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Supporting Information Text

In this document, we first show the measured two-dimensional (2D) electronic spectra of the Fenna-Matthews-Olson (FMO)
complex at different temperatures. Then, we describe the details of the procedure to retrieve the anti-diagonal bandwidth.
The Tukey window Fourier transform and the wavelet analysis are described in Secs. V and VI. We present the global fitting
approach and analyze the decay-associated spectrum (DAS) and the 2D power spectra of the FMO complex in Sec. VII. After
this, we describe the process to identify the electronic coherence from vibrational signals. We show the details of the results
obtained from the curve fitting toolbox. The identified electronic coherence between excitons of higher energies are shown in
Sec. X. In addition, the basis transformation from the localized pigment to the exciton basis is presented in Sec. XII. Finally,
the theoretical simulations of the 2D spectra and the quantum master equation are described in Secs. XIV and XIX.

I. Preparation of the FMO protein

The Fenna-Matthews-Olson (FMO) protein complex was prepared from cells of the thermophilic green sulfur bacterium
Chlorobium tepidum. A strain of C. tepidum that had been engineered to produce a His-tagged version of its reaction center
was used in order to simplify the purification strategy. This strain was a gift of Prof. Oh-Oka (1). The cells were grown
anaerobically in the light in modified Pfennig’s media (2). New cultures were allowed to go fully anaerobic in the dark overnight,
then they were grown at a light intensity of about 30 micromoles photonsmm−2s−1 at 43◦C for 2 to 3 days. When fully grown,
the cells were harvested by centrifugationat 12,000 x g for 20 min. The reaction centres (which bind FMO) were isolated from
brokencells (3). At the stage of the nickel affinity column chromatography a high salt wash at 500 mM NaCl elutes the FMO
complexes. This dilute solution of FMO was then purified by a combination of ion exchange chromatography on a Whatrman
DE52 cellulose resin and size exclusion chromatography on a Sepharose S-200 column.

II. Absorption spectrum and measuring laser

In this section, we show the measured absorption spectrum at a temperature of 80 K in Fig. S1. Moreover, the measuring laser
spectrum is depicted as light blue shadow.

Fig. S1. Absorption spectrum of the FMO complex at 80 K. The measuring laser is shown as light blue shadow.

III. Two-dimensional electronic spectra at 50, 80 and 150 K

In this section, we show the measured 2D electronic spectra of the FMO complex for different temperature. In Fig. S2, the real
parts of the 2D electronic spectra were measured at 50 K. The selected waiting times are 30, 50, 510 and 1005 fs, respectively.
The positive and negative magnitudes in the 2D spectra indicate the transitions associated to the ground-state-bleach (GSB)
and the excited-state-absorption (ESA), respectively. The measured spectra at 80 and 150 K are shown in Fig. S3 and Fig. S4,
respectively.
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Fig. S2. Real parts of the 2D electronic spectra of the FMO complex measured at 50 K. The selected waiting times are 30, 50, 510 and 1005 fs, respectively.

Fig. S3. Real parts of the 2D electronic spectra of the FMO complex at 80 K.

IV. Fitting procedure of the anti-diagonal bandwidth

In this section, we introduce the procedure to extract the timescales of electronic dephasing. It is known that the decay
time constant associated to electronic dephasing can be directly extracted from the anti-diagonal bandwidth in 2D spectra
for zero initial population time. Here, we extract the decay time constant by measuring the anti-diagonal bandwidth of the
lowest-energy main peak (ωτ = ωt = 12120 cm−1) in the 2D spectra. Based on the theory of the lineshape function (4), the
dominant contribution to the anti-diagonal bandwidth stems from the damping of the oscillations due to the energy gap
between the ground and excited states after photo-excitation. We estimate the bandwidth of the peak by fitting the signal to a
Lorentzian lineshape.

We analyze the 2D spectrum of the waiting time at 30 fs to remove the pulse overlap effect at initial time. We first extract
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Fig. S4. Real parts of the 2D electronic spectra of the FMO complex at 150 K.

the anti-diagonal profile of the main peak (exciton 1) along the black line marked in Fig. S5(a). The retrieved profile is shown
in Fig. S5(b) as black solid line. Three Lorentzian lineshape functions are used to obtain the converged fit, which is plotted
as red dashed line. The initial values of the fitted peaks are centered at 12000, 12120 and 12180 cm−1, respectively. The
fitting process is finished using the curve fitting toolbox in Matlab 2013(b). The time constant of the electronic dephasing can
be obtained from the fitted bandwidth, τhom = (πc∆hom)−1. By this, we obtain the decay time constants of the electronic
dephasing as ∼ 197±8 fs at 20 K. We repeat the same procedure for the profiles at 50, 80 and 150 K and obtain the decay time
constants of the electronic dephasing as 181±9, 147±7 and 75±10 fs, respectively. The anti-diagonal profiles at 50, 80 and 150
K and the resulting fitting curves are shown in Fig. 1 of the main text.

Fig. S5. (a) Real part of the 2D electronic spectrum of the FMO complex at a waiting time of 30 fs measured at 20 K. The anti-diagonal bandwidth is extracted from the main
peak of exciton 1, which is marked as a black line. The projection along ωt is plotted as black solid line in (b). Three Lorentzian lineshapes are used to obtain a high-quality fit
and the obtained trace is shown as a red dashed line in (b). The anti-diagonal bandwidth of the main peak at ωτ = ωt = 12120 cm−1 yields a decay time constant of 197±8
fs at 20 K.
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V. Tukey window Fourier transform

Here, we provide the details of the Fourier transform with the Tukey window. To isolate the high-frequency jitters, Fourier
filtering in the frequency domain is employed. By this, we separate each of these regions of interest with the Tukey window,
which has the form

ω(n) =

{
1, 0 ≤ |n| ≤ αN2
1
2

(
1 + cos

[π(n−αN2 )
(1−α)N2

])
, αN2 ≤ |n| ≤

N
2 .

