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Figure 1. Typical image datasets have a low dynamic range (LDR), resulting in over- and underexposed pixels (a). We devise a high-
dynamic-range (HDR) generator trained only on in-the-wild LDR data. Our HDR samples (b, tonemapped for display) exhibit details at all
brightness levels. Our model can be used for inverse tone mapping to recover details in large-scale saturated regions (c).

Abstract

Most in-the-wild images are stored in Low Dynamic
Range (LDR) form, serving as a partial observation of the
High Dynamic Range (HDR) visual world. Despite limited
dynamic range, these LDR images are often captured with
different exposures, implicitly containing information about
the underlying HDR image distribution. Inspired by this in-
tuition, in this work we present, to the best of our knowledge,
the first method for learning a generative model of HDR
images from in-the-wild LDR image collections in a fully
unsupervised manner. The key idea is to train a generative
adversarial network (GAN) to generate HDR images which,
when projected to LDR under various exposures, are indis-
tinguishable from real LDR images. The projection from
HDR to LDR is achieved via a camera model that captures
the stochasticity in exposure and camera response function.
Experiments show that our method GlowGAN can synthe-
size photorealistic HDR images in many challenging cases
such as landscapes, lightning, or windows, where previous

supervised generative models produce overexposed images.
We further demonstrate the new application of unsupervised
inverse tone mapping (ITM) enabled by GlowGAN. Our ITM
method does not need HDR images or paired multi-exposure
images for training, yet it reconstructs more plausible infor-
mation for overexposed regions than state-of-the-art super-
vised learning models trained on such data.

1. Introduction

High Dynamic Range (HDR) images [55] are capable of
capturing and displaying much richer appearance informa-
tion than Low Dynamic Range (LDR) images, thus playing
an important role in image representation and visualization.
The most popular method to acquire HDR images is multiple
exposure blending, which requires capturing a set of LDR im-
ages of the same scene with different exposures [15, 50, 57].
However, this is time and effort intensive and only suitable
for static scenes. Due to this limitation, existing HDR image

1

ar
X

iv
:2

21
1.

12
35

2v
2 

 [
cs

.C
V

] 
 2

3 
N

ov
 2

02
2



datasets only cover limited scene categories and have much
fewer images than LDR datasets. Thus, supervised learning
methods [16,17,26,39,41,43,45,60,69,71] that reconstruct
an HDR image from an LDR image are constrained by the
HDR datasets and cannot extend to cases where no HDR
training data is available, e.g., lightning.

While HDR images are hard to collect, it is much easier
to collect a large number of LDR images from the Inter-
net. This motivates us to investigate a new unsupervised
learning problem: Can we learn to reconstruct HDR images
from in-the-wild LDR images? The LDR images do not
need to depict the same scene, it is enough if they contain a
roughly similar class of scenes (e.g., landscapes) with var-
ious exposures. This weak multi-exposure assumption is
often naturally satisfied for in-the-wild LDR datasets as im-
ages can come from different camera parameters or different
adjustments of the auto-exposure mode. This problem is
challenging as only one exposure is available for each scene,
therefore, a way to merge the multi-exposure information
spread across different scenes is required.

In this work, we address this challenge via GlowGAN,
which, to our knowledge, is the first method to learn an HDR
generative model from in-the-wild LDR image collections
in a fully unsupervised manner. GlowGAN uses adversarial
training of an HDR generator with a discriminator that op-
erates merely in LDR. Specifically, the generator produces
an HDR image, which is projected to LDR via a camera
model and is then sent to the discriminator as a fake image
for adversarial training. The camera model consists of mul-
tiplying the HDR sample with an exposure value, clipping
the dynamic range, and applying a camera response func-
tion (CRF). Importantly, during training, we use a randomly
sampled exposure from a prior Gaussian distribution when
projecting HDR to LDR. This requires the generated HDR
images to be realistic under any possible exposure, thus only
valid HDR samples would satisfy this “multi-exposure con-
straint”. Furthermore, we also model the stochasticity in the
non-linear camera response by randomly sampling CRFs ac-
cording to a well-established parametric distribution [16,19].
During the inference process, we can disable the camera
model so that the generator produces HDR imagery directly.

