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The first fully relativistic, rigorous QED calculations of the self-energy correction to the fine-
structure levels of heavy muonic atoms are reported. We discuss nuclear model and parameter
dependence for this contribution as well as numerical convergence issues. The presented results show
sizable disagreement with previously reported estimations, including ones used for the determination
of the nuclear root-mean-square radii, and underline the importance of rigorous QED calculations
for the theoretical prediction of the spectra of muonic atoms.

Introduction. Muonic atoms are the bound systems
of an atomic nucleus and a negatively charged muon.
Being more than 200 times heavier than an electron, a
muon possesses correspondingly downscaled atomic or-
bitals radii, which in the case of heavy muonic atoms
are comparable or even smaller than the nuclear ra-
dius. This leads to huge finite-nuclear-size effects and a
strong dependence of the muon’s bound-state energies
on the nuclear charge and current distributions, as well
as to large relativistic effects. The understanding of this
strong dependence of the muonic atoms on nuclear pa-
rameters, and the information about atomic nuclei that
they can deliver, has triggered interest in precise knowl-
edge of the level structure of muonic atoms [1–3]. A
combination of state-of-the-art theoretical predictions
of the level structure and experiments measuring the
transition energies in muonic atoms enabled the deter-
mination of nuclear parameters like nuclear-charge, or
root-mean-square (rms) radii [4–7], electric quadrupole
and magnetic dipole moments [8–11]. One of the most
precise measurements to date is the determination of
the rms radius of 208Pb to a 0.02% level [12].

The short life-time of muon leads to the fact that
muonic atoms are essentially muonic hydrogenlike and
can be described with the single-particle Dirac equation.
The theory of muonic atoms, including nuclear and lead-
ing quantum electrodynamics (QED) corrections, has
been presented already in Refs. [2, 13]. Recently the
updated state-of-the-art calculations of the fine and hy-
perfine structures of heavy muonic atoms and the cor-
responding analysis of the individual contributions has
been presented in Refs. [14–18]. One of the important
effects is the self-energy (SE) correction. Unlike the
case of atomic electrons, where SE is comparable to an-
other QED correction, the vacuum polarization (VP)
correction [19], in muonic atoms the VP correction is
by far the dominant one [2]. Therefore, the SE cor-
rection is much smaller than the leading VP correction
and was previously calculated within a relatively simple
mean-value evaluation method, suggested in Ref. [20]
and later used in Refs. [2, 21]. Later, an attempt at a
more precise calculation was made in Ref. [22] for the
ground 1s1/2 state of several muonic atoms with a final

uncertainty of about 5%. However, even most recent
works on muonic atoms still exclude the SE correction
from the theoretical description, and treat the leading
VP correction as total QED contribution [7, 17].

Additionally, in some cases the analysis of high-
precision spectroscopic x-ray measurements of the
muonic transitions revealed some anomalies and dis-
agreements with theoretical predictions. Thus, the as-
sumption about the most complicated nuclear polar-
ization (NP) correction deduced from the experimen-
tal data for fine-structure components difference ∆2p =
E2p3/2 − E2p1/2 had an opposite sign compared to the
theory results for 90Zr [23], 112−124Sn [5], and 208Pb
[12, 24]. For a long time, it was believed that this
anomaly can be explained by more precise predictions
on the NP correction, but recently this was shown not
to be the case [25], and, therefore, additional attention
should be paid to other contributions, in particular to
the last remaining sizable QED effect, namely, to the
SE correction.

In this Letter, we present rigorous, fully relativistic
QED calculations of the SE correction to the ground
1s1/2 and excited 2p1/2 and 2p3/2 state energies of
muonic atoms, and establish the accuracy of our pre-
dictions for several muonic atoms of interest. The re-
sults can be used for future experiments aiming at high-
precision determination of nuclear rms radii, and for
reanalyzing the existing experimental data in order to
resolve the fine-structure anomaly.

Formalism. The method for calculation of the SE
correction for the bound electron in highly-charged
hydrogen-like ions was first proposed in Ref. [26], used
in Ref. [27], and further improved in Refs. [28, 29]. In
our current work, we apply the procedure described in
detail in [30, 31] with an emphasis on the finite-nuclear
size effects.