[S1]

Due to the flat top, it conserves the amplitudes of the Fourier components of interest over a frequency range larger than a
cosine or a Gaussian window, while it still limits the artifacts arising from a pure bandpass filter. In this work, we use the
Tukey window with α = 1/5 and a Fourier bandpass filter with <1000 cm−1.

VI. Wavelet analysis

In this section, we summarize the basic principles of the wavelet transform, the details of which have been described in Refs.
(5, 6). It starts from the definition of a zero-mean and short-time oscillating function ψ, called a “mother" wavelet, which is
used to decompose a one- or multi-dimensional real-valued signal into different frequency bands. This mother wavelet function
is translated in time by t and stretched by the scaling factor ω−1, giving the wavelet “atom" function

ψt,ω(t′) =
√
ωψ
(
[t′ − t]ω

)
. [S2]

It provides the effective basis for the transformation. The two most common transforms are the discrete wavelet transform
and the continuous wavelet transform CWT (7). The discrete one decomposes the signal into several frequency bands and is
frequently used for data and image compression. The continuous one, which is used in this paper, is based on an expansion of
a temporal signal f(t) via the inner product of the function with a wavelet atom,

CWTf (t, ω) =
∫ +∞

−∞
dt′f(t′)

√
ωψ∗

(
[t′ − t]ω

)
. [S3]

The parameter t indicates where the wavelet atom is centered, while the scale parameter ω−1 controls the relative width of the
wavelet atom compared to the mother wavelet function. This nonlinear integral transform provides a high time resolution of
high-frequency components, while for the slowly varying components of the signal, the frequency resolution is high. It projects
the signal onto basis functions with a varying “center” frequency and a varying range fixed by the scaling factor.

VII. Global fitting approach and decay associated spectra

In this section, we describe the data analysis by the global fitting approach. In this method, a sequence of 2D spectra are
collected to form the three-dimensional (3D) array S(ωτ ,T, ωt). This 3D data set is then decomposed into a sum of 2D
decay-associated spectra A(ωτ , ωt) with the individual exponential decay with the lifetime τi according to

S(ωτ , T, ωt) =
∑
i

Ai(ωτ , ωt) exp(−T/τi). [S4]

To avoid a pulse overlap effect, we perform the fit at the starting time of 30 fs. The measured window extends up to 2 ps with
a time step of 15 fs. To achieve a good fit, at minimal two exponential functions are used to fit the kinetics in the 3D data.
The obtained decay-associated spectrum is shown in Fig. S6 with the decay time constant of 160 fs. In Fig. S6, two positive
and two negative peaks are shown along the diagonal. Moreover, two cross peaks are presented in the upper-left part with
negative magnitude. It is well known that the positive (negative) peak in decay-associated spectrum manifests the exponential
decay (increase) of the magnitude in 2D electronic spectra with varying waiting time. For clarity, theory-resolved excitonic
positions are marked by a dashed grid in Fig. S6. First, we observe that the main peaks fit well to the excitonic positions. This
verifies that this component maps the energy transfer between excitons. Second, the decay time constant of this component is
160 fs, which is comparable to the timescale of the electronic quantum coherence in the FMO complex at 20 K. Based on this
observation, we believe that the fast energy transfer revealed by this component is fully mediated by electronic coherence.
Third, multiple pathways of the energy transfer are resolved in the FMO complex: (a) A large portion of the transfer of
population from higher-energy excitonic states (4, 5, 6, 7) to the second exciton state is visible. This energy-transfer pathway
is apparent by two cross peaks in the upper-left part (ωt=12270 cm−1). (b) A small portion of energy transfer from exciton
7 to 3 is present, which is identified by the negative magnitude of the main peak at exciton 3. (c) Finally, energy transfer
from exciton 2 to 1 occurs. The positive and negative peaks of exciton 2 and 1 indicate the population transfer between them.
Moreover, the increase of the cross peak at (ωτ , ωt) = (12270, 12120) cm−1 manifests the energy transfer from exciton 2 to 1.

In addition, one more component with a decay time constant of 8.8 ps is needed to achieve a good fit, which is shown in Fig.
S7. In this work, we only measure the 2D spectra of the FMO complex up to 2 ps, which apparently is shorter than the energy
transfer occuring at longer timescales. Thus, this component of 8.8 ps can be considered as the infinity component in this fit.

3D residuals are obtained after removing the kinetics obtained from the global fitting approach. We perform the Fourier
transform of 3D residuals along the waiting time T . The resulting 2D patterns for particular frequencies are shown in Fig. S8.
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Fig. S6. Decay-associated spectrum of the FMO complex at 20 K for the decay time constant of 160 fs. Theory-resolved exciton spectral positions are marked as dashed grid.
The excitonic states (site states) are marked as black (red) numbers.

