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1 Introduction

Controllability is one of the most important qualitative properties of the modern mathematical control theory.
In general, controllability denotes the ability to steer the state of a dynamical control system from an initial
state to the desired final state by using a suitable control function. Since the seminal work by Kalman (1963)
for finite-dimensional linear systems, controllability has been a very active area of research. In the last few
decades, many authors investigated the controllability results for nonlinear dynamic systems in both finite
and infinite-dimensional spaces by using the fixed point technique, see for instance (Joshi and George, 1989;
Agarwal et al., 2009; Fu, 2003; Zhou, 1984), and the cited references therein. Another important notion of
mathematical analysis which is very useful in many fields of applied sciences and engineering is dedicated
to stability analysis. In the existing literature, there are numerous concepts of stability like Mittag-Leffler
stability, finite-time stability, h-stability, exponential and Lyapunov stability. A particular type of stability
called Ulam-Hyers stability was introduced by Ulam (1940) and Hyers (1941). Ob loza (1993), was the
first researcher who established the Ulam-Hyers type stability of the finite-dimensional linear differential
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equations. Thereafter, many authors investigated the Ulam-Hyers type stability results for different types of
dynamic systems, please see (Miura et al., 2001; Jung, 2004; Popa and Raşa, 2011; Wang et al., 2012), and
the references cited therein.

On the other side, in many real-world problems, systems have some sudden changes in their state, such
sudden changes are known as the impulsive effect in the system and the corresponding differential equations
are known as the impulsive differential equations. It is observed that these types of equations have many
applications in various areas of science and engineering, for instance, in control systems with communica-
tion constraints, sampled-data systems, mechanical systems, and networked control systems with scheduling
protocol (Liu and Willms, 1995; Yang and Chua, 1997, etc.). In the existing literature, there are mainly
two kinds of impulses, one is the instantaneous impulses, where the duration of these sudden changes is very
small in comparison with the duration of the entire evolution process, for instance in shocks and natural
disasters. The models in such cases are modelled by using the instantaneous impulsive differential equa-
tions. The second one is the non-instantaneous impulses, where the duration of these sudden changes starts
impulsively at some points and continues over a finite-time interval. For example, in some real biological
medical problems, the introduction of a drug or a vaccine in the bloodstream is a gradual process, then one
is forced to consider the drug or vaccine as a non-instantaneous impulse since it starts abruptly and remains
active for a finite time interval. The models in such cases are modelled by using the non-instantaneous
impulsive differential equations. Since, in practicality, there is no impulse that occurs instantaneously rather
it is non-instantaneous howsoever time of occurrence of impulse is small. Therefore, it is advantageous to
study a class of differential equations with non-instantaneous impulses. Recently, few authors established the
different types of results such as the existence of solutions, stability, and controllability for non-instantaneous
impulsive systems by using the theory of analytic semigroup, fixed-point methods, and variational method,
see for instance (Hernández and O’Regan, 2013; Kumar et al., 2021b; Liu et al., 2018; Luo and Luo, 2020;
Wang and Fečkan, 2018; Wang and Fečkan, 2015; Wang et al., 2017; Kavitha et al., 2020; Abbas and Ben-
chohra, 2015). However, these results cannot be easily extended to the case of switched impulsive systems
on an arbitrary time domain.

Switched systems consist of a family of subsystems and a switching rule that orchestrates the switching
between them. This class of systems has received significant attention because of their broad applications
in many useful engineering systems, for example, the following phenomena evolve switching behavior: the
dynamics of a vehicle changing unexpectedly because of wheels bolting and opening on ice, airplane entering,
intersection and leaving an air traffic control area, biological cells developing and separating, a thermostat
turning the heat on and off, a valve or a power switch opening and closing (Sun et al., 2011; Yu et al., 2008;
Zhang et al., 2016). Stability and controllability are the important studied problems for this class of systems,
and in recent years, many researchers have focused on stability and controllability results of the switched
dynamic systems (Babiarz et al., 2016; Liberzon et al., 1999; Zhou et al., 2020). Furthermore, in many
switched systems, at the time of switching there arise some impulse effects and hence it is very beneficial
to investigate the switched systems with impulsive conditions. Recently, few authors studied the switched
systems with instantaneous impulses, see for instance (Wang et al., 2004; Xie and Wang, 2004; Zhao and
Sun, 2010).

However, all the above-mentioned results on existence, stability, and controllability are true for either
discrete-time systems or continuous-time systems. Apart from the discrete and continuous-time systems, a
wide class of systems exists, wherein the time domain is neither discrete nor continuous. For example, to
study the dynamic behavior of some special species like Magicicada septendecim, Magicicada cassinii, and
Pharaoh cicada, we need a particular time domain of form (Bohner and Peterson, 2001)

T =
⋃
i=1

[i(a + b), i(a + b) + b], a, b ∈ R+.
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Also, to study the behavior of a simple electric circuit with resistance R, inductance L and capacitance C,
if at every time unit we discharge the capacitor periodically and assume that the discharging takes a small
δ > 0 time unit, we need the time domain of the form (Bohner and Peterson, 2001)

T =
⋃
i∈N0

[i, i + 1 − δ].

Since these models cannot be studied by using discrete or continuous dynamic systems but time scale theory
can be used to address such systems. This theory was first introduced by Hilger (1988) in his Ph.D. thesis
to unify and extend the discrete and continuous analysis into a general framework. A time scale, denoted by
T, is an arbitrary non-empty closed subset of real numbers. The most common examples of time scales are
R,Z and hZ (where h > 0). The results obtained on time scales are valid for the continuous-time systems
(by setting the time scales to be real numbers T = R), the discrete dynamic systems (by setting the time
scales to be integers T = Z) and as well as for any non-uniform time domains (a discrete non-uniform domain
or the combination of discrete points with continuous intervals) which are very useful in the study of many
complex dynamic systems. For further study on time scales, we refer to the books (Bohner and Peterson,
2001, 2003).

Nowadays, the notion of time scales theory has been attracting a lot of interest from many researchers.
In recent years, few authors studied the finite-dimensional dynamic systems on time scales and investigated
the existence of solutions, Ulam-Hyers type stability, and controllability results, see for instance (András and
Mészáros, 2013; Bohner and Wintz, 2012; Davis et al., 2009; Lupulescu and Younus, 2011; Malik and Kumar,
2020; Shen and Li, 2019; Zada et al., 2017; Shah and Zada, 2019, 2022; Ben Nasser et al., 2021; Yasmin et al.,
2020; Pervaiz et al., 2021). Particularly, in (András and Mészáros, 2013), the authors studied the Ulam-
Hyers stability of linear and nonlinear dynamic equations and integral equations on time scales by using the
theory of Picard operators. The work in (Davis et al., 2009), focused on the stability, controllability, and
observability of the linear dynamic systems on time scales while in Lupulescu and Younus (2011), the authors
extend the controllability and observability results of (Davis et al., 2009) to the time-varying systems with
instantaneous impulses on time scales. In (Malik and Kumar, 2020), the authors established the existence
of a unique solution, Ulam-Hyers stability, and controllability results for a Volterra integro-dynamic system
with non-instantaneous impulses on time scales. In (Pervaiz et al., 2021), the authors considered the finite-
dimensional fractional delay dynamical systems with instantaneous and non-instantaneous impulses on time
scales and studied the stability and controllability results. Further, some results related to stability and
controllability for finite-dimensional switched dynamic systems on time scales were addressed in the literature
(Kumar et al., 2020; Kumar et al., 2021a; Lu and Zhang, 2019; Taousser et al., 2019). In particular, the work
in (Kumar et al., 2020), focused on the total controllability of a class of switched impulsive dynamic systems
with non-instantaneous impulses on time scales by using the parameter variation method and Gramian types
matrices. In Kumar et al. (2021a), the authors examined the stability results for switched dynamic systems
on arbitrary time domain by using the Lyapunov function and time scales theory. However, only a few
researchers studied the stability, existence of almost periodic, periodic solutions, and controllability results
of abstract equations on arbitrary time domain by using the time scale theory (Dhama and Abbas, 2019;
Kumar and Malik, 2019; Kumar et al., 2021; Wang and Agarwal, 2014). In (Kumar and Malik, 2019), the
authors studied the Ulam-Hyers stability and controllability results of non-linear evolution systems with
instantaneous impulses on time scales by using the Banach fixed point theorem while in (Kumar et al., 2021),
the authors investigated the existence of a unique solution, stability and controllability results for an abstract
integro-hybrid evolution system with non-instantaneous impulses on time scales.

Nevertheless, all the above-mentioned works cannot be easily extended for the switched dynamic system
with non-instantaneous impulses on time scales in infinite-dimensional spaces. To the best of our knowledge,
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there is no work reported that discussed the switched dynamic evolution system with non-instantaneous
impulses over the arbitrary time domain. The inclusion of impulses, infinite-dimensional states, switching,
and time scales requires a high level of abstraction. Therefore, in this manuscript, we investigate the existence
of unique solution, stability, and controllability results for a class of switched dynamic evolution systems with
non-instantaneous impulses on an arbitrary time scale in infinite-dimensional spaces by applying the fixed
point technique with evolution operator theory.

• We consider a new class of neutral switched evolution systems with non-instantaneous impulses in the
abstract spaces over the arbitrary time domain and formulated by the time scales theory.

• We use the concept of piecewise continuous mild solution to construct a suitable operator and with the
help of this operator, we derived the existence of solution and Ulam-Hyers stability.

• We also define a new piecewise control function and study the total controllability result.

