ︸
(r3×1)

. (29)
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The quadratic operator inherits symmetries, e.g., the terms xixj and xjxi appear twice in the
product x ⊗ x. These symmetries are known by construction (19) and can be appropriately
handled. Despite considering these symmetries, a non-unique quadratic representation of the
original system remains. The information from the 2nd H2 is insufficient to infer the entirety of
the quadratic operator entries. Algebraically, this can be explained by the rank deficiency of the
least square matrix M ∈ Rk×r3 . Real symmetry can be enforced in (29) by including the conjugate
counterparts. The above problem motivates the usage of higher harmonics (GFRFs) where the
remaining parameters of the above under-determined problem can be estimated. In particular,
evaluating the quadratic operator Q̂ can be further parameterized with the non-empty null space
we computed from the (29) least-squares problem.

Remark 2.1 (Null space dimension). The dimension of the null space in (29) for enough mea-
surements k ≥ r and after enforcing the quadratic symmetries of the minimal quadratic system
(Ar,Qr,Br,Cr) scales with the state dimension r as dim(ker(M)) = (r3 − 2r2 + r)/2. These

are the remaining free parameters in the quadratic operator Q̂ that cannot be estimated from (29).
Therefore, the main idea is potentially obtaining the missing parameters from the higher-order
GFRFs. The asymptotic behavior of the ker(M) indicates that after enforcing the quadratic sym-

metries, only half of the entries in Q̂ can be detected. As detailed next, this endeavor will lead to
solving nonlinear quadratic vector equations. A unique solution for inferring the quadratic operator
in this framework is not guaranteed in the general case. Indeed, for an arbitrary nonlinear system,
we have no reason to expect that the 3rd GFRF kernel will be sufficient to infer the quadratic term.
However, the aforementioned limitation to weakly nonlinear systems set by the VS representation
significantly narrows the breadth of systems where inference through the 3rd GFRF is investigated.
In addition, the problem formulation contains the optimal solution that could lead to identification
or optimal model inference in the reduced dimension. However, the exact identification problem
regarding how many GFRFs are needed remains open. Thus, we proceed with our method and seek
to construct at least (sub)optimal models capable of explaining higher GFRFs with the potential of
interpolating the whole Volterra series.

The inferred quadratic operator has r3 unknowns (less due to symmetries (r2(r + 1)/2)). If the

rank of the matrix M is rank(M) = p < r3, the parametric solution of Q̂ that we obtain from H2

measurements with the dimension of the null space m = r3 − p can be written as:

Q̂ = Q̂0︸︷︷︸
rank solution

+

m∑
i=1

λiQ̂i︸ ︷︷ ︸
parameterization

(30)

The above splitting (30) can be considered the same when the operators Q̂0, Q̂i, i = 1, . . . ,m are
represented as vectors after vectorization due to the linear property of vec(·)4.

2.5.3. Inferring the quadratic operator from the 3rd GFRF

From the parameters λi in (30), we also search those that explain the interpolation of the 3rd
kernel. Therefore, we can write:

Ĥ3(s1, s2, s3) = Ô3(s1, s2, s3)Q̂R̂3(s1, s2, s3, Q̂), (31)

4The vectorization is row-wise, vec(Q) =
[

Q(1, 1 : r2) · · · Q(r, 1 : r2)
]T ∈ Rr3×1.
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and substituting (30) in (31), due to the linear property of the operator R3 as explained in
section 2.4.1, we can derive

Ĥ3(s1, s2, s3, Q̂, Q̂) = Ô3(s1, s2, s3)

(
Q̂0 +

m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3, Q̂0 +

m∑
i=1

λiQ̂i

)

= Ô3(s1, s2, s3)Q̂0R̂3

(
s1, s2, s3, Q̂0

)
+ Ô3(s1, s2, s3)Q̂0R̂3

(
s1, s2, s3,

m∑
i=1

λiQ̂i

)
+

Ô3(s1, s2, s3)

(
m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3, Q̂0

)
+ Ô3(s1, s2, s3)

(
m∑
i=1

λiQ̂i

)
R̂3

(
s1, s2, s3,

m∑
i=1

λiQ̂i

)
= Ĥ

(00)
3 (s1, s2, s3, Q̂0, Q̂0)+

m∑
i=1

λi

(
Ĥ

(i0)
3 (s1, s2, s3, Q̂i, Q̂0) + Ĥ

(0i)
3 (s1, s2, s3, Q̂0, Q̂i)

)
+

+

m∑
i=1

m∑
j=1

λiλjĤ
(ij)
3 (s1, s2, s3, Q̂i, Q̂j),

(32)

where the superscript notation is similar to (25). The above problem can be written as a quadratic
problem for root finding. We introduce the following notation:

(A)i,j = Ĥ
(ij)
3 (s1, s2, s3, Q̂i, Q̂j),

(B)i = Ĥ
(is)
3 (s1, s2, s3, Q̂i, Q̂0) + Ĥ

(si)
3 (s1, s2, s3, Q̂0, Q̂i),

C = Ĥ
(ss)
3 (s1, s2, s3, Q̂0, Q̂0)− Ĥ3(s1, s2, s3, Q̂, Q̂).

We reformulate the problem by denoting λ =
[
λ1 λ2 · · · λm

]T
.

The dimensions for a single measurement triplet (s1, s2, s3) are as follows A ∈ Cn×n, B ∈
C1×n, C ∈ C.

λTAλ+ Bλ+ C = 0. (33)

We can rewrite equation (33) in a more convenient format after vectorizing A that will allow
arbitrary measurement augmentation as follows:

vec(A)(λ⊗ λ) + Bλ+ C = 0. (34)

To enforce interpolation from the 3rd kernel, we equate

H3

(
s
(k)
1 , s

(k)
2 , s

(k)
3

)
︸ ︷︷ ︸

k: measurements

= Ĥ3

(
s
(k)
1 , s

(k)
2 , s

(k)
3 , Q̂, Q̂

)
. (35)

Further, by adding k measurements along with the conjugate counterparts, we can transform the
data matrices with real entries, and we result to

vec(A1)
vec(A2)

...
vec(Ak)


︸ ︷︷ ︸

W∈Rk×m2

(λ⊗ λ) +


B1
B2
...
Bk


︸ ︷︷ ︸
Z∈Rk×m

λ+


C1
C2
...
Ck


︸ ︷︷ ︸
S∈Rk×1

= 0. (36)

The above equation can be written as F(λ) = 0 by denoting F(·) : Rm → Rk as

F(λ) = W(λ⊗ λ) + Zλ+ S, λ ∈ Rm. (37)
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The derivative (Jacobian) w.r.t the real vector λ is:

J(λ) = ∇λF(λ) = W(λ⊗ I+ I⊗ λ) + Z. (38)

We seek the solution of (36); thus, by introducing the Newton iterative procedure (fixed point
iterations), starting with an initial seed λ0, we can result in F(λn+1) → 0 as n → ∞. The
iterations are described next:

λn+1 = λn − J−1(λn)F(λn). (39)

Finally, upon Newton’s method convergence, we obtain the vector λ∗, (F(λ∗) ≈ 0) from algo-
rithm 1, which will lead to a better estimation of Q that incorporates the measurements from the
3rd kernel. We notice in many situations that the error between the reduced and original systems
improves significantly when the residual γ of Newton’s method remains small. Moreover, in many
cases, identifying the original operator Q is possible, as we will illustrate in our low-order example
(i.e., the Lorenz attractor model).

Algorithm 1 Solution λ of the quadratic vector equation F(λ) = 0.

Define: W ∈ Rk×m2

, Z ∈ Rk×m, S ∈ Rk×1 and the hyperparameters η, γ0.
Choose an initial random seed: λ ∈ Rm.
while γ > γ0 do

Compute F(λ) from (37) and J(λ) from (38).
Update λ← (λ− J#F(λ)), # is: ”− 1” or the Moore-Penrose pseudo-inverse (threshold η).
Compute the residue ∥F(λ)∥ = γ.

end while
return λ

Remark 2.2 (Reduction scheme for the quadratic vector equation). To specify m unknowns from
N quadratic equations, instead of solving directly with algorithm 1, these equations can be projected
in the appropriate dimension (dimension of the null space) m with the SVD. To balance the inter-
polation goal approximately as the original system’s dynamics evolve into a nonlinear manifold of
a high dimension instead of only a reduced r. Thus, enforcing the exact interpolation for the third
kernel might be impossible and result in nonsmooth fitting. Therefore, we consider the following
augmented matrix K = [W Z S], where SVD decomposes as K = UΣVT . We project with the

left m singular-vectors as K̂ = U(:, 1 : m)TK =
[
Ŵ Ẑ Ŝ

]
and we solve the reduced quadratic

vector equation with algorithm 1.