The power spectra of the modes at 151, 170, 207 and 245 cm−1 are shown in (a), (c), (d) and (e), respectively. In (a), this 2D
power spectrum shows a strong peak at (ωτ , ωt) = (12120, 12270) cm−1, which can be associated with the excitonic states of 1
and 2. Moreover, the oscillation period of this mode perfectly agrees with the energy gap between exciton 1 and 2. By this, we
believe that this strong cross peak is the direct evidence of electronic dynamical coherence between the two lowest-energy
excitons. The magnified picture is shown in (b) focussing to the range of exciton 1 and 2. Moreover, in (a), two strong cross
peaks are visible at (ωτ , ωt) = (12380, 12250) and (12500, 12270) cm−1, respectively. To understand these two cross peaks, we
need to examine the power spectrum of the neighboring frequency at 170 cm−1. In (c), the 2D power spectrum at 170 cm−1

shows even stronger cross peaks in the same range at (ωτ , ωt) = (12380, 12250) and (12500, 12270) cm−1. More interesting,
the 2D power spectrum of 207 cm−1 shows strong cross peaks in the same frequency range as well. It is well known that both
modes (170, 207 cm−1) are the Raman modes of the electronic ground state of the FMO complex (8). To show the difference
in the amplitude, we plot the power spectrum of the resolved low-frequency modes in (f). We find the strongest amplitude of
peaks for the frequencies 170 and 202 cm−1 (the slight difference of the modes compared to the 2D power spectrum is due to
the different time window of the Fourier transform). The mode at 150 cm−1 is close to the vibrational mode at 170 cm−1

and both strongly overlap with each other, such that it becomes difficult to separate both modes. Based on this finding, we
interpret the cross peaks (ωτ , ωt) = (12380, 12250) and (12500, 12270) cm−1 in (a) as mainly consisting of the contribution of
the mode at 170 cm−1. Moreover, the 2D power spectra of the close-by frequency modes at 170 and 207 cm−1 show strong
peaks at the same position, which induces a resonant beating of vibrational coherence. In addition, the power spectrum of 245
cm−1 is plotted in (e), which agrees well with the Raman mode measured in the FLN experiment (8).

VIII. Beatings of vibrational coherences in cross peaks

In this section, we examine the resonant beatings of vibrational coherences. For this, we first extract the magnitude of the
cross peaks from the 2D electronic spectra at different waiting times. The positions of the cross peaks are identified using the
eigenenergies in our system Hamiltonian. We further obtain the residuals of the oscillations by removing the kinetics employing
the global fitting approach. The coherent dynamics of these vibrational coherences is then examined by the wavelet analysis.
The obtained results of the vibrational beatings are shown in Figs. S9 to S12.
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Fig. S7. Same as in Fig. S6, but for the decay time constant of 8.8 ps.

IX. Identifying the electronic coherence between exciton 1 and 2

In the previous section, we have examined the 2D power spectra of the FMO complex. We have explained the strong overlap
between oscillations at frequencies of 150 and 170 cm−1 due to the strong frequency gap. An effective tool to identify the
lifetime of the electronic coherence from the vibrations still needs to be provided. Here, we present a new way to separate the
electronic coherence from the vibrations between exciton 1 and 2.

In Fig. S13(a), we show the raw trace (red solid line) of the cross peak signal associated to the transition between exciton 1
and 2 at (ωτ , ωt) = (12120, 12270) cm−1. First, the kinetics is removed by a fit to an exponential function, which is plotted as
a black dashed line in (a). Subsequently, the obtained residual is plotted as red solid line in (b). To remove high-frequency
noise, a Tukey window Fourier transform is performed with the parameters α = 1/5 and <1000 cm−1 (more details are given
in Sec. V). The polished oscillations are plotted as black dashed line in Fig. S13(b). After this, this Fourier filtered trace is
uploaded into the curve fitting toolbox in Matlab 2013(b). The fitting function is given as

N∑
i

Aie
−T/τi sin(ωiT + φi). [S5]

To separate electronic coherence at the frequency of 150 cm−1, five oscillatory components (N=5) are used to fit the trace.
They are given by the modes at the frequencies 15, 68, 150, 170 and 201 cm−1, respectively. Among them, 68, 170 and 201
cm−1 are the Raman modes resolved as described in the previous section. Moreover, one low-frequency mode of 15 cm−1 is
used to remove the slow fluctuations of the laser output power. To set the proper initial values, we restrict the mode frequencies
in a range around 5 cm−1 and fix the initial guess of the lifetimes identically to 500 fs, with a range from 0 to ∞. With these
parameters, we obtain a high quality fit with an R-square ≥0.98 from the curve fitting toolbox. The trace and the obtained
fits are shown as black circles and red solid line in Fig. S14 with a confidence range of 95%. Here, to achieve a good fit, the
first time point has been excluded in the fitting procedure. By this, we separate the electronic coherence from ground-state
vibrations. The frequency components and its associated decay time constants are shown in Fig. S15. We find the frequency
of electronic coherence to be 150 cm−1 with a decay time constant of 105 fs. Clearly, the electronic coherence lasts for two
oscillation periods and completely disappears after 500 fs. In addition, the vibrational coherences show the frequencies of 65,
165 and 204 cm−1. The long-lived vibrational coherences with decay time constants of 2.1 ps, 523 fs, 1.6 ps and with resolved
phases generate the resonant beatings in the traces of the cross peaks in the 2D spectra.
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Fig. S8. (a) 2D power spectrum at the frequency ωT = 151 cm−1, which is obtained by a Fourier transform of the 3D residuals after a global fitting approach. (b) Magnified
view of the peaks associated to excitons 1 and 2. 2D vibrational patterns at the frequencies ωT =170, 207 and 245 cm−1 are shown in (c), (d) and (e), respectively. (f) Power
spectrum of the residual at (ωτ , ωt) = (12480, 12270) cm−1.