We conduct extensive experiments on several datasets
collected from the Internet, including landscapes, windows,
lightning, fireplaces, and fireworks. By training on these
LDR images, GlowGAN successfully learns to generate
high-quality HDR images that capture rich appearance infor-
mation from dark to very bright regions. These details can be
presented on HDR displays, or via suitable tone mapping to
create appealing imagery. In contrast, previous unconditional
GANs tend to miss information in over- or under-exposed
regions.

By modelling a distribution of HDR images, GlowGAN
paves the way for new applications such as unsupervised

inverse tone mapping (ITM). ITM aims to reconstruct an
HDR image from a single-exposure LDR input, where a key
challenge is to restore the flat-white overexposed regions
[16, 60]. We can use a pre-trained GlowGAN as a prior
and apply GAN inversion to optimize latent code and expo-
sure, making the model generate the corresponding HDR
image for the input LDR image. An exciting result is that
our method can, without using any HDR imagery or paired
multi-exposure data, reconstruct starkly more plausible infor-
mation for large overexposed regions than other supervised
learning approaches trained on such data. Furthermore, the
HDR samples generated by GlowGAN can be used as versa-
tile environment maps in rendering. Our contributions are
summarized as follows:

• We are the first to present unsupervised learning of
HDR images from in-the-wild LDR images. This gets
rid of the reliance on ground truth HDR images that are
much harder to collect.

• To achieve this, we propose a novel GlowGAN, which
bridges HDR space and LDR space via a camera model.
GlowGAN can synthesize diverse high-quality images
with a much higher dynamic range than vanilla GANs,
opening up new avenues for getting cheap abundant
HDR data.

• Using GlowGAN as a prior, we design an unsuper-
vised inverse tone mapping method (ITM), which re-
constructs large overexposed regions significantly better
than the state-of-the-art fully-supervised approaches.

The supplementary material is provided in this link. Our
code and pretrained models will be released.

2. Related Work
2.1. High Dynamic Range Imaging

The real world has a vast dynamic range. Therefore,
HDR imaging [55] is crucial for creating and manipulat-
ing immersive viewing experiences. While HDR capture is
cumbersome and HDR displays are not yet commonplace
in most environments [63], the representation of visual in-
formation free from the limitations of typical LDR encod-
ings has evolved significantly in recent years [67]. Working
with HDR content is crucial for rendering [14] and has been
shown to be beneficial for 3D scene reconstruction: An HDR
representation can naturally handle multi-exposure [25, 27]
and raw data [49]. Reconstructing HDR in conjunction with
an explicit tone mapping module can compensate for poorly
calibrated cameras [59].

A particular interest has evolved around the conversion
between HDR and LDR content. Tone mapping, the trans-
formation from HDR to LDR with as little information loss
as possible, is a mature field with well-understood trade-
offs [55,65]. In contrast, inverse tone mapping (ITM) [5,56],
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the recovery of HDR content from LDR imagery, remains
a challenging inverse problem. It typically involves multi-
ple steps, including linearization, dynamic range expansion,
reconstruction of over- and underexposed regions, artifact
reduction, and color correction [3]. Among these, the recon-
struction of saturated pixels is considered the most challeng-
ing [16, 60], as it requires the hallucination of content [66].

Early ITM works considered expansion curves using ei-
ther global [2,38,46,47] or content-driven operators [4–6,48,
56, 56], without explicitly reconstructing saturated regions.
More recent learning-based solutions can be categorized into
two streams: A neural network either predicts the HDR im-
age directly [12,16,43,45,60,69,71], or it predicts multiple
LDR images with different exposures [17, 26, 39–41], which
are subsequently merged into an HDR image [15, 50, 57].
ITM and exposure fusion can be combined with adversar-
ial training [40, 52, 71]. Also, the extension to video ITM
has been explored extensively, leveraging inter-frame consis-
tency [7, 21, 22, 28, 35, 36].

