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Abstract

Capturing general deforming scenes from monocular

RGB video is crucial for many computer graphics and vi-

sion applications. However, current approaches suffer from

drawbacks such as struggling with large scene deforma-

tions, inaccurate shape completion, or requiring 2D point

tracks. In contrast, our method, Ub4D, handles large de-

formations, performs shape completion in occluded regions,

and can operate on monocular RGB videos directly by using

differentiable volume rendering. This technique includes

three new—in the context of non-rigid 3D reconstruction—

components, i.e., 1) A coordinate-based and implicit neural

representation for non-rigid scenes, which in conjunction

with differentiable volume rendering enables an unbiased

reconstruction of dynamic scenes, 2) a proof that extends

the unbiased formulation of volume rendering to dynamic

scenes, and 3) a novel dynamic scene flow loss, which en-

ables the reconstruction of larger deformations by leverag-

ing the coarse estimates of other methods. Results on our

new dataset, which will be made publicly available, demon-

strate a clear improvement over the state of the art in terms

of surface reconstruction accuracy and robustness to large

deformations.

1. Introduction

Reconstructing the deforming 3D geometry of an object

from image data is a long-standing and important problem

in computer vision with many applications in the movie and

game industries, as well as VR and AR. Especially inter-

esting and the subject of this work is the 4D reconstruc-

tion from a single RGB video, as this is the most intuitive

and user-friendly capture setup. Over the last decade, many

monocular 4D reconstruction approaches have been pro-

posed; they can be categorized into dense non-rigid struc-

ture from motion (NRSfM) methods, shape-from-template

(SfT) approaches, and neural template-free approaches.

NRSfM methods [1, 4, 8, 13, 22, 24, 37, 39] usually as-

sume dense and coherent 2D point tracks connecting the

frames of the video. While accurate results can be ob-

tained, it is usually hard to satisfy this assumption in real-

world captures, limiting the use case in practice. SfT meth-

ods [7, 21, 33, 36, 50, 50] assume an object template is

Figure 1. We present a new method for 4D reconstruction of dy-

namic scenes using a single RGB video. In contrast to previous

work, our method completes the object as it is observed from dif-

ferent view angles, can handle small- and large-scale deformations

of arbitrary objects due to our separation of non-rigid deformations

using a canonical space, our unbiased volume rendering formula-

tion, and an optional scene flow loss.

given. While this provides a strong prior for this highly ill-

posed task, initial reconstruction errors in the template can

lead to tracking errors. Importantly, topological changes

cannot be captured by such methods. Last, template-free

learning-based approaches have shown compelling results

for category-specific (e.g., humans [31, 32]) and general

scenes with small deformations [29, 40]. However, gener-

alization beyond categories and accurate reconstruction of

an explicit geometry remains a challenge.

To this end, we propose Unbiased 4D (Ub4D), i.e., a

novel method for the 4D reconstruction of a deforming

object given a single RGB video of the object; see Fig-

ure 1. In contrast to previous method classes such as

non-rigid structure-from-motion and shape-from-template,

Ub4D completes the shape as it is being observed from

other view angles. Using a signed distance field (SDF)

network, we represent the object of interest as an implicit

SDF in canonical space. In order to obtain the deformed

per-frame geometry, we propose a bending network, which

deforms the current frame into a shared canonical space.

To supervise the SDF and bending network, we impose

an unbiased volume rendering loss, which extends prior

work [43] to dynamic scenes. Notably, we also prove the

correctness of our formulation. In particular, we compare

the rendered images and object segmentation masks with

the ground truth images and masks. Similar to previous

works [40], this formulation alone still struggles with larger
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scene deformations. Thus, when the scene contains large

scene deformations, we propose a scene flow loss, which

attaches free space to a set of tracked 3D points in order to

guide the scene deformations predicted by the bending net-

work. In summary, our primary technical contributions are

as follows:

• Ub4D, i.e., a new approach for dense 4D reconstruc-

tion from monocular image sequences based on an im-

plicit surface representation and a dynamic bending

network (Sec. 3).

• Extending the unbiased formulation of volume render-

ing [43] to general deforming scenes (Sec. 3.2).