Next, we describe the procedure of separating out electronic coherence at 50, 80 and 150 K. For this, we repeat the same
procedure, the filtered resulting trace of the cross peak of the transition between exciton 1 and 2 is shown as black circles in Fig.
S16. The obtained trace after fitting by the curve fitting toolbox is shown as red solid line. The boundaries of 95% are marked
by blue dashed lines in Fig. S16. By this, the electronic coherence at 50 K is identified and shown as red solid line in Fig. S17.

Moreover, the polished trace of the cross peak between exciton 1 and 2 at 80 K is plotted as black circles in Fig. S18. The
obtained fit is plotted as red solid line. The individual component of oscillation is shown in Fig. S19. It shows a decay time
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Fig. S9. Wavelet analysis of the beatings of the vibrations. (a) Residuals and vibrational dynamics of the cross peak at (ωτ , ωt) = (12270, 12120) cm−1, and, correspondingly,
in (b) to (f) for the cross peaks at (12410, 12120), (12480, 12120), (12570, 12120), (12650, 12120) and (12340, 12270) cm−1, respectively.

constant of the electronic coherence of 81 fs at 80 K. In addition, the trace of the cross peak at 150 K and the obtained curve
fitting results are shown in Fig. S20. The retrieved electronic coherence yields a decay time constant of 45 fs, which is shown in
Fig. S21.

X. Dynamical electronic coherence of higher excitonic states

In the previous section, we have described the details to identify electronic coherence from the time trace of cross peaks
associated to the transitions between two lowest-lying excitons. Here, we demonstrate the process how to extract the lifetime
of electronic coherences of higher excitonic states. To monitor this electronic coherence, we examine the dynamics of the ESA
peaks in the 2D spectra at 20 K. First, we extract the time trace of the ESA peak from the second exciton, which is marked as
“A" in Fig. 4 of the main text. We plot the filtered trace as black circles in Fig. S22. The obtained fitting curve is plotted as
red solid line with R-square ≥0.8. The boundaries of confidence (95%) are shown as blue dashed lines. We then analyze the
oscillatory information by a Fourier transform, the result of which can be used as the initial values entering the fitting toolbox.
The resolved oscillations occur with frequencies of 33, 117, 168, 219, 252 and 320 cm−1, respectively. The power spectrum of
the resolved cross peaks are shown in Fig. S23(a). We choose the starting values of the frequencies for the fitting tool from the
Fourier transform and choose an identical decay time constant of 500 fs. These frequencies are adjusted during the fitting
procedure which yields the optimal frequencies of 33, 112, 173, 206, 255 and 307 cm−1. Among them, the strongest component
of 206 cm−1 matches the energy gap between exciton 2 and 5. Based on our theoretical work (details of the calculations are
presented in Sec. XII), we demonstrate that this component reflects the electronic coherence between exciton 2 and 5. We show
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Fig. S10. Same as Fig. S9, but (a)-(f) of the cross peaks retrieved from (12410, 12270), (12480, 12270), (12570, 12270), (12650, 12270), (12410, 12340) and (12480, 12340)
cm−1, respectively.

it as red solid line in Fig. S23(b). It yields a decay time constant of 91 fs. Repeating the same step, we study the time trace of
the ESA peak of exciton 5, which is marked by the label “B" in Fig. 4 of the main text. In Fig. S24, we show the polished trace
as black circles. The starting values of the frequencies for the fitting tool are taken from a Fourier transform and are set to 25,
62, 167, 210, 250 and 305 cm−1. In addition, we set the initial values of decay time constants for each component to be 500 fs.
The resulting time trace after the fitting procedure is shown as red solid line in Fig. S24 with R-square ≥0.8. From this, we
conclude that the strongest component shows the frequency of 210 cm−1 with a decay time constant of 91 fs. This is shown as
blue solid line in Fig. S23(b). Fig. S23(b) clearly shows anti-correlated oscillations in both time traces, although the phase is
not perfectly anti-correlated. We believe this to be caused by the noise in the ESA peaks.

Next, we need to examine the coherent dynamics of exciton 3 and 7. From the basis transformation, we know that excitons
3 and 7 are mainly composed of contributions of pigments 1 and 2, where a strong electronic coupling occurs. First, we extract
the time trace of the ESA peak “C" in Fig. 4 in the main text. Repeating the same procedure, the polished trace is obtained
and plotted as black circles in Fig. S25. To set the starting values for the fitting procedure, a Fourier transform is performed
to identify the oscillation frequencies. In addition, we set the starting decay time constants of each component again to 500
fs. With the help of the curve fitting toolbox, we obtain the fitting trace and plot it as red solid line in Fig. S25. Moreover,
the filtered trace and the fitting result of ESA peak “D" are shown as black circles and red solid line in Fig. S26. By this, we
identify the strongest component at 310 cm−1 in Fig. S27, which agrees with the energy gap between exciton 3 and 7. By this
calculation, we demonstrate clear evidence of the electronic coherence, with the decay time constants of 59 fs (blue trace) and
34 fs (red trace) for the ESA peaks “C" and “D".
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Fig. S11. Same as Fig. S9, but (a)-(f) of the cross peaks retrieved from (12570, 12340), (12650, 12340), (12480, 12410), (12570, 12410), (12650, 12410) and (12570, 12480)
cm−1, respectively.

Fig. S12. Same as Fig. S9, but (a),(b) of the cross peaks retrieved from (12650, 12480) and (12650, 12570) cm−1, respectively.

