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Summary: Morphology of plants is controlled by coordinated patterns of cell division and growth. Understanding the molecular 

mechanisms that regulate plant architecture requires careful observation and detailed analysis at the level of cells and tissues. In 

this review, we introduce recently developed microscopy protocols and computational tools to obtain and analyze cellular level 

data for research on plant morphology and development. We mainly focus on protocols for imaging plant structures by confocal 

laser scanning microscopes, followed by quantitative analysis based on 3D segmentation of cells layers/tissues, and computational 

modelling to explore fundamental questions in plant developmental biology.
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INTRODUCTION

Multicellular organisms are composed of cells forming 

patterns. To understand how these patterns are generated 

and maintained, it is necessary to observe and quantify the 

arrangement and geometry of cells, organelles, gene expression 

patterns and protein localization at cellular and subcellular level. 

State of the art imaging methods enable detailed observation 

of plant organs and structures in 3-dimensions (3D) or in 4D 

(over time in 3D). The analysis of such images allows the 

extraction of detailed morphological information. Based on a 

quantitative analysis, mathematical and computational models 

can be developed that aim to provide an integrated understanding 

of cellular-level behaviors that produce the morphology of 

the multicellular body. In recent years, great advances in the 

abilities of microscopy and image analysis have made it possible 

to observe spatial-temporal dynamics during morphogenesis 

at cellular and subcellular level. Imaging data obtained in this 

manner, and its quantitative analysis combined with computer 

modeling is termed “Computational Morphodynamics”, which 

has gathered increasing interest in the field of plant developmental 
biology (Chickarmane et al. 2020). In this review, we introduce 

recent advances in such multidisciplinary approaches in plant 

developmental biology, especially focusing on state-of-the-art 

microscopy techniques and the analysis of resulting images via 3D 

segmentation of cells using the MorphoGraphX software platform 

as an example of a widely used software within the plant research 

community (Barbier de Reuille et al. 2015). 

MULTI-DIMENSIONAL IMAGE ACQUISITION BY 

LASER SCANNING MICROSCOPES

      Confocal laser scanning microscopes are commonly used 

for the observation of fluorescently marked cells, subcellular 
organelles, and gene expression and protein localization patterns. 

Unlike physical sectioning of the specimen, optical sectioning 

with a confocal laser scanning microscope enables the user 

to acquire high resolution images that can be reconstructed 

in 3D without destroying the samples. Various types of  laser 

microscopes are used for bioimaging. Point scanning and 

spinning disc microscopes are the most commonly used, whereas 

light sheet, multiphoton and super resolution microscopes are 

increasingly used in recent years. The latter systems may achieve 

improved optical sectioning without the use of a pinhole at a 

conjugate focal plane (Gooh et al. 2015, von Wangenheim et al. 

2017, Ovečka et al. 2018, Haas et al. 2020) . 
      There are two main types of image acquisition: fixed sample 
imaging (snapshot imaging) and in vivo imaging. The choice 

between the two comes with corresponding pros and cons, with 

technical limitations often playing a decisive role in which method 

is selected. Plant cells are composed of various compounds that 

may display auto-fluorescence, e.g. chlorophyll (Donaldson 
2020), and show different refractive indices, resulting in disturbed 

marker signal detection. Fixation followed by treatment with a 

clearing solution with a refractive index matching the sample 

can potentially solve such problems. This technique enables the 

observation of the morphology of cells located deep inside of 

organs. For example, modified pseudo-Schiff propidium iodide 
(mPS-PI) staining is a protocol combining PI staining of the 

cell wall followed by clearing by chloral hydrate (Truernit et al. 

2008). In addition to various “naked/exposed” organs, which are 

relatively easy to access and observe such as leaves and roots, it 

enables the imaging of 3D cellular morphology of, for instance, 

plant embryos developing inside ovules (Truernit et al. 2008, 

Yoshida et al. 2014). While mPS-PI staining can be combined 

with the observation of GUS (beta-glucuronidase) reporter 

gene expression, additional fluorescent marker proteins are not 
preserved by this protocol. Another clearing protocol, ClearSee, 

can be applied for multicolor imaging of various fluorescent 
proteins and cellular components stained by dyes (Kurihara et al. 

