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We unravel a fundamental connection between a supersymmetry and a wide class of two dimen-
sional (2D) second-order topological insulators (SOTI). This particular supersymmetry is induced
by applying a half-integer Aharonov-Bohm flux f = Φ/Φ0 = 1/2 through a hole in the system. Here,
three symmetries are essential to establish this fundamental link: chiral symmetry, inversion symme-
try, and mirror symmetry. At such a flux of half-integer value the mirror symmetry anticommutes
with the inversion symmetry leading to a nontrivial n = 1-SUSY representation for the absolute
value of the Hamiltonian in each chiral sector, separately. This implies that a unique zero-energy
state and an exact 2-fold degeneracy of all eigenstates with non-zero energy is found even at finite
system size. For arbitrary smooth surfaces the link between 2D-SOTI and SUSY can be described
within a universal low-energy theory in terms of an effective surface Hamiltonian which encom-
passes the whole class of supersymmetric periodic Witten models. Applying this general link to
the prototypical example of a Bernevig-Hughes-Zhang(BHZ)-model with an in-plane Zeeman field,
we analyse the entire phase diagram and identify a gapless Weyl phase separating the topological
from the non-topological gapped phase. Surprisingly, we find that topological states localized at the
outer surface remain in the Weyl phase, whereas topological hole states move to the outer surface
and change their spatial symmetry upon approaching the Weyl phase. Therefore, the topological
hole states can be tuned in a versatile manner opening up a route towards magnetic-field-induced
topological engineering in multi-hole systems. Finally, we demonstrate the stability of localized
states against deviation from half-integer flux, flux penetration into the sample, surface distortions,
and random impurities for impurity strengths up to the order of the surface gap.

I. INTRODUCTION

Supersymmetry (SUSY) in nonrelativistic quantum
mechanics [1–3] is a special type of symmetry allow-
ing one to classify system’s eigenstates into the so-called
”bosonic” and ”fermionic” subspaces as well as to estab-
lish mappings between these subspaces by the so called
SUSY transformations. SUSY deepens our understand-
ing of the level structure and the states, and in certain
cases the SUSY algebra generators facilitate an exact
solution of the eigenvalue problem by purely algebraic
means. One of the central models in nonrelativistic quan-
tum mechanics exhibiting SUSY is the Witten’s model
[4], which serves as a prototypical example for the ex-
plicit demonstration of the SUSY properties and their
application. The SUSY structure of the Dirac equation
[5] also paves the way for the application of SUSY in
solid state systems, particularly in their low-energy de-
scription and draws an important bridge between this
field and the field of high-energy physics where SUSY re-
mains a central topic to this date. Thus, the occurrence
of SUSY in the description of heterojunctions with band-
inverting contact has been highlighted in Ref. [6] and the
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SUSY algebra has been applied for the description of the
quantum Hall effect in graphene [7]. A SUSY formula-
tion of the two-dimensional electron gas with Rashba and
Dresselhaus spin-orbit coupling is also feasible [8]. The
emergence of the (space-time) SUSY (which is a gener-
alization of the quantum mechanical SUSY) in topologi-
cal insulators and superconductors has been unveiled in
Refs. [9, 10]. Most recently, it has been proposed [11] to
exploit the SUSY transformations for topological state
engineering.

The focus of the present work is to establish an impor-
tant link between SUSY and the field of 2nd-order topo-
logical insulators (SOTI), a field of tremendous recent in-
terest in condensed matter physics [12–19]. In particular,
we establish that a wide subclass of 2D-SOTI are close
to a supersymmetric point stabilizing zero-dimensional
bound states. We find that SUSY is an exact symmetry
if one applies a half-integer Aharonov-Bohm flux through
a hole in the 2D system. The corresponding effective 1D-
surface Hamiltonian describing the 2nd-order topological
phase transition in a low energy description turns out
to be a realization of the whole class of supersymmetric
Witten models playing a central role in the discussion of
SUSY models [1–3], see also Refs. [20, 21] for the dis-
cussion of periodic Witten models relevant for this work,
together with the special case of the double-sine poten-
tial in Refs. [22–24]. The important subclass of 2D-SOTI

ar
X

iv
:2

21
2.