XI. Optical dephasing vs. electronic decoherence

As discussed in the main paper, there are two different processes related to electronic coherence. One is optical coherence
between the ground and the excited states. A measure for this is the width in the anti-diagonal direction of a diagonal peak of
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Fig. S13. (a) Trace (red solid line) of raw data of the cross peak between exciton 1 and 2 at (ωτ , ωt) = (12120, 12270) cm−1 at 20 K. The kinetics can be removed by
exponential fitting (black dashed line). (b) Residual (red solid line) after removing the kinetics. The high-frequency jitter is removed by a Tukey window Fourier transform and the
polished trace is plotted as black dashed line in (b).
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Fig. S16. Same as in Fig. S14, but for 50 K. The initial time point is excluded to achieve a converged fit.

a 2D spectrum at zero waiting time. A second process is electronic coherence between two exciton states between which a
transfer occurs. This is characterized by the decay time constant of the associated cross peak in the 2D spectrum as a function
of the waiting time. Both processes are different, but related to each other.

We show the direct comparison of the associated time constants of the optical dephasing and the electronic decoherence at
different temperatures in Fig. 1(j) of the main text. Based on our measurements (including the errorbars), we find that both
timescales are comparable in the region from 20 K to 300 K, but not identical. It is known that for a complete Markovian
dynamics (i.e., a high temperature), both time constants show the same scales. In our case, the agreement of the optical
dephasing and the decoherence time constants indicate that non-Markovian effects in the FMO complex do not play a significant
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Fig. S17. Same as in Fig. S15, but for 50 K. The electronic coherence (red solid line) shows the frequency of 150 cm−1 with a decay time constant of 96 fs. Each of the
component is shifted vertically from zero to distinguish the oscillations.

role even at low temperature 20 K.

XII. Site basis to Exciton basis

The one-exciton Hamiltonian of the FMO protein reads

HS =



280 −106 8 −5 6 −8 −4
−106 420 28 6 2 13 1

8 28 35 −62 −1 −9 17
−5 6 −62 180 −70 −19 −57
6 2 −1 −70 325 40 −2
−8 13 −9 −19 40 365 32
−4 1 17 −57 −2 32 265

+ λSI [S6]

in units of cm−1 in the site representation, where we have added an energy shift λS (λS=12205cm−1, 12210cm−1, 12240cm−1

at temperatures of 50K, 80K, 150K, respectively) to the diagonal elements of the exciton Hamiltonian to match the frequency
range of the absorption spectra. The exciton states of the FMO complex are then obtained by diagonalizing Eq. (S6). The
squares of the eigenvector elements of the seven exciton states with exciton index in ascending energy order are tabulated in
Tab. S1.

Table S1. Square of the eigenvector elements of the exciton Hamiltonian in Eq. (S6) in the exciton basis with the exciton index in the order of
ascending energy. The negative sign (-) denotes that the corresponding eigenvector element is negative and bold numbers label the dominant
site contribution to the exciton state.

Bchl 1 Bchl 2 Bchl 3 Bchl 4 Bchl 5 Bchl 6 Bchl 7

Exciton 1 (-)0.0028 (-)0.0068 0.8432 0.1390 0.0068 0.0011 0.0003
Exciton 2 0.0068 0.0024 (-)0.1117 0.5800 0.0990 (-)0.0049 0.1953
Exciton 3 0.7668 0.2103 0.0111 (-)0.0003 (-)0.0083 0.0021 (-)0.0011
Exciton 4 0.0000 (-)0.0000 (-)0.0238 0.1154 0.0697 0.0683 (-)0.7227
Exciton 5 0.0013 0.0095 0.0067 (-)0.0723 0.5013 (-)0.3995 (-)0.0093
Exciton 6 0.0071 (-)0.0145 0.0013 (-)0.0930 0.3136 0.5009 0.0696
Exciton 7 0.2151 (-)0.7564 (-)0.0021 0.0001 (-)0.0013 (-)0.0232 (-)0.0017
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Fig. S18. Same as in Fig. S14, but for 80 K.
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Fig. S19. Same as in Fig. S15, but for 80 K. Electronic coherence (red solid line) shows the decay time constant of 81 fs at a frequency of 150 cm−1.

XIII. Calculation of absorption spectra

The dipole operator that governs the photon-exciton conversion is given by µ = µ+ + µ− with

µ+ =
N∑
m=1

µm|m〉〈g| ,

µ− =
N∑
m=1

µm|g〉〈m| , [S7]
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Fig. S20. Same as in Fig. S14, but for 150 K.
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Fig. S21. Same as in Fig. S15, but for 150 K. The component of the electronic coherence at 150 cm−1 yields a decay time constant of 45 fs.

where µm is the transition dipole moment of the mth site, which are extracted from crystallographic data of the FMO complex
(data from 3ENI.pdb). The absorption spectrum is then calculated as

I(ω) =
〈∫ ∞

0
dteiωttr(µ(t)µ(0)ρg)

〉
rot

, [S8]

where ρg = |g〉〈g| and a δ-shaped laser pulse is assumed. 〈·〉rot denotes the rotational average of the molecules with respect to
the laser direction. For linear spectroscopy, the rotational averaging can be easily described by considering three representative
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Fig. S22. Filtered time trace of the ESA peak “A" in Fig. 4 of the main text. The resulting fitting curve is plotted as red solid line.