• A new scene flow loss leveraging coarse geomet-

ric proxies (dense and sparse), which further in-

creases the robustness to large-scale scene deforma-

tions (Sec. 3.3).

• A new synthetic benchmark dataset for general and

large-scale deforming scenes (Sec. 4).

We demonstrate that our method outperforms the previous

state of the art in terms of accuracy and robustness to large

scale scene deformations (Secs. 4.1-4.4). Our code and the

new dataset will be made publicly available.

2. Related Work

Several method classes for 3D reconstruction of non-

rigidly deforming surfaces from monocular images are

known. They differ in the assumptions they make about

the available priors and types of motions and deformations.

Non-Rigid Structure from Motion (NRSfM) operates on

point tracks over the input monocular views [4, 39]. It fac-

torizes them into camera poses and deformable (per-frame)

geometry of observed surfaces. Assuming that accurate

point tracks can be obtained is a restrictive assumption.

If points of the input views are tracked densely, NRSfM

can then even be used to obtain dense surfaces [1, 8, 24].

Both neural NRSfM methods for the sparse [13,22,41] and

dense [37] cases were recently proposed in the literature.

Deep NRSfM [13, 22, 37, 41] is related to NRSfM in that it

lifts 2D input points in 3D and does not rely on 3D super-

vision. Ub4D is similar to NRSfM in that 1) it has the least

number of assumptions (no training datasets, no 3D priors)

and 2) requires camera or object movement while recording

the scene. It differs from NRSfM in that it operates directly

on images with no need for 2D correspondences.

Shape from Template (SfT). This class of techniques as-

sumes a 3D shape prior called a template. SfT is then posed

as the problem of tracking and deforming the template so

that the new states plausibly reproject to the input images

[9, 21, 33, 50]. While some approaches have demonstrated

accurate results, even for larger deformations, they come at

the cost of being category-specific (e.g., they only work for

humans [3, 10]). Further, the assumption of a known 3D

template is limiting when dealing with unknown objects.

Moreover, obtaining the template usually requires a sepa-

rate step, which can be difficult. ϕ-SfT [11] explains 2D

observations through physics-based simulation of the de-

formation process. In contrast to them, we do not model

physics laws explicitly. Moreover, we target a different

class of non-rigid objects (thin surfaces [11] vs articulated

objects). Deep SfT or direct surface regression methods as-

sume multiple states available for training [7, 36]. Our ap-

proach differs from SfT in that it only requires 2D images

as input. Nonetheless, it can benefit from a subset of frames

observing static scene states to initialise the canonical vol-

ume. Note that—in contrast to SfT techniques—observing

a scene under rigidity assumption [50] or having a template

in advance from elsewhere is not a strict requirement for us.

Monocular 3D Mesh Reconstruction. 3D mesh recon-

struction methods deform an initial mesh to match image

observations [12, 15, 42, 45]. They are exclusively neu-

ral techniques, usually trained using 2D image collections.

One of their limitations is that large image sets are not avail-

able for all object categories (e.g., consider rarely observed

biological species). Moreover, the methods, which do not

require 2D image priors, might capture coarse articulations

but fail to reconstruct fine surface details [12, 45]. Start-

ing from a sphere mesh is a restricting assumption. Even

though many watertight meshes are, in theory, topologically

equivalent to a sphere, a practical attempt to guide sphere

deformations by image cues can converge to local minima.

Free Viewpoint Video and Neural Surface Extraction.

Coordinate-based volumetric neural representations learned

from 2D observations, such as NeRF [20], can be used

to render high-quality novel views of rigid [5, 17, 49] and

non-rigid scenes [16, 18, 25, 27–29, 40, 44]. While they

have shown impressive results, the volumetric representa-

tion they use lacks surface constraints so that it is difficult

to extract high-quality surfaces from the learned represen-

tation. Some works [23, 43, 47, 48] propose to represent 3D

scenes as a neural SDF and use volume rendering to learn

the representation. We are inspired by the recent progress

in neural volumetric representations learned without 3D su-

pervision. Even though our goal is not novel view ren-

dering and editing, we show that a NeRF-inspired compo-

nent can be useful for monocular non-rigid 3D reconstruc-

tion. Moreover, surface extraction methods [23, 43, 47, 48]