01
30

7v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
 D

ec
 2

02
2



2

with SUSY properties consists of those models where the
topological zero-energy states emerge as interface bound
states at those positions of the surface where the mass
term of the effective surface Hamiltonian changes its sign
[15]. Such models have been classified within the general
classification scheme of higher-order TIs [16] in terms of
specific Shiozaki-Sato symmetry classes [25]. A prototyp-
ical example is the combination of a standard Bernevig-
Hughes-Zhang (BHZ) model [26] with an in-plane Zee-
man field inducing a mass gap between the counterprop-
agating helical edge modes, see, e.g., Refs. [27] and [28].
For pedagogical reasons this model will be the backbone
of this work, although our conclusions hold for an ex-
tended subclass of such 2D-SOTI. We note that Zeeman
fields play a very important role in controlling higher-
order topological states and, besides the combination
with the BHZ-model, have also been used in supercon-
ducting systems to realize and control Majorana states
[29–35]. Similiarly, it will also turn out in this work that
the Zeeman term is a very flexible tool to control the
shape of the topological states, implying versatile pos-
sibilities of topological engineering with magnetic-field-
only control.

The fact that inversion and/or mirror symmetries can
stabilize higher-order topological states in 2D systems
has been emphasized in previous works [15, 16, 27, 28].
However, what we add here is the insight that the si-
multaneous presence of both inversion and mirror sym-
metry commuting with each other can be tuned at half-
integer Aharonov-Bohm flux to two anti-commuting uni-
tary symmetries by multiplying the mirror symmetry
with an exponential factor e−iϕ, where ϕ denotes the
polar angle with respect to the mirror symmetry axis.
This exponential factor respects periodic boundary con-
ditions, removes the half-integer flux, and enforces the
anti-commutation of inversion and mirror symmetry. As
a result, one can prove that there is an exact 2-fold de-
generacy of all eigenstates of the model, quite analog to
a Kramer’s degeneracy but here realized via two anti-
commuting unitary symmetries with one of them being
an involution. If, in addition, the model fulfils chiral
symmetry, this 2-fold degeneracy leads to a protection
of a pair of zero-energy topological states. Importantly,
even in the absence of chiral symmetry, it turns out
that the mirror symmetry is the involution of an exact
n = 1 SUSY representation [36] with the hermitian su-
percharge operator given by the product of the Hamilto-
nian and the inversion symmetry. These properties show
that a wide subclass of 2D-SOTI has a supersymmet-
ric spectrum and, if zero-energy states are present, those
are topologically protected by SUSY. We note that this
protection is exact at half-integer flux even for a finite
system with an exact degeneracy of the two zero-energy
states, irrespective of whether they have a significant or-
bital overlap or not. When tuning the flux away from
half-filling an approximate protection up to exponentially
small splittings is found if the two topological states have
an exponentially small orbital overlap (which is realized

for a sufficiently large system). At the SUSY point, the
topological index playing the role of the topological in-
variant is the Witten index distinguishing broken from
unbroken SUSY in the absence/presence of zero-energy
states, see e.g. Refs. [37–39].

The main results of our work are summarized in
Figs. 1(a,b) and Fig. 2. In Fig. 1(a) we show a proto-
typical example of a circular hole in an infinite system,
where the SUSY structure of the spectrum applies to
all states and is exact. In the topological phase, where
the band inversion parameter is larger than the Zeeman
energy, one finds topological states localized at the posi-
tions of the hole’s surface where the normal component
of the Zeeman field with respect to the surface of the hole
changes sign (a generic rule for any shape of the surface).
The spectrum of the absolute value of the Hamiltonian
applying an additional half-integer flux through the hole
is sketched in Fig. 1(b), which demonstrates the close re-
lationship of the typical spectrum of a 2nd-order TI with
the spectrum of an unbroken SUSY in each chiral sec-
tor. The later manifests itself by an exact 2-fold degen-
eracy of SUSY partners (labelled by the SUSY eigenvalue
u = ±1) at all positive eigenvalues, and a unique zero-
energy topological state with fixed SUSY value u = s
in each chiral sector s = ±1. As typical for 2nd-order
TIs with a smooth surface, the spectrum reveals a set of
localized bound states below the surface gap set by the
Zeeman energy. Besides the two zero-energy topological
states, their energy is characterized by a new emerging
energy scale, the Witten frequency ΩW which scales in-
versely proportional to the tangential localization length
ξt. Importantly, it turns out that ξt scales with the square
root of the hole radius, leading to well-localized bound
states in tangential direction for sufficiently large hole
radius. In between the surface and bulk gap, we find
a set of helical edge states which are extended over the
whole surface. Since the circumference of the surface is
much larger than ξt for a large hole radius, their finite-
size spacing is much smaller than the Witten frequency.