The self-energy correction to the state a with energy
εa can be written in terms of matrix element of Σ(E)
in the Feynman gauge as [30, 31]:

〈a|Σ(εa)|a〉 =
i

2π

∫ ∞
−∞

dω
∑
n

〈an|I(ω)|na〉
εa − ω − εn(1− i0)

, (1)
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I(ω,x1,x2) = α
(1−α1α2) exp (i

√
ω2 + i0x12)

x12
. (2)

Here, x12 is the relative distance x12 = |x1 − x2|, α
are the Dirac matrices, ω is the energy of a virtual pho-
ton, and the summation goes over the full spectrum n
of the considered lepton (electron or muon), including
negative- and positive-energy states. The muonic rela-
tivistic system of units (~ = mµ = c = 1) and Heaviside
charge units (α = e2/(4π)) are used throughout the pa-
per. Bold letters are used for 3-vectors, the components
of 3-vectors are listed with Latin indices, whereas Greek
letters denote 4-vector indices. The usage of the rela-
tivistic muonic system of units with mµ = 1 allows us
to use exactly the same formulas which were derived for
electronic atoms in the relativistic electronic system of
units with me = 1, and the difference appears only in
the value of the rms radius.

Following the procedure and notations from Refs. [30,
31], we expand the Green’s function for the bound elec-
tron in powers of the Coulomb potential. After this,
taking into account the mass counterterm, and perform-
ing the angular integration analytically, one can write
the total SE correction for a state a as the sum of
non-divergent zero-potential, one-potential and many-
potential terms, respectively:

∆ESE
a = ∆E(0)

a + ∆E(1)
a + ∆E(2+)

a . (3)

The zero-potential term is calculated in the momentum
representation as the diagonal SE matrix element:

∆E(0)
a =

α

4π

∫ ∞
0

dp p2

(2π)3
{
a(ρ)(g2a − f2a ) (4)

+ b(ρ)[εa(g2a + f2a ) + 2pgafa]
}
,

where ga and fa are large and small components of the
radial wave function of the state a with the energy εa
in the momentum representation, ρ = 1−p2((e2 + p2)),
and the functions a(ρ) and b(ρ) are given in Ref. [31].

The one-potential term has one single interaction be-
tween the electron and the nucleus inside the SE loop,
and its final renormalized expression can be written in
the momentum representation as [30–32]

∆E(1)
a =

α

2(2π)6

∫ ∞
0

dp p2
∫ ∞
0

dp′ p′2 (5)

×
∫ 1

−1
dξ V (q)[Faa1 Pla(ξ) + Faa2 Pla(ξ)],

where q2 = p2 + p′2 − 2pp′ξ, l is defined through the
total angular momentum j and orbital angular momen-
tum l as l = 2j − l, Pl are the Legendre polynomials,
and Fab1,2 contain one more internal integration and are
given in Ref. [31]. The exact expressions for the nuclear
potential V (q) in the momentum representation will be
discussed later.

Finally, the many-potential term with two or more in-
teractions between the electron and the nucleus inside
the SE loop can be calculated in the coordinate repre-
sentation, and performing the angular integrations and
summations analytically one gets:

∆E(2+)
a =

iα

2π

∫ ∞
−∞

dω
∑
nJ

(−1)jn−ja+J

2ja + 1

× RJ(ω, an′n′a)

εa − ω − εn(1− i0)
, (6)

where ω corresponds to the energy of the virtual photon,
RJ(ω, abcd) are generalized Slater radial integrals [31],
the sum over n in this expression corresponds to the
summation over the intermediate states, and

|n′〉 =
∑
f

|f〉〈f |V |n〉
εa − ω − εf (1− i0)

. (7)

Here |n〉 is a bound state in the external nuclear po-
tential V , and |f〉 belongs to the spectrum of the free
electron.