2015, Ursache et al. 2018, Tofanelli et al. 2019). 

While a combination of fixation and clearing allows the 
acquisition of high  resolution static 3D images, observation of 

temporal morphological changes requires repeated imaging of 

live specimens. Generally, somatic plant cells are surrounded by 

interconnected rigid cell walls and therefore are largely immobile 

with respect to their direct neighbors. As a result, cell growth and 

proliferation are major determinants of development, which can 
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be only quantitatively approached through time-lapse imaging 

of live specimens. A common protocol for visualization of the 

outlines of cells is to use dyes to stain the cell wall (e.g. Propidium 

iodide, Calcofluor white, Renaissance 2200) or plasma membrane 
(e.g. FM4-64). Another conventional method is the introduction 

of transgenes expressing fluorescent membrane marker proteins 
(Kierzkowski et al. 2012, De Rybel et al. 2013, 2014, Ursache et 

al. 2018, Kierzkowski et al. 2019, Tofanelli et al. 2019, Wolny et 

al. 2020). Together with cell outlines, also expression patterns of 

genes and proteins can be observed and later processed to quantify 

the cellular signals. 

For in vivo and time-lapse 3D imaging in particular, it is 

important to grow samples in an environment as close as possible 

to the natural conditions. Repeated imaging typically generates 

substantial stress in form of phototoxicity in samples, thus it is 

essential to minimize other sources of stress. Therefore, the control 

of environmental light, temperature, nutrition, gas exchange, 

as well as sample orientation with respect to incident light and 

gravity need to be considered carefully. von Wangenheim et al. 

(2017) established a live imaging system using a confocal laser 

scanning microscope with vertically growing roots. This system 

made it possible to grow seedlings vertically, i.e. their natural 

orientation with respect to earth gravity. This was combined with 

TipTracker, a program to automatically track the root tip, which 

largely solves the issue of root tip displacement by growth during 

time-lapse observation. A LED illumination system is attached 

to the microscope stage, which allows directional lighting of the 

samples. Using this time-lapse imaging system, it is possible 

to image roots for quantitative analysis as exemplified by its 
use in studying restoration of cellular patterns after wounding 

(Hoermayer et al. 2020).

Light sheet fluorescence microscopy is another type of 
microscopy, that is useful for live imaging of animal and plant 

bodies (Ovečka et al. 2018, Valuchova et al. 2019). Specimens are 
illuminated by a planar sheet of light which generates fluorescence 
over an entire optical section, which in contrast to point scanning 

laser systems enables multidimensional imaging at high speed and 

with minimal photo damage. In plants, it has been used for time-

lapse imaging of roots which are relatively transparent organs due 

to absence of chloroplasts (Ovečka et al. 2018). 
Two-photon excitation microscopy is used for deep 

imaging of fixed and live specimens. Samples are excited by 
less scattering near-infrared light only at the focal plane of the 

observation, which reduces photo-bleaching, photo-toxicity and 

autofluorescence (Gooh et al. 2015). Therefore, this methodology 
can be useful for imaging of delicate samples at great depth. 

Gooh et al. (2015) established a system to perform time-lapse 

observation of Arabidopsis embryos from zygote to heart stage 

with the aforementioned imaging system, combining two-

photon microscope and a microfluidic device. The use of two-
photon microscopy enables imaging the live Arabidopsis embryo 

intact inside the ovule while this is not possible with any of the 

previously mentioned microscopes. The microfluidic device 
was used to physically fix ovules, preventing the movement of 
the samples between imaging sessions, which is a commonly 

encountered problem in time-lapse imaging, while it also 

administers nutrients and oxygen to maintain development (Gooh 

et al. 2015). 