have focused on rigid objects so far. One concurrent work

of Anonymous et al. [14] investigates how to improve the

training time of NeuS [43] and how network weights can be

incrementally refined throughout a dynamic scene. How-

ever, this is only distantly related to our work since they

assume a multi-view camera setup and, in stark contrast

to our method, do not treat the dynamic scene jointly but

on a frame-by-frame basis. Thus, we demonstrate that the
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Figure 2. Ub4D takes as input a sequence of images recorded with a single RGB camera and foreground masks. Each frame is also equipped

with a learnable latent code, and our method learns a canonical and colored SDF representing the static scene. Our bending network maps

the frame space to canonical space and volume rendering and marching cubes can produce per-frame renderings and geometries. We

weakly supervise our scene representation with image-based losses and spatiotemporal priors including our novel scene flow loss.

problem we are interested in, i.e., monocular non-rigid 3D

reconstruction, significantly benefits from advances in an-

other, distantly related research direction.

3. Method

The goal of Ub4D is to reconstruct the dense and deform-

ing surface of an object from a single RGB video. There-

fore, our method takes as input the monocular image se-

quence {Ii, Si : i ∈ [1, Nf ]} of the segmented object con-

sisting of Nf RGB images Ii and respective segmentation

masks Si. We assume the extrinsic and intrinsic camera pa-

rameters are known. Optionally, corresponding per-frame

coarse geometric proxies with Nv vertices can be provided

{Mi : i ∈ [1, Nf ]}, where Mi = {v
(k)
i : k ∈ [1, Nv]}

and v
(k)
i denotes vertex k of the mesh in frame i. Note that

we only use corresponding vertices, i.e. no connectivity in-

formation, which allows the use of sparse point sets (e.g.

skeleton) as the geometric proxy. Given these inputs, Ub4D

outputs an explicit geometry for every frame; see Fig. 2.

3.1. Non­Rigidity Model

We model temporal non-rigid deformations as a vector

field projecting points from the frame space into a canoni-

cal space. One can conceptualize this by considering it as

a bending of the straight rays originating from the camera.

Given a straight ray with an origin o ∈ R
3 and a view-

ing direction d ∈ R
3 as r(t) = o + td, we bend this ray

with a frame-specific bending network bi : R3 → R
3 as

r̃i(t) = r(t) + bi(r(t)) where i denotes the frame. This

bent ray is a directed parametric path in R
3 like the straight

ray, but, where the derivative of the straight ray is constant

(i.e.
dr(t)
dt = d), the bent ray has an instantaneous direction

at each point along it of
dr̃i(t)
dt = d+ ∂bi

∂r(t)d. We desire that

this bending network transforms points from frame space

into a single canonical representation of the object shared

by all frames of the input.

While this discussion presents the bending network as

a per-frame vector field throughout R3, it is implemented

using a per-frame latent code li ∈ R
64. This latent code is

given as input along with a point in space to a Multi-Layer

Perceptron (MLP) b : (R3,R64) → R
3 and the latent codes

are optimized during training. Importantly, the latent code

li passed to the bending network is the only frame-specific

element in our method and no other network receives it.

This is similar to the non-rigidity model employed in

NR-NeRF [40]. However, we propose a different regu-

larization to enable the modeling of larger deformations,

which also removes the need to learn a rigidity score

throughout the scene. Whereas NR-NeRF [40] penalizes

the bending network output for its absolute length, we in-

stead enforce that the deformation of the current frame is

similar to that of the neighboring frames. This assumes that

neighboring frames represent similar object states, which

is a more reasonable assumption for dynamic scenes com-

pared to the absolute amount of deformation. More specifi-

cally, for Ns samples along a straight ray r, we penalize the

bending network as:

LNBR =
1

Ns

Ns
∑

z=1

∑

j∈N (i)

ω
(z)
i ||bi(r(t

(z)))− bj(r(t
(z)))||22, (1)

where ω
(z)
i is the visibility weight at sample z along the bent

ray (see Sec. 3.2) and N (i) are the neighbours of frame i.