• We apply the fixed point technique with evolution operator and time scales theory to study these
results.

• We provide some theoretical and simulated numerical examples with different time domains to illustrate
the obtained analytical results.

The remainder of the manuscript is structured as follows: In Section 2, we give the problem of the
statement. In Section 3, we review some preliminaries, important definitions, and significant lemmas. In
Sections 4 and 5, we examine the existence and stability results for switched dynamic evolution systems
with impulses on time scales, respectively. Section 6 is dedicated to study the controllability issue for the
considered systems. In the last Section 7, we present some theoretical and numerical examples to illustrate
the effectiveness of the obtained analytical outcomes.

Notations: Throughout this manuscript, T denotes the time scales and I = [0, T ]T for T > 0. (X, ∥ · ∥)
denotes the Banach space X under the induced norm ∥ ·∥ and Id denotes the identity operator in X. C(I,X)
denotes the set of all continuous functions from I into X. The set of all linear bounded operators from X
into X is denoted by B(X). Also, we denote the set of all square Lebesgue integrable functions from I to X
by L2(I,X).

2 Problem Formulation

In this section, we will introduce our statement of the problem.
We consider the following neutral evolution dynamic system in a Banach space X

[x(t) − Υr(t)(t, xa(t))]∆ = Ar(t)(t)[x(t) − Υr(t)(t, xa(t))] + Ψr(t)(t, xb(t)), t ∈ ∪ϑ
i=0(si, ti+1]T,

x(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵr(t)(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

x(0) = x0

(2.1)

and investigate the existence, uniqueness and stability results. Also, we establish the controllability results,
of the following control system

[x(t) − Υr(t)(t, xa(t))]∆ = Ar(t)(t)[x(t) − Υr(t)(t, xa(t))] + Br(t)u(t) + Ψr(t)(t, xb(t)), t ∈ ∪ϑ
i=0(si, ti+1]T,

x(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵr(t)(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

x(0) = x0,

(2.2)
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where x is the state function; T is a time scale; xa(t) = x(a(t)), xb(t) = x(b(t)), where a, b : I → I are the
delay functions with a(t), b(t) ≤ t for all t ∈ I; Γ(·) denotes the usual gamma function; γ ∈ (0, 1); ti and
si ∈ T are some points which satisfy the relation 0 = s0 = t0 < t1 < s1 < t2 < . . . < sϑ < tϑ+1 = T ;
x(t−i ) = limk→0+ x(ti − k) and x(t+i ) = limk→0+ x(ti + k), i = 1, 2, . . . , ϑ, denote the left and right limit
of x(t) at t = ti, respectively; r(t) is the switching law to be defined later; the family of bounded linear
operators Ar(t)(t) generate the evolution operators {TAr(t)(t)(t, s) : (t, s) ∈ I × I : 0 ≤ s ≤ t ≤ T}; Br(t)

are linear bounded operators from a Banach space U to X; u ∈ L2(I, U) is a control function, U is called
the control space; the functions Υr(t), Ψr(t), and ℵr(t) are satisfying some suitable conditions which will be
specified later.

The switching signal r : I 7→ {0, 1, . . . , ϑ} is assumed to be known and satisfies the minimal dwell time
condition. It only changes its values at switching times ti. The discrete state r(t) ∈ {0, 1, . . . , ϑ} determines
the actual system dynamics among the possible operating modes which corresponds to a specific instance of
Ai(t),Bi(t),Υi,Ψi, and ℵi. That is to say,

r(t) = i, ti ≤ t < ti+1, i = 0, 1, . . . , ϑ.

Subsequently, using the above switching law in systems (2.1) and (2.2), we get the following class of evolution
switched systems

[x(t) − Υi(t, xa(t))]∆ = Ai(t)[x(t) − Υi(t, xa(t))] + Ψi(t, xb(t)), t ∈ ∪ϑ
i=0(si, ti+1]T, (2.3a)

x(t) =
1

Γ(γ)

∫ t

ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ, (2.3b)

x(0) = x0 (2.3c)

and

[x(t) − Υi(t, xa(t))]∆ = Ai(t)[x(t) − Υi(t, xa(t))] + Biu(t) + Ψi(t, xb(t)), t ∈ ∪ϑ
i=0(si, ti+1]T, (2.4a)

x(t) =
1

Γ(γ)

∫ t

ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ, (2.4b)

x(0) = x0, (2.4c)

respectively. Now onwards, we study the systems (2.3a)-(2.3c) and (2.4a)-(2.4b).
Here, we are giving a brief description of the problem (2.3a)-(2.3c)(or (2.4a)-(2.4c)).

• x(t) satisfies the dynamic equation (2.3a)(or 2.4a) when t ∈ (0, t1]T.

• x(t) is given by the equation (2.3b)(or (2.4b)) when t ∈ (t1, s1]T.

• x(t) satisfies the dynamic equation (2.3a)(or (2.4a)) when t ∈ (s1, t2]T.

• After repeating this process, on the interval (sϑ, tϑ+1]T, x(t) satisfies the dynamic equation (2.3a)(or
(2.4a)) and on the interval (sϑ, tϑ+1]T, x(t) is given by the equation (2.3b)(or (2.4b)).

Graphically, this means that the solution x(t) satisfies the dynamic equation (2.3a) on the black intervals
(si, ti+1]T, i = 0, 1, . . . , ϑ and the equation (2.3b) on the red intervals (ti, si]T, i = 1, 2, . . . , ϑ.
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0 t1 s1 t2 s2 sϑ−1 tϑ sϑ tϑ+1=T

Figure 1: Description of statement of problem (2.3a)-(2.3c) (or (2.4a)-(2.4c))

3 Preliminaries and Definitions

In this section, we introduce the basic concept of the time scales theory as it is laid out in all detail in the
textbook (Bohner and Peterson, 2001).

We define a time scales interval by [a, b]T = {t ∈ T : a ≤ t ≤ b}. Similarly, we can define some other time
scales intervals like (a, b)T, [a, b)T and so on.

Next, we define some fundamental operators which are frequently used throughout the manuscript.

Definition 3.1 ((Bohner and Peterson, 2001), Def. 1.1). The forward jump operator σ(T,T) is defined by

σ(t) = inf{s ∈ T : s > t}

with the substitution inf ∅ = supT.

Definition 3.2 ((Bohner and Peterson, 2001), Def. 1.1). The backward jump operator ρ(T,T) is defined by

ρ(t) = sup{s ∈ T : s < t}

with the substitution sup ∅ = inf T.

Remark 3.3. The graininess operator µ(T, [0,∞)) is defined by µ(t) = σ(t) − t for all t ∈ T. Now onwards,
we set µ̄ = supt∈I µ(t).

A point t ∈ T is called left dense if t > inf T and ρ(t) = t, left dense if t < supT and σ(t) = t, dense if it
is left and right dense at the same time, left-scattered if ρ(t) < t, and right-scattered if σ(t) > t.

We define the set Tκ as follows:

Tκ =

{
Tκ \ (ρ(sup(T)), sup(T)] if supT < ∞
T if supT = ∞.

In the next definition, we define the delta-derivative which generalized the concept of differentiation to
time scales.

Definition 3.4 ((Bohner and Peterson, 2001), Def. 1.10). A function ϕ(T,R) is called delta differentiable
at the point t ∈ Tκ, if there exists a number ϕ∆(t) such that for any ϵ > 0, there exists a neighborhood U of
t such that

|[ϕ(σ(t)) − ϕ(s)] − ϕ∆(t)[σ(t) − s]| ≤ ϵ|σ(t) − s|,
holds for all s ∈ U . We call ϕ∆(t) the delta derivative of ϕ at t.

Remark 3.5. In the above definition, if we set T = Z, then ϕ∆(t) = ϕ(t + 1) − ϕ(t), which is the forward
difference of ϕ(t) while if we set T = R, then ϕ∆(t) = ϕ′(t), which is the usual derivative of ϕ(t).

Next, we define the delta-integral which generalized the ordinary integral to time scales.

Definition 3.6 ((Bohner and Peterson, 2001), Def. 1.71). A function Φ(T,R) is called an antiderivative of
a function ϕ(T,R) provided Φ∆(t) = ϕ(t) holds for all t ∈ Tκ. We define the Cauchy integral by∫ t

t0

ϕ(ζ)∆ζ = Φ(t) − Φ(t0) for all t, t0 ∈ T.
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Definition 3.7 ((Bohner and Peterson, 2001), Def. 1.57). A function f(T,R) is called regulated if its right-
hand limit exist (finite) at all right-dense points in T and its left-hand limit exist (finite) at all left-dense
points in T.

A function f(T,R) is called rd-continuous, if it is regulated and it is continuous at all right-dense points.
Moreover, function f is called piecewise rd-continuous if it is regulated and rd-continuous at all, except
possibly at finitely many, right-dense points in T.

All other concepts related to time scales used in this paper can be found in (Bohner and Peterson, 2001).
To define the exponential function on time scales, we first define the regressive functions as follows.

Definition 3.8 ((Bohner and Peterson, 2001), Def. 2.25). We say that a function q : T → R is regressive
provided

1 + µ(t)q(t) ̸= 0 for all t ∈ Tκ

holds

In the next definition, we define the generalized exponential function which generalized the concept of
ordinary exponential function to time scales.

Definition 3.9 ((Bohner and Peterson, 2001), Def. 2.30). Let q be regressive, then we define the exponential
function is defined as

eq(t, s) = exp

(∫ t

s
ζµ(ζ)(q(ζ))∆ζ

)
for t, s ∈ T,

where

ζµ(s)(q(s)) =


1

µ(s)
Log(1 + q(s)µ(s)), if µ(s) ̸= 0,

q(s), if µ(s) = 0.