Nuclear potentials in coordinate and momentum rep-
resentations. In addition to the wavefunction in the mo-
mentum representation for the calculation of zero- and
one-potential terms (4)-(5), one-potential contribution
also contains the nuclear potential. Calculated with a
generalized Fourier transform [31], the Coulomb poten-
tial for point-like nucleus

VCoul(r) = −αZ
r
, (8)

has the following view in the momentum representation:

VCoul(q) = −4π
αZ

q2
. (9)

However, the Coulomb potential should not be applied
in the case of muonic atoms due to the significant nu-
clear effects, and therefore in the current work it has
been replaced with different finite-nuclear-size poten-
tials. The first of them, the shell distribution model,
has a simple analytical form in both coordinate and mo-
mentum representations:

Vshell(r) =


−
αZ

R0
r < R0

−
αZ

r
r > R0

, (10)

Vshell(q) = −4π
αZ

q2
sinR0q

R0q
. (11)

Here, the parameter R0 is defined in terms of the rms
radius as R0 =

√
〈r2〉. A nuclear model which assumes

homogeneous-sphere charge distribution of the charge



3

density corresponds to the following potential in the co-
ordinate and momentum representations:

Vsph(r) =


−
αZ

R0

[
3

2
−

1

2

(
r

R0

)2]
r < R0

−
αZ

r
r > R0

, (12)

Vsph(q) = −4π
αZ

q2
3(sinR0q −R0q cosR0q)

(R0q)3
. (13)

The parameter Ro is now defined as R0 =
√

5/3〈r2〉.
Finally, we also used the most realistic Fermi distribu-

tion of the nuclear density [33]:

ρ =
ρ0

1 + e(r−c)/a
. (14)

Here, a is the skin thickness and it is usually assumed to
be a = 2.3 fm/4 log(3) [19, 33]. The condition that V (r)
has to be normalized to the nuclear charge Z defines
normalization constant ρ0, and the half-density radius
c is chosen to reproduce the rms value. The analyti-
cal formula for the nuclear potential created by Fermi
nuclear charge distribution is then [33]:

VFermi(r < c) = −αZ
r

1

NFermi

{
6

(
a

c

)3[
S3

(
r − c
a

)
− S3

(
− c
a

)]
+
r

c

[
3

2
+
π2

2

(
a

c

)2

− 3

(
a

c

)2

S2

(
r − c
a

)]
− 1

2

(
r

c

)3}
,

(15a)

VFermi(r > c) = −αZ
r

1

NFermi

{
NFermi + 6

(
a

c

)3

S3

(
c− r
a

)
+ 3

(
a

c

)2
r

c
S2

(
c− r
a

)}
, (15b)

where Sk(x) =

∞∑
n=1

(−1)n

kn
exp(nx) and NFermi = 1 + π2

(
a

c

)2

− 6

(
a

c

)3

S3

(
− c
a

)
. (15c)

After performing a Fourier transform and calculating the integral analytically, we get:

VFermi(q) = VCoul(q)

(
1 +

Ṽtriv(q)

NFermi
+
Ṽsum(q)

NFermi

)
(16a)

Ṽtriv(q) = −c
2 + a2π2

c2
+

1

(cq)2

(
a2q2π2 − 6

2
cos(cq) +

a2q2π2 + 6

2

sin(cq)

cq

)
(16b)

Ṽsum(q) = 6

(
a

c

)2

cos(cq)

[
1

2(aq)2
+
π2

6
− π

2(aq)
coth(πaq)

]
+ 6

(
a

c

)2
sin(cq)

cq

[
− 1

2(aq)2
+
π2

6
+
π2

2

1

sinh2(πaq)

]
+ 6

(
a

c

)3

(aq)2
∞∑
n=1

2n2 + (aq)2

n3[n2 + (aq)2]2
exp(−nc/a). (16c)

The only singular contribution in Eq. (16) coincides
with the Coulomb part VCoul(q); all remaining coef-
ficients and contributions are regular at q = 0 even
though it can be not obvious from the expressions. The
potential itself is given in terms of elementary func-
tions and can be easily implemented for numerical cal-
culation with the single exception of the last term in
Eq. (16c), which nevertheless converges very fast and
therefore does not limit the numerical accuracy.

Calculation details. For the numerical integrations
we used the numerical solution of the Dirac equation
utilizing the dual-kinetic-basis (DKB) approach [34] in-
volving basis functions represented by piecewise poly-
nomials on grid’s intervals from B-splines. This method
allows one to find solutions of the Dirac equation for an

arbitrary spherically symmetric potential in a finite-size
cavity, and describes both the discrete and continuous
spectra with a finite number of electronic states for ev-
ery given j and l.