Remark 2.3 (Identification of the minimal quadratic system). The proposed method works with
measurements from the first three symmetric GFRFs that can be inferred from the time domain.
All the parameters to achieve identification have been exploited. Regarding the uniqueness of the
solution vector λ in algorithm 1, it could be the case where the important degrees of freedom
can be fixed from the first three GFRFs and achieve quadratic identification, but in the general
case more information should be included from even higher kernels (H4, H5, . . .). Consequently,
algorithm 1 should be upgraded in solving the generalized vector equation coupled in an arbitrary
finite polynomial degree not specified in this study. In such cases, the complexity increases in
both data acquisition and algorithmic complexity, where specifying the possible finite kernel degree
to which quadratic identification can be achieved is left as an open problem. Although such a
theoretical statement seems complex and has a high computational burden, the proposed method
works toward the identification goal using information from the first most significant kernels. In the
VS framework, higher kernels/harmonics carry less important information under the assumption
of weakly nonlinear dynamics. Thus, an efficient approximation can be provided, as detailed in our
following examples.

2.5.4. The algorithm for quadratic modeling from i/o time-domain data

Here, we present a concise algorithm summarizing the procedure for constructing quadratic state
space models from harmonic data (samples of the symmetric kernels H1, H2, H3). Measuring
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(symmetric) Volterra kernels is, by no means, a new topic. However, although previously addressed
in [15, 42, 65], it remains a non-trivial task. The main difficulty has to do with the separation
of commensurate frequencies. In other words, each of the propagating harmonics consists of a
series of kernels and, therefore, evaluating the symmetric GFRFs requires kernel separation with
an amplitude shifting [42, 65]. Towards this aim, X-parameters in [63], and the references within,
represent a direct generalization of the classical S-parameters (for linear dynamics) to the nonlinear
case. With this agile machinery, estimations of the higher Volterra kernel can be made in a true
engineering setup as in [65], and the quadratic state-space surrogate model can be inferred from
the proposed method. The following algorithm can use such information (from the X-parameters)
to construct interpretable quadratic models.

Algorithm 2 Quadratic modeling from time-domain data

Input: # Measurements of the symmetric GFRFs H1(s1), H2(s1, s2), H3(s1, s2, s3).
Define a truncation order r with SVD from the Loewner matrix L (minimal linear).

Realize the minimal linear subsystem (Â, B̂, Ĉ) of order r.

Estimate the Q̂0 ∈ Rr×r2 from (29) by minimizing the 2−norm error (least-squares).

Update the Q̂ ∈ Rr×r2 from (30) after solving (39) with algorithm 1.

return the state-space quadratic model (Â, Q̂, B̂, Ĉ).

2.6. Quadratic state-space systems with multiple equilibrium points

Quadratic systems can bifurcate to different equilibrium points. Thus, when measuring, multi-
operational points can be revealed. To illustrate this phenomenon mathematically, we write the
quadratic system (18) after shifting it with the non-zero equilibrium state xe. We denote the new

state variable x̃(t) = x(t)−xe, where the tilde notation (̃·) in that case should enhance the memory
that the corresponding matrix/state operates close to the equilibrium. The system remains

ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)) +Bu(t)⇒
˙̃x(t) = A(x̃(t) + xe) +Q ((x̃(t) + xe)⊗ (x̃(t) + xe)) +Bu(t)⇒
˙̃x(t) = Ax̃(t) + 2Q(xe ⊗ x̃(t)) +Q(x̃(t)⊗ x̃(t)) +Axe +Q(xe ⊗ xe) +Bu(t)⇒
˙̃x(t) = (A+ 2Q(xe ⊗ I))︸ ︷︷ ︸

Ã

x̃(t) +Q(x̃(t)⊗ x̃(t)) +Axe +Q(xe ⊗ xe)︸ ︷︷ ︸
L

+Bu(t).

(40)

Note that at the equilibrium equation holds L := Axe + Q(xe ⊗ xe) = 0 as in the absence of
the controller u(t), and with zero initial conditions, e.g., x0 = 0, dynamics remain zero. We do
not address situations with a limit cycle, e.g., systems with purely imaginary eigenvalues, which
describe self-sustained dynamics. As a result, the quadratic system that we measure after reaching
the equilibrium state xe is the following:{

˙̃x(t) = Ãx̃(t) +Q(x̃(t)⊗ x̃(t)) +Bu(t),

y(t) = Cx̃(t) +Cxe, x̃0 = −xe, t ≥ 0.
(41)

Remark 2.4 (System invariant information under bifurcations). The system in (41) suggests that
around the new equilibrium state point xe, the matrices (Q, B, C) stay the same compared to the
global system’s matrices up to a coordinate transformation, and only the linear matrix changes to
Ã = A+2Q(xe⊗I), along with a linear trend known as DC5. The generalized Markov parameters of
the system that contain only the matrices (Q, B, C) are the same around any arbitrary equilibrium
xe and any coordinate system to which the original system bifurcates.

Two equilibrium points case: To emphasize the operation of the dynamics around the
equilibrium points, we keep the notation to all matrices and states with a tilde. Let’s assume
that the original global quadratic model can bifurcate to the two different equilibrium points

5DC: direct current, which describes the non-periodic term (zero frequency) in the power spectrum.
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x̃(q)
e , q = 1, 2. The dynamical behavior can be explained locally and in every equilibrium point by

the following systems{
˙̃xq(t) = Ãqx̃q(t) + Q̃q(x̃q(t)⊗ x̃q(t)) + B̃qu(t),

yq(t) = C̃qx̃q(t), x̃q(0) = −x̃(q)
e ,

, q = 1, 2. (42)

Property: For the two systems in (42) holds

Ãq︸︷︷︸
local

= Aq︸︷︷︸
global

+2Q̃q(x̃
(q)
e ⊗ I), q = 1, 2. (43)

Figure 2: lemma 2.1 through a schematic.

Remark 2.5. The Markov parameters involving the quadratic and input-output operators are the
same. C̃1B̃1 = C̃2B̃2, and C̃1Q̃1(B̃1 ⊗ B̃1) = C̃2Q̃2(B̃2 ⊗ B̃2).

According to remark 2.5, similar information from the original system is encoded in both systems
(42). Therefore, a similarity transformationT exists, which aligns the two systems w.r.t the original
coordinates.

Lemma 2.1 (Coordinate alignment with unknown global linear matrices). There exists a trans-
formation matrix T such that the two triplets given by (Q̃1, B̃1, C̃1) and by (Q̃2, B̃2, C̃2) (resulting
after a global model bifurcates to different equilibrium points) can be aligned simultaneously with
the original operators but to different coordinates, geometrically in fig. 2, and algebraically as

Q̃1 = TQ̃2(T
−1 ⊗T−1), B̃1 = T−1B̃2 ⇔ TB̃1 = B̃2

C̃1 = TC̃2, A1 = TA2T
−1, (A1, A2, global system’s matrices).

(44)

One way to compute the transformation matrix T is by solving the first three equations in
system (44). The above problem involves a quadratic matrix equation that can be iteratively
solved employing Newton iterations. Moreover, adding linear constraints prevents the convergence
of the Newton method to the zero solution. To seek a formal solution, we analytically derive the
iterative Newton scheme over the Fréchet derivative in what follows (appendix C).

2.6.1. Computing the equilibrium points

When measurements around equilibria have been collected, the proposed method in algorithm 2
can infer a quadratic system. In particular, the inferred quadratic system is localized around the
reachable equilibrium point q = 1, 2; thus, the available matrices are (Ãq, Q̃q, B̃q, C̃q), q = 1, 2.
The systems Σq, q = 1, 2 are not necessarily equivalent to the original (global) one because a
bifurcation might have occurred. When the matrix Aq is without the tilde notation, it represents
the global one, and the subscript ”q” indicates the different coordinate system. We can discover
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the global Aq matrix, from (43) as Aq = Ãq − Q̃(x̃(q)
e ⊗ I) after first computing the equilibrium

point x̃(q)
e for q = 1, 2. In general, it holds

Lq(x̃
(q)
e ) := 0⇔ Aqx̃

(q)
e + Q̃(x̃(q)

e ⊗ x̃(q)
e )⇔ Ãqx̃

(q)
e − Q̃(x̃(q)

e ⊗ x̃(q)
e ) = 0. (45)

(45) suggests that the equilibrium state vector of dimension n can be computed as the unknowns
match the equations and the matrices Ãq, Q̃ are available. Algorithm 1 can then be used directly,
but the Newton scheme will converge to the zero solution. Thus, we must constrain our solution
to satisfy the observable equilibrium from the DC term. In particular, and for every equilibrium
point, additional information comes from the direct current (DC) terms that can be measured from
the power spectrum α1, α2. For instance, we enforce

C̃qx̃
(q)
e = αq. (46)