In the above definition, exp and Log are the usual exponential and logarithmic functions, respectively.

The next properties of exponential function on time scales are often used in the main results.

Theorem 3.10 ((Bohner and Peterson, 2001), Theorem 2.36). Let q be regressive, then

(i) e0(t, s) = 1 and eq(t, t) = 1. (ii) eq(σ(t), s) = (1 + µ(t)q(t))eq(t, s).

(iii) eq(t, s)eq(s, ζ) = eq(t, ζ). (iv) eq(t, s) =
1

eq(s, t)
= e⊖q(s, t).

Lemma 3.11 ((Dhama and Abbas, 2019), Lemma 2.12). Let ν > 0 and t, s ∈ T, then e⊖ν(t, s) ≤ 1.

Next, we give some basic definitions related to evolution operator family which are often used throughout
the manuscript.

Definition 3.12 ((Wang and Agarwal, 2014), Def. 4.1). A two-parameter family T (t, s) : I × I → B(X) is
called a linear evolution operator if the following hold:

(i) T (t, t) = Id.

(ii) T (t, r)T (r, s) = T (t, s) for 0 ≤ s ≤ r ≤ t ≤ T .

(iii) For any fixed x ∈ X, (t, s) → T (t, s)x is continuous mapping.
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Definition 3.13 ((Wang and Agarwal, 2014), Def. 4.2). Let T (t, s) be an evolution operator, then it is called
exponentially stable if there exist C ≥ 1 and ν > 0 such that

∥T (t, s)∥ ≤ Ce⊖ν(t, s), t ≥ s.

Before defining the mild solution of the considered class of switched impulsive evolution system (2.3a)-
(2.3c), we first provide the mild solution of the corresponding semilinear evolution system.

Let us consider the following semillinear evolution system

x∆(t) = A0(t)x(t) + Ψ0(t, x(t)), x(0) = x0, t ∈ (0, t1]T. (3.5)

Definition 3.14 ((Wang and Agarwal, 2014), Def. 4.3). A function x ∈ C(I,X) is called a mild solution of
(3.5) if x(t) satisfies the following integral equation

x(t) = TA0(t)(t, 0)x0 +

∫ t

0
TA0(t)(t, σ(ζ))Ψ0(ζ, x(ζ))∆ζ, t ∈ (0, t1]T,

where TA0(t)(t, s) denotes the linear evolution operator generated by A0(t) on (0, t1]T.

For the notational convenience, now onwards we set Ti(t, s) for TAi(t)(t, s).
Now to define the solution of the considered problems (2.3a)-(2.3c) and (2.4a)-(2.4c), we define the space of

piecewise continuous functions PC(I,X) = {x : I → X : x ∈ C((ti, ti+1]T, X), i = 0, 1, . . . , ϑ and there exist
x(t−i ) and x(t+i ), i = 1, 2, . . . , ϑ, with x(t−i ) = x(ti)}. It can be seen easily that PC(I,X) is a Banach space
endowed with the sup norm ∥x∥P = supt∈I ∥x(t)∥. Further, we define PC1(I,X) = {x ∈ PC(I,X) : x∆ ∈
PC(I,X)}. Clearly, PC1(I,X) forms a Banach space endowed with the norm ∥x∥PC1 = max{∥x∥P , ∥x∆∥P }.

Next, by Definition 3.14 and definition 2.2 of (Kavitha et al., 2020), we can define the solution of the
system (2.3a)-(2.3c) as follows.

Definition 3.15 ((Kavitha et al., 2020), Def. 2.2). A function x ∈ PC(I,X) is called a mild solution f the
system (2.3a)-(2.3c), if x(t) satisfies the following

(i) x(0) = x0;

(ii) x(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ

and the following integral equations

x(t) = T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0
T0(t, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ (3.6)

for all t ∈ (0, t1]T and

x(t) = Ti(t, si)
[

1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+ Υi(t, xa(t))

+

∫ t

si

Ti(t, σ(ζ)Ψi(ζ, xb(ζ))∆ζ (3.7)

for all t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ.
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Now, we set the following standard and feasible assumptions on the non-linear functions Υi,Ψi and ℵi,
which are often used to establish the existence of a unique solution.

(A1) (Wang and Fečkan, 2015; Kumar et al., 2021b): The functions Υi,Ψi : T0×X → X,T0 = ∪ϑ
i=0[si, ti+1]T

are continuous. Also, there exist positive constants LΥi and LΨi , i = 0, 1, . . . , ϑ, such that

(a) ∥Υi(t, x1) − Υi(t, x2)∥ ≤ LΥi∥x1 − x2∥ for all x1, x2 ∈ X and t ∈ T0.

(b) ∥Ψi(t, x1) − Ψi(t, x2)∥ ≤ LΨi∥x1 − x2∥ for all x1, x2 ∈ X and t ∈ T0.

(A2) (Wang and Fečkan, 2015; Kumar et al., 2021b): The functions ℵi : Ti × X → X,Ti = [ti, si]T, i =
1, 2, . . . , ϑ, are continuous. Also, there exist positive constants Lℵi

, i = 1, 2, . . . , ϑ, such that

∥ℵi(t, x1) − ℵi(t, x2)∥ ≤ Lℵi
∥x1 − x2∥ for all x1, x2 ∈ X and t ∈ Ti.

(A3) (Wang and Agarwal, 2014): {Ai(t) : t ∈ T0} generate the exponentially stable evolution operators
{Ti(t, s) : t ≥ s}, i.e., there exist C ≥ 1 and ν > 0 such that ∥Ti(t, s)∥ ≤ Ce⊖ν(t, s) for all i = 0, 1, . . . , ϑ
and t ≥ s.

For the notational convenience, we set

LΥ = maxi=0,1,...,ϑ{LΥi}, LΨ = maxi=0,1,...,ϑ{LΨi}, Lℵ = maxi=1,2,...,ϑ{Lℵi
};

supt∈I, i=0,1,...,ϑ ∥Υi(t, 0)∥ ≤ MΥ, supt∈I, i=0,1,...,ϑ ∥Ψi(t, 0)∥ ≤ MΨ, supt∈I, i=1,2,...,ϑ ∥ℵi(t, 0)∥ ≤ Mℵ;

N0 = C[∥x0∥ + ∥Υ0(0, x0)∥] + MΥ +
CMΨ(1 + µ̄ν)

ν
; N1 = LΥ +

CLΨ(1 + µ̄ν)

ν
;

N2 = C

(
MℵT

γ

Γ(γ + 1)
+ MΥ

)
+ MΥ +

CMΨ(1 + µ̄ν)

ν
; N3 = C

(
LℵT

γ

Γ(γ + 1)
+ LΥ

)
+ LΥ +

CLΨ(1 + µ̄ν)

ν
.

4 Existence and Uniqueness Result

Here, we establish the existence of a unique solution by using the Banach contraction principle with evolution
operator theory.

Theorem 4.1. If the assumptions (A1)-(A3) hold, then the switched system (2.3a)-(2.3c) has a unique
solution, provided N3 < 1.

Proof. Let us define a subset D1 ⊂ PC(I,X) such that

D1 = {x ∈ PC(I,X) : ∥x∥P ≤ δ1},

where

δ1 = max

{
N0

1 − N3
,

MℵT
γ

Γ(γ + 1)(1 − N3)
,

N2

1 − N3

}
.

Now, we define an operator 𭟋1 : D1 → D1 such that

(𭟋1x)t =



T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, xa(t)) +
∫ t
0 T0(t, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ, t ∈ (0, t1]T,

1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

Ti(t, si)
[

1

Γ(γ)

∫ si
ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+Υi(t, xa(t)) +

∫ t
si
Ti(t, σ(ζ)Ψi(ζ, xb(ζ))∆ζ, t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ.
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Now, we dived the proof into the following two steps:
Step 1: Here, we will show that 𭟋1 maps D1 into D1. Let for any t ∈ (0, t1]T and x ∈ D1, we have

∥(𭟋1x)t∥ ≤ Ce⊖ν(t, 0)[∥x0∥ + ∥Υ0(0, x0)∥] + ∥Υ0(t, xa(t))∥ + C

∫ t

0
e⊖ν(t, σ(ζ))∥Ψ0(ζ, xb(ζ))∥∆ζ

≤ Ce⊖ν(t, 0)[∥x0∥ + ∥Υ0(0, x0)∥] + LΥ0∥xa(t)∥ + MΥ + C

∫ t

0
e⊖ν(t, σ(ζ))(LΨ0∥xb(ζ)∥ + MΨ)∆ζ

≤ Ce⊖ν(t, 0)[∥x0∥ + ∥Υ0(0, x0)∥] + LΥ0∥xa(t)∥ + MΥ +
C(LΨ0 supt∈[0,t1]T ∥xb(t)∥ + MΨ)(1 + µ̄ν)

ν

≤ N0 + LΥδ1 +
CLΨ0δ1(1 + µ̄ν)

ν
≤ N0 + N1δ1 ≤ N0 + N3δ1

≤ δ1. (4.8)

Now, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ, and x ∈ D1,

∥(𭟋1x)t∥ ≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1∥ℵi(ζ, x(t−i ))∥∆ζ

≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1∥ℵi(ζ, x(t−i )) − ℵi(ζ, 0) + ℵi(ζ, 0)∥∆ζ

≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1(Lℵi
∥x(t−i )∥ + Mℵ)∆ζ

≤ (Lℵi
δ1 + Mℵ)(t− ti)