Fig. 2 shows the effective surface potentials in each
chiral sector for the case of a circular hole from which all
boundary states can be analysed analytically. It results
from squaring the effective surface Hamiltonian Heff

surface
which can be written in the generic form of a periodic
2-band Dirac model (here, ~ = 1, and the Pauli matrices
σi result from a convenient spinor transformation to be
specified later)

Heff
surface = ασx(−i∂st) + σyEZ,n(st) , (1)

where α is the spin-orbit interaction, st the line element
along the surface, and EZ,n(st) the normal component
of the Zeeman field along the surface. From this Hamil-
tonian one can calculate the non-trivial tangential part
of the wave function along the surface, whereas the nor-
mal part is described by an exponentially decaying wave
function with a normal localization length of the order of
the spin-orbit length. The effective surface Hamiltonian
brings the relationship of 2nd-order topology and SUSY
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FIG. 1. (a) Sketch of a circular hole with radius R in an infinite system. The hole is threaded by a magnetic flux Φ and the
system is subject to a homogeneous in-plane Zeeman field B. In the topological phase where the band inversion parameter δ
is larger than the Zeeman energy EZ , one finds two topological states (indicated by the green regions) localized at the hole’s
surface where the normal component with respect to the circle’s surface of the Zeeman field changes sign. At half-integer flux
f = Φ/Φ0 = 1/2, the topological states are exactly at zero energy due to chiral symmetry and SUSY. The eigenvalues of chiral
symmetry and SUSY are labelled by s = ±1 and u = ±1, respectively. (b) Sketch of the spectrum of the absolute value of
the eigenenergies |E| in the topological phase at half-integer flux. The spectrum decomposes into two chiral sectors s = ±1,
each of them revealing an unbroken SUSY spectrum with one single zero-energy state and a set of 2-fold degenerate states at
positive energies labelled by the SUSY u = ±1. Below the surface gap ∆surface ≈ EZ , a set of discrete localized bound states
appears due to a 2nd-order topological mechanism, with a typical energy scale set by the Witten frequency ΩW = 1/(m∗λsoξt),

where m∗ is the effective mass, λso the spin-orbit length, and ξt = lB
√
R/λso the tangential localization length of the bound

states. Here, lB is the magnetic length characterizing the Zeeman energy EZ = 1/(2m∗l2B). Between the surface gap ∆surface

and the bulk gap ∆bulk = δ − EZ , pairs of degenerate edge states appear in each chiral sector which are extended along the
hole’s surface and localized in radial direction with normal localization length ξn ∼ λso. Due to finite size quantization in
angular direction, their spacing is given by the order ∼ 1/(m∗λsoR) which is much smaller than the Witten frequency ΩW if
the magnetic length fulfils the condition lB �

√
Rλso such that the topological states are well localized ξt � R. Beyond the

bulk gap a continuum of states appears which is 2-fold degenerate in each chiral sector such that the SUSY structure of the
spectrum applies exactly to all states.

to a universal low-energy form. On the one hand side, it
contains the two important basic ingredients to generate
2nd-order topology: the spin-orbit interaction α gener-
ating two counter-progagating helical edge modes along
the surface (with helicity σx = ±1) as familiar from the
BHZ model [26], and the normal component of the Zee-
man term acting as a mass term generating a surface
gap in which topological states are trapped at the posi-
tions where the mass term changes sign [15, 28]. On the
other side, by squaring the effective surface Hamiltonian,
one can demonstrate the SUSY structure of the spectrum
shown in Fig. 1(b) for all boundary states below the bulk
gap. In the two chiral sectors s = −σz = ±1 one obtains
two periodic Witten models describing a particle in an
effective surface potential

H±W = (Heff
surface)2|σz=∓ = −α2∂2

st + V ±W (st) , (2)

V ±W (st) = EZ,n(st)
2 ∓ α∂stEZ,n(st) . (3)

Here, V ±W (st) are the two partner Witten potentials
shown in Fig. 2, which are given by a double-sine po-
tential for the special case of a circular hole but can be

tuned to any generic form depending on the choice for the
shape of the surface. Most importantly, for any mirror-
symmetric surface around the two axis parallel and per-
pendicular to the Zeeman field, the Witten model has
supersymmetric properties in each chiral sector, consis-
tent with the spectrum of the boundary states shown in
Fig. 1(b) and Fig. 2. Obviously, all bound states below
the surface gap can be described by states localized in
the potential minima of the Witten potentials, with har-
monic oscillator form in a semiclassical approximation.

We note that the topological protection of zero-energy
states does neither require inversion nor mirror sym-
metry, consistent with Ref. [15]. The effective surface
Hamiltonian (1) has always two zero-energy solutions ir-
respective of the symmetry of the surface. However, re-
garding the exact 2-fold degeneracy of all states induced
by SUSY, both inversion and mirror symmetry are essen-
tial.