All learning-based techniques discussed above rely on
supervision from paired LDR–HDR training data. This con-
stitutes a fundamental problem: HDR image data is hard to
obtain and therefore naturally scarce. Further, most HDR
capture techniques require static content, which significantly
restricts the applicability of learning-based methods to ar-
bitrary scenes. In contrast, we are the first to train an HDR
image generator unsupervised from an LDR dataset. We
believe this is an important step towards solving two main
problems in HDR imaging: First, our generator can synthe-
size an abundance of HDR samples, alleviating the scarcity
of HDR content. Second, our system allows to perform
ITM with a significant improvement in the reconstruction of
overexposed regions.

2.2. Lossy Generative Adversarial Networks

Generative Adversarial Networks (GANs) [18] are very
successful in modelling distributions of images with high
visual fidelity. The StyleGAN family [31–34] marks the
current state of the art, scaling to high resolutions, while
the recent extension StyleGAN-XL [61] allows for unprece-
dented diversity in the generated content. To this date, (un-
conditional) GANs operate in LDR, since high-quality HDR
data at the scale required for successful training is difficult
to obtain. We propose a simple modification to the GAN
training pipeline, which allows to train an HDR generator
from readily available LDR data only.

AmbientGAN [10] has demonstrated that it is feasible
to train a generative model from lossy measurements, i.e.,
a GAN can be trained from degraded samples, as long as
the stochastic properties of the degradation are known. This
concept has been used to learn a generator for clean images
from noisy data [30], or for all-in-focus images from data that
contains shallow depth of field [29]. Most prominently, the

idea has been applied to learn 3D generators from 2D images
by explicitly modeling the projection from 3D to 2D using
a distribution of extrinsic camera parameters [11, 23, 42, 51,
62, 64]. We follow the paradigm of injecting a degradation
model into the GAN training pipeline, by devising a novel
model of the distribution of processing steps in a digital
camera, converting HDR radiance into LDR pixel intensities.

3. Method
We train a GAN [18] to capture the distribution of HDR

images in a domain (e.g., landscapes) by combining it with a
stochastic camera model that transforms the generated HDR
images into their LDR counterparts. The discriminator is
only fed LDR images, which allows the system to be trained
on an easily accessible in-the-wild LDR image dataset. Our
camera model can be inserted into any GAN model to yield
HDR outputs as long as the LDR training dataset consists of
images exhibiting different exposures across samples. We
consider this a mild assumption, which in particular in-the-
wild photo datasets easily satisfy. See Fig. 2 for an overview
of our system. In the following, we describe our pipeline in
detail (Sec. 3.1), before turning to our main application of
unsupervised inverse tone mapping (Sec. 3.2).

3.1. GlowGAN

We seek to capture the unknown true distribution of HDR
images pHDR from samples of the distribution of LDR im-
ages pLDR. Similar to the standard GAN setup, we achieve
this by training a generator G which turns a random latent
vector z ∈ Rk into an HDR sample r ∈ RH×W×3

≥0 , an
RGB image with H ×W pixels and no upper restriction
on the value range. To train G, we inject a camera model
C ∈ RH×W×3

≥0 → [0, 1]H×W×3 into the adversarial train-
ing pipeline, turning the unbounded HDR image into an
LDR image with values between 0 and 1. C captures the dis-
tribution pcam of pixel-wise image transformations typically
applied in a digital camera to convert incoming radiance
values to final pixel intensities, including varying exposures,
clipping, and varying non-linearities arising from the camera
response function (CRF). The result of this process is an
LDR image l = C(r) = C(G(z)). The discriminator D is
tasked with differentiating the fake samples l from samples
from the distribution of true LDR images pLDR. Since the
samples r undergo stochastic projections from HDR to LDR,
G is forced to produce valid HDR images, resulting in the
distribution pGHDR of generated HDR images approaching the
true distribution pHDR [10].