γ

Γ(γ + 1)

≤ MℵT
γ

Γ(γ + 1)
+ N3δ1

≤ δ1. (4.9)

Similarly, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ and x ∈ D1,

∥(𭟋1x)t∥ ≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1∥ℵi(ζ, x(t−i ))∥∆ζ + ∥Υi(si, xa(si))∥
]

+ ∥Υi(t, xa(t))∥

+ C

∫ t

si

e⊖ν(t, σ(ζ)∥Ψi(ζ, xb(ζ))∥∆ζ

≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1(Lℵi
∥x(t−i )∥ + Mℵ)∆ζ + LΥi∥xa(si)∥ + MΥ

]
+ LΥi∥xa(t)∥

+ MΥ + C

∫ t

si

e⊖ν(t, σ(ζ)(LΨi∥xb(ζ)∥ + MΨ)∆ζ

≤ Ce⊖ν(t, si)

[
(Lℵi

∥x(t−i )∥ + Mℵ)tγi+1

Γ(γ + 1)
+ LΥi∥xa(si)∥ + MΥ

]
+ LΥi∥xa(t)∥ + MΥ

+
C(LΨi supt∈[si,ti+1]T ∥xb(t)∥ + MΨ)(1 + µ̄ν)

ν
≤ N2 + N3δ1

≤ δ1. (4.10)
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From the above equations (4.8), (4.9) and (4.10), for all t ∈ I, we have

∥𭟋1x∥P ≤ δ1.

Hence, 𭟋1 maps D1 into D1.
Step 2: Here, we shall show that the operator 𭟋1 is a contracting operator. Let for any t ∈ (0, t1]T and
x, y ∈ D1, we have

∥(𭟋1x)t− (𭟋1y)t∥ ≤ ∥Υ0(t, xa(t)) − Υ0(t, ya(t))∥ + C

∫ t

0
e⊖ν(t, σ(ζ))∥Ψ0(ζ, xb(ζ)) − Ψ0(ζ, yb(ζ))∥∆ζ

≤ LΥ0∥xa(t) − ya(t)∥ + C

∫ t

0
e⊖ν(t, σ(ζ))LΨ0∥xb(ζ) − yb(ζ)∥∆ζ

≤ LΥ0∥xa(t) − ya(t)∥ +
CLΨ0 supt∈[0,t1]T ∥xb(t) − yb(t)∥(1 + µ̄ν)

ν

≤
(
LΥ0 +

CLΨ0(1 + µ̄ν)

ν

)
∥x− y∥P

≤ N3∥x− y∥P . (4.11)

Now, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ and x, y ∈ D1,

∥(𭟋1x)t− (𭟋1y)t∥ ≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1∥ℵi(ζ, x(t−i )) − ℵi(ζ, y(t−i ))∥∆ζ

≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1Lℵi
∥x(t−i ) − y(t−i )∥∆ζ

≤ Lℵi
(t− ti)

γ

Γ(γ + 1)
∥x− y∥P

≤ N3∥x− y∥P (4.12)

Similarly, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ and x, y ∈ D1,

∥(𭟋1x)t− (𭟋1y)t∥ ≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1∥ℵi(ζ, x(t−i )) − ℵi(ζ, y(t−i ))∥∆ζ

+ ∥Υi(si, xa(si)) − Υi(si, ya(si))∥
]

+ ∥Υi(t, xa(t)) − Υi(t, ya(t))∥

+ C

∫ t

si

e⊖ν(t, σ(ζ)∥Ψi(ζ, xb(ζ)) − Ψi(ζ, yb(ζ))∥∆ζ

≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1Lℵi
∥x(t−i ) − y(t−i )∥∆ζ + LΥi∥xa(si) − ya(si)∥

]
+ LΥi∥xa(t) − ya(t)∥ + C

∫ t

si

e⊖ν(t, σ(ζ)LΨi∥xb(ζ) − yb(ζ)∥∆ζ

≤ Ce⊖ν(t, si)

[
(Lℵi

∥x(t−i ) − y(t−i )∥tγi+1

Γ(γ + 1)
+ LΥi∥xa(si) − ya(si)∥

]
+ LΥi∥xa(t) − ya(t)∥

+
C(LΨi supt∈[si,ti+1]T ∥xb(t) − yb(t)∥ + MΨ)(1 + µ̄ν)

ν
≤ N3∥x− y∥P . (4.13)
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From the above equations (4.11), (4.12) and (4.13), for all t ∈ I, we have

∥𭟋1x−𭟋1y∥P ≤ N3∥x− y∥P .

Hence, 𭟋1 is a contracting operator.
Now collecting the step 1 and step 2 along with the Banach contraction principle, we can conclude that

the operator 𭟋1 has a unique fixed point which is the solution of the systems (2.3a)-(2.3c).

Remark 4.2. In the existing literature, many authors established the existence of solutions for different types
of dynamic systems with non-instantaneous impulses by using the Banach contraction principle. Particularly.
in (Hernández and O’Regan, 2013), the authors investigated the existence of mild solutions for a new class
of differential equations with non-instantaneous impulses while in (Abbas and Benchohra, 2015), the authors
studied the existence of a unique solution for partial fractional differential equations with non-instantaneous
impulses. Further, in (Zada et al., 2017) the authors considered a nonlinear impulsive Volterra integro-delay
dynamic system on time scales and investigated the existence of a unique solution. The works in (Shah
and Zada, 2019) mainly focused on the existence and uniqueness of solutions for the mixed integral dynamic
systems with both instantaneous and non-instantaneous impulses on time scales. In (Shah and Zada, 2022),
the authors studied the existence of a unique solution of the nonlinear Volterra integro-delay dynamic system
with fractional integrable impulses on time scales in the finite-dimensional spaces. However, all these results
are either for the continuous-time domain or for the finite-dimensional spaces, and cannot be directly applied
to the case of the switched dynamic systems on an arbitrary time domain in the infinite-dimensional spaces.
Therefore, the existence and uniqueness result of this paper is new which extends and generalizes the existing
results.

5 Ulam-Hyers Stability Result

Stability analysis is the fundamental property of the mathematical analysis which is very important in many
fields of engineering and science. Ulam and Hyer introduced an interesting type of stability called Ulam-
Hyer’s stability and since then it has been picked up a great deal of attention due to its wide range of
applications in many fields of science, especially in optimization and mathematical modelling. Therefore, in
this segment of the paper, we will investigate the Ulam-Hyers type stability for the system (2.3a)-(2.3c).

Let us consider the following inequalities
∥∥[y(t) − Υi(t, ya(t))]∆ −Ai(t)[y(t) − Υi(t, ya(t))] − Ψi(t, yb(t))

∥∥ ≤ ϵ, t ∈ ∪ϑ
i=0(si, ti+1]T,∥∥∥∥y(t) − 1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ

∥∥∥∥ ≤ ϵ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,
(5.14)

where ϵ > 0 is a constant.
Now, Before giving the main result of Ulam-Hyers type stability, we introduce the following important

definitions.

Definition 5.1 ((Wang et al., 2012), Def. 3.1). Evolution system (2.3a)-(2.3c) is Ulam-Hyers stable if there
exists a positive constant H(LΥ,LΨ,Lℵ,ϑ) such that for ϵ > 0 and for each solution y of inequality (5.14), there
exist a unique solution x of the system (2.3a)-(2.3c) such that

∥y(t) − x(t)∥ ≤ H(LΥ,LΨ,Lℵ,ϑ)ϵ for all t ∈ I.
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Remark 5.2. A function y ∈ PC1(I,X) is a solution of the inequality (5.14) if and only if there is G, Gi ∈
PC(I,X), i = 1, 2, . . . , ϑ, such that

(i) ∥G(t)∥ ≤ ϵ for all t ∈ ∪ϑ
i=0(si, ti+1]T and ∥Gi(t)∥ ≤ ϵ for all t ∈ (ti, si]T, i = 1, 2, . . . , ϑ;

(ii) [y(t) − Υi(t, ya(t))]∆ = Ai(t)[y(t) − Υi(t, ya(t))] + Ψi(t, yb(t)) + G(t), t ∈ ∪ϑ
i=0(si, ti+1]T;

(iii) y(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ + Gi(t), t ∈ (ti, si]T, i = 1, 2, . . . , ϑ.

Lemma 5.3. If y ∈ PC1(I,X) satisfies inequality (5.14), then for y(0) = x0, the following inequalities

∥∥∥y(t) − T0(t, 0)[x0 − Υ0(0, x0)] − Υ0(t, ya(t)) −
∫ t
0 T0(t, σ(ζ))Ψ0(ζ, yb(ζ))∆ζ

∥∥∥ ≤ Cϵ(1 + µ̄ν)

ν
, t ∈ (0, t1]T,∥∥∥∥y(t) − Ti(t, si)

[
1

Γ(γ)

∫ si
ti

(si − ζ)γ−1ℵi(ζ, y(t−i ))∆ζ − Υi(si, ya(si))

]
− Υi(t, ya(t))

−
∫ t
si
Ti(t, σ(ζ)Ψi(ζ, yb(ζ))∆ζ

∥∥∥∥ ≤ Cϵ(1 + µ̄(1 + ν))

ν
, t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,∥∥∥∥y(t) − 1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ

∥∥∥∥ ≤ ϵ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

hold.