Fig. S23. (a) Power spectrum of the ESA peak “A” in Fig. 4 of the main text. The identified frequencies are marked and indicated at the peak position. (b) Strongest frequency
components of 206 (ESA peak A) and 210 (ESA peak B) cm−1. Both show the same decay time constant of ∼91 fs.

electric fields along the Cartesian unit vectors (9)

e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1} . [S9]

In addition, the static disorder is modelled by sampling the site energies εm from uncorrelated Gaussian distributions with a
standard deviation σm for each Bchl. All absorption spectra were averaged over 1000 realizations of site energies. By fitting
the experimental absorption spectra at different temperatures, we find the optimal set of σm: σ1 = 50cm−1, σ2 = 45cm−1,
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Fig. S24. Curve fitting results of the ESA peak “B" in Fig. 4 of the main text.
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Fig. S25. Curve fitting results of the ESA peak “C" in Fig. 4 of the main text.

σ3 = 30cm−1, σ4 = 50cm−1, σ5 = 50cm−1, σ6 = 45cm−1, σ7 = 55cm−1. The calculated absorption spectra and comparisons
with experimental ones at 77K and 300K are shown in Fig. S28.
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Fig. S26. Curve fitting results of the ESA peak “D" in Fig. 4 of the main text.
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Fig. S27. Electronic coherence between exciton 3 (blue) and 7 (red solid line). We extract the decay time constants of two coherences as 59 and 34 fs, respectively.

XIV. Calculation of 2D electronic spectra

The simulation of 2D electronic spectra involves the calculation of the third-order response function

S(3)(t, T, τ) =
(
i

~

)3
Θ(t)Θ(T )Θ(τ)tr {µ(t+ T + τ) [µ(T + τ), [µ(τ), [µ(0), ρg]]]} . [S10]
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Fig. S28. Calculated absorption spectra (red circular dots) of FMO complex at 77 K (a) and 300 K (b). The measured absorption are shown as blue circular dots.

Here, τ is the delay time between the second and the first pulse, T (the so-called population time) is the delay time between
the third and the second pulse, and t is the detection time. To evaluate 2D electronic spectra, we need the so-called rephasing
(RP) and non-rephasing (NR) contributions of the third-order response function, i.e., S(3)(t, T, τ) = S

(3)
RP(t, T, τ) + S

(3)
NR(t, T, τ).

Assuming the impulsive limit (the δ-shaped laser pulse), one obtains

IRP(ωt, T, ωτ ) =
∫ ∞
−∞

dτ

∫ ∞
−∞

dteiωtt−iωτ τS
(3)
RP(t, T, τ), [S11]

INR(ωt, T, ωτ ) =
∫ ∞
−∞

dτ

∫ ∞
−∞

dteiωtt+iωτ τS
(3)
NR(t, T, τ). [S12]

The total 2D signal is the sum of the two

I(ωt, T, ωτ ) = IRP(ωt, T, ωτ ) + INR(ωt, T, ωτ ) . [S13]

The rephasing and the non-rephasing parts include the contributions of six different Liouville pathways, which correspond to
the stimulated emission, the ground-state bleach (GSB) and the excited state absorption (ESA) (4). In order to account for
the contribution of the excited state absorption, we have extended the one-exciton Hamiltonian to the double-excited manifold.
The two-exciton Hamiltonian has [N(N − 1)/2]2 elements which can be constructed from the single-exciton Hamiltonian as
described in Ref. (10). To calculate 2D spectra, we propagate both the density matrix and the auxiliary matrices by the time
non-local quantum master equation according to the six Liouville pathways.

In ensemble experiments, the molecules are randomly oriented with respect to the laser direction and one thus needs to
compute rotational averages 〈µ2

iµ
2
j 〉rot. In this work, the Bchl molecules in the FMO complex were kept fixed, we perform the

rotational averages by sampling ten laser polarization vectors following the procedures described in Ref.(9). Following this
prescription, we calculate 2D electronic spectra of the FMO complex at different temperatures and show them in Fig. S29.
Despite the complexity in modelling the spectra, we found that the overall agreement with experiments is good (see Fig. S2, S3
and S4). The major difference comes from the higher-energy excitonic states, which is due to the impulsive limit approximation
employed in the simulation. It is noted that laser profile used in the experiments, on the other hand, is blue-shifted as compared
to the frequency range of the absorption spectrum of the FMO complex (see Fig. S1).

To efficiently compute the evolution of a specific peak as a function of the waiting time, we have combined the equation of
motion-phase matching approach (EOM-PMA) (11) with the scheme proposed in Ref. (12). By simulating 2D electronic spectra
as four-wave-mixing signals generated by two femtosecond pulses and two one-sided continuous-wave pulses, this method can
directly yield calculated 2D spectra at a specific excitation frequency ωτ and detection frequency ωt as a function of the waiting
time T . We analyze the time evolution of the cross peak between exciton 1 and 2 (CP21) by this method, and plot the traces
at different temperatures (50, 80 and 150 K) in Fig. 5 of main text. The residuals are obtained by an exponential fit, and the
subsequent electronic and vibrational coherences are extracted by curve fitting toolbox in Matlab. We present the dynamics of
electronic and vibrational coherences in Fig. S30. At 50K (Fig. S30(a)), one observes that while the electronic coherence lasts
for two periods and completely disappears at 500fs, the vibrational coherence sustains for more than 1 ps. It is further found
that the electronic coherences (150 cm−1) are dramatically damped with the increase of the temperature, and the vibrational
coherences (180 cm−1), on the other hand, are still robust when increasing the temperature, as illustrated in Fig. S30(b) and
(c).
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Fig. S29. Calculated 2D electronic spectra of the FMO complex at 50 (a and b), 80 (c and d) and 150 K (e and f). The waiting times are indicated at the top of each 2D
spectrum.