As our generator and discriminator backbone, we choose
the current state-of-the-art model StyleGAN-XL [61]. This
model has been demonstrated to yield excellent image qual-
ity on diverse datasets. The generator model consists of
two stages (left block in Fig. 2): First, a mapping network
MθM in the form of an MLP with parameters θM turns the

3



Exposure CRF params.

ClipMult. CRF

LDR Data
LDRHDR

Random

TrainableHDR Generator Camera Model Adversarial Training

Real 
Fake

,

Figure 2. Overview of GlowGAN. The generator generates an HDR image r from a random noise z. Then a camera model C projects r to
an LDR image l with a random exposure and CRF. The model is trained merely on in-the-wild LDR images in an adversarial manner.

initial random vector z ∈ Rk into a more disentangled latent
feature representation w ∈ W ⊂ Rk. Second, w is fed
into a synthesis CNN SθS with parameters θS to yield the
final HDR output r = SθS (MθM (z)). Notice that the partic-
ular choice of the generator and discriminator networks is
orthogonal to our approach. Except for the camera model
introduced in the next paragraphs, we use StyleGAN-XL
without any modifications in architecture or training hyper-
parameters. We verify this in Sec. 4.2.

At the core of our method is the stochastic camera model
C (central block in Fig. 2) which projects the HDR image
r onto an LDR counterpart l. It is designed to model the
distribution of typical processing steps in a digital camera:

C(r) = CRFβ,γ
(
min(2

e
2 · r, 1)

)
. (1)

In the first step, we multiply each pixel of r with a sin-
gle global exposure value. The exposure is parameterized
by the random variable e, capturing the exposure distribu-
tion of typical cameras arising from the combined effect
of aperture, shutter speed, and sensor sensitivity (ISO). We
do not have access to the true distribution of exposure pa-
rameters e, as images from in-the-wild image collections
frequently do not have EXIF headers that would contain
this information. Since the exposure is a combined ef-
fect of multiple factors (aperture, shutter, ISO, time of day,
etc.), we choose to model e using a normal distribution,
i.e., e ∼ N (0, σ2

e). The exposure variance σ2
e is the only

hyper-parameter in our system and is analyzed in Sec. 4.2.
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Figure 3. CRF Distribution.

After applying a random
exposure, the min operator
in Eq. 1 clips large radiance
values to 1, effectively flat-
tening all definition in over-
exposed regions. Notice that
this loss of information is pre-
cisely the reason why C is
not invertible for individual images: By selecting an ex-
posure, we only observe a bracket of radiance values. In
contrast, our method seeks to invert C over the distribution
of images and camera models [10].

The final component of our model in Eq. 1 is the non-
linear sensor response. The CRF describes the mapping

from radiance values arriving at the sensor to pixel inten-
sities stored in the final image. We follow the established
distribution of Eilertsen et al. [16]:

CRFβ,γ(x) =
(1 + β)xγ

β + xγ
,

with β ∼ N (0.6, 0.1) and γ ∼ N (0.9, 0.1) as obtained from
the analysis of a large dataset [19]. We visualize the distribu-
tion of CRFs arising from this model in Fig. 3.

With the full stochastic camera model in place, our system
can be trained in an adversarial fashion from scratch without
further modifications to the standard GAN pipeline to yield
an HDR generator trained only on an LDR image dataset.

3.2. Unsupervised Inverse Tone Mapping

In addition to producing HDR image samples, a trained
GlowGAN can be used to perform unsupervised inverse
tone mapping (ITM). While state-of-the-art ITM approaches
typically rely on supervision from LDR–HDR image pairs,
our method allows for recovering HDR images from their
LDR counterparts without HDR data using GAN inversion
[68, 72].