Consequently, we must solve the coupled equations (45) and (46) for the unknown state equilibrium

vector x̃
(q)
e . In particular, (46) can give a parametric solution as

C̃qx̃
(q)
e = αq ⇔ x̃(q)

e = x̃(q)
es +

r−1∑
i=1

λix̃
(q)
ei , q = 1, 2. (47)

By substituting (47) in (45), we result for each system with q = 1, 2 to the following quadratic
vector equation

Ãq

(
x̃(q)
es +

r−1∑
i=1

λix
(q)
ei

)
− Q̃q

(
x̃(q)
es +

r−1∑
i=1

λix
(q)
ei

)
⊗

(
x̃(q)
es +

r−1∑
i=1

λix̃
(q)
ei

)
= 0

Ãqx̃
(q)
es − Q̃q

(
x̃(q)
es ⊗ x̃(q)

es

)
︸ ︷︷ ︸

S∈Rr×1

+

r−1∑
i=1

λi

(
Ãqx

(q)
ei − 2Q̂qx

(q)
es ⊗ x

(q)
ei

)
︸ ︷︷ ︸

Z∈Rr×r

−

−
r−1∑
i=1

r−1∑
j=1

λiλj Q̃q

(
x
(q)
ei ⊗ x

(q)
ej

)
︸ ︷︷ ︸

W∈Rr×r2

= 0.

(48)

where solution can be obtained after enforcing W(λ ⊗ λ) + Zλ + S = 0 with the developed

algorithm 1 and for each system q = 1, 2. Having the vector λ∗ =
[
λ1 · · · λr−1

]T
that

solves (48), we compute the equilibrium states x̃(q)
e from (47). The original linear operator of the

quadratic system can be computed from Aq = Ãq − Q̃(x̃(q)
e ⊗ I) that lives to a coordinate system

where differs from the original (global) system up to a similarity transformation appendix A.

3. Numerical results

We test the proposed method in a more involved introductory example as a next step from the
linear one tailored to quadratic structure; afterward, we proceed to different cases of identifying the
Lorenz’63 system operating in different parametric regimes. Finally, the viscous Burgers’ equation
model illustrates the effectiveness of inferring a reduced surrogate model with the proposed data-
driven method directly from i/o measurements.

3.1. An introductory quadratic toy example

Consider the following SISO quadratic system of dimension n = 2 with non-zero initial condition
ẋ(t) =

[
1 0
0 −2

]
x(t) +

[
−1 0 0 0
0 0 0 0

]
x(t)⊗ x(t) +

[
1
1

]
u(t),

y(t) =
[
1 1

]
x(t), y(0) = Cx(0) =

[
1 1

] [ 0.5
0

]
= 0.5, t ≥ 0.

(49)
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Input amplitude ∥P (0)−Cxe∥ ∥P (2πj10)/a−H1(2πj10)∥
2a = 20 5.3500e− 02 2.7105e− 05
2a = 2 5.0673e− 04 2.5666e− 07
2a = 0.002 5.0647e− 10 2.1652e− 11

Table 2: Input as u(t) = 2a cos(2π10t) to (49) and measurement estimation errors of the 1st GFRF
at 10 (Hz) and of the DC term as the observable equilibrium.

To illustrate the data acquisition in our example with state-space representation as in (49), we
simulate with single-tone inputs by sweeping6 the amplitude of the signal and compare with the
theoretical measurement in table 2. As we explained in section 2.4.2, the propagating harmonics
are (kω − pω), k, p ∈ Z. The higher order symmetric GFRFs scale with the input amplitude,
anHn(ω, . . . , ω). Thus, with a small enough amplitude a, the higher-order kernels will decay faster
to zero than the lower-order kernels, directly allowing good estimations.
In table 2, we provide measurements that can be accurately obtained when real inputs have

been considered. To avoid the above-known complications, we will consider complex inputs where
the indexing of harmonics and kernels is injective. Under this assumption, the rest of the data
acquisition will be generated by sampling the derived GFRFs as efficient methods and machinery
exist to solve the real case.
In (49), the linear operator is unstable (due to the eigenvalue 1), but the quadratic system can

operate to stable regimes. The measurements that we achieved in table 2 are associated with

the bifurcated model around its quadratically stable equilibrium xe =
[
1 0

]T
as analyzed in

section 2.6. Thus, the system that we measure subsequently is

ẋ(t) =

[
−1 0
0 −2

]
︸ ︷︷ ︸
A+2Q(xe⊗I)

x(t) +

[
−1 0 0 0
0 0 0 0

]
x(t)⊗ x(t) +

[
1
1

]
u(t),

y(t) =
[
1 1

]
x(t) + 1︸︷︷︸

Cxe

, x(0) = x0 =

[
0.5
0

]
− xe, t ≥ 0.

(50)

The linear subsystem (50) is exactly the linear system we identified in our introductory example
in section 2.2.3. Thus, we can proceed with the same linear identification result. To identify the
quadratic system, we must identify the remaining quadratic operator Q̂ ∈ R2×4 along with the
initial conditions. Following the methodology in section 2.5.2, we compute

Q̂0 =

[
0.11335 −0.0076666 −0.0076666 0.00049333
2.3282 −0.1619 −0.1619 0.010564

]
, (51)

and the null space dimension of the linear system is 1. Thus, the parametric solution can be written

Q̂ = Q̂0 + λQ̂1, λ ∈ R. (52)

In such a case, the (33) simplifies to a scalar quadratic as

Ĥ
(11)
3 (s1, s2, s3)λ

2 + (Ĥ
(01)
3 (s1, s2, s3) + Ĥ

(10)
3 (s1, s2, s3))λ+ Ĥ

(00)
3 (s1, s2, s3)−H3(s1, s2, s3)︸ ︷︷ ︸

measurement

= 0.

(53)
With two measurements of the H3 and by including the conjugate pairs to enforce real entries, we
get λ∗ = −0.090951. The corrected quadratic operator results to

Q̂ = Q̂0 + λ∗Q̂1 =

[
0.11375 −0.0047759 −0.0047759 0.00020051
2.3371 −0.098122 −0.098122 0.0041196

]
. (54)

What is the initial condition state vector x̂0 to this coordinate system? To address this issue,
first, we need to notice that Ĉx̂e = 1. Moreover, the equilibrium to the hatted system satisfies
Ãx̂e + Q̂(x̂e ⊗ x̂e) = 0, but we don’t know the operator Ã. As explained in section 2.6.1, we have

Ãx̂e + Q̂(x̂e ⊗ x̂e) = 0⇔ Âx̂e − Q̂(x̂e ⊗ x̂e) = 0. (55)

6This technique of sweeping the amplitude of the multi-harmonic signal helps the Kernel separation.
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Computing the equilibrium x̂e from (55) with algorithm 1 seems feasible, but the solution might
converge to the origin that would not explain the nonzero DC term. Thus, we must enforce
information from Ĉx̂e = 1. Our unknown state equilibrium x̂e has r = 2 degrees of freedom.
Thus, we write

Ĉx̂e = 1⇔
[
ĉ1 ĉ2

] [ x̂
(1)
e

x̂
(2)
e

]
= 1⇔ ĉ1x̂

(1)
e + ĉ2x̂

(2)
e = 1

ĉ1 ̸=0⇔ x̂(1)
e =

1

ĉ1
− ĉ2

ĉ1
x̂(2)
e . (56)

To exploit the affine structure of the system near the equilibrium, we set p1 = 1/ĉ1, p2 = −ĉ2/ĉ1
and x̂

(2)
e = λ1 ∈ R and it results to

x̂e =

[
x̂(1)
e

x̂(2)
e

]
=

[
p1 + p2x̂

(2)
e

x̂(2)
e

]
=

[
p1
0

]
︸ ︷︷ ︸

p1

+

[
p2
1

]
︸ ︷︷ ︸

p2

λ1 = p1 + p2λ1. (57)

Substituting (57) to (55), we result to

Â(p1 + p2λ1)− Q̂ ((p1 + p2λ1)⊗ (p1 + p2λ1)) = 0⇔

Q̂(p2 ⊗ p2)λ
2
1 +

(
2Q̂(p2 ⊗ p1)− Âp2

)
λ1 + Q̂(p1 ⊗ p1)− Âp1 = 0.