Proof. If y ∈ PC1(I,X) satisfies inequality (5.14), then by Remark 5.2, we have[y(t) − Υi(t, ya(t))]∆ = Ai(t)[y(t) − Υi(t, ya(t))] + Ψi(t, yb(t)) + G(t), t ∈ ∪ϑ
i=0(si, ti+1]T,

y(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ + Gi(t), t ∈ (ti, si]T, i = 1, 2, . . . , ϑ.
(5.15)

Clearly, from Definition 3.15, the solution of the equation (5.15) with y(0) = x0 is given as

y(t) =



T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, ya(t)) +
∫ t
0 T0(t, σ(ζ))(Ψ0(ζ, yb(ζ)) + G(ζ))∆ζ, t ∈ (0, t1]T,

1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ + Gi(t), t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

Ti(t, si)
[

1

Γ(γ)

∫ si
ti

(si − ζ)γ−1ℵi(ζ, y(t−i ))∆ζ + Gi(si) − Υi(si, ya(si))

]
+Υi(t, ya(t)) +

∫ t
si
Ti(t, σ(ζ)(Ψi(ζ, yb(ζ)) + G(ζ))∆ζ, t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ.

Now, for any t ∈ (0, t1]T, we have∥∥∥∥y(t) − T0(t, 0)[x0 − Υ0(0, x0)] − Υ0(t, ya(t)) −
∫ t

0
T0(t, σ(ζ))Ψ0(ζ, yb(ζ))∆ζ

∥∥∥∥ ≤
∥∥∥∥∫ t

0
T0(t, σ(ζ))G(ζ)∆ζ

∥∥∥∥
≤ Cϵ

∫ t

0
e⊖ν(t, σ(ζ))∆ζ

≤ Cϵ(1 + µ̄ν)

ν
.

Also, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,∥∥∥∥y(t) − Ti(t, si)
[

1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, y(t−i ))∆ζ − Υi(si, ya(si))

]
− Υi(t, ya(t))
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−
∫ t

si

Ti(t, σ(ζ)Ψi(ζ, yb(ζ))∆ζ

∥∥∥∥ ≤
∥∥∥∥Ti(t, si)Gi(si) +

∫ t

si

Ti(t, σ(ζ)G(ζ)∆ζ

∥∥∥∥
≤ Cϵ(1 + µ̄(1 + ν))

ν
.

Similarly, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,∥∥∥∥y(t) − 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1ℵi(ζ, y(t−i ))∆ζ

∥∥∥∥ ≤ ϵ.

Hence, the result follows.

Theorem 5.4. If the assumptions (A1)-(A3) and N3 < 1 hold, then the system (2.3a)-(2.3c) is Ulam-Hyers
stable.

Proof. Let y(t) be a solution of the inequality (5.14) and x(t) is a unique mild solution of the system (2.3a)-
(2.3c) which is given by

x(t) =



T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, xa(t)) +
∫ t
0 T0(t, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ, t ∈ (0, t1]T,

1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

Ti(t, si)
[

1

Γ(γ)

∫ si
ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+Υi(t, xa(t)) +

∫ t
si
Ti(t, σ(ζ)Ψi(ζ, xb(ζ))∆ζ, t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ.

Now, for any t ∈ (0, t1]T,

∥y(t) − x(t)∥ =

∥∥∥∥y(t) − T0(t, 0)[x0 − Υ0(0, x0)] − Υ0(t, xa(t)) −
∫ t

0
T0(t, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ

∥∥∥∥
≤

∥∥∥∥y(t) − T0(t, 0)[x0 − Υ0(0, x0)] − Υ0(t, ya(t)) −
∫ t

0
T0(t, σ(ζ))Ψ0(ζ, yb(ζ))∆ζ

∥∥∥∥
+ ∥Υ0(t, ya(t)) − Υ0(t, xa(t))∥ +

∫ t

0
T0(t, σ(ζ))∥Ψ0(ζ, yb(ζ)) − Ψ0(ζ, xb(ζ))∥∆ζ

≤ Cϵ(1 + µ̄ν)

ν
+ LΥ0∥ya(t) − xa(t)∥ +

CLΨ0(1 + µ̄ν) supt∈[0,t1]T ∥yb(t) − xb(t)∥
ν

≤ Cϵ(1 + µ̄ν)

ν
+ N1∥y − x∥P . (5.16)

Also, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,

∥y(t) − x(t)∥ =

∥∥∥∥y(t) − Ti(t, si)
[

1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
− Υi(t, xa(t)) −

∫ t

si

Ti(t, σ(ζ)Ψi(ζ, xb(ζ))∆ζ

∥∥∥∥
≤

∥∥∥∥y(t) − Ti(t, si)
[

1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, y(t−i ))∆ζ − Υi(si, ya(si))

]
− Υi(t, ya(t))
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−
∫ t

si

Ti(t, σ(ζ)Ψi(ζ, yb(ζ))∆ζ

∥∥∥∥ +

∥∥∥∥Ti(t, si)Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, y(t−i )) − ℵi(ζ, x(t−i ))∆ζ

∥∥∥∥
+ ∥Ti(t, si)∥∥Υi(si, ya(si)) − Υi(si, xa(si))∥ + ∥Υi(t, ya(t)) − Υi(t, xa(t))∥

+

∫ t

si

∥Ti(t, σ(ζ)∥∥Ψi(ζ, yb(ζ)) − Ψi(ζ, xb(ζ))∥∆ζ

∥∥∥∥
≤ Cϵ(1 + µ̄(1 + ν))

ν
+

Ce⊖ν(t, si)t
γ
i+1Lℵi

∥y(t−i ) − x(t−i )∥
Γ(γ + 1)

+ Ce⊖ν(t, si)LΥi∥ya(si) − xa(si)∥

+ LΥi∥ya(t) − xa(t)∥ +
CLΨi(1 + µ̄ν) supt∈[si,ti+1]T ∥yb(t) − xb(t)∥

ν

≤ Cϵ(1 + µ̄(1 + ν))

ν
+ N3∥y − x∥P . (5.17)

Similarly, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ, we have

∥y(t) − x(t)∥ ≤ ϵ +
T γLJ∥y − x∥

Γ(γ + 1)
. (5.18)

From the above inequalities (5.16), (5.17) and (5.18), we have

∥y − x∥P ≤ Cϵ(1 + µ̄(1 + ν))

ν
+ N3∥y − x∥P for all t ∈ I,

which immediately gives

∥y − x∥P ≤ H(LΥ,LG,LJ ,ϑ)ϵ,

where H(LΥ,LG,LJ ,ϑ) =
C(1 + µ̄(1 + ν))

ν(1 − N3)
> 0. Thus, the system (2.3a)-(2.3c) is Ulam-Hyers stable.

Remark 5.5. Many researchers studied the Ulam-Hyers type stability results for different classes of sys-
tems. In (Wang et al., 2017), the authors established the stability results for the non-instantaneous impulsive
differential equations while in (Abbas and Benchohra, 2015), the authors considered the partial fractional
differential equations with non-instantaneous impulses and established the different types of Ulam-Hyers sta-
bility results. Further, in (Zada et al., 2017), the authors investigated the Ulam-Hyers stability results for the
nonlinear impulsive Volterra integro-delay dynamic systems on time scales. In (Shah and Zada, 2019), the
authors mainly focused on the problem of Ulam-Hyers stability of the mixed integral dynamic systems with
both instantaneous and non-instantaneous impulses on time scales. In (Shah and Zada, 2022), the authors
considered the non–linear Volterra integro-delay dynamic system with fractional integrable impulses on time
scales in the finite-dimensional spaces and studied the Ulam-Hyers stability results. Nevertheless, these results
cannot be directly applied to the case of the switched dynamic systems in the infinite-dimensional spaces on
an arbitrary time domain. In this regard, the stability results of this manuscript are completely new even in
the case of the continuous-time domain.

6 Controllability Result

In the previous sections 4 and 5, we established the existence of a unique solution and stability results of
the switched impulsive system (2.3a)-(2.3c), respectively. However, among all the qualitative properties of a
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dynamic system, controllability is one of the most important ones. It has many applications in engineering
including biological networks, filter design, optimal control, pole assignment problem, and safety checking.
Therefore, in this segment, we establish the controllability result for the switched impulsive control system
(2.4a)-(2.4c) by applying the Banach contraction principle.

To establish the controllability results for the system (2.4a)-(2.4c), we define the linear operators W
ti+1
si :

L2(I, U) → X given by

W
ti+1
si u =

∫ ti+1

si

Ti(ti+1, σ(ζ))Bu(ζ)∆ζ, i = 0, 1, . . . , ϑ.

Before giving the main results of this section, we give some important definitions.

Definition 6.1. Switched control system (2.4a)-(2.4c) is exact controllable on I, if for any initial state
x0 ∈ X and arbitrary final state xT ∈ X, there exists a function u ∈ L2(I,X) such that the mild solution of
(2.4a)-(2.4c) satisfies x(0) = x0 and x(T ) = xT .

Definition 6.2. Switched control system (2.4a)-(2.4c) is totally controllable on I, if it is exact controllable
on (0, t1]T and (si, ti+1]T, i = 1, 2, . . . , ϑ, i.e., for any initial state x0 ∈ X and arbitrary final states xti+1 ∈
X, i = 0, 1, . . . , ϑ, there exists a function u ∈ L2(I,X) such that the mild solution of (2.4a)-(2.4c) satisfies
x(0) = x0 and x(ti+1) = xti+1 , i = 0, 1, . . . , ϑ.

Next, by using the Definition 3.15, we give the solution of the system (2.4a)-(2.4c) in the next definition.