To obtain high-quality ITM results and to facilitate multi-
modality, we choose a per-image optimization-based ap-
proach to perform the inversion [1, 13]. Given an LDR
image l̂, we consider the following optimization objective:

[e∗,w∗, θ∗S ] = argmin
e,w,θS

Φ
(
C(SθS (w)), l̂

)
. (2)

Here, we jointly optimize over exposure e and the latent
code w while fine-tuning the synthesis network parameters
θS to obtain a faithful match between the target LDR image
l̂ and its reconstruction using our pipeline. Φ denotes the dis-
crepancy measure between the two images. Using the Adam
optimizer [37] with standard parameters, we proceed in two
stages: In the first stage, we exclude the generator weights
θS from the optimization and measure image discrepancy
Φ using the LPIPS perceptual distance [70]. In the second
stage, we only optimize (fine-tune) θS using the pivotal tun-
ing technique of Roich et al. [58], with Φ being the sum
of a pixel-wise `2 loss and the LPIPS perceptual distance.
Following most previous work, we relax w to explore the
extended latent space W+ [1]. We did not find it necessary
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Figure 4. (a) Dynamic range comparison between our GlowGAN (top) and a vanilla GAN (bottom) when varying the exposure values (EV)
of the image. (b) HDR samples generated by our GlowGAN for the five tested datasets (please see Fig. 1 for more samples). Our method
generates high quality images with much higher dynamic range and without overexposure.

to optimize over the CRF parameters β, γ for high-quality
results and consequently fix them to their mean values. More
details on the optimization can be found in the supplemental.
Upon completion of the optimization, we obtain the HDR
version of l̂ via r∗ = Sθ∗S (w∗).

Following the lossy projection in Eq. 1, the mapping from
LDR to HDR images is not unique: Overexposed regions
in the LDR image can be explained by many different HDR
images. Our system allows capturing this multi-modality by
running the optimization of Eq. 2 multiple times with differ-
ent parameter initializations for w and e. Specifically, we
initialize each optimization run with w = MθM (z), where
z is a normally distributed random vector. This allows us
to obtain multiple plausible HDR solutions, which almost
exclusively differ in the overexposed regions.

Obtaining pixel-accurate GAN inversion results is chal-
lenging [1, 9]. Fortunately, in most cases, we are only inter-
ested in hallucinating content in the saturated image regions,
while well-exposed pixels can be re-used after linearization.
Therefore, optionally, we diminish potential distortions aris-
ing from the inversion by blending the linearized original
LDR image l̂ with the reconstructed HDR result r∗ [16, 60]
as follows:

r∗blend = e∗ · (m� r∗) + (1−m)� CRF−1(̂l).

Here,� denotes the Hadamard product and m is a soft mask,
indicating saturated pixels in l̂, which we compute for each
pixel i following Eilertsen et al. [16]:

mi =
max

(
0,maxc l̂i,c − τ

)
1− τ

,

where l̂i,c denotes the LDR image with pixel index i and
color channel c. We set the threshold τ = 0.97 in all our
experiments, resulting in a short ramp towards saturation.

4. Experiments
We have conducted the following experiments to demon-

strate the effectiveness of our approach. Sec. 4.1 shows the

generated HDR data and compares it with an LDR equiv-
alent; Sec. 4.2 explores the influences of the exposure dis-
tribution, model backbone, and sampled camera response
curve; and Sec. 4.3 presents the results of our unsupervised
ITM. We use the tone mapper of Mantiuk et al. [44] to dis-
play HDR content in this paper. We refer readers to the
supplemental for more results and full HDR data.
Implementation details. We implement our method on top
of the official StyleGAN-XL [61] implementation under the
PyTorch [54] environment. Training takes six days with four
RTX 8000 GPUs for 256×256 resolution dataset – roughly
the same time as training a vanilla StyleGAN-XL model.
Datasets. We collect five different datasets which naturally
contain scenes with high dynamic range from the Internet:
Landscapes (∼7700 images), Lightning (∼7000 images),
Windows (∼4200 images), Fireplaces (∼2600 images), and
Fireworks (∼5600 images). We randomly crop and resize
each image to the target resolution. Please refer to Fig. 1 and
Fig. 4 for examples of generated images from models trained
on these datasets. We collect our datasets from several web-
sites: Flickr, Pexels, Instagram, and 500PX. We will make
the datasets available upon request. Further, we will make
all source code and pre-trained models publicly available
upon publication.