For the numerical evaluation in Eqs. (4) and (5),
routines from the numerical integration library QUAD-
PACK [35] have been used for the generalized Fourier
transformation of the wave functions and further inte-
grations, following the methods developed in [31]. An-
alytical formulas (11), (13) and (16) for the nuclear po-
tential in momentum representation have been used for
the shell, sphere and Fermi models, correspondingly.

The summation in the remaining many-potential
term over the intermediate state n in Eq. (6) goes over
the principal quantum number and at the same time in-
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Figure 1. ∆ESE contribution to the 1s1/2 state of the muonic zirconium in units of eV as a function of maximal intermediate
angular momentum jn for different nuclear models and numerical grids. The colors of the lines on every panel change depending
on the number of used DKB basis functions from light for nDKB = 50 to dark for nDKB = 150.

volves an infinite summation over the total angular mo-
mentum jn. Ideally, the calculations with infinite num-
ber of basis functions and with the summation which
extends up to jn = ∞ would give the most accurate
result, but in reality reaching infinity in both of these
directions is neither possible nor necessarily beneficial.
The DKB wavefunctions of low-lying bound states are
reproduced with very high accuracy, and the summa-
tions over the Dirac spectrum can be performed very
well. However, for the states with high values of angu-
lar momentum j even the lowest-lying states have large
numbers of knots and oscillate, and therefore the accu-
racy of the calculations cannot be improved by a sim-
ple increase of the basis. Therefore, in our numerical
calculations, the individual terms up to the maximum
value jn + 1/2 = 30 have been calculated to analyze
the convergence. Additionally, for every nuclear model
(shell, sphere and Fermi) and for two different types of
the DKB grid (exponential and non-exponential) it has
been performed for the number of basic functions nDKB

increasing from 50 up to 150.

The corresponding results for the 1s1/2 state of
muonic zirconium are presented in Figure 1. The col-
ors of the lines on every panel change from light to
dark for lower to higher number of basis functions. As
one can see from the Figure, the convergence is bet-
ter for the exponential grid since the results are stable
with respect to the maximal jn, whereas for the non-
exponential grid, even though the lines corresponding
to the different nDKB are closer to each other, they still

change visibly as functions of jn. The calculated SE
correction is rather sensitive to the maximum value jn,
the number of used basic functions nDKB, the nuclear
model and the integration grid, so only a combined deep
analysis of these dependencies would allow us to give a
reliable and accurate prediction of the effect.

Results. In our current work, we focus on the low-
lying states with high importance for experimental anal-
ysis for the muonic atoms whose spectra have already
been measured before. The total value of the SE cor-
rection for the 1s1/2, 2p1/2 and 2p3/2 states of muonic
zirconium, tin and lead for three nuclear models and two
DKB grids are listed in Table I, for max(jn + 1/2) = 30
and nDKB = 150. To be conservative, we take an aver-
age of two grids for the Fermi model as the final one, and
estimate the uncertainty by the comparison between dif-
ferent models and grid predictions; however, as one can
see from our results, for heavy nuclei the shell model
results deviate more and more from those of the Fermi
and sphere models, confirming the low applicability of
the this model for heavy muonic atoms. We have also
estimated the dependence of our results from the used
rms value, and even in the most sensitive case of the
1s1/2 state it is on the level of 0.1% and well below
the nuclear model dependence. The comparison with
the current state-of-the-art theoretical predictions from
Refs. [21, 22] shows disagreement, sometimes even out-
side of the few-percent uncertainties indicated there,
and an order-of-magnitude improvement in the accu-
racy. However, despite the disagreement in individual
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Figure 2. ∆ESE contribution to the 2p1/2 state of muonic
tin (top) and 2p3/2 state of the muonic lead (bottom) in
units of eV as a function of maximal intermediate angular
momentum jn for different nuclear models and numerical
grids. The color scheme in respect to the nuclear models and
numerical grids corresponds to the one used in Figure 1, the
colors of the lines change depending on the number of used
DKB basis functions from light for nDKB = 130 to dark for
nDKB = 150.

contributions, the fine-structure component difference
∆2p is in surprisingly good agreement with the earlier
predictions, and therefore one can conclude that the last
sizeable QED effect, namely the SE correction, does not
resolve fine-structure muonic anomaly. Finally, the up-
dated rigorous SE results to the transition energies can
potentially change the rms values based on the muonic
spectra and play important role in future for new ex-
periments aiming to the extraction of nuclear moments
and rms radii.