We also penalize the divergence of the bending network as:

LDIV =
1

Ns

Ns
∑

z=1

ω
(z)
i |∇ · bi(r(t

(z)))|2, (2)
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where we use the unbiased, approximated divergence as

presented in Tretschk et al. [40].

3.2. Rendering Method

Recent studies on static scene reconstruction have

demonstrated that volume rendering enables more stable

training compared to surface rendering [43, 47, 48]. There-

fore, we extend the volume rendering method proposed in

NeuS [43] to dynamic scenes. The full proof of unbiased-

ness is in the supplement. Let f : R3 → R be a Signed

Distance Field (SDF) modeled by an MLP that takes as in-

put sampled points r̃i(t) on the bent ray. Then, NeuS [43]

shows that we can compute the opaque density as:

ρi(r̃i(t)) = max

{

−dΦs

dt

(

f(r̃i(t))
)

Φs

(

f(r̃i(t))
) , 0

}

, (3)

where Φs is the logistic Cumulative Distribution Function

(CDF) with standard deviation s−1. This is in contrast to the

original formulation operating on unbent ray sample points

rather then bent ones. To calculate the color of each camera

ray, we employ a hierarchical sampling with Ns samples in

total (samples in coarse and fine stages) along the bent ray

{r̃i(t
(z)) : z ∈ Z, z ∈ [1, Ns]} where t(z) < t(z+1), ∀z.

Then, the color of the ray can be computed as:

Î(r̃i) =

Ns−1
∑

z=1

ω
(z)
i c

(

r̃i

(

t(z)
)

, r̃i
(

t(z+1)
)

− r̃i

(

t(z)
)

)

, (4)

where c(·) is a color function modeled by an MLP, which

takes as input the point position r̃i(t) and the viewing di-

rection of the ray at that point, which is approximated with

a forward difference. The weight ω
(z)
i is occlusion-aware

and unbiased with respect to the object’s surface (see our

supplementary material for the proof), which is formulated

based on the opaque density ρi(r̃i(t)) from Equation (3) as

follows:

ω
(z)
i = T

(z)
i α

(z)
i , with T

(z)
i =

z−1
∏

ζ=1

(1− α
(ζ)
i ), and (5)

α
(z)
i = max

{

Φs

(

f
(

r̃i(t
(z))

)

)

− Φs

(

f
(

r̃i(t
(z+1))

)

)

Φs

(

f
(

r̃i(t(z))
)

) , 0

}

, (6)

α
(z)
i = 1− exp



−

∫ t(z+1)

t(z)
ρ(t)dt



 . (7)

Importantly, the discrete opacity α
(z)
i derivation [43] still

applies in the case of a bent ray as replacing the constant

viewing direction with
dr̃i(t)
dt does not affect the analysis.

In addition to the color, we can determine if a ray inter-

sects the object by computing the sum of the weights:

Ŝ(r̃i) =

Ns−1
∑

z=1

ω
(z)
i , (8)

where Ŝ approaches 1 for a ray intersecting the object and

otherwise Ŝ approaches 0.

Supervision. We supervise the dynamic scene representa-

tion by ℓ1-distance between the color of each bent ray r̃
(p)
i

and the corresponding ground-truth color I
(p)
i of pixel p:

LCOL =
1

Np

Np
∑

p=1

∣

∣

∣Î
(

r̃
(p)
i

)

− I
(p)
i

∣

∣

∣, (9)

where Np is the number of pixels sampled from frame i.

To more explicitly ensure that our approach solely focuses

on reconstructing the foreground object, we also define a

segmentation loss LSEG as the binary cross entropy between

the estimated segmentation Ŝ
(

r̃
(p)
i

)

and the ground truth

object segmentation S
(p)
i . Finally, we enforce f to be an

SDF with the Eikonal loss defined as follows:

LEIK =
1

NpNs

Np
∑

p=1

Ns
∑

z=1

(|∇f(r̃
(p)
i (t(z)))| − 1)2. (10)

3.3. Optional Scene Flow Loss

So far, very large scene deformations remain a challenge

for Ub4D since it can create erroneous multiple geometries

in the canonical space to best explain the monocular obser-

vations. This is particularly noticeable for scenes contain-

ing large translations like RootTrans (see Figure 5-(b)). To

resolve this, we accept an additional input in the form of a

coarse and coherent per-frame geometric proxy. From these

coarse 3D correspondences, we can compute an estimate of

the scene flow, which can then be used to regularize the

bending network. This greatly reduces the effect of dupli-

cate geometries in the canonical space. Note that the scope

of this work is not how such coarse proxies are obtained,

rather we focus on how these enable Ub4D to densely track

larger scene deformations.