2.5D AND 3D SEGMENTATION
Segmenting the boundaries of cells in tissues/organs is 

a necessary step in determining cell size and geometry for 

quantitative cellular-level studies. Besides that, a cellular 

segmentation also allows a further analysis of the observation 

and quantification of gene expression and protein localization 
patterns, subcellular organelles and the arrangement of cells in 

organs. Many computational tools for segmentation and image 

processing have been developed (see https://www.quantitative-

plant.org/software for a comprehensive overview, Fernandez et al. 

2010, Schindelin et al. 2012, Schneider et al. 2012, Schmidt et al. 

2014, Barbier de Reuille et al. 2015, Legland et al. 2016, Martinez 

et al. 2018, Berg et al. 2019, Selka et al. 2017). In recent years, 

one of the popular tools among the plant biology community has 

been MorphoGraphX (MGX, https://www.morphographx.org/), 

an open-source, customizable software platform for quantitative 

analysis of 3D image datasets for fixed and time-lapse images 
(Barbier de Reuille et al. 2015). MGX was originally developed 

to perform cellular segmentations on curved organ surfaces 

(so-called 2.5D segmentations, i.e. a non-flat 2D surface) and 
subsequent quantitative analyses.

      Using 3D images, MGX can extract curved surfaces of cellular 

structures (Figure 1A, B). The 3D data just below this surface, 

such as outlines of cells and fluorescent signals is then projected 
on this surface and used for segmentation (Figure 1C). The 2.5D 

data can be used for the quantification of cellular geometry as 
well as cell lineage tracing and to observe cellular morphological 

changes, cell divisions, and gene/protein expression patterns 

over multiple time points (Figure 1D, Barbier de Reuille et al. 

2015). For instance, 2.5D segmentations have been used to 

study cellular morphological changes in early leaf development 

(Vlad et al. 2014, Kierzkowski et al. 2019, Zhang et al. 2020), 

sepals (Hervieux et al. 2015, Zhu et al. 2020) and shoot apical 

or floral meristems (Kierzkowski et al. 2012, Louveaux et al. 
2016, Kinoshita et al. 2020). In many cases 2.5D segmentation 

is preferred over the much more time consuming and more error 

prone 3D segmentation. In addition, in practice often the 2.5D 

segmentation provides a sufficiently accurate representation of 
the cells and organs, especially on the surface of curved organs 

where the traditional method of a 2D projection would introduce 

distortions and inaccuracies (Kierzkowski et al. 2012, Vlad et 

al. 2014, Louveaux et al. 2016, Barbier de Reuille et al. 2015, 

Hervieux et al. 2015, Hong et al. 2016, Kierzkowski et al. 2019). 

Moreover, in many plant developmental studies the overall organ 

growth rates can be reasonably estimated by quantification of 
organ surface growth. For these reasons the 2.5D segmentation 

can be easier and therefore is more commonly used for 

quantitative analysis (Kierzkowski et al. 2012, Vlad et al. 2014, 

Hervieux et al. 2015, Hong et al. 2016, Louveaux et al. 2016, 

Kierzkowski et al. 2019, Sapala et al. 2018).       