(58)

To solve (58), we can use the algorithm 1, which results in λ1 = −9.5656e+ 03.
Using algorithm 1, we compute the equilibrium state at the hatted system.

x̂e =

[
−465.58
−9565.6

]
, Ĉx̂e = 1 (machine precision accuracy). (59)

The global linear operator can be computed from

Ã = Â− 2Q̂(x̂e ⊗ I) =

[
19.832 −0.91663
448.55 −20.832

]
, eig(Ã) = {1,−2}. (60)

After measuring the local dynamic behavior, we have identified the global quadratic system’s
dynamics. Finally, we must align the coordinates to use the given observable initial conditions
y0 = 0.5. As in the linear case, we must infer information from transient dynamics to discover the
initial condition. First, we switch off the controller by setting u(t) = 0, and we track the dynamic
evolution of the autonomous quadratic system{

ẋ(t) = Ax(t) +Q(x(t)⊗ x(t)),

y(t) = Cx(t), y0 = y(0) = Cx0 = 0.5 (the observable initial condition).
(61)

Although we can discretize (61) with higher order schemes (e.g., multi-step Runge Kutta), here to
illustrate the theoretical result, we use a forward Euler scheme ẋ(t) = (x(t + h) − x)/h, h ̸= 0.
The discrete identified system to the hatted coordinates is denoted as{

x̂k+1 = Ãdx̂k + Q̂d(x̂k ⊗ x̂k),

ŷk = Ĉdx̂k, ŷ0 = ŷ(0) = Ĉdx̂0 = 0.5 (the observable initial condition).
(62)

The unknown initial condition vector to the hatted coordinate system scales with r = 2. Therefore,
we need to specify two degrees of freedom, which makes two equations. We enforce{

ŷ0 = y0,

ŷ1 = y1.
⇒

{
Ĉdx̂0 = y0,

ĈdÃdx̂0 + ĈdQ̂d(x̂0 ⊗ x̂0) = y1.
(63)

We follow similar arguments as before in our previous methodology on computing the equilibrium
state at the hatted coordinate system. The first equation gives a linear dependency among the
entry elements of x̂0, and we can parameterize the affine solution as x̂0 = q1 + κq2 with κ ∈ R.
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using the same methodology and the algorithm 1, we get κ = −4782.8. The initial condition state
vector to the hatted coordinate system is

x̂0 = q1 + κq2 =

[
−232.79
−4782.8

]
. (64)

To illustrate that the original quadratic system and the discovered one are the same, we construct
a similarity transform Ψ from the appendix A, and we conclude to

ẋid(t) =

[
1 0
0 −2

]
xid(t) +

[
−1 0 0 0
0 0 0 0

]
xid(t)⊗ xid(t) +

[
1
1

]
u(t),

yid(t) =
[
1 1

]
xid(t), xid(0) =

[
0.5
0

]
, t ≥ 0.

(65)

Remark 3.1 (Initial condition discovery for the quadratic system). To identify the initial condi-
tions in the quadratic system’s arbitrary state dimension n, we need transient dynamics that scale
with the discovered dimension r. Starting with Ĉx̂0, which is the observable initial condition, we
can parameterize the unknown x̂0 with an affine structure as

x̂0 = p0 +

r−1∑
i=1

λipi, λi ∈ R, (p0, pi known). (66)

The recursive formulation below exploits the Markov parameters for the transient dynamics in the
absence of the controller and for the quadratic system.{

x̂k+1 = Âx̂k + Q̂(x̂k ⊗ x̂k), ŷ0 = Ĉx̂0,

ŷk+1 = ĈÂx̂k + ĈQ̂(x̂k ⊗ x̂k), k = 0, . . . , r − 1.
(67)

Thus, to specify the free parameters λi, i = 1, . . . , r−1, by denoting λ⊗r = λ

r︷ ︸︸ ︷
⊗ · · ·⊗λ, we need to

solve the quadratic polynomial vector equation Wrλ
⊗2r +W2r−1λ

⊗(2r−1) + · · ·+W1λ+W0 = 0.

The above result explains the difficulty in discovering initial conditions from i/o measurements
for nonlinear systems. Another thought is linearization around an operational point where the
initial conditions can affect it. In such a case, the only known linearization state point is the
system’s equilibrium. Thus, we expect a good agreement between the actual response of the
nonlinear system and the linearized one close to equilibrium. Unfortunately, the initial conditions
that affect the equilibrium through the transient phase become less important without inferring
the initial condition with satisfying accuracy. In conclusion, the problem remains challenging, and
a higher polynomial vector equation that scales with 2r should be solved. Thus, we proceed with
zero initial conditions for the larger-scale examples.

3.2. The Lorenz system

We consider the canonical Lorenz ’63 model, from [50], adding a control-input u(t) in the 1st and
3rd states. The following state-space form describes the quadratic control system

ẋ(t) = −σx(t) + σy(t) + u(t),

ẏ(t) = ρx(t)− y(t)− x(t)z(t),

ż(t) = −βz(t) + x(t)y(t) + u(t),

(68)

where zero initial condition are assumed e.g., (x(0), y(0), z(0)) = (0, 0, 0), and the operators are:

A =

 −σ σ 0
ρ −1 0
0 0 −β

 , B = CT =

 1
0
1

 , Q =

 0 0 0 0 0 0 0 0 0
0 0 − 1

2 0 0 0 − 1
2 0 0

0 1
2 0 1

2 0 0 0 0 0

 . (69)

The input is u(t), and we observe the linear combination of the 1st and 3rd states to enhance
the observability condition. Thus, the output is x(t) + z(t). The above quadratic system (69)
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gives rise to chaotic dynamics for different choices of the parameters (σ, ρ, β). This study aims
to identify the Lorenz system from i/o time-domain data under harmonic excitation in the non-
chaotic operational regime. We choose σ = 10, β = 8/3, and for the parameter ρ, we investigate
two cases 1,2 and comment on case 3, which exhibits chaotic dynamics.

1. ρ = 0.5, where the linear subsystem is stable, and the Lorenz attractor has only zero equi-
librium.

2. ρ = 20, where the linear subsystem is unstable, the Lorenz system has two different steady-
states operating around two non-zero stable equilibrium points fig. 2.

3. ρ = 28, where the linear subsystem is unstable, but the Lorenz system is chaotic (steady-state
unreachable) with two non-trivial attractors.

Case 1 - ρ = 0.5. Samples of the first three GFRFs over the following frequency grids can be
obtained from a physical measurement setup after processing the time-domain evolution of the
potentially unknown system over the frequency domain as explained in section 2.4.2.

• We take 100 logarithmic distributed measurements ωi, i = 1, . . . , 100, from 2π[10−3, 103].
Therefore, 100 pairs of measurements {jωi, H1(jωi)} are collected. Using the Loewner
framework section 2.2, the order r = 3 of the minimal linear subsystem can be identified
from the singular value decay fig. 3(left), and a linear realization can be constructed:

Â =

 17.1 4.08 −4.51
11.3 4.26 −4.12
140.0 30.1 −35.0

 , B̂ =

 −2.56−1.53
−21.5

 , Ĉ
T
=

 3.12
0.0985
−0.473

 . (70)

The coordinate system is different from the original, but we can validate that the first transfer
function H1, or the Markov parameters, i.e., CAB = ĈÂB̂ = −12.6667, and the DC term
which is zero in that case remain the same. Note that the eigenvalues are: eig(A) =

eig(Â) = (−10.52,−0.4751,−2.667).

• We take 10 logarithmically spaced distributed measurements from a squared grid in each
dimension7 as (2π)2[10−3, 103]2, and 100 pairs of measurements {(jωk

1 , jω
k
2 ), H2(jω

k
1 , jω

k
2 )}

are collected. Solving the linear system (29) by minimizing the 2-norm (least-squares), we

estimate Q̂0 as

Q̂0 =

[
−1.58 0.192 0.34 0.192 −0.0195 0.0192 0.34 0.0192 −0.0682
0.183 1.0 0.042 1.0 −0.312 0.0308 0.042 0.0308 −0.009
0.509 0.0395 1.08 0.0395 0.138 0.278 1.08 0.278 −0.324

]
.

• The least-squares matrix in (29) is rank deficient rank(M) = 21 < 27 = 33. Therefore,
a parameterization as in (30) is introduced. In this particular case, the dimension of the
vector λ is six. As the proposed method is arbitrary in the number of measurements, we
take 10 logarithmically distributed measurements from the cubic grid (2π)3[10−3, 103]3 in
each dimension; 1, 000 triplets of measurements {(jωk

1 , jωk
2 , jωk

3 ), H3(jω
k
1 , jωk

2 , jωk
3 )}

are collected. Solving the quadratic equation with algorithm 1, and starting with different
seeds of λ0, as it is depicted on the right of fig. 3, the parameter vector λ ∈ R6 can be
obtained in that case uniquely. Thus, the updated estimation of the quadratic operator
Q̂ = Q̂0+

∑r
i=1 λQ̂i, with Q̂i the appropriate reshaped matrices from the null space vectors

results to

Q̂ =

[
−2.38 −0.184 0.391 −0.184 −0.00636 0.0304 0.391 0.0304 −0.0642
26.0 0.497 −3.98 0.497 0.00948 −0.0758 −3.98 −0.0758 0.605
−11.3 −1.05 1.89 −1.05 −0.0372 0.174 1.89 0.174 −0.315

]
.