Consider a function mi→j : R3 → R
3 that returns the

scene flow estimate at a point from frame i to j. The scene

flow allows us to transform points from a frame i into any

other frame j as xj = xi+mi→j(xi). Given that the bend-

ing network projects a point xi in frame space into canoni-

cal space resulting in the point xc, it follows:

xc = xi + bi(xi) = xj + bj(xj)

= xi +mi→j(xi) + bj

(

xi +mi→j(xi)
)

.
(11)
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Figure 3. Graphical depiction of the relationship between the

scene flow from frame i to j (i.e., mi→j(xi)) and the bending

network projecting both points to the same canonical position xc.

Intuitively, this means that a point in frame i and its cor-
responding point in frame j determined through the scene
flow mi→j(xi) should be mapped to the same point xc in
canonical space by the bending network (see Fig. 3). We
can then formulate it as a loss for a set X of sampled points:

LFLO =
1

|X |

∑

x∈X

||mi→j(x) + bj

(

x+mi→j(x)
)

− bi(x)||
2
2.

(12)

The scene flow from the proxies can only be exactly

computed at the proxy vertices v
(k)
i but our implicit surface

representation can be evaluated at any point in 3D space.

Thus, we extrapolate this scene flow to any point in R
3 with

a convex combination over the vertices using a kernel func-

tion depending on the distance to the vertices inspired by the

spatial weighting approach in bilateral filtering [38]:

m
′
i→j(x) =

∑Nv

k=1 wλ1

(

||x− v
(k)
i ||2

) (

v
(k)
j − v

(k)
i

)

∑Nv

k=1 wλ1

(

||x− v
(k)
i ||2

)
,

(13)

where wλ1(x) = e−λ1x
2

is a kernel function with a pa-

rameter λ1 affecting the weighting of vertex flow estimates.

Additionally, we add an attenuation term, so that the scene

flow falls off as the distance to the nearest vertex increases:

mi→j(x) = wλ2

( Nv

min
k=1

||x− v
(k)
i ||2

)

m
′
i→j(x) (14)

where wλ2(x) = e−λ2x
2

is a kernel function with λ2 as a

scale parameter defining the extent of the kernel.

3.4. Surface Extraction

To convert our deforming and implicit scene representa-

tion into an explicit geometry, we use the Marching Cubes

algorithm [19] with a threshold of 0. For points sampled

in frame i, we transform them from the frame space into

the canonical space, i.e., xc = xi + bi(xi), where xi is a

point sampled for marching cubes and xc is the canonical

space point at which we then evaluate the SDF. We restrict

the selection of frame march points to the camera frustum

of the given frame since any space not seen in that frame is

unconstrained by our reconstruction losses and may contain

aberrant geometry.

4. Experimental Results

We first introduce the datasets we are using for evalua-

tion as well as the evaluation metrics. Next, we compare our

method to previous works on monocular 4D scene recon-

struction (Sec. 4.1). We validate the design choice of using

an SDF network rather than a density network (Sec. 4.2).

Finally, we ablate important design choices (Sec. 4.3) and

show more qualitative results on real world data (Sec. 4.4).

All tests were performed using a single NVIDIA Quadro

RTX 8000 with 48 GB RAM.

Dataset. We aim at reconstructing the full deforming ge-

ometry and, thus, the monocular capture requires sufficient

camera motion around the dynamic object to observe every

part at least once. However, we found that existing datasets

either capture static scenes with a circulating camera path

around the object or dynamic scenes with very limited cam-

era motion. Therefore, we create our own dataset of dy-

namic objects with sufficient camera motion, which con-

tains synthetic scenes for quantitative evaluations and real

scenes for qualitative results.