Conclusions. We presented the first rigorous calcula-
tion of the SE correction to the few first energy levels of
muonic atoms. We used three different nuclear charge
distributions and two grids to estimate the convergence
and uncertainties of our predictions, and gave an an-
alytical formula for the Fermi potential in momentum

representation. Theoretical results for low-lying 1s1/2,
2p1/2 and 2p3/2 for muonic zirconium, tin and lead have
been presented and compared with the available pub-
lished results. This comparison shows significant differ-
ence between our rigorous calculations and the previous
mean-value method, therefore justifying the usage of the
accurate QED approach for high-precision calculations.
Even though the renewed SE results do not resolve the
fine-structure muonic anomaly, they can affect previous
results of the extraction of the nuclear rms radii based
on the muonic atoms spectra, and stimulate the search
of other sources for this problem, including physics be-
yond the Standard Model. More importantly, the rig-
orous high-precision SE results are an essential part of
the state-of-the-art theoretical predictions aiming at a
high-precision determination of nuclear radii and other
parameters.

The Author thanks I. A. Valuev, Z. Harman,
V. A. Yerokhin, and D. A. Glazov for useful discussions.

∗ Email: Natalia.Oreshkina@mpi-hd.mpg.de
[1] J. A. Wheeler, Rev. Mod. Phys. 21, 133 (1949).
[2] E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67

(1982).
[3] S. Devons and I. Duerdoth, “Muonic atoms,” in Ad-

vances in Nuclear Physics: Volume 2, edited by
M. Baranger and E. Vogt (Springer US, Boston, MA,
1995) pp. 295–423.

[4] R. Pohl et al., Nature 466, 213 (2010).
[5] C. Piller, C. Gugler, R. Jacot-Guillarmod, L. A.

Schaller, L. Schellenberg, H. Schneuwly, G. Fricke,
T. Hennemann, and J. Herberz, Phys. Rev. C 42, 182
(1990).

[6] L. Schaller, L. Schellenberg, A. Ruetschi, and
H. Schneuwly, Nuclear Physics A 343, 333 (1980).

[7] T. Y. Saito, M. Niikura, T. Matsuzaki, H. Saku-
rai, M. Igashira, H. Imao, K. Ishida, T. Katabuchi,
Y. Kawashima, M. K. Kubo, Y. Miyake, Y. Mori,
K. Ninomiya, A. Sato, K. Shimomura, P. Strasser,
A. Taniguchi, D. Tomono, and Y. Watanabe, “Muonic
x-ray measurement for the nuclear charge distribution:
the case of stable palladium isotopes,” (2022).

[8] A. Antognini, N. Berger, T. E. Cocolios, R. Dressler,
R. Eichler, A. Eggenberger, P. Indelicato, K. Jung-
mann, C. H. Keitel, K. Kirch, A. Knecht, N. Michel,
J. Nuber, N. S. Oreshkina, A. Ouf, A. Papa, R. Pohl,
M. Pospelov, E. Rapisarda, N. Ritjoho, S. Roccia,
N. Severijns, A. Skawran, S. M. Vogiatzi, F. Wauters,
and L. Willmann, Phys. Rev. C 101, 054313 (2020).

[9] W. Dey, P. Ebersold, H. Leisi, F. Scheck, H. Walter,
and A. Zehnder, Nuclear Physics A 326, 418 (1979).

[10] A. Rüetschi, L. Schellenberg, T. Phan, G. Piller,
L. Schaller, and H. Schneuwly, Nuclear Physics A 422,
461 (1984).

[11] Y. Tanaka, R. M. Steffen, E. B. Shera, W. Reuter, M. V.
Hoehn, and J. D. Zumbro, Phys. Rev. Lett. 51, 1633
(1983).