4.1. Generation of HDR Images

We show in Fig. 4 a variety of samples generated with
GlowGAN and a comparison with a vanilla StyleGAN-XL.
Generated samples from the vanilla GAN often bear overex-
posed regions similar to those in the LDR training images.
In contrast, samples from GlowGAN preserve detailed ap-
pearance information even for bright objects such as the sun,
as they have more extensive dynamic ranges than those from
the vanilla GAN. To show the difference in dynamic range,
we plot the image brightness histogram of the two models
in Fig. 5, where each histogram is computed from 500 ran-
domly sampled images. It can be seen that the histogram
of the vanilla GAN is cut off at 1, while GlowGAN clearly
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Figure 5. Pixel values from our model and a vanilla GAN. The
linear-scale histogram (a) shows that we significantly extend the
dynamic range for high pixel values, while the log-scale histogram
(b, truncated to only show values up to 1) demonstrates an extension
for low pixel values as well.

HDR LDR

Figure 6. Image-based lighting using a generated HDR environment
map (left) vs. a plain LDR equivalent (right). Arrows mark regions
where the differences are most pronounced. The HDR illumination
leads to high-contrast and high-frequency reflections in the specular
materials (right object) and produces a more realistic bloom effect
in the glossy material (left object).

avoids pixel intensity clamping (Fig. 5a) and has a much
wider histogram, also in the dark regions (Fig. 5b). These
results satisfy our expectation of learning HDR information
from LDR data. Moreover, we see that GlowGAN can syn-
thesize diverse images that do not exist in the real world. It
thus opens up a new avenue for getting cheap abundant HDR
data which can be used in several applications, e.g., for cre-
ating environment maps for image-based lighting (IBL) [14],
as showcased in Fig. 6. Additionally, GlowGAN can inter-
polate between two environment maps, achieving a smooth
transition effect, as demonstrated in the supplemental.

4.2. Ablation Study

Exposure Distribution. Our method assumes the exposure
e follows a Gaussian distribution with variance σ2

e . Here we
study how σ2

e impacts the generated image quality and the
dynamic range. We employ the commonly used FID [24]
and KID [8] scores to evaluate image quality on the Land-
scapes dataset. As we do not have ground truth HDR images,
the scores are computed between the generated LDR images
(i.e.,, output of the camera model) and the LDR training
images. We also compute the dynamic range (DR) for each
generated HDR image r as DR = log2 (rmax/rmin) ,where rmax
and rmin are the max and min values of the image, respec-
tively. We report the median and the 90th percentile of DR
computed over 50k images, referred to as DR50 and DR90,
respectively. From Table 1, we can observe a trade-off be-
tween image quality and the dynamic range, i.e., increasing

Table 1. Effects of model and σ2
e on quality and dynamic range.

Model σ2
e FID↓ KID(×104)↓ DR50 DR90

SG-XL1 – 3.48 2.69 8.0 8.0
Ours 1.0 3.61 3.07 15.4 20.2
Ours 3.0 3.87 4.04 16.2 20.7
Ours 5.0 4.00 4.78 16.5 20.8

SG22 – 9.2 23.37 8.0 8.0
Ours w/ SG23 1.0 10.02 28.41 16.3 22.9
1 Refers to a vanilla StyleGAN-XL model.
2 Refers to a vanilla StyleGAN2-ADA model.
3 Refers to our approach with a StyleGAN2-ADA backbone.

Table 2. Comparing quality with fixed and stochastic CRFs.