7Cartesian product: (2π)2[a, b]2 = 2π[a, b]× 2π[a, b] for a < b.
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Figure 3: Left: The Loewner singular value decay, discovered minimal order r = 3 with σ4/σ1 ∼
1e − 14. Right: The Newton convergence scheme algorithm 1. Solution vector λ∗ can
be obtained uniquely after starting with different random seeds λ0.

Finally, aligning the identified system to the original coordinates shows that the two systems
are identical after computing a transformation Ψ from the appendix A.

A = Ψ−1ÂΨ =

 −10.0 10.0 4.334e− 13
0.5 −1.0 5.219e− 13

−5.254e− 11 5.448e− 11 −2.667

 ,

B = Ψ−1B̂ =

 1.0
−2.207e− 11

1.0

 , C = ĈΨ =
[
1.0 −1.806e− 11 1.0

]
,

Q = Ψ−1Q̂(Ψ⊗Ψ) =

 0 0 0 0 0 0 0 0 0
0 0 −0.5 0 0 0 −0.5 0 0
0 0.5 0 0.5 0 0 0 0 0

± ϵ · 1,

where ϵ ∈ [1e− 12, 1e− 10] and 1 ∈ R3×9. The above result certifies that the original and identified
systems are equivalent under a coordinate transformation. Since Q ̸= Ψ−1Q̂s(Ψ ⊗ Ψ), quadratic
identification with information from the first two kernels H1, H2 is impossible. Here, the significant
improvement compared with other similar studies [43] is the systematic way to add more information
to the constructed model from the higher-order GFRFs, i.e., H3. As a result, the forced Lorenz
system was successfully identified when measurements of the first three symmetric GFRFs were
considered, as it is illustrated in fig. 4(left) in contrast with the unstable result obtained with
information available only from the first two H1, H2. Finally, in fig. 4(right), the identified and the
original systems are equivalent state-space models after transforming them to the same coordinate
system.
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Figure 4: Left: The linear model gives a poor approximation. Also, the H2 does not contribute
to a reasonable estimation of the quadratic operator; therefore, numerical instability is
observed. After incorporating the information from the 3rd kernel, the Lorenz system
was identified with a numerical error near machine precision. Right: The 3D state space
is reconstructed from the identified system with the proposed method and is compared
to the original one after aligning both systems to the same coordinates.

Case 2 - ρ = 20 > 1. In that case, the Lorenz attractor has two non-zero equilibrium points, i.e.,

x
(1)
e =

[
−
√
β(ρ− 1) −

√
β(ρ− 1) ρ− 1

]T
and x

(2)
e =

[ √
β(ρ− 1)

√
β(ρ− 1) ρ− 1

]T
.
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Under excitation or non-zero initial conditions, the system’s trajectories spiral around these two
attractors.
Data assimilation over multiple steady-states. In table 3, we illustrate how measurements of
the higher-order GFRFs can be obtained via harmonic input excitation of a given control system.
Here, we illustrate the experimental process by exciting with harmonic inputs the Lorenz attractor
with the parameter ρ = 20. Typically, bifurcation analysis concerns the system’s sensitivity to
parameters, which leads to structural changes in the system dynamics. In our case, we consider
system parameters resulting from the input term, which can potentially drive the system to such
structurally different regimes. For instance, with α = 1, ω1 = 1, we have two different designed
complex inputs8 with identical asymptotic behavior as the perturbation signal decaying to zero by
the time the system reaches a quasi-steady state. These inputs are:

1. ρ = 20 - input 1: u1(t) = 3e−0.1tsawtooth(t)︸ ︷︷ ︸
perturbation

+αe2jπω1t.

2. ρ = 20 - input 2: u2(t) = αe2jπω1t.

As it is depicted in fig. 5(left), for the different designed inputs u1(t), u2(t), we obtain two different
quasi-steady state solutions with a different power spectrum fig. 5(right). Measurements can
be obtained for both systems, and the different DC terms will help distinguish the equilibrium
operation.

Data DC H1(jω1) H2(jω1, jω2) H3(jω1, jω2, jω3)
u1(t) 11.8819 −0.0148 + 0.297i −0.00687− 0.00614i 1.74e− 4− 5.82e− 5i
u2(t) 26.1181 0.09303 + 0.05011i −3.0e− 4− 3.0e− 3i 6.0e− 6 + 5.3e− 5i

Table 3: In this table, and for each system (blue, red), the single-sided Fourier spectrum (mag-
nitude, phase) P provides the following measurements (complex inputs): H1(jω1) =
P1(jω1)/a, H2(jω1, jω1) = P2(jω1, jω1)/a

2, H3(jω1, jω1, jω1) = P3(jω1, jω1, jω1)/a
3.

For each system, the non-periodic DC term, e.g., (46), can be computed from the non-
periodic value P (0) in the power spectrum. The measurement set-up is generalizable for
multi-harmonic real signals (kernel separation) and in the X-parameter machinery [63]
that deals with harmonic distortion.
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Figure 5: Multiple steady-states and corresponding power spectrum. Numerical details in the
table 3.

The symmetric GFRFs that can interpret the measurements in table 3 are related with the

corresponding linear operator, i.e., Ãq = A+2Q(x
(q)
e ⊗I), q = 1, 2 for each equilibrium respectively.

For instance, using the equilibrium x
(1)
e , we compute Ã1 = A + 2Q(x

(1)
e ⊗ I). The 1st transfer

function H1 (for the equilibrium x
(1)
e ) yields the following value at frequency ω1 = 2π: H1(jω1) =

C(jω1I − Ã)−1B = −0.0148 + 0.297i which explains the measurements in the 1st row of table 3,
and similarly, the higher GFRFs explain the subsequent rows of table 3. Similar results can be

8With complex inputs, e.g., u(t) : R+ → C, indexing harmonics and estimating kernels are straightforward tasks
compared to the real input case, e.g., u(t) : R+ → R, where additional operations s.a. kernel separation with
amplitude shifting, should be addressed [15,42,63].
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obtained for the 2nd input-u2. Importantly, when the Lorenz system is concerned with ρ = 20 > 1,
we measure two different local quadratic systems that can be recognized/distinguished from the
two different DC terms in fig. 5. Thus, the proposed method can identify the two deduced quadratic
systems (42).
With the proposed method algorithm 2 and measurement setup as in the previous case 1, we can

identify the two quadratic models that interpret the dynamics locally (42) and after computing
the state equilibrium from (48) the original operators Aq, q = 1, 2, remain from (43); we obtain

the system (Ã1, Q̃1, B̃1, C̃1) around a non-zero equilibrium as

Ã1 =

 −0.96 −8.79 5.51
2.12 2.17 21.0
3.14 −4.69 −14.9

 , B̃1 =

 0.719
2.72
−2.33

 , C̃
T
1 =

 −0.0479
0.0361
−0.831

 , x
(1)
e =

 6.78
51.7
−12.4

 ,

Q̃1 =

 −0.0853 0.212 0.236 0.212 −0.524 −0.596 0.236 −0.596 0.00706
−0.11 0.156 0.259 0.156 −0.107 −0.00667 0.259 −0.00667 0.525
0.0331 −0.0303 −0.0709 −0.0303 −0.0478 −0.105 −0.0709 −0.105 −0.229

 ,

A1 = Ã1 − 2Q̃1(x
(1)
e ⊗ I) =

 −15.8 27.7 64.1
−6.11 10.9 31.3
4.06 −1.94 −8.78

 , eig(A1) = {−20.3408, −2.6667, 9.3408}.

(71)

Likewise, for completeness, the identified quadratic model around the second equilibrium is

Ã2 =

 −0.21 9.09 6.02
−7.47 2.77 −19.0
−1.07 2.52 −16.2

 , B̃2 =

 0.712
−2.61
−2.46

 , C̃
T
2 =

 −0.706
−0.698
−0.278

 , x
(2)
e =

 −35.3
−7.22
13.7

 ,

Q̃2 =

 0.136 0.209 0.108 0.209 −0.612 0.527 0.108 0.527 −0.0535
−0.041 −0.0666 −0.0296 −0.0666 0.156 −0.146 −0.0296 −0.146 0.0148
−0.16 −0.313 −0.0692 −0.313 0.161 −0.364 −0.0692 −0.364 0.0378

 ,

A2 = Ã2 − 2Q̃2(x
(2)
e ⊗ I) =

 9.42 0.531 22.7
−10.5 4.32 −23.6
−14.9 −7.21 −27.4

 , eig(A2) = {−20.3408, −2.6667, 9.3408}.