© 2021 The Japanese Society of Plant Morphology 17

    Besides the 2.5D segmentation, MGX also allows the 
generation and analysis of 3D segmentations (Figure 2A, 
Bassel et al. 2014, Yoshida et al. 2014, Vijayan et al. 2020). A 
3D segmentation provides a complete description of cellular 
morphology and therefore is the most detailed information for 
quantitative bioimage analysis. In contrast, 2D observations of 
a volumetric organ must be correctly assessed, otherwise the 
results can be misleading. For example, during Arabidopsis 
embryo development, the embryo forms a second cell layer 
with coordinated cell divisions when developing into the 16cell 
stage. Based on the observation of 2D histological sections, it 
was previously believed that cells at the inner layer are bigger 
than cells at the outer layer. However, analysis of 3D segmented 
cells showed that the outer cells are bigger than the inner cells 
(Yoshida et al. 2014). 3D segmentation requires higher quality 
microscopy images because the outlines of cells have to be clear 
in all directions. In particular obtaining sufficient image quality 
in the direction along the optical axis is often challenging (the 
’z’ direction along which images are stacked). Increasing the 
scanning resolution is not always helpful as it leads to reduced 
signal per voxel that needs to be compensated through an increase 
in imaging time that may result in bleaching and sample damages.
      In MGX, the 3D segmentation process is semi-automatic; it 
consists of a combination of an automatic segmentation step by 
the MGX software (which uses the watershed algorithm of the 
ITK library, Yoo et al. 2002) followed by a manual step to correct 
segmentation errors. The amount of correction needed correlates 
with the quality of the confocal images and the number of cells 
in the sample. Image quality here corresponds to how well the 
captured signal represents the actual cell wall or membrane. 
Images of lower quality often show higher level of noise which 
results in less clear cell walls, as well as cell outlines with gaps 
or holes. Therefore, it is important to optimize the imaging 
procedure carefully before moving to the image acquisition step. 
The optimization is mainly needed for followings issues: 1) 
protocols for sample preparation (e.g. live or fixed), 2) types of 
microscopes used (e.g. single-photon or two-photon microscope 
system), 3) finding the optimal microscope settings. Additional 

image processing after microscopy, such as deconvolution may 
be required to improve the quality of images (Sarder and Nehorai, 
2006). Afterwards the images are ready to be loaded into MGX. 
In the segmentation process, the software fills all cells with color 
labels (Figure 2A). From this labeled 3D image MGX generates 
triangulated meshes, which are required for the further data 
analysis and the final form of the 3D data, which subsequently can 
be used for quantitative analysis. For examples of different 3D 
segmented organs, see Figure 2I-J. 
      The 3D segmented data can display detailed morphology of 
outer and inner cells from all directions (Figure 2B, C). While 
the labels and meshes are colored randomly during the automatic 
segmentation process  (Figure 2A, B, C), 3D cell meshes can be 
annotated and colored based on the cell types and/or cell lineages 
(Figure 2A, the rightmost image). Annotation of 3D segmented 
cells based on their identity and position in organs is required to 
establish their context and to extract their biological features for 
further analysis (Figure 2A, the rightmost image). 
      For samples with large numbers of cells, it is not practical to 
manually annotate cells. Automatic or semi-automatic annotation 
pipelines of 3D segmented tissues/organs for making 3D single 
cell atlases are reported for various plant organs and structures; 
in shoot apical meristem (Montenegro-Johnson et al. 2019), 
root (Schmidt et al. 2014, Montenegro-Johnson et al. 2015), leaf 
(Selka et al. 2017), ovule (Vijayan et al. 2020) and mature embryo 
(Montenegro-Johnson et al. 2015). These annotation pipelines are 
useful for the analysis of individual plants but also for the analysis 
of large numbers of samples such as plant populations. 
      A multitude of different quantification functionalities has been 
implemented in MGX. Apart from cell morphology, it is also 
possible to quantify the orientation of microtubules by projecting 
the signals of microtubules on to the labeled mesh (Sampathkumar 
et al. 2014, Hofhuis et al. 2016) as well as to segment and quantify 
the volume of organelles, such as vacuoles (Scheuring et al. 2016).  

Figure 1  The workflow of 2.5D segmentation. (A) 3D confocal stack of an Arabidopsis inflorescence shoot apical meristem as visualized by the 3D 
renderer of MGX. Cell walls were stained by propidium iodide (green). (B) After the extraction of the curved surface of the 3D stack, the cell wall signal 
below the surface is projected on it (white). (C) Next, cells are segmented on this curved image by the watershed algorithm. Cells are colored randomly. (D) 
Heatmap of cell size based on 2.5D segmentation. Scale bar 10 μm.
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VERIFYING AND IMPROVING 
THE 3D SEGMENTATION QUALITY
      3D segmentation can be a powerful tool to extract information 

from imaging data. For that reason, the reliability of 3D 

segmentation is important. In full 3D segmentation, errors are 

often difficult to recognize as cells need to be evaluated from 
different angles (Figure 2D, E, F, G) in contrast to 2D or 2.5D 

segmentation, which is much simpler (Figure 1). Figure 2D shows 

examples of such mis-segmentation; although the arrangement 

of cells seems not unnatural, it contains in a total of 11 errors. 

