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Fig. 1. Our proposed system, FIRES, has a high throughput of imaging over 700 sherds per day (8 working hours) with 3D reconstruction
accuracy of 0.16𝑚𝑚. (a) Fast image acquisition device, consisting of 3 cameras, a turntable and a PC controller; (b) Two reference images of the front sides
and back sides of a batch of sherds; and (c) Reconstructed 3D sherds. With our reconstruction algorithm (Fig. 2), the 3D partial models of the front and back
sides of a sherd are first reconstructed separately and then combined to produce the complete 3D sherd model.

Archaeology presents many research challenges for visual computing. An
imperative task in archaeology is high-throughput imaging and 3D digital re-
construction of ceramic vessel fragments (or interchangeably, sherds). Sherds,
as the most common artifacts uncovered during archaeological excavations,
carry rich information about past human societies so need to be accurately
reconstructed and recorded digitally for analysis and preservation. Often
hundreds of fragments are uncovered in a day at an archaeological exca-
vation site, far beyond the scanning capacity of existing imaging systems.
Hence, there is high demand for a desirable image acquisition system capable
of imaging hundreds of fragments per day. Such a system also needs to be
portable, low-cost, and effective – the images acquired need to be of sufficient
coverage and accuracy to allow precise 3D reconstruction of the fragments.
In response to this demand, we developed a new system, dubbed FIRES, for
Fast Imaging and 3D REconstruction of Sherds. The FIRES system consists
of two main components. The first is an optimally designed fast image ac-
quisition device capable of capturing over 700 sherds per day (in 8 working
hours) in actual tests at an excavation site, which is one order-of-magnitude
faster than existing systems, while meeting all the above requirements. The
device consists of three commodity RGB cameras and a control system for
capturing the images of sherds in a batch mode with minimal user assistance.
The second component is a pipeline for 3D reconstruction of the sherds
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from the images captured by the imaging acquisition system. It can accom-
plish the reconstruction of 700 sherds in about 10 hours on a commodity
PC, achieving reconstruction accuracy of 0.16𝑚𝑚. The pipeline includes a
novel batch matching algorithm that matches partial 3D scans of the front
and back sides of the sherds and a new ICP-type method that registers the
front and back sides sharing very narrow overlapping regions. Extensive
validation in labs and testing in excavation sites demonstrated that our FIRES
system provides the first fast, accurate, portal, and cost-effective solution
for the task of imaging and 3D reconstruction of sherds in archaeological
excavations.

CCS Concepts: • Computing methodologies → Reconstruction; Match-
ing.

Additional Key Words and Phrases: Digital Humanities, Archaeology, 3D
Data Capture, Object Analysis, Photogrammetry, Efficiency

1 INTRODUCTION

1.1 Background
The human past is a finite resource. Throughout the world, ancient
sites face threats of being destroyed from settlement development,
conflict, looting, erosion, and climate changes. Archaeologists work
carefully every day to record as many data as possible about the ob-
jects and architecture from past societies, but their precise scientific
documentation efforts are time-consuming. In particular, during
excavations archaeologists usually uncover tens of thousands of
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ancient objects per month, but they face critical physical storage
limitations [Di Angelo et al. 2018; Kersel 2015]. Digital data capture
can help preserve a significant amount of crucial information about
the human past [Roosevelt et al. 2015]. Over the last decade, most
archaeologists have begun to capture 3D models of sites and objects
- data that can be used both to study the past and to preserve infor-
mation for the future. However, efficient digital capture remains as a
challenge, which we took on through interdisciplinary collaboration
between engineers and archaeologists [Cobb et al. 2019]. In this
paper we address the problem of efficient recording of sherds (i.e.,
ceramic vessel fragments uncovered in archaeological excavations),
also called fragments interchangeably.

The problem is enormous and imperative. For example, a typical
excavation in the Middle East may easily uncover between 500 and
2000 sherds each day. Most excavations can only run during sum-
mer months due to weather and working calendar constraints. The
primary focus of the excavator is to dig, thus leaving little time for
documentation. Yet, many archaeologists have limited time to work
on-site. Thus, they face the dual problems of not having enough
time to work with the objects they uncover when they are with
these materials at an excavation site, and of lacking direct access
to the information content of the objects most of the year when
they are away from the region of excavation. Hence, there is a high
demand for an efficient 3D data capture system for archaeological
objects that is capable of recording at least a few hundreds to a
thousand pieces during the 8 work hours of each day, a throughput
of roughly 2 sherds per minute.
In terms of capturing accuracy, currently, there is no general

standard on how precise the reconstructed models of sherds should
reach for their preservation in archival quality. Although [Sapirstein
2018, p. 34] proposed that a desirable system should reach a precision
of about 0.1 millimeters in the final 3D reconstruction of sherds,
most existing approaches/systems in literature were not able to
provide quantitative evaluation. Finally, most archaeologists have
limited budgets, so the solution should also be cost-effective.
In this work, we present the first solution to this problem by

contributing a fast batch-based image acquisition scheme, together
with an efficient 3D reconstruction pipeline. Our system is high-
throughput, accurate, cost-effective, easy-to-use by laymen, involving
minimal user assistance, and deployable on excavation sites. To over-
come the issue of lacking quantitative accuracy evaluation and
facilitate comparative studies in this field, we also publish a data
benchmark and provide a comprehensive quantitative accuracy eval-
uation for large-scale fragment/sherd capturing and reconstruction.