[12] P. Bergem, G. Piller, A. Rueetschi, L. A. Schaller,

mailto:Natalia.Oreshkina@mpi-hd.mpg.de
http://dx.doi.org/10.1103/RevModPhys.21.133
http://dx.doi.org/10.1103/RevModPhys.54.67
http://dx.doi.org/10.1103/RevModPhys.54.67
http://dx.doi.org/10.1038/nature09250
http://dx.doi.org/10.1103/PhysRevC.42.182
http://dx.doi.org/10.1103/PhysRevC.42.182
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9474(80)90656-9
http://dx.doi.org/ 10.48550/ARXIV.2204.03233
http://dx.doi.org/ 10.48550/ARXIV.2204.03233
http://dx.doi.org/ 10.48550/ARXIV.2204.03233
http://dx.doi.org/10.1103/PhysRevC.101.054313
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9474(79)90401-9
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9474(84)90359-2
http://dx.doi.org/ http://dx.doi.org/10.1016/0375-9474(84)90359-2
http://dx.doi.org/ 10.1103/PhysRevLett.51.1633
http://dx.doi.org/ 10.1103/PhysRevLett.51.1633


6

Ion State Shell Exp Shell NonExp Sphere Exp Sphere NonExp Fermi Exp Fermi NonExp Final Previous
µ− 90Zr 1s1/2 1169.4 1163.3 1191.6 1180.2 1193.7 1187.7 1191(4) 1218

2p1/2 7.675 7.601 7.055 6.987 7.031 6.963 6.99(5) 1
2p3/2 47.16 47.05 46.59 46.55 46.58 46.47 46.52(6) 41

µ− 120Sn 1s1/2 1677.6 1665.4 1725.9 1701.0 1729.7 1717.7 1724(7) —
2p1/2 43.61 43.26 40.75 39.86 40.69 40.37 40.5(3) —
2p3/2 123.1 122.7 120.5 119.8 120.5 120.1 120.3(3) —

µ− 208Pb 1s1/2 3041.4 3012.0 3229.4 3197.4 3239.4 3210.8 3225(15) 3373
3270(160) [22]

2p1/2 497.6 490.6 457.1 440.9 456.7 450.0 453(5) 413
2p3/2 786.0 779.5 747.8 734.4 747.8 741.5 745(5) 707

Table I. ∆ESE contribution to the low-lying states to bound-muon energy in units of eV. One but last column corresponds to
our final value with an errorbar. The previous results have been taken from Ref. [21], and the one taken from Ref. [22] is noted
explicit.

L. Schellenberg, and H. Schneuwly, Phys. Rev. C 37,
2821 (1988).

[13] C. S. Wu and L. Wilets, Annual Review of Nuclear Sci-
ence 19, 527 (1969).

[14] N. Michel, N. S. Oreshkina, and C. H. Keitel, Phys.
Rev. A 96, 032510 (2017).

[15] A. S. M. Patoary and N. S. Oreshkina, Eur. Phys. J. D
72, 54 (2018).

[16] N. Michel and N. S. Oreshkina, Phys. Rev. A 99, 042501
(2019).

[17] N. Paul, G. Bian, T. Azuma, S. Okada, and P. Indeli-
cato, Phys. Rev. Lett. 126, 173001 (2021).

[18] T. Okumura, T. Azuma, D. A. Bennett, P. Caradonna,
I. Chiu, W. B. Doriese, M. S. Durkin, J. W. Fowler,
J. D. Gard, T. Hashimoto, R. Hayakawa, G. C. Hilton,
Y. Ichinohe, P. Indelicato, T. Isobe, S. Kanda, D. Kato,
M. Katsuragawa, N. Kawamura, Y. Kino, M. K. Kubo,
K. Mine, Y. Miyake, K. M. Morgan, K. Ninomiya,
H. Noda, G. C. O’Neil, S. Okada, K. Okutsu, T. Os-
awa, N. Paul, C. D. Reintsema, D. R. Schmidt, K. Shi-
momura, P. Strasser, H. Suda, D. S. Swetz, T. Taka-
hashi, S. Takeda, S. Takeshita, M. Tampo, H. Tatsuno,
X. M. Tong, Y. Ueno, J. N. Ullom, S. Watanabe, and
S. Yamada, Phys. Rev. Lett. 127, 053001 (2021).