(72)

We discovered the original global quadratic model, i.e., the Lorenz system, independently from
the local inference around the two equilibria. Thus, to illustrate the identification result of the
global quadratic dynamics, we choose one of the two models, and for various inputs, we observe
that the dynamics evolve around two non-trivial attractors. To validate our result further, we align
one of the above models with the original Lorenz system and compare them in fig. 6.
As this study is devoted to quadratic modeling, another way to discover the original model and

the two equilibrium points simultaneously can be obtained after first utilizing lemma 2.1 for aligning
the system’s operators to the same coordinates without using information from the corresponding
global linear matrices and then proceeding to find the equilibrium points as a coupled quadratic
vector equation explained in appendix A. For the alignment, we start with a random seed for
the Newton method algorithm 3 e.g., T0 ∼ N (µ,σ), and applying algorithm 3. The following
convergence is depicted in fig. 6, and the transformation is

T =

 −0.613 1.98 −2.57
−1.79 0.375 −2.02
0.807 0.742 0.395

 , T−1 =

 1.22 −1.99 −2.25
−0.686 1.36 2.49
−1.21 1.52 2.46

 (73)

The two quadratic systems have been aligned with the transformation T without the linear ma-
trices.

Remark 3.2 (Global system identification from local measurements). After measuring the local
dynamics at least over an achievable stable equilibrium that provides a quasi-steady state under har-
monic excitation, we identified the original global Lorenz system with the unstable linear operator
with the proposed method. After transforming the operators (A1, Q̃1, B̃1, C̃1) to the original coor-
dinates utilizing appendix A, the two systems; original (69) and identified are the same fig. 6(right)
to any operational regime. Moreover, after appropriate input excitation of the discovered system,
the dynamics can switch across the different attractors by realizing the global dynamical behavior
as illustrated in fig. 6(right).

Case 3 - ρ = 28. Since the dynamics are chaotic for this parameter range (when ρ > 24.74), a
steady state cannot be achieved, and measurements cannot be obtained for estimating GFRFs with
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Figure 6: Left: Convergence of the Newton scheme in algorithm 3. Right: The original Lorenz
system is identified with the two non-trivial equilibrium points. The comparison between
the original system and the identified one is depicted. The constructed state space
evolution for both systems and at the same coordinates remains the same with zero
numerical error.

the proposed method. Identifying such systems is beyond this study’s scope, and the Volterra series
would need a new formulation to address such as chaotic dynamics or dynamics with a continuous
spectrum. Generally, operators can be identified for any identification method to finite numerical
precision (e.g., IEEE machine precision ϵ ≈ 2.22e−16). Since this is already an approximation with
a nonzero numerical error, this slight numerical discrepancy will not allow any safe prediction of
such a sensitive system as the (deterministic) chaotic Lorenz attractor. Other approaches, mainly
stochastic toward dealing with dynamics in the chaotic regime, with continuous spectrum, can be
found in [11,23,48,51,54].

3.3. Data-driven quadratic inference of the viscous Burgers’ model

In this example, we want to illustrate the capability of the proposed method in discovering reduced
models from a potentially unknown system (large-scale) from i/o time-domain measurements. In
particular, the aim is to construct robust surrogate models of reduced order from i/o measurements
that can be obtained physically without any prior model (i.e., samples of the symmetric GFRFs
obtained from time-domain simulations). These measurements could be obtained from a real
engineering process (e.g., X-parameters [63]). We consider the Burgers’ equation with Robin
boundary conditions from [4]. Given viscosity ν > 0 and parameters σ0 ≤ 0, σ1 ≥ 0, consider

∂

∂t
υ(x, t)− ν

∂2

∂x2
υ(x, t) + υ(x, t)

∂

∂x
υ(x, t) = 0, x ∈ (0, 1), t ∈ (0, T ),

ν
∂

∂x
υ(x, 0) + σ0υ(0, t) = u0(t), t ∈ (0, T ),

ν
∂

∂x
υ(x, 1) + σ1υ(1, t) = 0, t ∈ (0, T ),

υ(x, 0) = 0, x ∈ (0, 1).

(74)

The input is the function u0(t) and the output is y(t) =
∫ 1

0
υ(x, t)dx.

The Burgers model is one challenging benchmark due to its mathematical nature, with nonlinear
advection phenomena dominating for low viscosity values. Methods in dealing with this problem’s
stochastic version and predicting viscous shocks exist as in [21]. We keep the same model setup in
[4] with a different viscosity parameter ν. Here, we consider the flow’s mean velocity field as an
output. As illustrated in the study [4], the Loewner models for small viscosity coefficients ν may
produce unstable results. As the current study relies on the Volterra series representation, analysis
of convergence with arbitrary viscosity and input amplitude remains an open issue. Therefore, we
illustrate a more conservative case with a higher viscosity.
We use the problem data ν = 0.5, σ0 = 0, σ1 = 0.1 that represent the same physical quantities

as in [4]. The full-order model (FOM) is the linear semi-discretization of (74) with finite elements
of dimension n = 257. The semi-discretized system can result in (18) after inverting the well-
conditioned mass matrix E. The system solution (18) is approximated with the Runge-Kutta
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multistep integration method with a uniform time-discretization step dt = 1/1000 with the Matlab
command ode45. Similarly, as in the Lorenz example, we take the following measurements:

• 100 logarithmic distributed measurements from the interval 2π[10−2, 101],

• 400 logarithmic distributed measurements from the square grid (2π)2[10−2, 101]2,

• 216 logarithmic distributed measurements from the cubic grid (2π)3[10−2, 101]3.

In fig. 7 (left), the singular value decay of the Loewner matrix pencil is presented. Therefore,
we choose the minimal linear order r = 6 with the first normalized truncated singular value of
magnitude σ7/σ1 = 2.3069 · 1e− 10. The recovery of the 1st GFRF H1 that results from the FOM
of dimension n = 257 is compared with the reduced Ĥ1 of dimension r = 6 in fig. 7(right).
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Figure 7: Left: the singular value decay of the Loewner matrix. Right: Comparison between the

FOM and ROM kernels of the first level with error ∥H1(s1)− Ĥ1(s1)∥ = 9.14e− 08.

After solving (29) with a threshold η = 1e − 9, we obtain the quadratic operator Qs ∈ R6×62 .
In a classical regularization sense, the hyperparameter is tuned to leverage the error with the
mathematical norm of ∥Q∥2. Different ways to find the optimal regularization parameter η, e.g.,
Tikhonov regularization, L-curve, work similarly to the thresholding SVD. Furthermore, the choice
of η affects the null space size. In particular, we have r3 = 63 = 216 degrees of freedom, and after
enforcing the symmetries of the quadratic operator, the maximum rank could be rank = 141 < 216
when η is close to machine precision. Therefore, by inverting with the threshold η = 1e − 9, the
rank is 117, and the resulting null space has length 216−117 = 99. These extra 99 free parameters
will also be estimated to interpolate the third GFRF (i.e.,H3). The accuracy of fitting the higher
GFRFs for the FOM and ROM systems is depicted in fig. 8.
We estimate the quadratic operator denoted Q0 with information from the first two kernels

H1, H2. Using parameterization with λi, i = 1, . . . , 99 from (30), we enforce interpolation with
the third kernel H3 to estimate the remaining parameters m = 99. When the data matrices in
(36) are formed, and the conjugate counterparts are included to enforce the real symmetry, the

dimensions remain: W ∈ R432×992 , Z ∈ R432×99, S ∈ R432×1, λ ∈ R99×1.
To solve (36) with the above dimensionality, as the system is (potentially) over-determined with

99 unknowns from the 432 equations, we have to use the projection scheme in remark 2.2. That
leads to

Ŵ(λ⊗ λ) + Ẑλ+ Ŝ = 0, Ŵ ∈ R99×992 , Ẑ ∈ R99×99, Ŝ ∈ R99×1, λ ∈ R99×1. (75)

We seek a solution of (75) with algorithm 1 by setting the hyper-parameter tunned as η =
1e − 8, γ0 = 1e − 5. The residue of Newton iterations stagnates at 1.9343e − 06. In fig. 8(right),
a comparison between the 3rd level kernels FOM(n = 257) and ROM(r = 6) is depicted. The

updated quadratic matrix Q̂r is obtained from (30).
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Figure 8: Comparison between the FOM and ROM; On the left, for the 2nd GFRF ∥H2(s1, s2)−
Ĥ2(s1, s2)∥2 = 2.21e − 02, and on the right, for the 3rd GFRF. The error over the
2D plain-domain after fixing the 3rd dimension as s2 = s3 is ∥H3(s1, s2, s2 = s3) −
Ĥ3(s1, s2, s2 = s3)∥2 = 4.0e− 03.