1.2 State of the Art
There are a number of previous works on capturing images of 3D
objects for the purpose of 3D reconstruction, including archaeologi-
cal fragments. These include the photogrammetry approach [Porter
et al. 2015], structured light scanning [Ahmed et al. 2014], and laser
scanning [Magnani 2014] techniques, to name just a few. Two main
issues that hinder the efficiency and throughput of most existing
data acquisition systems are that: 1) they can only capture and pro-
cess a single fragment in each phase of scanning. The acquisition of
each fragment, hence, could take several minutes to finish, including

the time of manually flipping over the fragment so that both sides
of it can be photographed or scanned; and 2) they require tedious
manual operations to register the two scanned sides together to get
complete models, especially for the step of removing extraneous
parts of reconstructed models in each side (Refer to Sec. 2.1). Hence,
it is critical to be able to capture images of multiple sherds simulta-
neously and reconstruct their complete models automatically for
improving the processing throughtput.
Related to archaeological fragment acquisition, two previous

methods attempted to speed up acquisition by scanning multiple
sherds simultaneously [Fan et al. 2016; Karasik and Smilansky 2008].
The method in [Karasik and Smilansky 2008] uses a frame to support
six hanging clips each holding a sherd. This method is relatively fast
(about 1 min for each sherd). However, it cannot produce complete
3D models because part of a sherd is always occluded by the clip
holding it. In the second method [Fan et al. 2016], multiple sherds
are placed flat on a table and are scanned with structured light. This
method needs to compute a set of optimized camera viewpoints to
ensure a complete coverage and to plan a travel path of the camera
among the viewpoints, resulting in a slow scanning speed, typically
taking about 10 mins to scan just one side of each sherd on average.
We also acquire images of multiple sherds placed on a table in a
batch mode but use a different imaging scheme to achieve much
higher acquisition throughput.

1.3 System overview
Our imaging and reconstruction system consists of two main com-
ponents: a custom-built image acquisition device and an automatic
3D reconstruction pipeline. The acquisition device efficiently cap-
tures the images of multiple fragments in a batch mode, and the
reconstruction pipeline performs multi-view reconstruction and
automatic front-and-back matching and registration to obtain the
complete 3D models of fragments from the acquired images.
Image acquisition scheme. The image acquisition device con-

sists of three consumer-grade cameras installed on an aluminum
frame, taking pictures on multiple fragments placed flat on a control-
lable turntable (See Fig. 1 (a)). The only manual operation needed
during the acquisition process is to place the fragments, and flip
them to the other side after the pictures of one side are taken (See
Fig. 1 (b)). For each side, the turntable turns a full circle with 16
stops for the 3 camera to take pictures from different perspectives.
Therefore, 48 photos are taken in total for the front sides. Similarly,
48 photos of the back sides are taken.

Reconstruction pipeline. The adoption of the batch-mode of
imaging in our setting presents some unique challenges in 3D re-
construction. Specifically, new techniques are needed to match the
front sides of the fragments with their corresponding backsides; and
then a reliable algorithm is needed to register the corresponding
front and back side of each fragment to produce its complete 3D
model. The reconstruction pipeline has the following three steps, as
illustrated in Fig. 2.

(1) Reconstructing partial 3D scans for both sides.After mul-
tiple images are obtained for a group of fragments, first their
front sides and then the back sides, the reconstruction starts
with applying image segmentation and Multi-view Stereo
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Fig. 2. Overview. (a) Given the images of two sides, we first perform multi-view reconstruction with selected image regions of two sides with high efficiency
(Section 4). (b) With the reconstructed models, we then separate the models into individual fragments in each side and extract their maximum 2D contour
(Section 4.1). (c) Based on these 2D contours, we propose a matching strategy to find correct matches of different fragments between their two sides. For each
matching pair, local refinement is performed to get a complete and tight model (Section 4.2)

(MVS) to obtain the partial 3D models of the front and back
sides of fragments in each batch, respectively.

(2) Matching partial scans from batches. Next, to obtain each
fragment’s complete 3D model automatically, we develop a
new contour-based matching method to find the pairing of
each fragment’s front side with its back side. This matching
result also provides an initial alignment for the next regis-
tration step. Note that this front-back matching task is an
outstanding research issue that has previously been encoun-
tered in a similar setting [Fan et al. 2016].

(3) Registering partial 3D scans. Finally, after all the front-
side scans are paired with their corresponding backsides,
we register them to produce a complete 3D model using a
novel, improved ICP model, called the bilateral boundary ICP
(BBICP) method. This registration problem is particularly
challenging because the front-side scans and back-side scans
typically have small overlap. Existing ICP methods fail to
achieve required robustness and accuracy due to such small
overlap, as we will show later.

The details of these two components of our system will be pre-
sented in Section 3 and Section 4. Note that the design considerations
of the two components are closely related. The imaging component
is required to provide images with sufficient coverage and clarity to
ensure that maximum reconstruction accuracy can be achieved in
the 3D reconstruction phase. Meanwhile, the reconstruction pipeline
must address difficulties arising from the particular batch mode em-
ployed during image acquisition.

1.4 Technical contributions
Wemade the following contributions in developing the first practical
system, FIRES, for efficient imaging and reconstruction of sherds.

• Efficient image acquisition: We developed a fast image
acquisition device that can capture and process images of
multiple sherds simultaneously with minimal manual assis-
tance (i.e. placing and flipping sherds on the scanning table).
The device is capable of imaging over 700 sherds per day (in
8 working hours), which is a speedup of one order of magni-
tude over existing image acquisition systems and meets the
throughput demanded by archaeological field work.

• New methods for 3D reconstruction: (1) To support the
batch mode of image acquisition, we develop a matching
algorithm to match the 3D front-side partial scans and the
backsides from their batch acquisition, which is an outstand-
ing problem in the literature; and (2) we develop an improved
ICP method, called a Bilateral Boundary ICP (BBICP), for ro-
bustly and accurately registering the corresponding front and
back sides of each fragment’s 3D partial scans to produce its
complete 3D model.