Definition 6.3. A function x ∈ PC(I,X) is said to be a mild solution of the system (2.4a)-(2.4c), if x(t)
satisfies the following

(i) x(0) = x0;

(ii) x(t) =
1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ

and the following integral equations

x(t) = T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0
T0(t, σ(ζ))(Ψ0(ζ, xb(ζ)) + B0u(ζ))∆ζ (6.19)

for all t ∈ (0, t1]T and

x(t) = Ti(t, si)
[

1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+ Υi(t, xa(t))

+

∫ t

si

Ti(t, σ(ζ)(Ψi(ζ, xb(ζ)) + Biu(ζ))∆ζ (6.20)

for all t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ.

We need the following condition to establish the controllability results.

(A4): (Kumar et al., 2021; Malik et al., 2019): The linear operators W
ti+1
si have the bounded invertible

operators (W
ti+1
si )−1, i = 0, 1, . . . , ϑ, which take values in L2(I, U) \ kerW

ti+1
si . Further, there exist

positive constants MWi
, i = 0, 1, . . . , ϑ, such that ∥(W

ti+1
si )−1∥ ≤ MWi

.
Also, Bi are continuous operators from U to X and there exists a positive constant MB such that
∥Bi∥ ≤ MB, i = 0, 1, . . . ,m.

16



Now, we are in position to give the important lemmas which require to examine the controllability.

Lemma 6.4. If the assumptions (A1)-(A4) hold, then the control function

u(t) = (Wt1
0 )−1

[
xt1 − T0(t1, 0)[x0 − Υ0(0, x0)] − Υ0(t1, xa(t1)) −

∫ t1

0
T0(t1, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ

]
(t), t ∈ (0, t1]T,

(6.21)

transfers the state x(t) of the system (2.4a)-(2.4c) from x0 to xt1 at the time t = t1. Further, the control
function u(t) is bounded on t ∈ (0, t1]T, i.e., ∥u(t)∥ ≤ Mu0 for all t ∈ (0, t1]T, where

Mu0 = MW0

[
∥xt1∥ + N0 + N1 sup

t∈[0,t1]T
∥x(t)∥

]
.

Proof. By using the control function u(t) given by the equation (6.21) in the mild solution x(t) of the system
(2.4a)-(2.4c) at t = t1, we get

x(t1) = T0(t1, 0)[x0 − Υ0(0, x0)] + Υ0(t1, xa(t)) +

∫ t1

0
T0(t1, σ(ζ))(Ψ0(ζ, xb(ζ)) + B0u(ζ))∆ζ

= T0(t1, 0)[x0 − Υ0(0, x0)] + Υ0(t1, xa(t)) +

∫ t1

0
T0(t1, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ

+ Wt1
0 (Wt1

0 )−1

[
xt1 − T0(t1, 0)[x0 − Υ0(0, x0)] − Υ0(t1, xa(t1)) −

∫ t1

0
T0(t1, σ(ζ))Ψ0(ζ, xb(ζ))∆ζ

]
= xt1

Further for all t ∈ (0, t1]T, the estimate for the control function u(t) is calculated as

∥u(t)∥ ≤ MW0

[
∥xt1∥ + ∥T0(t1, 0)∥[∥x0∥ + ∥Υ0(0, x0)∥] + ∥Υ0(t1, xa(t1))∥ +

∫ t1

0
∥T0(t1, σ(ζ))∥∥Ψ0(ζ, xb(ζ))∥∆ζ

]
≤ MW0

[
∥xt1∥ + Ce⊖ν(t1, 0)∥[∥x0∥ + ∥Υ0(0, x0)∥] + LΥ0∥xa(t1)∥ + MΥ

+ C

∫ t1

0
e⊖ν(t1, σ(ζ))LΨ0∥xb(ζ)∥∆ζ

]
≤ MW0

[
∥xt1∥ + Ce⊖ν(t1, 0)∥[∥x0∥ + ∥Υ0(0, x0)∥] + LΥ0∥xa(t1)∥ + MΥ

+
C(LΨ0 supt∈[0,t1]T ∥x(t)∥ + MΨ)(1 + µ̄ν)

ν

]
≤ MW0

[
∥xt1∥ + N0 + N1 sup

t∈[0,t1]T
∥x(t)∥

]
= Mu0 .

Lemma 6.5. If the assumptions (A1)-(A4) hold, then the control function

u(t) = (W
ti+1

i )−1

[
xti+1 − Ti(ti+1, si)

(
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

)

17



− Υi(ti+1, xa(ti+1)) −
∫ ti+1

si

Ti(ti+1, σ(ζ)Ψi(ζ, xb(ζ))∆ζ

]
(t), t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ, (6.22)

transfers the state x(t) of the system (2.4a)-(2.4c) from x0 to xtt+1 at the time t = ti+1. Further, the control
function u(t) is bounded on t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,, i.e., ∥u(t)∥ ≤ Mui for all t ∈ (si, ti+1]T, i =
1, 2, . . . , ϑ, where

Mui = MWi

[
∥xti+1∥ + N2 + N3 sup

t∈[si,ti+1]T

∥x(t)∥

]
.

Proof. By using the control function u(t) given by the equation (6.22) in the mild solution x(t) of the system
(2.4a)-(2.4c) at t = ti+1, we get

x(ti+1) = Ti(ti+1, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+ Υi(ti+1, xa(t))

+

∫ ti+1

si

Ti(ti+1, σ(ζ)(Ψi(ζ, xb(ζ)) + Biu(ζ))∆ζ

= Ti(ti+1, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+

∫ ti+1

si

Ti(ti+1, σ(ζ)Ψi(ζ, xb(ζ))∆ζ

+ Υi(ti+1, xa(t)) + W
ti+1

i (W
ti+1

i )−1

[
xti+1 − Ti(ti+1, si)

(
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ

− Υi(si, xa(si))

)
− Υi(ti+1, xa(ti+1)) −

∫ ti+1

si

Ti(ti+1, σ(ζ)Ψi(ζ, xb(ζ))∆ζ

]
= xt1

Further, for all t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,, the estimate for the control function u(t) is calculated as

∥u(t)∥ ≤ MWi

[
∥xti+1∥ + ∥Ti(ti+1, si)∥

(
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1∥ℵi(ζ, x(t−i ))∥∆ζ + ∥Υi(si, xa(si))∥
)

+ ∥Υi(ti+1, xa(t))∥ +

∫ ti+1

si

∥Ti(ti+1, σ(ζ)∥∥Ψi(ζ, xb(ζ))∥∆ζ

]
≤ MWi

[
∥xti+1∥ + Ce⊖ν(ti+1, si)

(
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1(Lℵi
∥x(t−i )∥ + Mℵ)∆ζ + LΥi∥xa(si)∥ + MΥ

)
+ LΥi∥xa(t)∥ + MΥ + C

∫ ti+1

si

e⊖ν(ti+1, σ(ζ)(LΨi∥xb(ζ)∥ + MΨ)∆ζ

]
≤ MWi

[
∥xti+1∥ +

Ce⊖ν(ti+1, si)(Lℵi
supt∈[si,ti+1]T ∥x(t)∥ + Mℵ)T γ

Γ(γ + 1)
+ Ce⊖ν(ti+1, si)LΥi sup

t∈[si,ti+1]T

∥x(t)∥

+ Ce⊖ν(ti+1, si)MΥ + LΥi sup
t∈[si,ti+1]T

∥x(t)∥ + MΥ +
C(LΨi supt∈[si,ti+1]T ∥x(t)∥ + MΨ)(1 + µ̄ν)

ν

]

≤ MWi

[
∥xti+1∥ + N2 + N3 sup

t∈[si,ti+1]T

∥x(t)∥

]
= Mui .
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We set

MW = maxi=0,1,...,ϑ{MWi
}; Q1 =

CMBMW(1 + µ̄ν)

ν
; N4 = N0(1 + Q1) + Q1∥xt1∥; N5 = N1(1 + Q1);

N6 = N2(1 + Q1) + Q1∥xti+1∥; N7 = N3(1 + Q1);

Now, we give the main theorem of controllability.

Theorem 6.6. If the assumptions (A1)-(A4) hold, then the system (2.4a)-(2.4c) is totally controllable on I,
provided N7 < 1.

Proof. Consider a subset D2 ⊂ PC(I,X) such that

D2 = {x ∈ PC(I,X) : ∥x∥P ≤ δ2},

where

δ = max

{
N4

1 − N7
,

MℵT
γ

Γ(γ + 1)(1 − N7)
,

N6

1 − N7

}
.