Sometimes, the cell wall signal of the neighboring cells appears 

as a newly formed division wall, while such a wall is absent at the 

focal plane (Figure 2E, green arrow). Also, the cell wall (or plasma 

membrane) signal can be difficult to detect in a given direction but 
more visible in other directions. For example, in Figure 2E and 

2F, the cell wall dividing columella cell is hardly visible, however, 

the transverse section shows that the cell is actually composed 

of two columella cells (Figure 2H). To avoid segmentation 

Figure 2 3D segmentation of cells by MorphoGraphX. (A) The workflow for generating 3D segmented data of the Arabidopsis embryo at the globular 
stage. The first step of segmentation typically involves blurring the 3D confocal image containing the cell wall signal (not shown; the extent of which 
can vary depending on the images) to reduce the noise. Then follows the automatic seeding and the segmentation by the watershed algorithm, which fills 
each cell with unique labels colored for visualization (2nd image from the left). For the further analysis, 3D meshes are then created from the segmented 
stack (3rd image from the left). A longitudinal section of 3D segmented embryo (4th image from the left). Cells can be colored based on cell types (the 
rightmost image). Full 3D segmented meshes can be observed from every direction; transverse sections from apical to basal directions (from left to right 
shown in B) and from top and bottom view (C). (D) Examples of mis-segmented cells; meshes are shown. (E) Overlay of labels and (F) original confocal 
stack. Note that white arrows show mis-segmented cell walls. Cell walls indicated by red and green arrows are correctly segmented. (G) Correctly 
segmented embryo. (H) Transverse view of overlay of confocal stack and meshes. The cell wall dividing the columella cell is visible in the transverse 
section (H) but difficult to find in longitudinal section (F). In H, the dotted line shows the position of the section shown in F. (I) 3D segmented transverse 
section of root and (J) shoot apical meristem of Arabidopsis. The confocal stack and meshes are overlayed. Cell outlines in the confocal images are shown 
in white. Scale bars 10 μm.
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mistakes, the 3D segmented data must be checked from multiple 
angles thoroughly, which is the most time-consuming part of 
the 3D segmentation. The weak signal of the cell wall or plasma 
membrane causes the outline of segmented cells to be mis-shaped, 
another source of distortion that has to be considered carefully. 
However, at present there are no alternatives to a supervised semi-
automated 3D segmentation with manual corrections made during 
or after processing. In our experience, especially for the samples 
containing around 100 cells the manual correction step is already 
substantial. Ideally every 3D segmented cells should be checked 
to detect all possible mis-segmentations. This is particularly 
important for experiments that aim to detect and quantify cell 
divisions as newly formed division walls can have faint signals 
that can go undetected and also has the effect that artefacts in the 
image are more likely to be mistakenly detected as division walls. 
However, in practice, it is difficult to check the segmentation of 
every cell when the samples contain hundreds or thousands of 
cells. Therefore, depending on the purpose of the experiment, 
it is also possible to average out the noise introduced via mis-
segmentations using multiple samples and a large number of cells. 
In any case it is advisable to manually inspect at least some of the 
samples to get an idea of the magnitude of error in quantification 
that is introduced due to the mis-segmentations.
      Several potential methods exist to increase the accuracy of 
3D segmentation and to make the segmentation process faster 
and easier. The z-axis of confocal image stacks suffers from less 
resolution compared to the lateral x-y axes. This situation can be 
improved by combining 3D stacks taken from multiple angles, 
which has been shown to significantly improve 3D segmentation 
(Fernandez et al. 2010, Ovečka et al. 2018, Valuchova et al. 
2019). Recently several powerful tools for improved automated 
cell segmentation were published. For instance, the machine-
learning platform ilastik, contains multiple workflows for image 
segmentation and other image processing algorithms (Berg et 
al. 2019). Another tool called PlantSeg is a deep-learning based 
pipeline for 2D and 3D segmentation of cells that may approach 
human performance (Wolny et al. 2020). The software uses a 
convolutional neural network which, after sufficient training, is 
able to predict the outlines of cells to a high level of accuracy. 
This improved cell wall signal can subsequently be used for 
segmentation (Wolny et al. 2020). The obtained data from these 
tools can be directly plugged into other image analysis software 
(MGX, Fiji etc,) for data analysis. 