• A dataset for sherd acquisition and reconstruction: To
comprehensively validate the efficiency and accuracy of the
proposed system, we built a dataset containing 123 fragments
of different geometries, sizes, and textures. This dataset will
be released to facilitate comparative studies in future research.
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2 RELATED WORK

2.1 Image acquisition of sherds
Current data acquisition techniques can be generally categorized
into 1) photogrammetry [Porter et al. 2015; Sapirstein 2018], 2)
structured light scanning [Ahmed et al. 2014; Karasik and Smilan-
sky 2008], and 3) laser scanning [Magnani 2014] based systems.
Because of their cost, portability, and ease of usage, photogramme-
try devices are more widely adopted in archaeology [Di Angelo et al.
2018]. In order to get a complete reconstruction, each object needs
to be captured through multiple views. For example, the piece is
often held to stand with the help of putty or an eraser. This setting,
however, introduces tremendous manual labor and time during data
acquisition. In the data processing stage, the merge of different sides
of the objects also needs a laborious trimming to remove extrane-
ous material. Users face the problems of frequent interactions and
computer-processing time during the capturing and post-processing
period to get complete models. Therefore, these existing approaches
cannot scale beyond a few dozen objects per day.

To realize a larger scale data acquisition, [Karasik and Smilansky
2008] use a specially designed frame to hold multiple fragments for
faster scanning. But this system fails to get complete models because
part of the fragments are occluded by the frame. [Fan et al. 2016]
propose a 3D scanning system that can digitize fresco fragments
by scanning then merging the the two sides of multiple pieces.
However, the view planning process is time-consuming, making the
acquisition less efficient. Another unsolved problem of this system,
as the authors stated, is how to automatically find matches between
the two partial 3D scans of the front side and back side of each
fragment for registering them to get a complete reconstruction.

There are also hardware systems that combine multiple types of
devices to provide hybrid solutions to record different aspects of
a target object. However, to our best knowledge, all existing sys-
tems [Hodan et al. 2017; Kaskman et al. 2019; Kasper et al. 2012;
Singh et al. 2014] in this category focus on reconstructing only visi-
ble region of objects on the turntable rather than getting complete
3D models. Also, most of them do not consider efficiency to be a key
requirement, and hence, involve tremendous labor during acquisi-
tion or post processing. So far, efficient large-scale data acquisition
of pottery fragments remains an outstanding and challenging issue.
We tackle this challenge by developing an image acquisition scheme
that scans the front sides and then back sides of multiple sherds laid
flat on a turntable.

2.2 Registration for 3D reconstruction
Since the image acquisition system captures the front sides and
back sides of a group of fragments separately, an out-of-box MVS
algorithm (i.e. OpenMVS [Cernea 2020]) is used to produce the
partial 3D models for the front side and back side of each fragement
separately. Hence, a 3D model registration method is needed for
merging the front and back partial 3D scans to produce the complete
3D model of each fragment. A challenging issue here is that the
these two partial scans only share a small overlap region, i.e. along
the fractured strip surface. This poses a significant challenge to
existing methods for reliable geometric registration.

Geometric registration [Tam et al. 2012] can be generally catego-
rized into two types: global registration that finds a rough transfor-
mation between two surfaces, and local refinement that computes
a precise transformation. Global registration methods are usually
based on matches of local feature descriptors [Rusu et al. 2009; Zhou
et al. 2016], tuples of points [Aiger et al. 2008; Mellado et al. 2014],
or the branch-and-bound framework[Yang et al. 2015], while local
refinement algorithms are often based on the iterative closest point
(ICP) algorithm and its variants [Chetverikov et al. 2002; Pomerleau
et al. 2013; Ying et al. 2009]. Branch-and-bound based methods are
often very expensive and prohibitive in handling very dense point
sets. Feature-based methods rely on salient texture or geometry
features to find correct correspondence and transformations, which,
unfortunately, are often unavailable on fragmented pieces. Tuples of
points based methods and local refinement algorithms are sensitive
to how much the two surfaces overlap with each other. However,
between the front and back sides of each fragment, such an overlap
is generally quite small.
ICP is also used in [Brown et al. 2008] to align the front side to

the back side of fresco fragments by assuming all the pieces are flat.
This strategy is not suitable for sherds because sherd surfaces have
curved shapes that are more complex than frescoes. Hence, it is hard
to directly apply the existing ICP methods to robustly registering
the two partial scans of a sherd in our setting.

In this work we present two novel methods for 3D reconstruction
– one for matching the front sides and back sides of the fragments to
provide a good initialization for registration, and another for robust
fine registration of the front and back partial 3D scans to form a
complete 3D sherd mode in the presence of small overlap.

3 IMAGE ACQUISITION SCHEME
Our image acquisition scheme consists of a customized hardware
system (see Fig. 1 (a)) and a batch capturing strategy. It is designed
to meet the following requirements for high-throughput sherd cap-
turing and reconstruction: (1) efficient acquisition; (2) sufficient
coverage for accurate reconstruction; (3) minimal manual labor; (4)
low cost; and (5) portable and easy to deploy in the field.

The hardware of the system has three main parts:

• A turntable consisting of a stepper motor, a stepper motor
driver, an Arduino board [Badamasi 2014], and a flat board
in printed ArUco patterns [Garrido-Jurado et al. 2014] for
camera calibration;

• Three cameras mounted on an aluminum frame. They are at
different heights to provide sufficient coverage of the vertical
viewing range.

• A controller module running on a PC that controls the mo-
tion of the turntable and synchronizes the motion with the
cameras shutters.

Acquisition procedure. To capture a group of fragments in a
batch mode, we place them flat on the turntable, and first take a
set of pictures to capture their exposed sides, to be called the front
sides. Then the fragments are flipped manually on the turntable to
photograph their back sides. We call all these pictures a batch. Three
cameras are used to take the pictures and the turntable makes 16
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stops to complete a full circle of rotation, i.e. with a rotation angle of
22.5◦ for each move. Therefore, each batch has 3 × 16 = 48 images.
The capturing of each batch of 48 images is controlled and syn-

chronized by a PC controller. Once captured, the batch of images
are transmitted to a PC for 3D reconstruction.