Now, we define an operator 𭟋2 : D2 → D2 such that

(𭟋2x)t =



T0(t, 0)[x0 − Υ0(0, x0)] + Υ0(t, xa(t)) +
∫ t
0 T0(t, σ(ζ))(Ψ0(ζ, xb(ζ)) + B0u(ζ))∆ζ, t ∈ (0, t1]T,

1

Γ(γ)

∫ t
ti

(t− ζ)γ−1ℵi(ζ, x(t−i ))∆ζ, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

Ti(t, si)
[

1

Γ(γ)

∫ si
ti

(si − ζ)γ−1ℵi(ζ, x(t−i ))∆ζ − Υi(si, xa(si))

]
+Υi(t, xa(t)) +

∫ t
si
Ti(t, σ(ζ)(Ψi(ζ, xb(ζ)) + Biu(ζ))∆ζ, t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ,

where u(t) is given by the equations (6.21) and (6.22) in the intervals (0, t1]T and (si, ti+1]T, i = 1, 2, . . . , ϑ,
respectively. It is clear from the Lemma 6.4 and 6.5, x(t) satisfies x(t1) = xt1 and x(ti+1) = xti+1 , i =
1, 2, . . . , ϑ. Thus, to demonstrate the controllability of the switched control systems (6.26), we need to show
that the operator 𭟋2 has a fixed point. For the simplicity, we split the proof into the following two main
steps:
Step 1: We shall show that 𭟋2 maps D2 into D2. Let for any t ∈ (0, t1]T and x ∈ D2, we have

∥(𭟋2x)t∥ ≤ Ce⊖ν(t, 0)[∥x0∥ + ∥Υ0(0, x0)∥] + ∥Υ0(t, xa(t))∥ + C

∫ t

0
e⊖ν(t, σ(ζ))∥Ψ0(ζ, xb(ζ))∥∆ζ

+ C

∫ t

0
e⊖ν(t, σ(ζ))∥B0u(ζ)∥∆ζ

≤ Ce⊖ν(t, 0)[∥x0∥ + ∥Υ0(0, x0)∥] + LΥ0∥xa(t)∥ + MΥ +
C(LΨ0 supt∈[0,t1]T ∥xb(t)∥ + MΨ)(1 + µ̄ν)

ν

+
CMBMu0(1 + µ̄ν)

ν

≤ N0 + LΥδ2 +
CLΨ0δ2(1 + µ̄ν)

ν
+

CMBMW0(1 + µ̄ν)

ν

[
∥xt1∥ + N0 + N1 sup

t∈[0,t1]T
∥x(t)∥

]
≤ N0 + N1δ2 + Q1(∥xt1∥ + N0 + N1δ2)

≤ N4 + N5δ2 ≤ δ2. (6.23)
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Now, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ and x ∈ D2,

∥(𭟋2x)t∥ ≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1∥ℵi(ζ, x(t−i ))∥∆ζ + ∥Υi(si, xa(si))∥
]

+ ∥Υi(t, xa(t))∥

+ C

∫ t

si

e⊖ν(t, σ(ζ)∥Ψi(ζ, xb(ζ))∥∆ζ + C

∫ t

si

e⊖ν(t, σ(ζ)∥Bu(ζ))∥∆ζ

≤ Ce⊖ν(t, si)

[
(Lℵi

∥x(t−i )∥ + Mℵ)tγi+1

Γ(γ + 1)
+ LΥi∥xa(si)∥ + MΥ

]
+ LΥi∥xa(t)∥ + MΥ

+
C(LΨi supt∈[si,ti+1]T ∥xb(t)∥ + MΨ)(1 + µ̄ν)

ν
+

CMBMui(1 + µ̄ν)

ν
≤ N2 + N3δ2 + Q1(∥xti+1∥ + N2 + N3δ2)

≤ N6 + N7δ2 ≤ δ2. (6.24)

Similarly, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ and x ∈ D2,

∥(𭟋2x)t∥ ≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1∥ℵi(ζ, x(t−i ))∥∆ζ

≤ Mℵt
γ

Γ(γ + 1)
+ N7δ2 ≤ δ2. (6.25)

From the above equations (6.23), (6.24) and (6.25), for all t ∈ I, we have

∥𭟋2x∥P ≤ δ2.

Hence, 𭟋2 maps D2 into D2.
Step 2: Here, we shall show that the operator 𭟋2 is a contracting operator. Let for any t ∈ (0, t1]T and
x, y ∈ D2, we have

∥(𭟋2x)t− (𭟋2y)t∥

≤ ∥Υ0(t, xa(t)) − Υ0(t, ya(t))∥ + C

∫ t

0
e⊖ν(t, σ(ζ))∥Ψ0(ζ, xb(ζ)) − Ψ0(ζ, yb(ζ))∥∆ζ

+ C

∫ t

0
e⊖ν(t, σ(ζ))∥MB∥∥ux(ζ) − uy(ζ)∥∆ζ

≤ LΥ0∥xa(t) − ya(t)∥ + C

∫ t

0
e⊖ν(t, σ(ζ))LΨ0∥xb(ζ) − yb(ζ)∥∆ζ + CMBMW0

∫ t

0
e⊖ν(t, σ(τ))

×
[
∥Υ0(t1, xa(t1)) − Υ0(t1, ya(t1))∥ + C

∫ t1

0
e⊖ν(t1, σ(ζ))∥Ψ0(ζ, xb(ζ)) − Ψ0(ζ, yb(ζ))∥∆ζ

]
∆τ

≤ LΥ0∥xa(t) − ya(t)∥ +
CLΨ0 supt∈[0,t1]T ∥xb(t) − yb(t)∥(1 + µ̄ν)

ν

+
CMBMW0(1 + µ̄ν)

ν

[
LΥ0∥xa(t1) − ya(t1)∥ +

CLΨ0 supt∈[0,t1]T ∥xb(t) − yb(t)∥(1 + µ̄ν)

ν

]
≤

(
LΥ0 +

CLΨ0(1 + µ̄ν)

ν
+ Q1LΥ0 + +

CQ1LΨ0(1 + µ̄ν)

ν

)
∥x− y∥P

≤ N1(1 + Q1)∥x− y∥P
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≤ N7∥x− y∥P . (6.26)

Similarly, for any t ∈ (si, ti+1]T, i = 1, 2, . . . , ϑ and x, y ∈ D2,

∥(𭟋2x)t− (𭟋2y)t∥ ≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1∥ℵi(ζ, x(t−i )) − ℵi(ζ, y(t−i ))∥∆ζ

+ ∥Υi(si, xa(si)) − Υi(si, ya(si))∥
]

+ ∥Υi(t, xa(t)) − Υi(t, ya(t))∥

+ C

∫ t

si

e⊖ν(t, σ(ζ)∥Ψi(ζ, xb(ζ)) − Ψi(ζ, yb(ζ))∥∆ζ

+ C

∫ t

si

e⊖ν(t, σ(ζ)∥B∥∥ux(ζ) − uxy(ζ)∥∆ζ

≤ Ce⊖ν(t, si)

[
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1Lℵi
∥x(t−i ) − y(t−i )∥∆ζ + LΥi∥xa(si) − ya(si)∥

]
+ LΥi∥xa(t) − ya(t)∥ + C

∫ t

si

e⊖ν(t, σ(ζ)LΨi∥xb(ζ) − yb(ζ)∥∆ζ

+ CMBMWi

∫ t

si

e⊖ν(t, σ(τ)

[
Ce⊖ν(ti+1, si)

(
1

Γ(γ)

∫ si

ti

(si − ζ)γ−1Lℵi
∥x(t−i ) − y(t−i )∥∆ζ

+ LΥi∥xa(si) − ya(si)∥
)

+ LΥi∥xa(ti+1) − ya(ti+1)∥

+ C

∫ ti+1

si

e⊖ν(ti+1, σ(ζ)LΨi∥xb(ζ) − yb(ζ)∥∆ζ

]
∆τ

≤ N3(1 + Q1)∥x− y∥P
≤ N7∥x− y∥P . (6.27)

Similarly, for any t ∈ (ti, si]T, i = 1, 2, . . . , ϑ and x, y ∈ D1,

∥(𭟋2x)t− (𭟋2y)t∥ ≤ 1

Γ(γ)

∫ t

ti

(t− ζ)γ−1∥ℵi(ζ, x(t−i )) − ℵi(ζ, y(t−i ))∥∆ζ

≤ N7∥x− y∥P (6.28)

From the above equations (6.26), (6.27) and (6.28), for all t ∈ I, we have

∥𭟋2x−𭟋2y∥P ≤ N7∥x− y∥P .

Hence, 𭟋2 is a contracting operator.
Now collecting the step 1 and step 2 along with the Banach contraction principle, we can conclude that

the operator 𭟋2 has a unique fixed point which is the solution of the systems (2.4a)-(2.4c) and hence the
system (2.4a)-(2.4c) is totally controllable on I.

Remark 6.7. In the existing literature, many authors established the controllability results for the different
types of dynamic systems by using different techniques for the continuous and discrete-time domain, but
they are studied separately. Particularly. in (Agarwal et al., 2009), the authors studied the controllability
of two classes of first-order semilinear functional and neutral functional differential evolution equations with
infinite delay by using the fixed point theory. The work in (Malik et al., 2019), focused on the controllability
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of non-autonomous nonlinear differential systems with non-instantaneous impulses by using Rothe’s fixed
point theorem. Very recently, few authors studied the controllability problems for the impulsive dynamic
systems on time scales in finite-dimensional spaces. In (Lupulescu and Younus, 2011), the authors studied the
controllability and observability results of the time-varying dynamic systems with instantaneous impulses on
time scales. In (Ben Nasser et al., 2021), the authors studied the reachability and controllability results for the
time-varying linear systems evolving on time scales while in (Yasmin et al., 2020), the authors investigated the
controllability results for the linear impulsive adjoint dynamic system on time scale. Furthermore, in (Pervaiz
et al., 2021), the authors studied the controllability and stability analysis of fractional delay dynamical systems
with both instantaneous and non-instantaneous impulses on time scales. However, for the considered class
of systems of this paper, this is the first attempt to deal with the controllability results on the arbitrary time
domain. Since the problem is formulated in terms of time scales, and thus the obtained results can be applied
to the continuous-time domain, discrete-time domain as well as any combination of these two; henceforth the
results of this manuscript are completely new which extends and generalizes the existing results.

7 Examples

In this section, we will give some examples to illustrate the obtained analytical results obtained in previous
sections.

Example 7.1. Consider the following partial dynamic equation on time scale in X = L2[0, π]T.