The fundamental connection between SUSY and
higher-order topological phenomena is the center result of
this work. Additionally, we apply and relate this insight
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FIG. 2. The two effective surface Witten potentials for a
circular hole with radius R = 1000λso in the two chiral sectors
(a) s = 1 and (b) s = −1 as function of the line element st =
Rϕ along the surface (0 < ϕ < 2π denotes the polar angle and
L = 2πR is the circumference of the surface). The Zeeman
energy is chosen as EZ = Eso/25, where Eso is the spin-
orbit energy. For both chiral sectors localized states (shown
in orange) are trapped in the two potential minima which
appear to be exactly 2-fold degenerate due to SUSY except
for one single topological bound state with zero eigenvalue
(highlighted by the red circle) which is localized around ϕ = 0
for s = 1 and ϕ = π for s = −1. The potential maximum
is given by the square of the surface gap ∆2

surface = E2
Z +

(1/(2m∗R2))2 ≈ E2
Z , and the two potential minima appear

at ±Ω2
W /2 with the Witten frequency defined in Fig. 1(b).

As a consequence, the lowest state has zero eigenvalue and all
the excited states are 2-fold degenerate with eigenvalue nΩ2

W ,
n = 1, 2, . . . (in a semiclassical picture), consistent with the
sketch of the spectrum shown in Fig. 1(b).

to aspects including the analysis of the phase diagram of
the prototypical Bernevig-Hughes-Zhang (BHZ) model,
the possibilities for topological engineering and the sta-
bility of topological states against various perturbations.
First, for a finite system in the form of a Corbino disc
(see Fig. 3), we discuss the topological phase diagram
both analytically and numerically. It turns out that the
normal component of the Zeeman term controls the local-
ization of the bound states along the surface, whereas the
tangential component determines the normal localization
length and drives the phase transition. Of particular in-
terest is the gapless Weyl phase separating the topolog-
ical from the non-topological gapped phase. At strong
Zeeman field the two topological states at the outer sur-
face persist in the Weyl phase, whereas the two topolog-
ical hole states disappear and are replaced by two anti-
symmetric topological states at the outer surface. We
will calculate all topological states in the two phases an-
alytically and find excellent agreement with numerical
results. Furthermore, by studying the lowest and next-
lowest absolute value of the energy numerically in the
whole phase diagram, we identify all phase boundaries
and find perfect qualitative agreement with the analyti-
cal considerations.

Secondly, we propose the hole states to be of particular
interest for topological engineering. Taking a 2D system
with several holes, one can control the topological states
of each hole independently by local Zeeman fields and

(a) δ > EZ
B

Φ

+

−

+

−

(b) |δ| < EZ
B

Φ

s = 1
u = 1

s = −1
u = −1

s = 1
u = −1

s = −1
u = 1

FIG. 3. Topological bound states for a Corbino disc for (a)
the topological gapped phase δ > EZ and (b) the Weyl phase
|δ| < EZ . The two topological states at the outer surface
persist in the Weyl phase, whereas the two topological hole
states disappear at the phase transition and are replaced by
two additional anti-symmetric states (indicated by the plus
and minus sign symbol) at the outer surface. The indices
s = ±1 and u = ±1 indicate the eigenvalues of the chiral
symmetry and the SUSY.

Aharonov-Bohm fluxes. With these two magnetic-field-
only control elements, we show that 1-hole and 2-hole
operations can be realized by tuning the shape of the
topological states in tangential and normal direction via
local Zeeman fields and by inducing a controlled coupling
between the states of the same hole via tuning the flux
away from half-integer value.

Finally, we analyse the stability of the topological
states against deviations from half-integer flux, flux pen-
etration, surface distortions, and random impurities. For
well-localized topological states we find rather robust sta-
bility up to impurity strengths of the order of the surface
gap (or even beyond for particular spinor dependencies).
Together with the fact that the BHZ model is a standard
model discussed in topology with various realizations pro-
posed in density functional theory [40] and experiments,
such as in quantum wells of HgTe/CdTe and InAs/GaSb
[41, 42], ZrTe5 single crystal [43], and in cold atom sys-
tems [44–47], we expect that our proposal for the generic
model involving only very basic ingredients can be real-
ized in various material systems with sufficient stability.