Efficiency and cost.We have tested this setup by placing 4 ∼ 18
fragments on the turntable based on the size of fragments. Taking
the 9-piece experiment as an example, the system captures both
sides in less than 5 minutes, including the time to manually place
and flip the fragments. The average time of capturing both sides of
one sherd is about 0.5 minutes. The whole system is portable and
can easily be assembled. The hardware costs about $2, 500 in total.

Design justification. In arriving at this setup of devices, we have
tested different configurations with different numbers of cameras
and images to take in a full circle. Our tests showed that the setup
with three cameras provides better coverage in terms of vertical
view angles for faithful 3D model reconstruction than those with
one or two cameras; and using more cameras would unnecessarily
increase the cost and complexity of the capturing device without
noticeable improvement of reconstruction accuracy. Meanwhile,
we found that taking 16 images by each camera in a full circle
provides better coverage of the side view for accurate coverage than
using substantially fewer images, while increasing the number of
images to more than 16 will unnecessarily increase the time of image
processing and without bringing noticeable accuracy improvement.
Details of these experiments can be found in the supplementary.
Scale consistency. Image-based reconstruction often has an is-

sue of scale ambiguity. Without a reference metric, 3D structures
reconstructed from images taken in different passes may differ by a
global scaling factor. To resolve this ambiguity, we used the ArUco
codes on the patterned board, which have known sizes, to normalize
the scale of the reconstructed models in world coordinates. More
details of this scale calibration procedure can be found in the sup-
plementary document.

Sliding prevention.When the turntable rotates with jerky “start
stop” motions with large acceleration, the fragments may slide on
the table due to lack of friction, causing errors in 3D reconstruction
by MVS. To address this issue, we set the angular acceleration of the
turntable to be 7 deg/𝑠2, small enough to prevent the fragments from
sliding. Meanwhile, the maximum angular speed is 12 deg/𝑠 , also
small enough not to cause centrifugal movement of the fragments.

4 RECONSTRUCTION PIPELINE
Our reconstruction pipeline has three steps:

1. Reconstruct partial 3D models from images;
2. Match front- and back-sides of fragments from scan batches;
3. Register the two sides of a sherd into a complete 3D model.
In Step 1, given a set of images (e.g., the front side of fragments

captured as a group), the goal is to reconstruct partial 3D models of
these fragment. We first segment the sherd regions in these images
and generate their masks using UNet [Ronneberger et al. 2015].
From these segmented regions, the partial 3D models (front side) of
all the fragments on the table are then reconstructed using openMVS
[Cernea 2020]. These result in multiple disjoint point clouds, each
corresponding to one fragment (see some examples in Fig. 2 (a)).

Next, after these fragments are flipped, their back sides are processed
similarly to produce partial 3D models (Fig. 2 (b)).

Since this Step 1 is a direct application of an existing MVSmethod,
it reliably produces partial models. The challenges are in Steps 2
and 3, which require substantial modification/improvement from
existing 3D reconstruction technologies. We elaborate these two
steps in the following Sections 4.1 and 4.2.

4.1 Matching Front and Back Sides

With the reconstructed 3D partial models (i.e., the front and
back sides) of the captured batches of fragments, before being able
to registering the two sides together, we need to solve a pairing
problem that connects each fragment’s front side with its respective
back side. We call this problem of finding corresponding matches
from two batches of 3D partial models a front-backmatching problem.
Note that this problem was encountered in [Fan et al. 2016] (which
also attempts to scan fragments of fresco in groups) but was posed
as an unsolved problem.
A naive but immediate solution to circumvent this matching

problem is to ensure all the fragments remain in the (almost) same
positions when being flipped over, and match the partial scans using
their locations. However, during field tests, it was found that this
strategy is error-prone, because operators sometimes would tend
to adjust the positions of the pieces after flipping in order to better
place and separate them, especially when there are many fragments
in a group. This would then cause mismatches and result in failed
reconstruction.
We present a shape matching scheme by developing 2D shape

descriptors for partial models. This matching scheme is automatic
and reliable. And it also provides an initial alignment (between the
front and back sides) for the subsequent registration task.

Our observation is that most sherds, although curved in general,
are relatively flat and can be approximately fitted by planes (e.g.,
through PCA). With this assumption, the 3D contour of a fragment
can be approximated by the contour of its 2D projection on its fitting
plane.We can then use a shape descriptor to encode each 2D contour,
and then compare shape descriptors of these 2D contours to identify
the pairing between each front side and its corresponding back side.
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Fig. 3. Contour description.

Shape descriptors of 2D con-
tours. Let C denote a 2D contour,
represented by a closed simple
polygon with a sequence of𝑛𝑐 ver-
tices {𝑣𝑖 }𝑛𝑐−1𝑖=0 which are ordered
clockwise with respect to the con-
tour and equally spaced along
the contour. Using turtle graph-
ics [Sederberg et al. 1993], we
represent the polygon by the se-
quence of turning angles {\ }𝑛𝑐−1

𝑖=0
at its vertices, where the turning angle is defined to be the angle
between the two edges incident to a vertex of the polygon, as shown
in Fig. 3. Note that the sequence of edge lengths in turtle graphics is
unnecessary here because the vertices are equally spaced so all the
edge lengths are equal, denoted by a constant ℓ . Evidently, the shape
and size of the 2D shape C is completed encoded by the sequence
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{\ }𝑛𝑐−1
𝑖=0 plus the common edge length ℓ . Then we define a sequence

of the accumulative sums of the turning angles, {Θ𝑖 }𝑛𝑐−1𝑖=0 , where
Θ𝑖 =

∑𝑖
𝑗=0 \ 𝑗 . The vector Θ = (Θ𝑖 )𝑇 ∈ R𝑛𝑐 is called the shape

descriptor of the 2D contour C. Here we use the accumulative sums
of the turning angles as a shape descriptor, rather than the turning
angles themselves, because the former is more robust to noise and
small shape perturbation than the latter.
Since the shape descriptor Θ = (Θ𝑖 )𝑇 depends on the choice of

the starting vertex 𝑣0 of the contour C, C has 𝑛𝑐 equivalent shape
shape descriptors, each determined by the starting vertex 𝑣0 chosen.
Hence a shape descriptor is denoted as Θ(C, 𝑣0), to emphasize this
dependence.