∂

∆1t

[
X(t, ξ) − it + cos(X(a(t), ξ))

15et+2i

]
= βi(t, ξ)

∂2

∆2ξ2

[
X(t, ξ) − it + cos(X(a(t), ξ))

15et+2i

]
+

t sin(X(b(t), ξ))

(1 + i)e(i+t2)2
+ di(ξ)S(t, ξ), t ∈ ∪ϑ

i=0(si, ti+1]T, ξ ∈ [0, π]T,

X(t, 0) = X(t, π) = 0, t ∈ I = [0, T ]T, (7.29)

X(t, ξ) =
1

Γ(γ)

∫ t

ti

(t− ζ)γ−1 1 + cos(iX(t−i , ξ))

(it + 1)2et+3
, t ∈ (ti, si]T, i = 1, 2, . . . , ϑ,

X(0, ξ) = x0, ξ ∈ [0, π]T,

where ∆1 and ∆2 denote the partial derivative of order one and two, respectively. T is a time scale with
ti, si ∈ T are some points which satisfy the relation 0 = s0 = t0 < t1 < s1 < t2 < . . . sϑ < tϑ+1 = T. The
functions a, b : I → I satisfies a(t), b(t) ≤ t. X, S, βi : T0 × [0, π]T → R, are the real valued functions where
T0 = ∪ϑ

i=0[si, ti+1]T.

Now, we define the operators Ai(t) by Ai(t)x = βi(t, ξ)
∂2

∆2ξ2
x for all x ∈ D(Ai) = {x ∈ H1

0 [0, π]T ∩

H2[0, π]T}, where H1
0 [0, π]T and H2[0, π]T are the Sobolev spaces (Wang and Agarwal, 2014; Edmunds and

Evans, 2018). Clearly, it is well known that Ai(t) generate the evolution operators {Ti(t, s) : (t, s) ∈ I × I :
t ≥ s} such that ∥Ti(t, s)∥ ≤ Ce⊖ν(t, s) for all (t, s) (t ≥ s) with C = 1 and ν = 1

2 (please see (Dhama and
Abbas, 2019; Wang and Agarwal, 2014)).

Now, for (t, ξ) ∈ I × [0, π],Bi ∈ B(U,X), we set x(t) = X(t, ·), i.e., x(t)(ξ) = X(t, ξ),

Υi(t, xa(t))(ξ) =
it + cos(X(a(t), ξ))

15et+2i
, Ψi(t, xb(t))(ξ) =

t sin(X(b(t), ξ))

(1 + i)e(i+t2)2
, i = 0, 1, . . . , ϑ,

ℵi(t, x(t−i ))(ξ) =
1 + cos(iX(t−i , ξ))

(it + 1)2et+3
, i = 1, 2, . . . , ϑ, Biu(t)(ξ) = diS(t, ξ), i = 0, 1, . . . , ϑ.
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With this formulation, the equation (7.29) can be rewritten in the abstract form (2.4a)-(2.4c). Clearly, we
can see the functions Υi,Ψi, i = 0, 1, . . . , ϑ and ℵi, i = 1, 2, . . . , ϑ, satisfy all the assumptions of Theorem
6.6, and hence the system (7.29) is totally controllable on I.

Example 7.2. Consider the following impulsive system when X = R[
x(t) − t sin(xa(t))

et2+3

]∆
=

−3

2 + 3µ(t)

[
x(t) − t sin(xa(t))

et2+3

]
+

3 + cos(xb(t))

e(t+3)2
+

t2

e1+t2
, t ∈ (0, t1]T,[

x(t) − t sin(xa(t))

2et2+3

]∆
=

−3

2 + 3µ(t)

[
x(t) − t sin(xa(t))

2et2+3

]
+

3 + cos(xb(t))

e(t+3)2+1
+

t2

e1+t2
, t ∈ (s1, T ]T,

x(t) =
1

Γ
(
1
2

) ∫ t

t1

(5 + cos(x(t−1 )))

15eζ2+1(t− ζ)
1
2

∆ζ, t ∈ (t1, s1]T, (7.30)

x(0) = 1.

The system (7.30) can be written in the form of (2.1), where r(t) = i, ti ≤ t < ti+1, i = 0, 1,
γ = 0.5, ϑ = 1, x0 = 1,

A0(t) =
−3

2 + 3µ(t)
, A1(t) =

−2

1 + 2µ(t)
, Υi(t, xa(t))) =

t sin(xa(t))

(1 + i)et2+3
, i = 0, 1,

Ψi(t, xb(t))) =
3 + cos(xb(t))

e(t+3)2+i
+

t2

e1+t2
, i = 0, 1, ℵi(t, x(t−i )) =

(5 + cos(ix(t−i )))

15eit2+1
, i = 1.

Here T0(t, s) = e⊖ 3
2
(t, s) and TA1(t, s) = e⊖2(t, s) and hence ∥Ti(t, s)∥ ≤ e⊖ 3

2
(t, s), i = 0, 1, therefore

Ti(t, s), i = 0, 1, are exponentially stable where C = 1 and ν = 3
2 . Next, we consider the two cases for

different time scale as follows.
Case 1: When T = R. We choose t0 = 0, t1 = 0.4, s1 = 0.5, T = 1, a(t) = b(t) = t2/4. Also, we choose the
desire points as x(t1) = 2 and x(T ) = 1. Now, from the Figure 2, it is clear that the trajectory of the system
(7.30) does not passes throw the desire points x(t1) = 2 and x(T ) = 1. But after adding a control function
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Figure 2: State trajectory of the system (7.30) when T = R.
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u(t) =

(Wt1
0 )(−1)

(
2 − e⊖ 3

2
(t1, 0) − t1 sin(xa(t1))

et
2
1+3

−
∫ t1
0 e⊖ 3

2
(t1, σ(ζ))

(
3 + cos(xb(ζ))

e(ζ+3)2
+

ζ2

e1+ζ2

)
∆ζ

)
(t), t ∈ (0, t1]T,

(WT
s1)(−1)

(
1 − e⊖2(T, s1)

(
1

Γ
(
1
2

) ∫ s1
t1

(5 + cos(x(t−1 )))

15es
2
1+1(s1 − ζ)

1
2

∆ζ − s1 sin(xa(s1))

2es
2
1+3

)
− T sin(xa(T ))

2eT 2+3

−
∫ T
s1
e⊖2(T, σ(ζ))

(
3 + cos(xb(ζ))

e(ζ+3)2+1
+

ζ2

e1+ζ2

)
∆ζ

)
(t), t ∈ (s1, T ]T,

(7.31)

where

Wt1
0 =

∫ t1

0
e⊖ 3

2
(t1, σ(ζ))∆ζ and WT

s1 =

∫ T

s1

e⊖2(T, σ(ζ))∆ζ,

with B0 = B1 = 1, in the system (7.30), one can easily calculate
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Figure 3: Totally controlled trajectory of the system (7.30) when T = R, x(t1) = 2 and x(T ) = 1.

Wt1
0 = 3.3246, WT

s1 = 3.1640, Q1 =
CMBMW(1 + µ̄ν)

ν
= 2.2164,

N3 = C

(
LℵT

γ

Γ(γ + 1)
+ LΥ

)
+ LΥ +

CLΨ(1 + µ̄ν)

ν
= 0.1771,

N7 = N3(1 + Q1) = 0.5697.

Thus, the assumptions of Theorem 6.6 are fulfilled. Therefore, the system (7.30) is totally controllable and
the totally controlled state trajectory is shown in Figure 3.
Case 2: When T = [0, 1]R ∪ [2, 3]R = J(say). We choose t0 = 0, t1 = 0.4, s1 = 0.5, T = 3, a(t) = b(t) = t/3.
Also, we choose the desire points as x(t1) = 3 and x(T ) = 2. Now, from the Figure 4, it is clear that the
trajectory of the system (7.30) does not passes throw the desire points x(t1) = 3 and x(T ) = 2. But if we
add a control function u(t) given by the equation (7.31) with B0 = B1 = 1, in the system (7.30), we can find

Wt1
0 = 2.8429, WT

s1 = 1.9155, Q1 = 1.8953, N3 = 0.1975, N7 = 0.5718.
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Figure 4: State trajectory of the system (7.30), when T = J.

Thus, the assumptions of Theorem 6.6 are fulfilled. Therefore, the system (7.30) is totally controllable and
the totally controlled state trajectory is shown in Figure 5.
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Figure 5: Totally controlled trajectory of the system (7.30), when T = J, x(t1) = 3, x(T ) = 2.

Conclusion

We have successfully established some qualitative properties for a class of switched evolution system with
impulses over a arbitrary time domain. More precisely, first we established the existence and Ulam-Hyers
type stability results and then we established the total controllability results for the considered systems.
We applied the time scales theory, functional analysis, evolution operator theory, and fixed point theory to
established these results. Furthermore, we have given two examples for different time domains to illustrate
the obtained analytical results. As further directions, the developed methodology can be used to control an
epidemic such as COVID-19 by different measures (confinement, vaccination,... etc.) (Noeiaghdam et al.,
2021; Silva et al., 2021; Tyagi et al., 2021).

25



Acknowledgement

We are very thankful to the associate editor and anonymous reviewers for their constructive comments and
suggestions which help us to improve the manuscript.

References

Abbas S, Benchohra M (2015) Uniqueness and Ulam stabilities results for partial fractional differential
equations with not instantaneous impulses. Appl Math Comput 257:190–198. https://doi.org/10.1016/
j.amc.2014.06.073

Agarwal RP, Baghli S, Benchohra M (2009) Controllability for semilinear functional and neutral functional
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