For the synthetic evaluation, we create two scenes in

Blender [6] showing a deforming cactus, referred to as Cac-

tus, and a moving human, referred to as RootTrans. Each

of the scenes has an image resolution of 1024×1024 and

is 150 frames long. We define a moving camera viewing

the dynamic object and provide the camera parameters as

input to our method. To generate the optional proxy ge-

ometries, which are used in our proposed scene flow loss

for capturing large deformation, we leverage a human cap-

ture method [26] for the RootTrans sequence (further details

are included in our supplementary material). For the Cac-

tus sequence, we use a highly downsampled version of the

ground-truth geometry as a coarse proxy. A visualization of

the proxies is shown in Figure 4.

For the evaluation of our method on real data, we cap-

ture two sequences: one of a moving human, called the Hu-

manoid sequence, and one of a deforming cactus toy, called

RealCactus. We capture these sequences at resolutions of

960×1280 and 1080×1920, respectively, with a mobile

phone camera. Again each sequence contains around 150

frames. To obtain the camera parameters, we use the rigid

Structure from Motion (SfM) software COLMAP [34, 35].

As with the RootTrans synthetic sequence, we generate

proxy geometries for the Humanoid sequence using the

same human capture method [26]. However, unlike the

RootTrans sequence, we only input the joint positions (i.e.

12 vertices) as the proxy, rather than the full posed SMPL-

X [26] model. This shows that our proxy need not in-

clude any information about the location of the surface. To

demonstrate the optional nature of the scene flow loss, the

RealCactus sequence does not use any proxy geometry at

all. For the foreground masks, we manually labeled a few

frames and then trained a segmentation network, based on
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Method CD (↓) E2G (↓) G2E (↓)

C
a

ct
u

s

D-NeRF [29] [113.38] - 7.99

NR-NeRF [40] [96.96] - 9.89

LASR [45] 20.23 12.09 8.14

ViSER [46] 14.34 7.93 6.41

N-NRSfM [37] [102.00] 5.74 -

DDD [50] 34.71 6.98 27.72

Ub4D (ours) 3.06 2.42 0.64

Ub4D after ICP 2.71 2.24 0.46

R
o

o
tT

ra
n

s

D-NeRF [29] [23.50] - 8.43

NR-NeRF [40] [1.94] - 0.33

LASR [45] 0.39 0.08 0.31

ViSER [46] 0.37 0.20 0.17

N-NRSfM [37] [0.38] 0.09 -

DDD [50] 0.26 0.10 0.16

Ub4D (ours) 0.23 0.14 0.09

Ub4D after ICP 0.03 0.02 0.02

Table 1. Quantitative comparison to previous work. We in-

clude the unidirectional breakdown of the CD as well, since some

methods produce geometries for which the CD is unfair as a metric

(these are denoted by placing the CD in square brackets and omit-

ting the unfair metric). See our supplement for further discussion.

the UNet architecture [30], on those labeled frames, which

then provides masks for all frames in a semi-automated

fashion.

For additional evaluation of our method, we leverage

the Lego object1 made available by Mildenhall et al. [20],

which we animate over time by lifting the boom and tilting

the bucket (see Fig. 5-(a)), to obtain a dynamic scene. Fur-

ther, we defined a monocular camera path for 150 frames,

rendered monocular images and masks at a resolution of

800×800, and extracted the camera extrinsics and intrin-

sics. This scene does not use 3D proxy for our method.

Evaluation Metrics. To quantitatively compare Ub4D to

the state-of-the-art methods, we compute the Chamfer dis-

tance (CD) between the estimated geometry and the ground-

truth geometry. For a more fair comparison with previous

monocular non-rigid 3D reconstruction methods, we break

the CD down into its two components: measuring from es-

timate to ground-truth (E2G) and from ground-truth to esti-

mate (G2E). The reported numbers are in relative distance

units since synthetic scenes do not have an interpretable

physical scale. NR-NeRF [40] and D-NeRF [29] are given

the same camera parameters used by our method. Some

methods either assume a fixed camera [50] or predict the

camera poses [37,45,46]. For these cases, we apply ICP [2]

to rigidly align their meshes with the ground truth before

computing metrics.

1Released under CC-BY-3.0 and modifications are made. Originally

created by Blend Swap user Heinzelnisse.