Computing contour shape descriptors. For the front 3D partial
scan of a pottery fragment represented as a point cloud P = {p𝑖 },
we first scale it to fit in a unit cube, then derive its projection onto
its fitting plane obtained via PCA analysis [Wold et al. 1987], i.e.
the plane passing through the centroid of the point cloud P and
with its normal vector being the eigenvector associated with the
smallest eigenvalue of the co-variance matrix of P. We then use
Alpha Shape [Bernardini and Bajaj 1997] to extract the 2D contour
of the projected 2D point cloud, and uniformly sample 𝑛𝑐 points
(we set 𝑛𝑐 = 200) along the contour for computing the descriptor of
the contour. Note that, the 2D contour of the back 3D partial scan
of a pottery fragment is obtained in the same way, except that their
derived 2D contour needs to be flipped before computing its shape
descriptor because the shape descriptor is defined for boundary
vertices ordered counterclockwise.

Contour matching. Suppose we have two groups of recon-
structed 3D partial scans P = {𝑃𝑖 }𝑛−1𝑖=0 and Q = {𝑄 𝑗 }𝑛−1𝑗=0 , respec-
tively for the front sides and back sides of a group of 𝑛 fragments
scanned in a batch. We first extract their projected 2D contours,
denoted as the groups CP and CQ , and compute their shape descrip-
tors of each contour in both groups. Recall that the contours in C𝑄
need to be flipped before computing their shape descriptors.

Next, for each scan 𝑃𝑖 in the front batch P, with its 2D projected
contour denoted as𝐶𝑃𝑖 , we run through the set Q of back side scans
to find contour𝐶𝑄 𝑗

whose shape descriptor matches that of𝐶𝑃𝑖 the
best, i.e. with the minimummatching error among all the scans in Q.
Specifically, we use 𝐿2 norm to measure the difference 𝐸 (𝐶𝑃𝑖 ,𝐶𝑄 𝑗

)
between the shape descriptors of two contours as two vectors. That
is

𝐸 (𝐶𝑃𝑖 ,𝐶𝑄 𝑗
) = min

0≤𝑘≤𝑛𝑐−1

Θ(𝑃𝑖 ; 𝑣0, 𝜒) − Θ(𝑄 𝑗 ;𝑢𝑘 )

2 , (1)

where 𝑣0 is the first vertex of 𝐶𝑃𝑖 , and 𝑢𝑘 the 𝑘-th vertex of 𝐶𝑄 𝑗
.

4.2 Registering the Front and Back Sides
After each fragment’s front and back sides are paired, we then
register them to get a complete 3D sherd model. Note that this is
a very challenging problem because the two sides of a fragment
usually share very small overlap, and the fracture regions often
lack geometric features. In the previous Step 2, the shape descriptor
matching produces a correspondence between the vertices of the
two contours. This provides an initial alignment for registration.
Specifically, from the vertex correspondence, we align the centroids
of the two 3D contours and then use the algorithm of [Arun et al.

(a) (b)

(c) (d)

Fig. 4. Contour matching. (a) 2D contours for the front side (blue) and
back side (red); (b) Matching of the two 2D contours; (c) The plots of the
shape descriptors of the two matched contours; and (d) The initial
alignment of the two corresponding 3D partial scans as suggested by the
2D contour matching. Here, for better visualization, only the rim region of
the front scan on the top is shown (in red) in order to avoid occluding the
back scan (shown in yellow) at the bottom.

1987] to find an optimal rigid transformation to align the partial
3D scans 𝐶𝑃𝑖 and 𝐶𝑄 𝑗

. This serves as a good initialization for the
subsequent iterative registration.
Because of the small overlap between the two sides of the frag-

ment, and the lack of salient textures and features in these regions,
most existing registration methods tend to fail in their registra-
tions. With common registration algorithms, it is hard to ensure
that points (or a feature) from one side used in registration have
proper corresponding points (or a feature) on the other side. Hence,
we propose a boundary-based ICP method that utilizes 3D boundary
points to iteratively search and minimize their distances to their cor-
responding points on the other side. Here the 3D boundary points
refer to those points on the boundary of the front or back sides of
the open point cloud surfaces. We use these 3D boundary points
rather than all the points because the common overlap regions usu-
ally contain boundaries, hence, it is more likely for such boundary
points to find their corresponding points (which may or may not be
on boundary) from the other side.

3D boundary extraction. Each reconstructed front or back side
of a sherd is a point cloud surface of open-disk topology, and there-
fore, has a boundary that contacts, or is near, the holding board
of the turntable at the bottom. To extract the boundary points of
a partial 3D scan, we followed the strategy in [Linsen 2001], but
adopted the following procedure to improve efficiency. Given a
reconstructed point cloud patch 𝑃 , we identify boundary points
by checking consistency from different views. First, a point 𝑝 in 𝑃
is projected to a pixel in input images where this point is visible.
With the aid of masks generated for MVS reconstruction, we can
determine whether a point in 3D is a candidate boundary point in
one view. Specifically, we check the distance from 𝑝’s 2D projected
point to the contour of the image mask. If this distance is smaller
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than a threshold in all the images in which the point is visible, we
take this point as a candidate boundary point. In this way, we ob-
tain a candidate set of boundary points, and remove non-boundary
points to improve efficiency. The candidate set may still contain
some outliers (i.e., some non-boundary points that are very close to
the boundary contour). We then apply the widely adopted boundary
extraction method [Linsen 2001] to this candidate set to extract the
final set of boundary points.
Bilateral Boundary ICP (BBICP). Next we use the extracted

boundary points for model registration, i.e. computing a rigid trans-
formation consisting of a rotation 𝑅 ∈ 𝑆𝑂 (3) and a translation
𝑇 ∈ R3. Given two point clouds (front- and back-side partial mod-
els) P and Q as well as their boundary points BP and BQ , the
registration is performed by minimizing the sum of two terms: (1)
one being the sum of the 𝐿2 distances from the points in BP to their
corresponding closest points in Q , and (2) the other being the sum
of the 𝐿2 distances from the points in BQ to their corresponding
closest points in P.