Our work is organized as follows. In Section II we
set up the basic model and discuss the phase diagram
of the bulk spectrum. The central subject of the SUSY
will be described in Section III, where we show that the
squared Hamiltonian has an exact n = 1 SUSY represen-
tation. Section IV is devoted to the full analytical theory
for a Corbino disc, a prototypical example for an outer
and inner surface, which contains the essential physics for
any smooth surface. The general setup of the differential
equations needed to solve for the topological states is out-
lined in Section IV A. Subsequently we will discuss the
spectrum for zero Zeeman field in Section IV B, present
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the derivation of the effective surface Hamiltonian in the
topological phase for a weak Zeeman field in Section IV C,
and study the topological states in the topological and
Weyl phase for a strong Zeeman field in Section IV D.
In Section IV E we summarize the results for the topo-
logical states and compare to numerics. The general va-
lidity range of the effective surface Hamiltonian for any
ratio of Zeeman and spin-orbit energy is presented in Sec-
tion IV F. The whole phase diagram for a Corbino disc
is presented numerically and compared to the analytical
predictions in Section IV G by analysing the lowest and
next-lowest absolute value of the energy eigenvalues as
function of the model parameters. Section V is devoted to
the derivation of the effective surface Hamiltonian for any
smooth surface by using orthogonal coordinates. In Sec-
tion V A, we show that the square of the surface Hamil-
tonian is given by a generic periodic Witten model. The
supersymmetric properties of the Witten model and the
low-energy spectrum of the surface Hamiltonian is anal-
ysed in Sections V B and V C, respectively. An example
for an area of peanut shape is discussed numerically and
analytically in Section V D. In the final Section VI, we
discuss the stability of the topological states against var-
ious perturbations in Section VI A, and the possibilities
for topological engineering in Section VI B. We close with
a summary and an outlook in Section VII.

II. MODEL

The 2D-SOTI with SUSY properties considered in this
work are an important subclass of the 2D-SOTI listed
within the general classification scheme developped in
Refs. [15, 16, 19] (see, e.g., Section VI in Ref. [16]). At
zero Aharonov-Bohm flux the continuum version reads

H0 = Γ0

(
p2

2m∗
− δ
)

+ αp · Γ + EZ b · Γ γ, (4)

where p = (px, py) is the momentum, m∗ denotes the
effective mass, and b = (bx, by) is a two-dimensional
real unit vector in the plane of the system playing the
role of the direction of a generalized in-plane Zeeman
field. The generalized band inversion parameter, spin-
orbit coupling, and Zeeman energy are denoted by the
real numbers δ, α and EZ , respectively. In the remain-
der of this work we use units ~ = 1. The hermitian and
unitary spinor matrices Γ0, Γ = (Γx,Γy) and γ fulfil a
certain algebra characteristic for a certain Shiozaki-Sato
class [25]. Specifically, we need the properties

ΓiΓj = −ΓjΓi , Γ2
i = 1 for all i, j = 0, x, y , (5)

Γ0γ = −γΓ0 , Γx,y γ = γ Γx,y , γ
2 = 1 . (6)

Due to rotational invariance we choose b = ey by conven-
tion in the direction of the y-axis. Furthermore, without
loss of generality, we assume α > 0 since a sign change
of α is equivalent to changing x→ −x.

Taking a hole in the system around x = (x, y) = 0
and applying a perpendicular magnetic flux Φ through
this hole, we have to shift the momentum p → p + e

cA
via the vector potential A = (Ax(x, y), Ay(x, y)) (the z-
component Az = 0 vanishes) with

e

c
A(x) =

f

r2
(−y, x) = f ∇ϕ , f =

Φ

Φ0
, (7)

where Φ0 = hc
e is the flux quantum, r =

√
x2 + y2 de-

notes the radial coordinate and 0 < ϕ < 2π is the polar
angle, which we choose by convention relative to the axis
perpendicular to the Zeeman field, see Fig. 4. Our final
Hamiltonian then reads

Hf = e−ifϕH0 e
ifϕ (8)

= Γ0 (
1

2m∗
p2
K − δ) + αpK · Γ + EZΓyγ . (9)

where

pK = p +
e

c
A = e−ifϕ p eifϕ (10)

denotes the kinetic momentum. Alternatively, using the
transformation (8), we note that the external flux can
also be treated via the Hamiltonian (4) at zero flux but
with twisted boundary conditions for the wave functions

ψ0(ϕ+ 2π) = ei2πfψ0(ϕ) . (11)

Although all our conclusions hold for the general
Hamiltonian (9), for pedagogical reasons we mostly con-
sider in this work the very instructive case of a 2D-BHZ
model with an in-plane Zeeman field, realized by the spe-
cial choice

Γ0 = σz , Γ = σx s , γ = σx , (12)

leading to the Hamiltonian

Hf = e−ifϕH0 e
ifϕ (13)

= σz (
1

2m∗
p2
K − δ) + ασxpK · s + EZsy . (14)

where s = (sx, sy) contains the Pauli matrices of the
physical spin- 1

2 operator S = 1
2s, and σi are the Pauli ma-

trices describing the conduction and valence band. Due
to the band inversion induced by the energy shift δ and
the spin-orbit interaction α a bulk gap is opened host-
ing two counter-propagating helical edge modes at the
boundary of a finite system. The edge modes are gap-
less for large system sizes but, as we will show below,
acquire a finite gap induced by the Zeeman field realiz-
ing a second order topological insulator. We note that
the spin-orbit interaction is equivalent to a Rashba-type
∼ (pxsy − pysx) perpendicular to the system, since a
spin rotation (sx, sy, sz) → (−sy, sx, sz) around the z-
axis brings the Rashba interaction into the more conve-
nient rotationally invariant form p · s.