XV. Theoretically retrieved electronic coherences

In this section, we examine the calculated lifetimes of the electronic coherences of the FMO complex at different temperatures.
Due to the small scale of the simulation, a numerically exact approach, the hierarchy equation of motion (HEOM), is applicable
to calculate the population dynamics of the FMO complex. The details of the HEOM method are described in Refs. (13, 14).
To mimic the optical excitation in spectroscopy, we assume that the initial populations are equally distributed on each site of
the FMO complex. Moreover, to compare with the previous works, we also calculate the population dynamics of the FMO
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Fig. S30. Electronic (red solid lines) and vibrational coherences (black solid lines) at 50 K (a), 80 K (b) and 150 K (c). The extracted lifetimes of the electronic coherences are
90±22 fs, 80±25 fs and 45±40 fs, respectively.

complex with an initial population located on site 1, that is, ρ(t = 0) = |1〉 〈1|. The resulting population dynamics of the FMO
complex are shown in Figs. S31 to S36.
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Fig. S31. Population dynamics of the seven sites of the FMO complex at 50 K. The initial populations are assumed to be equally distributed on the seven sites.
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Fig. S32. Same as in Fig. S31, but for the initial state being fully localized on the site 1.

XVI. Quantum coherence calculated with a reorganization energy of 35 cm−1

In this section, we calculate the 2D electronic spectra and examine the coherent dynamics of the lowest-energy exciton (the
exciton 1) for the same model described in the main text, but with a smaller reorganization energy of 35 cm−1. We extract the
time evolution of the cross peak (CP21) from 2D electronic spectra and plot it as circular dotted red line in Fig. S37(a). To
retrieve the coherent dynamics, we first remove the kinetics by fitting with two exponential functions, and then analyze the
obtained residuals by the Eq. (S5). The retrieved electronic and vibrational coherences are shown in Fig. S37(b). The lifetimes
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Fig. S33. Same as Fig. S31, but for 80 K. The initial populations are equally located on all seven sites.
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Fig. S34. Same as in Fig. S32, but for 80 K. The initial population is located on the site 1.

of the electronic and vibrational coherences are found to be 137 fs and 420 fs, respectively.

XVII. Origin of the beatings in the electronic dynamics

In this section, we investigate the origin of the beatings in the electronic dynamics as observed in the measurements. To this
end, we consider a relatively strongly coupled dimer of pigment 3 and 4 of the FMO complex, which contributes to the exciton
1 and 2. The inter-pigment electronic coupling strength and the site-energy difference are -62 and 145 cm−1, respectively. The
system is coupled to a dissipative environment, the effect of which can be characterized by the spectral density. We employ the
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Fig. S35. Same as Fig. S31, but for 150 K.The initial population is equally located on all seven sites.
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Fig. S36. Same as in Fig. S32, but for 150 K. The initial population is located on the site 1.

same form of the spectral density as described in the main text, i.e., the Ohmic part with a Drude cutoff for the electronic
dephasing and the Brownian oscillator part for the vibrational relaxation.

To understand the origin of the beatings, we compare the population dynamics of two models. In the first model, the
Brownian oscillator part of the spectral density consists of two vibrational modes with close-by frequencies of 180 and 200
cm−1 (the two-mode model). In the second model, we consider the same spectral density with only one vibrational mode of
180 cm−1 as used in the main text (the single-mode model). The population dynamics of two models are displayed in Fig. S38.
We also retrieve the residuals by removing the kinetics with an exponential fit and show the corresponding oscillatory dynamics
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Fig. S37. (a) The time evolution of the cross peak (CP21). The time points are highlighted by red solid circles. (b) The retrieved electronic (red solid line) and vibrational (blue
solid line) coherences with lifetimes of 137 fs and 420 fs, respectively.

(magnified by a factor of 5) in Fig. S38. For the two-mode model (Fig. S38(a)), one can clearly observe a two-frequency beating
in the residuals, which is absent in the single-mode model (Fig. S38(b)). The simple model calculations illustrate that the
observed beatings in the signal is due to vibrational modes with close-by frequencies in the electronic ground state, rather than
due to the enhancement of the electronic coherence by vibronic couplings.

XVIII. Analysis of the non-Markovinity in the population transfers of the FMO complex

In this section, we study the non-Markovian dynamics of the energy transfer in the FMO complex. To this end, we calculate the
population dynamics of the FMO complex and quantify the non-Markovianity by the dynamics of the trace distance between a
pair of quantum states ρ1 and ρ2, defined as (15)

D(ρ1, ρ2) = 1
2tr|ρ1 − ρ2| , [S14]

where |O| =
√
O†O. For the case of the FMO complex, we set the initial states as ρ1(0) = ρ11 and ρ2(0) = ρ66, i.e., the initial

excitation is localized at site 1 and 6 (see Fig. 1(a) of the main text), respectively. The time evolution of the trace distance at
temperatures of 50 K, 80 K, and 150 K are shown in Figs. S39(a), (b), and (c), respectively. One can readily observe that the
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Fig. S38. (a) Population dynamics of the dimer model (took from pigment 3 and 4) and residuals are presented as red solid line and blue solid line. The beatings from two
vibrations at 180 and 200 cm−1 are clearly shown in (a). The population dynamics of the electronic dimer model with one particular mode at 180 cm−1 is shown as black solid
line in (b), the obtained residuals are plotted as a green solid line.

trace distance exhibits a purely monotonic decay, and the decay is faster at higher temperatures. This observation is consistent
with Ref. (15). We conclude that the exciton dynamics in the FMO complex is Markovian, even at low temperature.