QUANTITATIVE DATA ANALYSIS AND MODELLING
      Once the 3D cellular segmentation is generated, it can be 
used to quantify a variety of cell characteristics and features. 
Quantitative analysis provides morphological measurements 
during normal development that can be used for high-resolution 
phenotyping of mutants. Various morphological features can be 
quantified, among them are cell volume, cell surface area, cell 
division wall analysis and cell shape anisotropy (Figure 3A, B, C, 
D) (Montenegro-Johnson et al. 2015, 2019, Hernandez-Lagana 
et al. 2020, Vijayan et al. 2020). Furthermore quantification of 
gene expression in cellular and subcellular level and simple 

visualization of protein localization at cellular resolution can 
be performed on a 3D segmented cellular mesh (Figure 3E, 
Montenegro-Johnson et al. 2015, Chakrabortty et al. 2018, 
Yoshida et al. 2019, Vijayan et al. 2020). 

      While such descriptive knowledge is important to develop a 
detailed timeline of morphogenesis, an optimal analysis of such 
data should contribute to a mechanistic and integrated view of 
the developmental process under study. Such an effort is often 
aided by computational modelling. To understand morphogenesis 
of a multicellular body, it is required to analyze the spatial 
and temporal interactions between cellular patterns and gene/
protein expression. This mutual interaction can take unintuitive 
and highly complex forms that can only be approached via 
computational modeling. While there are many quantitative 
analysis and modeling-based studies that have been performed 
using 2.5D segmentation (Kierzkowski et al. 2012, Hervieux et 
al. 2015, Sapala et al. 2018, Kierzkowski et al. 2019), there are 

Figue3 Examples of analysis of 3D segmented data. Analyses of (A) cell 
volume, (B) cell surface area, (C, D) division wall on a 3D meshes and 
(E) visualization of corner localized protein by MorphoGraphX In A and 
B, cell volumes or cell surface areas are shown by a heatmap. In C and 
D, planes marked by red outlines show a planar approximation of the real 
division plane, and the planes marked by white outlines are the smallest 
walls dividing the mother cell. In E, the 3D localization of a corner 
localized protein, SOSEKI1 in the root epidermal cells of RPS5A-SOK1-
YFP plants (Yoshida et al. 2019) is shown by heatmap. Scale bars are 10 
μm (A, B, E) or 2 μm (C, D).
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far fewer studies based on full 3D segmented data. We will briefly 
review a study where the combination of detailed 3D imaging, 
quantitative analysis and modelling led to a more integrated view 
of the process of cell division in plants. 