6

By convention, we denote energies and length scales
with a tilde symbol when they are measured with re-
spect to the spin-orbit energy and spin-orbit length, re-
spectively, defined by

Eso =
k2

so

2m∗
=

1

2
m∗α2 , (15)

λso =
1

kso
=

1

αm∗
. (16)

E.g., for the Zeeman energy EZ and the energy shift δ
we define the dimensionless quantities

ẼZ =
EZ
Eso

=
1

l̃2B
, δ̃ =

δ

Eso
. (17)

In addition, we introduced the dimensionless length scale
l̃B = lB/λso, which characterizes the Zeeman field and
will be called magnetic length in the following (note that
it is not related to any orbital magnetic field).

For an infinite system in the thermodynamic limit, i.e.,
when the outer surface goes to infinity, one can study in
the asymptotic region the energy dispersion of the bulk
states, see Appendix A. Since the magnetic flux through
the inner hole does not play any role in this regime, one
obtains a flux-independent bulk gap given by

∆̃bulk ≡ ∆bulk/Eso

=





2
√
δ̃ − 1− 1/l̃2B for δ̃ > max{2, 1 + 1/(4l̃4B)}

|δ̃| − 1/l̃2B for δ̃ < 2 and |δ̃| > 1/l̃2B
0 otherwise

.

(18)

Thus, the bulk gap closes at

δ̃ =





1 + 1
4l̃4B

for δ̃ > 2

± 1
l̃2B

for δ̃ < 2
. (19)

In this work we will restrict ourselves mostly to the
regime of strong spin-orbit δ̃ < 2 and l̃B > 1/

√
2, or,

equivalently, to

δ, EZ < 2Eso . (20)

In this case, the spin-orbit length λso is the smallest
length scale and is used for the lattice spacing within
a discrete tight-binding formulation of the model, see
Appendix D. Therefore, only the gap closing lines at
δ̃ = ±1/l̃2B are of relevance here, see the black lines in
Fig. 5. They separate two gapped phases with a gapless
regime in between. For the numerical implementation of
the model we use both a continuum version in terms of a
basis set of spherical Bessel functions (for an area of disc
shape, see Appendix C) as well as a tight-binding ver-
sion described in Appendix D. The latter approach has
the advantage that it can deal with any shape of the area
and the stability of topological states against disorder can

r

ϕ

x

x

y

Φ

B

A

FIG. 4. Sketch of the system (shaded area A) with two bound-
aries formed by the inner and outer surface. A flux Φ is
threaded through the hole formed by the inner surface. The
y-coordinate is chosen in the direction of the Zeeman field B.
Polar coordinates are denoted by (r, ϕ). If the area A is cho-
sen symmetrically to the x- and y-axis (as shown), the SUSY
properties are exact and apply to all states.

be studied. For the special case of a disc we have com-
pared the two different numerical methods and checked
for quantitative agreement of the low-energy spectrum.

The typical band structure in the gapless and gapped
phase is shown in Figs. 6(a,b). In the gapless case, we

show in Appendix A for δ̃ < 2 that two Weyl points
appear at k = ±kW with kW = (0, kW ) and

k̃W = kW /kso =

√
δ̃ − 2 +

√
Ẽ2
Z + 4(1− δ̃) , (21)

see also Fig. 6(a). As a consequence we will denote the
gapless phase by the Weyl phase (WP) in the following
and will see later that it has also interesting topological
properties (although less stable against disorder due to
the absence of a gap). The two Weyl points are charac-
terized by an anisotropic derivative of the dispersion in
kx and ky direction

∂ε̃k

∂k̃x
|k=kW = 2 , (22)

∂ε̃k

∂k̃y
|k=kW =

2k̃W

ẼZ

√
Ẽ2
Z + 4(1− δ̃) . (23)

On the gap closing line δ = ±EZ , with EZ < 2Eso,
the two Weyl points merge together to a single point at
k = 0, with a topological gapped phase (TP) for δ >
EZ and a non-topological gapped phase (NTP) for δ <
−EZ , see the detailed discussion of the phase diagram in
Section IV G. Since we restrict ourselves to the regime of
strong spin-orbit δ, EZ < 2Eso in this work, we note that
the minimum of the dispersion is always at k = 0 in the
gapped phase, see Appendix A.
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1/
√

2 1 2 3

l̃B

−2

0

2
δ̃

NTP

WP

TP
δ̃ = 1/l̃2B = ẼZ

δ̃ = −1/l̃2B = −ẼZ

FIG. 5. The three different phases of the model as function of
the band inversion shift δ̃ = δ/Eso and the magnetic length

l̃B = lB/λso. Two lines at δ̃ = ±1/l̃2B = ±ẼZ = EZ/Eso

separate the topological gapped phase (TP) δ̃ > 1/l̃2B from

the Weyl phase (WP) |δ̃| < 1/l̃2B and the non-topological

gapped phase (NTP) δ̃ < −1/l̃2B .