We formulate this problem as an ICP optimization problem based
on the correspondences of the boundary points and the point sets.
Specifically, for each point 𝑏𝑘

𝑃𝑖
∈ 𝐵𝑃𝑖 , we find its closest point in 𝑄 𝑗 ,

and denote the found correspondences as𝐾1 = {(𝑏𝑃𝑖 , 𝑞 𝑗 )}. Similarly,
for each point 𝑏𝑙

𝑄 𝑗
∈ 𝐵𝑄 𝑗

, we find its closest point in 𝑃 , and denote
the correspondences as 𝐾2 = {(𝑝𝑖 , 𝑏𝑄 𝑗

)}. We iteratively find the
correspondences 𝐾1 and 𝐾2 and use the optimization method in
[Ying et al. 2009] to compute the final transformation by iteratively
minimizing

𝜖𝑘 (𝐾1, 𝐾2) =
𝑚−1∑︁
𝑖=0

| |𝑅𝑘𝑏𝑃𝑖 +𝑇𝑘 − 𝑞𝑖 | |2 +
𝑛−1∑︁
𝑗=0

| |𝑅𝑘𝑝 𝑗 +𝑇𝑘 − 𝑏𝑄
𝑗
| |2 .

(2)

The “Boundary registration” sub-figure in the bottom right of
Fig. 2 illustrates an example of this bilateral boundary registration.
The two sides of a fragment are registered with the help of their
boundary points (in red and blue, respectively). To better illustrate
the idea of this BBICP algorithm, a 2D example is illustrated in
Fig. 5. To register the red and the black shapes, we firstly find
the correspondences between the black dots (boundary points of
the black shape) and their nearest points in the red shape (the
corners, marked with dashed black circles); then vice versa in the
other direction. Through iteratively finding correspondence and
solving relative transformation between the shapes, we optimize
the registration between the red and black shapes. Finally, the red
and black shapes are registered.

Fig. 5. 2D illustration of BBICP. The black points and red boundary points
are matched with their corresponding points marked with dashed circles in
the red scan and black scan, respectively.

5 EXPERIMENTS
We quantitatively evaluated our FIRES system. Since there is no
public 3D fragment dataset available for systematic evaluation of
such a capturing solution, we created a dataset and will release it
to the public for comparisons (Sec. 5.1). With this dataset, FIRES
is evaluated from two aspects: acquisition efficiency (Sec. 5.2) and
reconstruction accuracy (Sec. 5.3). Our system was also tested and
used at the excavation sites in Armenia. These field experiments,
which further validated the efficacy of our system, will be reported
in Sec. 5.4.

5.1 Dataset
We have built a sherd dataset to evaluate/compare sherd acquisition
and 3D reconstruction. The dataset consists of the 3D scans of 123
fragments (some of which are shown in Fig. 6), with various shapes,
sizes (2𝑐𝑚 ∼ 15𝑐𝑚 in diameter), and thicknesses (0.3𝑐𝑚 ∼ 1𝑐𝑚).
These fragments were obtained by breaking several potteries, whose
original geometry before breaking was also scanned. The 3D scan
was done using a high-end EinScan Pro 2X [EinScan 2020] scanner
in the fixed scan mode (under the highest precision), with a reported
accuracy of 0.04𝑚𝑚. When scanning each fragment, we put it on
the 3D scanner’s turntable to get 12 scans of its front side in a circle;
then clipped the fragment to scan it vertically; and finally, scanned
its back side. These partial scans were then merged to get a complete
3D model using software provided with the scanner. This dataset
will be made public for comparative studies in fragment acquisition
evaluation and related research such as 3D sherd reassembly and
restoration.

Fig. 6. A gallery of our reconstructed 3D sherds.

5.2 Acquisition Efficiency
Efficiency Estimation.We conducted lab experiments to scan all
the 123 fragments in the dataset. The fragments were captured in 15
groups, with an average group size of 8.2 fragments. The turntable
completes a full circle with 16 stops, in 1.7 minutes, capturing 48
images for the front sides of the fragments in one group. Then
similarly, its uses 1.7 minutes to image the back sides of the same
group. The manual operations to flip or replace a batch of sherds on
the board took about 1.2 minutes to finish. Hence, given the average
group size of 8.2 sherd pieces, scanning each piece’s both sides
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(a) (b)

Fig. 7. 3D scanning and organization of fragments in our dataset. (a) shows
the scanning process of fragments using EinScan, where a fragment is fixed
upright on the turntable by a clip. (b) shows that all fragments are stored in
a set of layered storage boxes.

took roughly 1.7×2+1.2
8.2 = 0.56 minutes (34 seconds). This scales to

scanning about 106 fragments in one hour, or about 800 fragments
in one day of 8 working hours. The actual field test of the FIRES
system at an excavation site in Armenia (Section 5.4) delivered an
average throughput of capturing over 700 fragments in each 8-hour
working day, during which short breaks were taken by the operator.
Such capturing efficiency well meets the throughput requirement
in archaeological fieldwork.

Table 1. Comparison of data acquisition efficiency per hour by different
methods. Throughput: the number of fragments which can be scanned
within one work hour. Fragment type: the type of fragments used by the
corresponding method; Method: capturing techniques, including
Structured Light scanner(SL), Laser scanner(L) and Photogrammetry(P).