Dataset CRF FID↓ KID(×104)↓

Landscapes Fixed 3.89 3.80
Stochastic 3.61 3.07

Lightning Fixed 3.40 4.77
Stochastic 3.29 4.57

σ2
e leads to a higher dynamic range (with diminishing re-

turns for high σ2
e ) but slightly worse FID and KID scores. To

understand the positive correlation between σ2
e and DR, sup-

pose that r has a low dynamic range, then with a very small
or large exposure e (which is more likely to happen for large
σ2
e ), it would produce an out-of-distribution LDR image l

that is overly dark or bright. In other words, only a valid
high dynamic range r can yield realistic LDR images when
processed with different exposures. On the other hand, as σ2

e

increases, the camera model interferes more with the image
generation process, which may increase the training diffi-
culty as the Gaussian distribution is only an approximation
to the underlying exposure distribution. In practice, users
can choose a suitable σ2

e depending on their goal. In most
of our experiments, we use σ2

e = 1 as it already removes
overexposure while featuring good quality and it also obtains
better scores in the inverse tone mapping application. We
provide more results on the effect of σ2

e in the supplemental.
From Table 1 we can further see that a vanilla StyleGAN-XL
exhibits slightly higher image quality, but a substantially
smaller (log-scale) dynamic range.
Generator backbone. We further test our method based on
StyleGAN2-ADA [31]. As Table 1 shows, our method also
successfully synthesizes images with high dynamic range,
albeit the final image quality directly depends on the baseline
generative model.
Stochastic CRF. We further study the effects of the stochas-
tic CRF sampling process in our model. Table 2 com-
pares our stochastic CRF sampling with a fixed CRF, using
β = 0.6 and γ = 0.9. Modelling the stochasticity leads to a
clear improvement in FID and KID scores. This is because
the in-the-wild LDR images used for training are captured
with different cameras with diverse CRFs, which can be
better modelled via stochastic CRF sampling.
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Figure 7. Results for the Inverse Tone Mapping application and comparisons to six state-of-the-art methods for different datasets. Given a
single LDR image as input, our method can produce an HDR image that contains plausible and realistic content in the previously overexposed
regions, while previous methods tend to produce blurred results or even noticeable artifacts in such regions. In the first row (Landscapes
dataset), it can be seen that recovering the ground truth content present in the original HDR scene is not possible in fully saturated regions,
however, our method is able to produce plausible results that are consistent with the scene.

Table 3. Evaluation of the Inverse Tone Mapping application. We achieve on-par quality with the best-performing supervised methods in
reference metrics while outperforming all previous approaches in the non-reference metric that evaluates the overall naturalness and quality
of the image. Note that reference metrics are not best suited for this evaluation, since the strength of our method lies in the reconstruction of
missing overexposed regions, and therefore it is expected that the hallucinated content does not match that of the original HDR scene.

Method Unsupervised Reference Non-Reference
HDR-VDP3 ↑ PU21-VSI ↑ PU21-PSNR ↑ PU21-PIQE ↓

HDRCNN [16] 7 7.42 ± 1.02 0.961 ± 0.034 32.1 ± 5.1 36.1 ± 5.3
MaskHDR [60] 7 7.60 ± 0.93 0.962 ± 0.032 32.4 ± 5.1 33.3 ± 6.5
SingleHDR [43] 7 7.01 ± 1.17 0.956 ± 0.031 30.1 ± 4.5 40.3 ± 6.2
ExpandNet [45] 7 6.66 ± 1.61 0.957 ± 0.033 30.7 ± 4.2 43.2 ± 6.6
ReHDR [40] 7 7.06 ± 1.31 0.953 ± 0.035 30.3 ± 4.2 39.7 ± 4.7
LANet [69] 7 6.94 ± 0.98 0.956 ± 0.031 29.0 ± 3.6 40.6 ± 6.5
Ours 3 7.44 ± 0.94 0.961 ± 0.032 31.8 ± 4.4 31.8 ± 5.1

4.3. Application: Inverse Tone Mapping

A potential application of our approach is unsupervised
inverse tone mapping (ITM). We show both quantitatively
and through a user study that our method outperforms previ-
ous approaches in hallucinating content in large overexposed
regions, effectively recovering HDR content from a single
LDR image.