XIX. Time non-local quantum master equation

The Hamiltonian describing the electronic excitations of a molecular aggregate coupled to a dissipative environment can be
written as

H = HS +HB +HSB . [S15]
Here, HS is the system Hamiltonian

HS = εg|g〉〈g|+
N∑
m

εm|m〉〈m|+
N∑
m6=l

Jml|m〉〈l| , [S16]

where |g〉 and |m〉 represent the ground state and the mth excited site with energy εm, respectively, and the Jml are the
excitonic couplings. HB is the bath Hamiltonian

HB =
N∑
m

∑
ξ

~ωmξb†mξbmξ , [S17]

which models the effect of the surrounding protein environment. Here, b†mξ(bmξ) is the creation (annihilation) operator of the
ξth phonon mode associated with site m, and ωmξ is its angular frequency. HSB describes interactions of the system with the
phonon bath in the form

HSB =
∑
m

VmWm , [S18]

where we have defined Vm = |m〉〈m| and Wm = −
∑

ξ
cmξ(b†mξ + bmξ). cmξ is the coupling constant between the mth pigment

and ξth phonon mode, and is specified by the spectral density

Jm(ω) = π
∑
ξ

~2c2mξδ(ω − ωmξ) . [S19]

We consider one overdamped mode and one underdamped mode to model the effect of the bath. The corresponding spectral
density can be expressed as

J(ω) = 2ΛΓω
ω2 + Γ2 + 4Sγvibω

3
vibω

(ω2 − ω2
vib)2 + 4γ2

vibω
2
. [S20]

Here, Λ and Γ−1 are the damping strength and the bath relaxation time of the overdamped mode, respectively. S, ωvib and
γ−1

vib are the Huang-Rhys factor, the vibrational frequency and the vibrational relaxation time of the underdamped mode,
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respectively. From fitting the linear absorption spectrum and 2D spectra, we find Λ = 120 cm−1, Γ−1 = 30 fs, S = 0.025,
ωvib = 180 cm−1, and γ−1

vib = 1000 fs.
The phonon correlation function Cm(t) of the mth site can be expressed as

Cm(t) = am(t)− ibm(t) =
∫ ∞

0

dω

π
Jm(ω) cos(ωt) coth

(
βω

2

)
− i
∫ ∞

0

dω

π
Jm(ω) sin(ωt) , [S21]

where β = 1/kBT is the inverse temperature of the environment. We evaluated Eq. (S21) analytically by using the Padé
spectral decomposition (16, 17)

1
1− e−βω = 1

βω
+ 1

2 +
Nl∑
l=1

(
ηl

βω + iβνl
+ ηl
βω − iβνl

)
. [S22]

Here ηl and νl are the prefactor and frequency of the lth Padé term, respectively. For the spectral density of Eq. (S20), one
obtains the analytical formula

C(t) = a(t)− ib(t) ,

a(t) = ΛΓ cot
(
βΓ
2

)
e−Γt + Sω3

vib
2ω̃vib

[
coth β(ω̃vib + iγvib)

2 ei(ω̃vib+iγvib)t − coth β(−ω̃vib + iγvib)
2 ei(−ω̃vib+iγvib)t

]
−4ΛΓ

β

Nl∑
l=1

ηlνl
Γ2 − ν2

l

e−νlt − 8Sγvibω
3
vib

β

Nl∑
l=1

ηlνl
[(ω2

vib + ν2
l )2 − 4γ2

vibν
2
l ]e
−νlt ,

b(t) = ΛΓe−Γt − iSω
3
vib

2ω̃vib

[
ei(ω̃vib+iγvib)t − ei(−ω̃vib+iγvib)t

]
, [S23]

with ω̃vib =
√
ω2

vib − γ2
vib.

The dynamics of an open quantum system is described by the Liouville-von Neumann equation

∂

∂t
ρtot(t) = − i

~
[H, ρtot(t)] [S24]

for the full (system and bath) density matrix ρtot(t). The reduced density matrix

ρS(t) = Trbath [ρtot(t)] [S25]

is then obtained by taking the trace of ρtot(t) with respect to the bath modes. For the numerical integration of Eq. (S25), we
applied the established method of the time-nonlocal quantum master equation (18–21)

∂

∂t
ρS(t) = −iLSρS(t) +

∫ t

0
dt′K(t, t′)ρS(t′) , [S26]

where

K(t, t′) =
∑
m

V ×mUs(t, t′)
[
−a(t− t′)V ×m + ib(t− t′)V ◦m

]
,

Us(t, t′) = T+

[
−i
∫ t

t′
dt
′′
LS(t

′′
)
]
. [S27]

Since the correlation function in Eq. (S23) takes the form of a linear combination of exponential functions, i.e., C(t) =
a(t)− ib(t) =

∑
k
(crk − icik)e−γkt, we can introduce the auxiliary density matrices

ρmk(t) =
∫ t

0
dt′e−γk(t−t′)Us(t, t′)

(
crkV

×
m − icikV ◦m

)
ρS(t′) . [S28]

With these definitions, the quantum master equation in Eq. (S26) can be rewritten as

ρ̇S(t) = −iLSρS(t)−
∑
m

V ×m
∑
k

ρmk(t) ,

ρ̇mk(t) =
(
crkV

×
m − icikV ◦m

)
ρS(t)− (γk + iLS)ρmk(t) . [S29]

This set of coupled time non-local quantum master equations was used for the calculations of the quantum dynamics and the
resulting spectra.
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Fig. S39. Time evolution of the trace distance defined in Eq. (S14) in the FMO complex at the temperatures 50 K (a), 80 K (b), and 150 K (c).
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