Throughput Fragment type Method
[Brown et al. 2008] 10 Fresco SL
[Brown et al. 2012] 20 Fresco SL
[Fan et al. 2016] 3 Fresco SL
[Magnani 2014] 1 Lithic L
[Magnani 2014] 6 Lithic P

[Porter et al. 2015] 5 Lithic P
[Karasik 2008] 13 Pottery P

Our EinScan scanner 3 Pottery SL
Ours 106 Pottery P

Efficiency Comparison. We compared efficiency of our system
with several recent systems reported in literature. Table 1 lists differ-
ent methods’ estimated throughput within one hour. Among these
methods, the design of [Porter et al. 2015] is most similar to ours:
their rig consists of a camera and a turntable. But this system uses
a rubber eraser to support the stand of objects on the turntable,
and it also needs users manually adjusting camera positions and
manually performing post-processing operations to remove the ex-
traneous parts. Manual operations are also required in [Magnani
2014]. All these requirements hamper their acquisition efficiency.
Note that for the methods designed for fresco fragment digitization
[Brown et al. 2012, 2008; Fan et al. 2016], although they tend to
fail in capturing some sherd fragments whose geometry is curved

(because they assume the bottom side of fresco fragments is almost
planar), we still list them in this table for efficiency comparison. The
pottery fragment capturing system [Karasik and Smilansky 2008]
cannot produce complete sherd models automatically, because of
the occlusion from the clip that holds the fragments. All these issues
make these methods fail to meet the archaeological requirements
of digitalization. Please refer to Section 4 of the supplementary for
more details about how these hourly throughput numbers were esti-
mated. Note that a few recent acquisition systems, designed to scan
general objects, such as [Kaskman et al. 2019], were not included in
this comparison. Because they usually don’t consider the contact
areas between scanned objects and the holder of the objects, which
means their methods also cannot get complete models.

5.3 Reconstruction Accuracy
To evaluate reconstruction accuracy, we adopted four widely used
metrics : Accuracy (Accu), Completeness (Comp),Mean Absolute Error
(MAE), and Error Standard Deviation (SD). We adopted their common
definitions from the widely used Middlebury Benchmark [Seitz
et al. 2006]. Definition details can be found in Section 3 of the
supplementary file. Given the reconstructed point cloud 𝑅 of a sherd,
we align it with its corresponding scanned ground truth model 𝐺
in our dataset, using FGR [Zhou et al. 2016] (for global alignment
first) and ICP [Besl and McKay 1992] (for local refinement) . The
reconstruction accuracy is then measured by the difference between
𝑅 and 𝐺 . Note that the methods listed in Table 1 only had their
data acquisition efficiency reported, without quantitative accuracy
evaluation. Therefore, we could not perform a comparison, and only
reported accuracy of our FIRES system.
Table 2 reports the reconstruction accuracy of all the sherds in

our dataset, captured in 15 groups. Our method has an average
reconstruction accuracy 𝑇𝑎 = 0.15𝑚𝑚, completeness 𝑝𝑐 = 96.00%,
and mean absolute error 𝑀𝐴𝐸 = 0.09𝑚𝑚. Note that according to
the survey provided by the Middlebury Benchmark, the state-of-
the-art (SOTA) MVS algorithms reach pixel level accuracy, namely,
90% reconstructed points have accuracy within about one pixel [Fu-
rukawa and Ponce 2009]. Our reconstruction reaches a similar ac-
curacy: the average size of fragments in our experiment is about
60𝑚𝑚 wide, which occupies about 400 pixels in the capture images.
This means a pixel in the images can represent about 0.15𝑚𝑚 (i.e.,
0.15𝑚𝑚/𝑝𝑖𝑥𝑒𝑙 = 60𝑚𝑚/400𝑝𝑖𝑥𝑒𝑙𝑠), which is the average accuracy
reported in Table 2. Note that our reconstruction error includes
those from both our MVS and registration steps; our registration
does not introduce additional significant error.
BBICP vs other Registration Methods. A key component of

our proposed pipeline is the BBICP registration algorithm, which
enables an automatic and effective model reconstruction. We com-
pared BBICP with the three most widely used registration methods:
1) FGR [Zhou et al. 2016], 2) Super 4PCS [Mellado et al. 2014], and 3)
ICP [Besl and McKay 1992], by replacing BBICP with each of them
and comparing the final reconstruction accuracy.

In our experiments, these 3methods yield 5.11𝑚𝑚, 4.84𝑚𝑚, 4.71𝑚𝑚
accuracy respectively, with only 11.37%, 10.03%, 18.69% complete-
ness. They failed to build correct correspondences to align the two
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(a) Initial position. (b) FGR
[Zhou et al. 2016]

(c) Super 4PCS
[Mellado et al. 2014]

(d) ICP
[Ying et al. 2009] (e) Ours

Fig. 8. Comparison of different registration algorithms. (a) The initial alignment of the front and back partial 3D scans. While our method is successful in this
case, all the baseline methods fail to register the two scans, as there is obvious sliding error along the rim of the fragment.

Table 2. Quantitative accuracy evaluation of fragments reconstructed by
FIRES. The 123 fragments in our dataset are evaluated, in 15 groups. ID:
Group ID; Num: the number of fragments in a group; Acc.(mm): average
Accuracy of reconstructed fragments in a group (smaller is better);
Comp.(%): average Completeness of reconstructed fragments in a group
(higher is better); MAE(mm): average Mean Absolute Error of reconstructed
fragments in a batch; SD(mm): average Standard Deviation of
reconstructed fragments in a group.