[19] T. Beier, Phys. Rep. 339, 79 (2000).
[20] R. Barrett, Phys. Lett B28, 93 (1968).
[21] A. Haga, Y. Horikawa, and H. Toki, Phys. Rev. C 75,

044315 (2007).
[22] K. T. Cheng, W.-D. Sepp, W. R. Johnson, and

B. Fricke, Phys. Rev. A 17, 489 (1978).
[23] T. Q. Phan, P. Bergem, A. Rüetschi, L. A. Schaller,

and L. Schellenberg, Phys. Rev. C 32, 609 (1985).
[24] Y. Yamazaki, H. D. Wohlfahrt, E. B. Shera, M. V.

Hoehn, and R. M. Steffen, Phys. Rev. Lett. 42, 1470
(1979).

[25] I. A. Valuev, G. Colò, X. Roca-Maza, C. H. Keitel, and
N. S. Oreshkina, Phys. Rev. Lett. 128, 203001 (2022).

[26] G. E. Brown, J. S. Langer, and G. W. Schaefer, Proc.
R. Soc. A 251, 92 (1959).

[27] A. M. Desiderio and W. R. Johnson, Phys. Rev. A 3,
1267 (1971).

[28] P. J. Mohr, Phys. Rev. A 26, 2338 (1982).
[29] P. Indelicato and P. J. Mohr, Phys. Rev. A 46, 172

(1992).
[30] V. A. Yerokhin and V. M. Shabaev, Phys. Rev. A 60,

800 (1999).
[31] N. S. Oreshkina, H. Cakir, B. Sikora, V. A. Yerokhin,

V. Debierre, Z. Harman, and C. H. Keitel, Phys. Rev.
A 101, 032511 (2020).

[32] N. J. Snyderman, Ann. Phys. 211, 43 (1991).
[33] F. A. Parpia and A. K. Mohanty, Phys. Rev. A 46, 3735

(1992).
[34] V. M. Shabaev, I. I. Tupitsyn, V. A. Yerokhin, G. Plu-

nien, and G. Soff, Phys. Rev. Lett 93, 130405 (2004).
[35] “QUADPACK,” http://www.netlib.org/quadpack/.

http://dx.doi.org/ 10.1103/PhysRevC.37.2821
http://dx.doi.org/ 10.1103/PhysRevC.37.2821
http://dx.doi.org/10.1103/PhysRevA.96.032510
http://dx.doi.org/10.1103/PhysRevA.96.032510
http://dx.doi.org/10.1140/epjd/e2018-80545-9
http://dx.doi.org/10.1140/epjd/e2018-80545-9
http://dx.doi.org/10.1103/PhysRevA.99.042501
http://dx.doi.org/10.1103/PhysRevA.99.042501
http://dx.doi.org/ 10.1103/PhysRevLett.126.173001
http://dx.doi.org/10.1103/PhysRevLett.127.053001
http://dx.doi.org/https://doi.org/10.1016/S0370-1573(00)00071-5
http://dx.doi.org/10.1103/PhysRevC.75.044315
http://dx.doi.org/10.1103/PhysRevC.75.044315
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.17.489
http://dx.doi.org/ 10.1103/PhysRevC.32.609
http://dx.doi.org/10.1103/PhysRevLett.42.1470
http://dx.doi.org/10.1103/PhysRevLett.42.1470
http://dx.doi.org/ 10.1103/PhysRevLett.128.203001
http://dx.doi.org/10.1103/PhysRevA.3.1267
http://dx.doi.org/10.1103/PhysRevA.3.1267
http://dx.doi.org/10.1103/PhysRevA.26.2338
http://dx.doi.org/10.1103/PhysRevA.46.172
http://dx.doi.org/10.1103/PhysRevA.46.172
http://dx.doi.org/10.1103/PhysRevA.60.800
http://dx.doi.org/10.1103/PhysRevA.60.800
http://dx.doi.org/ 10.1103/PhysRevA.101.032511
http://dx.doi.org/ 10.1103/PhysRevA.101.032511
http://dx.doi.org/https://doi.org/10.1016/0003-4916(91)90192-B
http://dx.doi.org/10.1103/PhysRevA.46.3735
http://dx.doi.org/10.1103/PhysRevA.46.3735
http://www.netlib.org/quadpack/

	Self-energy correction to the energy levels of heavy muonic atoms
	Abstract
	 References