Objective comparisons. We compare our unsupervised
approach to six state-of-the-art fully-supervised ITM meth-
ods, which we abbreviate for simplicity as HDRCNN [16],
MaskHDR [60], SingleHDR [43], ExpandNet [45], Re-
HDR [39], and LANet [69]. Following the work of Hanji
et al. on quality assessment of single image HDR recon-
struction methods [20], we select their three recommended
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Figure 8. Our method can generate different but plausible HDR
images from a single LDR input with large overexposed regions.

full-reference metrics (PU21-PSNR, PU21-VSI, and HDR-
VDP3) as well as their recommended non-reference metric
(PU21-PIQE). As test set for the reference metrics we use
as HDR ground truth a set of 62 images collected from ex-
isting datasets [20, 53] and generate the corresponding LDR
input images following the pipeline proposed by Eilertsen et
al. [16]. For the non-reference metric, we use an extended
set of 100 LDR images obtained from the Internet which we
use directly as input with 15% to 45% of the pixels saturated.
For fairness in these comparisons, both sets are composed
of landscape images, since fully-supervised approaches are
typically trained with datasets mainly containing this type
of content. We show in Table 3 the results of these met-
rics and in Fig. 7 visual comparisons for our five datasets.
Note that, since our method focuses on hallucinating content
in completely saturated regions, it is highly unlikely that
this content fully matches that of the original ground truth
image, therefore full-reference metrics are not well suited
for assessing the quality of our reconstructions. Neverthe-
less, our unsupervised method is still on par with previous
fully-supervised approaches for the reference metrics, while
it excels in the non-reference metric, showing that our hal-
lucinated content is more plausible in terms of naturalness.
Additionally, previous methods can generate only one po-
tential reconstruction given an input LDR image, while our
approach allows the generation of multiple results with dif-
ferent but plausible semantic information, as Fig. 8 shows.

User Study. Since one of the main strengths of our work is
the capability to hallucinate plausible content in overexposed
regions, reference metrics are unsuitable for comparisons.
Additionally, the image diversity of available ground-truth
HDR datasets is limited. Therefore, we perform a subjective
study in order to further assess the quality of our generated
results for the inverse tone mapping application. We include
20 scenes (four for each of our five datasets). For each scene,
HDR results obtained with each of the seven methods were
shown on a single screen, and participants were asked to
rank the seven images from 1 (most preferred) to 7 (least
preferred). The presentation order of the scenes and methods
was randomized. The images were displayed in an HDR dis-
play Dell UP3221Q (3840×2160 resolution) in a standard

Figure 9. Preference rankings for the seven inverse tone mapping
methods aggregated across participants and scenes. Different colors
indicate the rankings (from 1 to 7). Methods marked in the same set
(gray underline) are statistically indistinguishable, while all others
present statistically significant differences in their distributions.

office room with natural illumination, and participants sat
at a distance of 0.5 meters from the display. A total of 24
participants (38% female, aged 22 to 37 years old with nor-
mal or corrected-to-normal vision) participated in the study.
We show in Fig. 9 the preference rankings for each method,
aggregated for all scenes and participants. To analyze the
results, we use pairwise Kruskal-Wallis tests adjusted by
Bonferroni correction for multiple comparisons since the
rankings do not follow a normal distribution. Results reveal
that our method was ranked significantly higher than all oth-
ers (p < 0.001), and it was selected as the top performing
method in over 80% of the trials.

5. Conclusion & Discussion

We have introduced GlowGAN, a novel paradigm for
learning HDR imagery from LDR data. Our method
is orthogonal to other advances in generative adversar-
ial learning and can be easily incorporated into any
GAN-based pipeline. A trained GlowGAN acts as
a strong prior, producing starkly more plausible in-
verse tone mapping results than previous approaches.

HDRLDR

Figure 10. Failure case.

Our inverse tone mapping
method builds on GAN inver-
sion via optimization, which
can sometimes result in low-
quality images, especially
for high-frequency content
(Fig. 10) – a problem that is
orthogonal to our approach.
We heavily rely on training data with a diverse exposure
distribution. While this assumption is oftentimes naturally
satisfied for in-the-wild photo datasets, the dynamic range
we can obtain is tightly linked to the exposure variance in
the dataset. We hope that our approach inspires future work
on learning rich models from casually captured images.
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