FIG. 6. The spectrum ε̃k = εk/Eso of the four bands as

function of k̃x,y = kx,y/kso for l̃B = 2, with (a) δ̃ = 0 in

the gapless phase and (b) δ̃ = 0.5 in the gapped topological
phase. In the gapless phase (a) one finds two Weyl points at

±(0, k̃W ), with k̃W given by Eq. (21).

III. SUPERSYMMETRY

In this section we will analyse the supersymmetric
structure of our model. In Section III A we state the
exact symmetries of the general model Hamiltonian (9)
and find besides chiral and inversion symmetry another
important symmetry, a mirror symmetry with respect to
the axis perpendicular to the Zeeman field. At the par-
ticular value of half-integer flux f = 1

2 it is shown that
the mirror symmetry anti-commutes with the inversion
symmetry leading to a nontrivial realization of SUSY.
For this reason, the mirror symmetry is called SUSY in
the following. We show that the SUSY protects a 2-fold
degeneracy of all eigenstates and, as a consequence, will
protect a pair of topological bound states at zero en-
ergy (if present). The topological invariant is then given
by the Witten index which distinguishes between unbro-
ken and broken SUSY, depending on whether states with
zero (or exponentially small) energies are present or not,
respectively. In Section III B we present the formal rep-

resentation of SUSY in terms of the supercharge operator
and show that it relies only on the presence of inversion
and mirror symmetry, independent of the special form
(9) of the model.

A. Symmetries of the model

Starting from the general form of the Hamiltonian (9)
we find chiral and inversion symmetry given by

SHfS = −Hf , S = S† = ΓxΓyγ , (24)

ΠHfΠ = Hf , Π = Π† = Px Γ0 , (25)

where Px denotes the parity transformation x → −x.
The Hamiltonian does not fulfil time-reversal symmetry
but, for the special BHZ-type realization (12), we can
relate Hf and H−f via the anti-unitary transformation

σzsxH
∗
fσzsx = H−f . (26)

As a consequence, the spectra of Hf and H−f are the
same.

Furthermore, using (10), we find another important
mirror symmetry

UfHfUf = Hf , (27)

Uf = U†f = e−ifϕ Pϕ Γ0Γyγ e
ifϕ (28)

= e−i2fϕ Pϕ Γ0Γyγ , (29)

where Pϕ denotes a sign change of the polar angle ϕ →
−ϕ, which is equivalent to changing the sign of the y-
coordinate, i.e., the sign of the coordinate along the Zee-
man field. The exponentials gauge away the flux such
that the two components of the kinetic momentum are
transformed with different signs

Uf (px +Ax)Uf = px +Ax , (30)

Uf (py +Ay)Uf = −(py +Ay) . (31)

However, to respect periodic boundary conditions under
ϕ → ϕ + 2π, the transformation Uf is only an allowed
symmetry for integer and half-integer fluxes f = 0, 1/2
mod (1) in units of the flux quantum. As we will show
in the following the interesting case is a half-integer flux
where U1/2 turns out to be a SUSY leading to a typical
SUSY spectrum with an exact 2-fold degeneracy of all
eigenstates except for a single state at zero energy (due
to chiral symmetry this SUSY spectrum turns out to oc-
cur twice for the absolute value of the Hamiltonian, see
below).

The crucial property of the SUSY operator U1/2 at
half-integer flux is its anticommutation with inversion
symmetry

U1/2 Π = −ΠU1/2 , (32)

whereas, for integer flux, one gets the commutation
U0Π = ΠU0. Since we can choose all eigenstates |ψ〉 of
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the Hamiltonian simultaneously as eigenfunctions of the
inversion symmetry Π|ψ〉 = ±|ψ〉, we find for half-integer
fluxes that |ψ〉 and its SUSY partner U1/2|ψ〉 must be or-
thogonal

〈ψ|U1/2|ψ〉 = 〈ψ|ΠU1/2 Π|ψ〉
= −〈ψ|U1/2 Π Π|ψ〉 = −〈ψ|U1/2|ψ〉 , (33)

where we used (32) and Π2 = 1 in the last two steps.
Since both |ψ〉 and U1/2|ψ〉 are eigenstates of the Hamil-
tonian with the same energy, this leads necessarily to an
at least 2-fold degenerate spectrum of the Hamiltonian.
This is similiar to Kramers degeneracy but the orthogo-
nality of time-reversed partners is replaced by orthogo-
nality of SUSY partners. For our model it turns out that
no further degeneracies are present, i.e., the degeneracy
is given precisely by two.