Comparison CD (↓) E2G (↓) G2E (↓)

C
a

ct
u

s

w/o LFLO 8.32 † 4.67 † 3.65 †

w/o LEIK 5.47 3.58 1.89

w/o LFLO, LNBR,

& LDIV
5.34 † 3.27 † 2.07 †

Ub4D (Ours) 3.06 2.42 0.64

R
o

o
tT

ra
n

s w/o LFLO 9.42 4.83 4.59

w/o LEIK 0.29 0.16 0.13

w/o LFLO, LNBR,

& LDIV
4.30 † 3.17 † 1.13 †

Ub4D (Ours) 0.23 0.14 0.09

Table 2. Quantitative ablation study. “†” denotes frames that do

not produce any geometry (due to frustum culling). Note that our

full method provides the best result for both scenes.

4.1. Quantitative Comparison

We compare our method to NR-NeRF [40], D-

NeRF [29], N-NRSfM [37], DDD [50], LASR [45], and

ViSER [46]. NR-NeRF and D-NeRF are novel view syn-

thesis methods that permit extracting geometry by using

marching cubes on their density networks with a threshold.

N-NRSfM is a Non-Rigid Structure-from-Motion (NRSfM)

method, which uses an auto-decoder to deform a mean

shape based on a learned per-frame latent representation.

DDD is template-based; it deforms the template to mini-

mize an energy formulation. For DDD, we provide the first

frame’s ground-truth mesh as a template. Both LASR and

ViSER do not require a template and recover a rigged mesh

that is animated over the image sequence. Several other 4D

reconstruction techniques with source code available on-

line, such as Shimada et al. [36] or Ngo et al. [21], do not

work under our assumptions; so, we do not include them.

For each related method, we follow the original papers to

set the hyper-parameters.

The quantitative results on the synthetic sequences are

reported in Table 1 and a qualitative comparison is shown

in Fig. 4. Ub4D outperforms the state-of-the-arts both quan-

titatively and qualitatively. We found that prior work strug-

gles with large scale deformations resulting in overly noisy

results [29], [40], experiences tracking errors [50], has a

limited resolution [45], [46], or only reconstructs the visi-

ble geometry [37] while ours accurately captures the large

deformations of the entire geometry. Also note that al-

though we rigidly align the results for other methods with

the ground truth, our method still achieves the most accu-

rate results. For completeness, we also report our results

after ICP.

4.2. Comparison to Volume­based Representations

Like some previous works [43,48], our method leverages

an SDF representation to model the surface of the object.

An alternative approach is predicting volume density with

a network [20, 29, 40]. While a volume density representa-
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Figure 4. Qualitative comparison with our synthetic sequences rendered from novel views. Note that competing methods struggle with

reconstructing the dense and deforming surface, while Ub4D captures the large scale deformations as well as medium scale details.

tion has been used for the problem of novel view synthesis,

extracting a surface from such a density representation with

marching cubes results in noisy and inaccurate geometry

as demonstrated in Fig. 4 and further in Fig. 5-(a) where

we qualitatively compare to NR-NeRF [40]. In contrast, an

SDF representation removes the need to determine a thresh-

old when extracting the explicit geometry and must add a

zero crossing, i.e., a surface, in order to satisfy the recon-

struction losses. Further, this example shows the limited

ability of NR-NeRF to model large deformations as they

penalize the absolute offset length, which our neighbouring

frame regularization allows us to handle.

4.3. Ablation Study

We validate our design decisions through an ablation

study on the Cactus and RootTrans sequences and report the

metrics in Table 2. Our full supervision consists of six loss

terms: LCOL, LSEG, LEIK, LFLO, LNBR and LDIV. We com-

pare the full method to removing the terms: 1) LFLO, which

is our novel flow loss, 2) LEIK, which directly regularizes

the SDF and color network and indirectly regularizes the

bending network and 3) LFLO, LNBR, and LDIV, which are

all direct bending network regularizers. Most importantly,

the full combination of losses provides the best result vali-

dating the contribution of each term.