In fig. 9, both systems FOM(n = 257) and ROM(r = 6) are compared under a nontrivial test
input i.e., u(t) = 0.5 exp(−0.2t)sawtooth(t) + 0.5 sin(4πt), and for sufficient time, encompassing
the ”strong” transient behavior before finally reaching the quasi-steady state response. By consid-
ering more measurements, i.e., from H3, the fit accuracy improved significantly for the complete
simulation. The proposed method achieves an approximate interpolation to all measurement data
sets, and the accuracy is improved when using the three GFRFs fig. 9(right).
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Figure 9: Reduction of a percentage level 98% has been achieved with the error between the
FOM(n = 257) and ROM(r = 6) to be ∥ŷ(t) − y(t)∥2 ≈ 1e − 1 and ∥ŷ(t) − y(t)∥max ≈
1e− 3.

Finally, the updated quadratic matrix Q̂ of dimension 6× 62 interpolates approximately the H3

without affecting the interpolation achieved in H2 from Q̂0. To illustrate this result, in table 4, we
choose a random point, and we test the interpolation error for both estimations of the quadratic
matrix; first, from the H1, H2 as Q̂0; secondly, from the H1, H2, H3 as Q̂r.

4. Discussion and concluding remarks

In this study, we were concerned with inferring quadratic state-space models from i/o time-domain
data from measurements collected over local stable operational quasi-steady state profiles. The
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GFRFs Evaluation at (s1, s2, s3) = (1j, 2j, 3j) Interpolation with the FOM

FOM H2(s1, s2) −0.2511 + 0.0004i theoretical value

Ĥ2(s1, s2, Q̂r) −0.2511 + 0.0004i ✓
Ĥ2(s1, s2, Q̂0) −0.2511 + 0.0004i ✓

FOM H3(s1, s2, s3) 0.0042+ 0.0448i theoretical value

Ĥ3(s1, s2, s3, Q̂r, Q̂r) 0.0042+ 0.0448i ✓
Ĥ3(s1, s2, s3, Q̂0, Q̂0) 0.0122 + 0.0249i ×

Table 4: Symmetric Volterra kernel interpolation at a test point. The updated estimation Q̂r from
the three kernels enforces the interpolation to the third kernel. As a result, the overall
fitting performance has improved significantly fig. 9.

proposed method successfully inferred quadratic models after estimating the first three symmetric
GFRFs within the Volterra framework from i/o time-domain data in conjunction with the devel-
oped rational interpolation method known as the Loewner framework and nonlinear optimization
methods. The inferred quadratic models have the potential to achieve global identification of low-
order systems that could operate and be measured only locally, as we detailed with the Lorenz
example. Another aspect of this method towards model inference enables the construction of accu-
rate reduced quadratic models as surrogates of a potentially unknown large/complex model where
only i/o measurements could be collected, as illustrated with the viscous Burgers’ model that re-
duction achieved with a factor of 0.98 and normalized error ≈ 1e− 3. Such efficient reduction can
assess real-time implementation suitable for multi-query tasks such as optimization and control.
The current method could be extended to generalize its features to incorporate higher-order

GFRFs, increasing the computational complexity in both algorithmic and measurement aspects.
In contrast to this theoretical open challenge, the practicality of the derived method is connected
strongly with the common engineering regularity in real applications. In particular, for the models
with Volterra representation that exhibit weakly nonlinear dynamics, higher kernel information
that comes with higher harmonics can be considered negligible in practice. The Volterra series
representation already excludes chaotic dynamics and systems with continuous spectra, where
the extension to handle such limitations and theoretical establishment of convergence properties
tailored with hyperbolic PDEs would be interesting.
Moreover, the inference task via the proposed method could be challenging in cases where the

linear subsystem, compared to the nonlinear, has a different minimal representation with dimension
mismatch. Fortunately, when a quadratic model operates around a nonzero equilibrium, the linear
minimality is affected by the quadratic operator (e.g., (43)), which can significantly increase and
much better the quadratic minimality. The tools used in this study are robust to noise (such as
most spectral transforms); a more involved analysis of the noise impact is left for future studies.
Finally, machine learning techniques can be advantageous to methods such as the proposed one

due to their power to learn nonlinear i/o maps. For instance, when solely one input-output sequence
of measurements is accessible, a neural network (NN) can be used as a surrogate black-box model
to transfer the whole measurement process to more efficient cheap simulations. Finally, connecting
data science and computational science tools, e.g., NNs, with variants of the proposed method
will increase interpretability in ML approaches, enhancing the safety of utilizing such predictive
models.

A. Coordinate tranformation

Dynamical systems that form an equivalent modulo can be aligned using a similarity transform
Ψ ∈ Rn×n as:

Φ1 =
[
(C1A1)

T (C1A
2
1)

T · · · (C1A
n
1 )

T
]
, Φ2 =

[
(C2A2)

T (C2A
2
2)

T · · · (C2A
n
2 )

T
]T

,

Ψ = Φ−1
2 Φ1, and for the operators of the quadratic system holds:

(A2, Q2, B2, C2) = (Ψ−1A1Ψ, Ψ−1Q1(Ψ⊗Ψ), Ψ−1B1, C1Ψ).
(76)
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B. Generalized Frequency Response Functions (GFRFs)

To determine the Rth order generalized frequency response function HR(s1, . . . , sR), the probing

input u(t) =
∑R

i=1 e
sit must be applied, with at least R harmonics. We introduce the input-state

GFRFs Gi(s1, . . . , si), i = 1, ..., n to simplify the next derivations. These simply result in the
input-output GFRFs by multiplying the Hi’s from the left by the output vector C (in the SISO
case), that is, Hn(s1, . . . , sn) = CGn(s1, . . . , sn). Note further that the transfer function Gi is a
vector of length equal to the state dimension n (this latter is identical to Hi, when C = In, i.e.,
when all the state elements are individually observed).
• R = 1 - 1st order GFRF H1(s1): With input u(t) = es1t the state solution x(t) and the time
derivative ẋ(t) are respectively:

x(t) =

∞∑
n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t, ẋ(t) =

∞∑
n=1

∑
m(n)

G̃m1(n)(s1)m1(n)s1e
(m1(n)s1)t (77)

By substituting to the differential equation of the system (18), we have

ẋ(t)−Ax(t)−Bu(t) =

∞∑
n=1

∑
m(n)

(m1(n)s1I−A)G̃m1(n)(s1)e
(m1(n)s1)t −Bes1t

= Q

 ∞∑
n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t ⊗

∞∑
n=1

∑
m(n)

G̃m1(n)(s1)e
(m1(n)s1)t

 .

(78)

By collecting the terms with es1t, we result to

(s1I−A)G̃1(s1) = B⇒ G̃1(s1) = (s1I−A)−1B. (79)

We adjust the weighted G1(s1) =
1!

m1(1)
G̃1(s1) = (s1I−A)−1B in a similar way to Hn. Multiplica-

tion by the vector C from the left gives the first-order GFRF consistent with the linear subsystem.
Using the resolvent notation (E = I),

H1(s1) = C(s1I−A)−1B = CΦ(s1)

R1︷︸︸︷
B︸ ︷︷ ︸

G1(s1)

. (80)

Higher-order kernels (H2, H3, . . .) can be derived at this point. Still, these can be evaluated
only on the diagonal of the hyperplane that spans the domain of definition, e.g., H2(s1, s1), and
H3(s1, s1, s1) which is not enough for achieving the identification goal as H2 has a 2D domain sup-
port where a single harmonic input will always give information on the univariate diagonal (NFR
method). Therefore, the next step is to excite the system with more complex harmonic inputs to
identify the structure of the higher kernels.
• R = 2 - 2nd order GFRF H2(s1, s2): With input u(t) = es1t + es2t the state solution is:

x(t) =

∞∑
n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t, (81)

and the time derivative results to

ẋ(t) =

∞∑
n=1

∑
m(n)

(m1(n)s1 +m2(n)s2)G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t. (82)
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By substituting into the differential equation of the system (18), we obtain

ẋ(t)−Ax(t) = Q (x(t)⊗ x(t)) +Bu(t)⇔
∞∑

n=1

∑
m(n)

((m1(n)s1 +m2(n)s2)I−A)G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t

= Q

 ∞∑
n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t ⊗ ...

... ⊗
∞∑

n=1

∑
m(n)

G̃m1(n)m2(n)(s1, s2)e
(m1(n)s1+m2(n)s2)t

+B(es1t + es2t).