Orientation of the cell division plane is an important 
determinant for plant morphogenesis. Application of 3D imaging 
and computational modelling to the study of cell division 
orientation is a good example of the capabilities and impact of 
the computational morphodynamics in studying cellular-level 
processes. The shortest wall rule is a classical hypothetical rule 
explaining orientations of cell divisions; it states that plant cells 
divide like soap bubbles, by finding the shortest division plane 
that goes through the center of a cell (Errera 1888, Yoshida 
et al. 2014). Based on the quantitative data obtained from 3D 
segmented embryonic cells, a computational model demonstrated 
that while shortest wall accounts for some embryonic divisions, 
cell divisions deviate from this rule by responding to auxin 
signaling, which leads to asymmetric cell division. This indicated 
that a simple default rule likely couples division orientation to 
cell geometry, and that genetic regulation create cellular patterns 
by overriding the default division rule (Yoshida et al. 2014). 
Quantification of microtubules combined with computational 
modeling that simulate self-organization of cortical microtubule 
arrays based on 3D segmented embryonic cells, has shown that 
the cell division plane orientation at early embryogenesis is 
predictable by considering three factors; embryonic cell geometry, 
effect of cell edges on microtubule catastrophes (microtubule 
shortening) and developmental cues such as auxin mediated 
microtubules stability (Chakrabortty et al. 2018). Cell division 
orientation was also examined in other plant species as well 
as animal cells; analysis of maize leaf epidermal layers and 
Caenorhabditis elegans embryos by different computational 
tools for 3D segmentation, indicated that the shortest wall rule 
is applicable in these species also (Martinez et al. 2018). Further 
analysis of different biological systems will reveal to what extent 
this rule can explain the various types of cell division observed in 
plants.
      Another successful example is the study of the effect of cell 
geometry on morphogenesis during seed germination (Bassel 
et al. 2014). In the tip of the radicle when it emerges during 
germination, it has been observed that the center of cell expansion 
is spatially displaced from the expression domain of growth 
promoting genes. Using a 3D mechanical model of pressurized 
cells, it was shown that by taking into account the influence of 
cell geometry, the aforementioned displacement can be accounted 
for. Thus, the use of computational modeling led to insights and 
mechanistic understanding of a complex biological phenomenon.

ISSUES FOR THE FUTURE
Taken together, bioimaging tools and multidisciplinary 

approaches described in this review are effective when applied 
to provide answers to developmental questions in plant science. 
Currently there are several outstanding issues. Efforts to address 
these issues can greatly improve the feasibility and outcome 
of such methods. While many bioimaging and image analysis 

protocols have been developed and published in recent years, these 
software tools often perform similar main functionalities such as 
image processing steps, and quantification of basic cell properties. 
However, it is often unclear how to systematically compare 
the reliability, performance and sustainability of these software 
(Lobet 2017). Therefore, researchers often have to find out for 
themselves the computational tools and software best suited for 
their work. On top of that, it often remains unclear to what extent 
these tools can be independently and correctly used without the 
direct support of the original software developers, since it can be 
challenging and time consuming for an experimental biologist to 
install and configure these tools. Their interfaces are not always 
user-friendly and often difficult to master. In addition, the data 
analysis demanded by the user generally is a complex multi-
step process rarely well documented in a software manual. These 
complications can lead to incorrect usage of software and/or 
incorrect interpretation of results. As such close communication 
and collaboration with the original developers and the user 
community is essential to prevent such problems. While for some 
software the developer and user communities are active and can be 
easily approached for help and advice, this is not the case for most.
      Another unsolved problem concerns the reliability of the 3D 
segmentation data. There is currently no system to consistently 
and objectively evaluate the quality of such segmentations and 
their quality can only be assessed by personal experience of 
individual researchers. Image processing software can generate 
beautiful looking digital views of 3D segmented cells. But to 
what extent do these reflect the reality? As shown in Figure 2D-
H, mistakes of 3D segmentation made during data processing are 
not easily visible. After having created the segmentation, often 
the original confocal stacks are no longer visualized, and it can be 
very challenging for other researchers to check the segmentation 
against original images. A similar problem can be caused by other 
image processing pipelines such as automatic cell annotation 
tools. While such issues do not necessarily have a large effect on 
the outcome of the analysis, they are additional sources of noise 
in the data. For this reason, it remains important to perform an 
initial manual assessment of the segmentation and annotation 
errors and their impact. In the coming years, it would be useful to 
promote more discussions about the quality of 3D data within the 
scientific community, so that such data can be easily verified using 
a common procedure.
      In summary computational tools for processing and analyzing 
cellular and subcellular level images are powerful and attractive 
and have enabled a much greater understanding of morphogenesis. 
However, their application requires highly optimized experimental 
procedures, high quality images and the informed use of the often 
complex software. Finally, the researcher as a user of such data 
analysis platforms has to be aware of their limitations to draw the 
correct conclusions from their results.
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