Concerning 1), our flow loss especially helps for the

large root translation and arm motion of the RootTrans se-

quence. Without using this loss, multiple different geome-

a) b)

Ub4D

(Ours)

Input
Image

NR-NeRF 
Extracted 
Surface

Input
Image

Output
(Camera View)

Unculled Output
(Static Novel View)

Figure 5. (a) Comparison of Ub4D using an SDF scene represen-

tation (without scene flow loss) to a density-based scene represen-

tation, called NR-NeRF [40]. To generate surfaces for NR-NeRF,

we apply marching cubes [19] with a threshold of 50. The density-

based representation leads to an overall noisier surface compared

to our approach. We also penalize bending using neighbouring

frame offsets allowing Ub4D to accurately reconstruct large de-

formations. (b) Qualitative ablation of the scene flow loss (LFLO)

on the RootTrans sequence. Right column shows the scene from

a static novel view with the geometry in the camera frustum high-

lighted with a blue box. Note that without the proposed scene flow

loss using proxy geometry, Ub4D can produce multiple distinct

copies of the character at different scales by exploiting the monoc-

ular depth ambiguity.

tries are synthesized, which fit the reconstruction losses.

Then, the bending network can “switch" between the dif-

ferent copies throughout the sequence. This results in over-

fitting to the camera pose by exploiting monocular depth

ambiguities to generate geometry that is not seen in other

views. Figure 5-(b) shows this overfitting to the camera
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Novel View 1 Novel View 2 Novel View 1 Novel View 2

Figure 6. Qualitative results of our method for a non-humanoid object, RealCactus, left, and a human character, Humanoid, right. The

scene flow loss is only used for the human character and only uses a sparse skeleton geometric proxy (12 vertices). This shows that the

geometric proxy need not be dense or provide any information about the surface. Note that the recovered geometry nicely overlays onto

the input image but also looks plausible from a novel 3D viewpoint.

pose with multiple distinct geometries being used over the

sequence to satisfy the reconstruction losses.

Regarding 2), we found that not using LEIK leads to over-

all noisier surfaces and thus the quality is reduced. Fi-

nally concerning 3), without any explicit regularization of

the bending network, the deformations can be almost arbi-

trary again leading to overfitting to individual frames by vi-

olating 3D consistency resulting in a reduced accuracy. We

even observed that the network was not able to produce any

geometry for some frames, which validates the necessity of

explicit regularization of the bending network.

4.4. Qualitative Results on Real Word Scenes

We next demonstrate that Ub4D works well on real-

world scenes. Fig. 6 visualizes our RealCactus sequence

depicting a dancing cactus toy and the Humanoid sequence

where a person is moving their arms and legs. Although in

both cases the dynamic scenes contain large deformations,

Ub4D robustly and accurately reconstructs individual frame

geometries, which also contain medium frequency details.

5. Discussion and Possible Extensions

Ub4D significantly outperforms all competing methods

in our evaluations, both numerically and qualitatively. We

hypothesise that it is partially due to its shape completion

property. In fact, we found that none of the existing meth-

ods can deal with captures that include object motion and

severe camera motions while our method leverages such

recording conditions to its benefit, inspired by classical non-

rigid structure from motion algorithms. In the case of se-

vere scene deformations Ub4D can leverage a geometric

proxy.Note that our scene flow loss is versatile: The proxy

can be either a full estimated mesh or even just a few points

(see Humanoid results Fig. 6); as long as it roughly de-

scribes the deformation of the scene, the model is guided

towards a better local minimum in the reconstruction losses.

Future work involves exploring this direction further with

the main question being: How sparse can the proxy be and

could it even be a 2D entity in the image plane? Along these

lines, we see multiple avenues for future research, including

tracking a generic proxy along with learning the SDF and

using 2D image features for initializing a sparse proxy.

6. Conclusion

We presented, Ub4D, a method of a new class for 3D re-

construction of deformable scenes from a single RGB cam-

era. It represents the scene as a learned static canonical vol-

ume with an implicit surface. A bending network warping

the frames into this canonical volume accounts for the scene

deformation. Our optional scene flow loss improves the re-

construction accuracy and robustness in the case of large

deformations given a coarse proxy geometry. The qualita-

tive and quantitative comparisons to different method types

show that our approach is a clear step towards dense and de-

formable tracking of general and largely deforming scenes

using a single RGB camera.
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