(83)

By collecting the terms es1t+s2t with (n = 2, m1(2) = 1, m2(2) = 1), we result to

((s1 + s2)I−A)) G̃11(s1, s2)e
(s1+s2)t =

= Q
[
G̃10(s1)e

s1t ⊗ G̃01(s2)e
s2t + G̃01(s2)e

s2t ⊗ G̃10(s1)e
s1t
]
⇒

((s1 + s2)I−A)) G̃11(s1, s2) = Q
[
G̃10(s1)⊗ G̃01(s2) + G̃01(s2)⊗ G̃10(s1)

]
⇒

G̃11(s1, s2) = ((s1 + s2)I−A)
−1 ·

·Q
[
(s1I−A)−1B⊗ (s2I−A)−1B+ (s2I−A)−1B⊗ (s1I−A)−1B

]
(84)

Finally, by adjusting the weighted G̃11(s1, s2) = 2!
1!1!G2(s1, s2) = 2G2(s1, s2), and multiplying

from the left with C, we can define the 2nd order GFRF after using the resolvent notation as

H2(s1, s2) =
1

2
CΦ(s1 + s2)Q [Φ(s1)B⊗Φ(s2)B+Φ(s2)B⊗Φ(s1)B]︸ ︷︷ ︸

R2(s1,s2)

= C
1

2
Φ(s1 + s2)Q [G1(s1)⊗G1(s2) +G1(s2)⊗G1(s1)]︸ ︷︷ ︸

G2(s1,s2)

(85)

• R = 3 - 3rd order GFRF H3(s1, s2, s3): With input u(t) = es1t + es2t + es3t, and similar
arguments, we can derive

H3(s1, s2, s3) = C
1

6
Φ(s1 + s2 + s3)QR3(s1, s2, s3)︸ ︷︷ ︸

G3(s1,s2,s3)

, with

R3(s1, s2, s3) =G1(s1)⊗G2(s2, s3) +G2(s2, s3)⊗G1(s1)+

G1(s2)⊗G2(s1, s3) +G2(s1, s3)⊗G1(s2)+

G1(s3)⊗G2(s1, s2) +G2(s1, s2)⊗G1(s3).

(86)

C. Solution of the constrained quadratic matrix equation

The analysis starts with the quadratic matrix equation. We define the following operator: F :
Rn×n → Rn×n with F(X) := XU−Q (X⊗X). For known U, Q ∈ Rn×n2

, we seek X ̸= 0 ∈ Rn×n

such that F(X) = 0. Furthermore, X should be invertible (∃ X−1). The idea is to differentiate
w.r.t. the Fréchet derivative and solve a linear matrix equation for every Newton step similar to
the Newton-Kleinmann algorithm for the solution of the Ricatti matrix equation [45]. Therefore,
we introduce a small perturbation to the matrix X with N ∈ Rn×n and with h a small real number.
We define

(F ′(X))(N) = lim
h→0

1

h
(F(X+ hN)−F(X)) = NU−Q(X⊗N+N⊗X). (87)

Preprint (Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg). 2024-04-16



Karachalios et al.: Data-driven quadratic modeling 33

Since Q is symmetric, we can write equivalently

(F ′(X))(N) = NU− 2Q(X⊗N). (88)

The Newton iteration is given by

(F ′(Xj−1))(Nj−1) = −F(Xj−1), Xj = Xj−1 +Nj−1. (89)

We compute

Nj−1U− 2Q(Xj−1 ⊗Nj−1) = −Xj−1U+Q(Xj−1 ⊗Xj−1)⇒
(Xj −Xj−1)U− 2Q(Xj−1 ⊗ (Xj −Xj−1)) = −Xj−1U+Q(Xj−1 ⊗Xj−1)⇒

XjU− 2Q(Xj−1 ⊗Xj) + 2Q(Xj−1 ⊗Xj−1) = Q(Xj−1 ⊗Xj−1)

(90)

which results to the following linear matrix equation (91) w.r.t the forward step solution Xj :

XjU− 2Q(Xj−1 ⊗Xj) +Q(Xj−1 ⊗Xj−1) = 0. (91)

Remark C.1. In (91), it should be observed that in step j, the matrix equation is linear in Xj,
provided that Xj−1 is explicitly known, which is assumed (from the Newton iteration).

Remark C.2. (91) is linear w.r.t Xj ∈ Rn×n; since U,Q ∈ Rn×n2

, there are n3 linear scalar
equations to solve and only n2 unknowns. Hence, we have to deal with an over-determined linear
system of equations with a possibly non-empty null space.

In what follows, we show how to isolate the Xj term from the rest and how to re-write this
equation more conventionally. More specifically, based on the previous remark, we show that
equation (91) can equivalently be written as n classical Sylvester equations, each characterized by
n2 scalar equations in n2 unknowns. From (91), it follows that

XjU− 2Q(Xj−1 ⊗Xj) +Q(Xj−1 ⊗Xj−1) = 0 ⇒
XjU− 2Q(Xj−1 ⊗ In)︸ ︷︷ ︸

:=Vj−1

(In ⊗Xj) = −Q(Xj−1 ⊗Xj−1)︸ ︷︷ ︸
:=Zj−1

⇒ (92)

Xj

[
U(1) · · ·U(n)

]︸ ︷︷ ︸
U

−
[
V

(1)
j−1 · · ·V(n)

j−1

]
︸ ︷︷ ︸

Vj−1


Xj 0 · · · 0
0 Xj · · · 0
...

...
. . .

...
0 0 · · · Xj

 =
[
Z

(1)
j−1 Z

(2)
j−1 · · ·Z(n)

j−1

]
︸ ︷︷ ︸

Zj−1

. (93)

Above, we have that U(k),V
(k)
j−1,Z

(k)
j−1 are known n × n real-valued matrices at step j, for all

1 ≤ k ≤ n. These are the building blocks of the following matrices:

Vj−1 := 2Q(Xj−1 ⊗ In) ∈ Rn×n2

, Zj−1 := −Q(Xj−1 ⊗Xj−1) ∈ Rn×n2

. (94)

We can hence write this equation equivalently as follows:[
XjU

(1) · · ·XjU
(n)
]
−
[
V

(1)
j−1 · · ·V(n)

j−1Xj

]
=
[
Z

(1)
j−1 · · ·Z(n)

j−1

]
. (95)

Then, for all 1 ≤ k ≤ n, solving (91) boils down to solving n (linear) Sylvester equations as:

XjU
(k) −V

(k)
j−1Xj = Z

(k)
j−1. (96)

The solution Xj ∈ Rn×n, after vectorization, becomes vec(Xj) ∈ Rn2×1. Putting together the n

Sylvester equations in vectorized form by using the identity vec(TOR) = (RT ⊗ T)vec(O), will
yield the following system of n3 scalar equations in n2 unknowns:

(
U(1)

)T

⊗ In − In ⊗V
(1)
j−1(

U(2
)T

⊗ In − In ⊗V
(2)
j−1

...(
U(n)

)T

⊗ In − In ⊗V
(n)
j−1


︸ ︷︷ ︸

∈Rn3×n2

vec(Xj) =


vec(Z

(1)
j−1)

vec(Z
(2)
j−1)
...

vec(Z
(n)
j−1)


︸ ︷︷ ︸

∈Rn3×1

(97)
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For low values of n, such a procedure is indeed feasible. However, for moderate to large values of
n, i.e., n > 50, it is quite challenging or even impossible to find the next value Xj , by explicitly
forming the matrix n3 × n2 in (97). In what follows, we are concerned with low-order systems, as
we emphasize quadratic identification in a reduced-order sense.

Lemma C.1. The square matrix T−1 that aligns the operators (Q̂1, B̂1, Ĉ1) and (Q̆2, B̆2, C̆2) from
lemma 2.1, can be computed, on the convergence of Newton’s method algorithm 3, as the iterative
solution of the following constrained linear system of equations (98) with T−1 := limj→∞ Xj which
gives F(T−1) ≈ 0. 

(
U(1)

)T
⊗ In − In ⊗V

(1)
j−1(

U(2
)T
⊗ In − In ⊗V

(2)
j−1

...(
U(n)

)T
⊗ In − In ⊗V

(n)
j−1

B̂
T

1 ⊗ In

In ⊗ C̆2


︸ ︷︷ ︸

∈R(n3+2n)×n2

vec(Xj)︸ ︷︷ ︸
∈Rn2×1

=



vec(Z
(1)
j−1)

vec(Z
(2)
j−1)
...

vec(Z
(n)
j−1)︸ ︷︷ ︸

∈Rn2×1

B̆2

Ĉ
T

1


︸ ︷︷ ︸
∈R(n3+2n)×1

(98)

Algorithm 3 Solution of the constrained quadratic matrix equation with Newton method

Seek: X s.t. F(X) := XU−Q(X⊗X) = 0 and satisfies the constrains (two last rows) in (98).
Choose an initial random seed: Xj=0 ∈ Rn×n.
while γ > γ0 do
Update: j ← j + 1.
Compute Xj by solving the linear system of equations (98).
Compute the residue ∥F(Xj)∥ = γ.

end while
return X

We can align the two systems in (42) explained in lemma 2.1 to the same coordinates with the
solution T−1 obtained from algorithm 3.
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