Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Four methods to distinguish between fractal dimensions in time series through recurrence quantification analysis

MPG-Autoren
/persons/resource/persons187755

Wallot,  Sebastian       
Department of Language and Literature, Max Planck Institute for Empirical Aesthetics, Max Planck Society;
Institute for Sustainability Education and Psychology, Leuphana University of Lüneburg;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

lit-22-wal-04-four.pdf
(Verlagsversion), 6MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tomashin, A., Leonardi, G., & Wallot, S. (2022). Four methods to distinguish between fractal dimensions in time series through recurrence quantification analysis. Entropy, 24(9). doi:10.3390/e24091314.


Zitierlink: https://hdl.handle.net/21.11116/0000-000B-A840-F
Zusammenfassung
Fractal properties in time series of human behavior and physiology are quite ubiquitous, and several methods to capture such properties have been proposed in the past decades. Fractal properties are marked by similarities in statistical characteristics over time and space, and it has been suggested that such properties can be well-captured through recurrence quantification analysis. However, no methods to capture fractal fluctuations by means of recurrence-based methods have been developed yet. The present paper takes this suggestion as a point of departure to propose and test several approaches to quantifying fractal fluctuations in synthetic and empirical time-series data using recurrence-based analysis. We show that such measures can be extracted based on recurrence plots, and contrast the different approaches in terms of their accuracy and range of applicability.