ID Num Accu.↓ Comp.↑ MAE↓ SD↓
1 9 0.14 98.5 0.08 0.06
2 9 0.14 98.39 0.08 0.06
3 7 0.15 93.74 0.09 0.06
4 9 0.15 97.27 0.08 0.07
5 8 0.11 98.47 0.07 0.06
6 8 0.12 97.64 0.07 0.05
7 8 0.13 96.80 0.07 0.07
8 9 0.19 95.65 0.10 0.07
9 9 0.19 94.42 0.10 0.08
10 7 0.13 98.53 0.08 0.06
11 7 0.16 90.88 0.09 0.07
12 4 0.20 90.75 0.10 0.10
13 4 0.16 95.92 0.09 0.11
14 7 0.15 98.12 0.09 0.09
15 18 0.15 94.95 0.08 0.06
Mean 8.2 0.15 96.00 0.09 0.07

sides of fragments. In contrast, our method can build high-quality
models with 0.15𝑚𝑚 accuracy and 96.00% completeness.
In these experiments, through the initial front-back matching

(Step 2), good initial global alignments between the front and back
sides were obtained. However, these three baseline methods (FGR,
Super 4PCS, and ICP) still often failed to correctly register the two
sides. This is because the overlapping regions of the two scans are
small and these fracture regions contain very few distinct features.
Therefore, it is hard for these baseline methods to build reliable
correspondences. In contrast, our BBICP can handle such cases
more robustly. By building boundary-based correspondences, our
method was able to identify more overlap regions stably and yield
more accurate registration. Fig. 8 shows a registration example by
different methods.

Archaeological Needs. In archaeology communities, the impli-
cations of automatic 3D scanning of fragments has not been well

explored. The field is still developing requirements/standards on
how accurately pieces should be scanned. Given that almost all prior
work for documenting and measuring sherds has been undertaken
manually, any insertion of digital methods automatically increases
accuracy significantly above the state-of-art in the field. The 3D
models we created are more than sufficient for extracting 2D draw-
ings for archaeological publications. Looking forward, our goal is to
be as accurate as possible for the purposes of long-term archiving.
We also plan to experiment with new analytical methods that are
made possible by this new large-scale dataset, such as reassembling
whole vessels back together. These future efforts will, in turn, in-
form the field of archaeology about whether our current accuracy
is already sufficient for these more detailed analyses or if we need
to continue to improve accuracy.

5.4 Field Experiments
This FIRES system was deployed for use at the excavation site of the
Ararat Plain Southeast Archaeological Project (APSAP) in Armenia
in the summer of 2022 for two and half months. During this period,
over 20,000 ceramic fragments were excavated, requiring rapid digi-
tal recording for downstream analysis and other applications. Fig. 9
shows the excavation site (a), some excavated fragments (b), our
device deployed in a local private residence (c) which was adapted
for use as a field lab, and some reconstructed models (d).

Archaeologists were able to deploy our device easily on the site,
and used it to achieve a throughput of about 730 fragments per day.
In a real-world situation, the field lab is a busy and complicated en-
vironment that includes the comprehensive data collection process
before and after 3D scanning. In our case, the number of sherds
scanned day-to-day varied based on many factors. The operator of
the 3D scanner has multiple tasks, from changing camera batteries
and making sure the cameras remained aligned, to managing the
locations of the bags of sherds. The operator had to track bags that
were coming in for scanning, those that were finished scanning, and
had to organize the storage of completed bags into plastic boxes.
The human operator also cannot work continuously, and needs to
take periodic breaks. Therefore, the capturing throughput in the
field (i.e., 730 fragments per day of 8 working hours) is slightly lower
than the estimation from the lab testing (i.e., 800 pieces per day,
extrapolated from about 100 fragments in one hour).

We also quantitatively evaluated the reconstructed models from
the site to test the field acquisition accuracy. Archaeologists ran-
domly selected 26 fragments among more than 200 groups and
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(a) (b) (c) (d)

Fig. 9. System deployment in Armenia. (a) The excavation site; (b) The excavated fragments; (c) Our device deployed on the site; (d) Reconstructed 3D
fragments.

scanned their corresponding ground-truth 3D models through Ein-
Scan [EinScan 2020]. We then compared their 3D models recon-
structed using our FIRES system with their corresponding GT 3D
models. The average reconstruction accuracy of these 26 fragments
is about 0.16mm, which is similar to our lab experiments (0.15mm
accuracy, see Table 2). This validates our system’s robustness in
capturing accuracy when deployed in the field. The efficiency of
initial data capture has opened new challenges downstream with
data upload and then the building of 3D models, which currently
takes manual oversight and significant server time.

The successful large-scale capturing experiment at the excavation
site confirmed the feasibility and practicability of our FIRES system.
Before our system, previous attempts all failed to provide such
a practical solution to fast, accurate, and reliable digitization of a
large number of sherds, which has been a long-standing problem
in archaeology excavation. We will make our system and dataset
publicly available and believe it can significantly alleviate the burden
of archaeologists and boost the downstream applications, such as
relic re-assembly.

5.5 Limitations
CapturingTextureless Sherds.The image based reconstruction re-
lies on textural features to reconstruct surfaces, and its performance
may drop when processing textureless fragments. The final recon-
struction accuracy of such fragments can be lower. One possible
solution can be applying some scanning sprays (e.g. talc developer
spray [Porter et al. 2015]) to improve the reconstruction quality,
though this intervention might not be suitable for ancient objects
and would take manual time.
Failure cases. If some fragments in a batch have very similar

2D contours or some fragments themselves are symmetrical (e.g.,
fragments with circular shapes), then our contour-based match-
ing method may fail due to ambiguities. In this case, one may use
fragment locations (as discussed in Section 4.1) to help resolve the
matching ambiguity. It may also be possible to manipulate the man-
ual sorting and placement process slightly to counter these effects.

6 CONCLUSIONS AND FUTURE WORK
We proposed the FIRES system, which consists of an image cap-
turing device and a 3D reconstruction pipeline, for efficient image

acquisition and reconstruction of archaeological sherds. Our sys-
tem had been deployed and used at an excavation site in summer
2022. The field tests confirmed that FIRES is easy to deploy and
can capture more than 700 ceramic fragments in eight hours and
ultimately generate high-quality reconstructed models with about
0.16mm accuracy. This system provides the first promising solution
to meet the practical demand of archaeological field work. And we
will continue to work on improving the downstream 3D processing
efficiency.
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