Due to chiral symmetry all eigenstates |ψ〉 at positive
energy have a counterpart S|ψ〉 with negative energy. All
eigenstates are 2-fold degenerate due to SUSY and, there-
fore, also a possible zero energy state must be 2-fold de-
generate. Since both the bulk and edge state spectrum
is gapped in the presence of spin-orbit and Zeeman in-
teraction, the zero energy states correspond to topolog-
ical bound states generated by second order topology.
If they exist, they are topologically protected by SUSY
since a splitting would break the 2-fold degeneracy (note
that chiral symmetry alone would allow for such a split-
ting). Furthermore, due to chiral symmetry, a pair of
zero-energy states can not shift away from zero-energy.
As a result we find here a topological protection via the
combination of chiral symmetry with SUSY, quite simil-
iar to topological protection induced by chiral symmetry
and time-reversal symmetry with T 2 = −1 (leading to
Kramers degeneracy).

To reveal the typical SUSY structure of the spectrum,
it is most convenient to start with a hole in an infinite
system, as sketched in Fig. 1(a). In this case one obtains
in the TP two topological states exactly at zero energy lo-
calized at two opposite points of the hole surface with dif-
ferent chirality s and different value u for the SUSY. This
happens not only for a circular hole but for all mirror-
symmetric hole surfaces where several pairs very close to
zero energy can appear at the positions where the normal
component of the Zeeman term changes sign. However,
as explained later in more detail, one of these pairs will lie
exactly at zero energy at the SUSY point for half-integer
flux whereas the other ones are at exponentially small
energy for a large hole radius. Instead of considering
the Hamiltonian H it is then more convenient to identify
the SUSY structure of the spectrum by considering the
squared Hamiltonian

HW ≡ H2
1/2 , (34)

which has only positive or zero energies. This model
(with dimension of energy squared) is called a Witten
model for supersymmetric systems. Since HW commutes
with the chiral symmetry one obtains a SUSY spectrum

in each chiral sector separately, with a 2-fold degeneracy
of all states with positive energy (labelled by the super-
symmetry u = ±1) and a unique zero energy state in
the TP, see Fig. 1(b) where we show the spectrum of
the absolute value of the Hamiltonian |H| =

√HW . In
this case one obtains unbroken SUSY, whereas in the WP
and the NTP the zero energy states do not exist, denoted
by a broken SUSY. We note that the SUSY structure of
the spectrum applies to all states of the system, i.e., to
the states localized at the boundary below the bulk gap
∆bulk and to the bulk states above the bulk gap (where
the continuum has a 4-fold degeneracy with respect to
s = ±1 and u = ±1). As already explained in the intro-
duction the boundary states below the bulk gap consist of
three different kinds: (1) edge states extended along the
surface for energies between the surface gap ∆surface and
the bulk gap, (2) localized bound states at finite energy
below the surface gap, and (3) topological bound states
exactly at zero energy. Whether the energy scale of the
first bound state at non-zero energy is given by the Wit-
ten frequency ΩW or not, depends on the shape of the
hole. If 2n points are present on the hole surface where
the normal component of the Zeeman term changes sign,
one obtains one pair of topological states at zero energy
and n − 1 pairs of localized bound states with an expo-
nentially small energy (i.e., for a disc with n = 1, the
first pair of bound states at non-zero energy starts with
the Witten frequency as shown in Fig. 1(b)).

For a finite system with both an inner and an outer
surface, we note that there are never states strictly at
zero energy, due to an exponentially small splitting in-
duced by a hybridization between zero-energy states lo-
calized at the inner and outer surface, see also the more
detailed discussion below. Therefore, in a strict math-
ematical sense the SUSY is always broken for a finite
system. However, when neglecting the experimentally
unmeasurable and exponentially small splitting between
the zero-energy states localized at different positions in
a finite system (as is standardly done for all topological
systems), it is reasonable from a physical point of view
to use the nomenclature of unbroken SUSY also for this
case. Nevertheless, one should keep in mind that the
SUSY structure of the spectrum of the Witten model
HW applies only to the states localized either at the in-
ner or the outer surface but not to the bulk states for a
finite system. The discrete bulk states are not related to
the inner or outer surface and just have a 4-fold degener-
acy due to chiral symmetry and SUSY. It is then unclear
how to associate a given SUSY pair of bulk states at fixed
chirality to the two SUSY spectra of the boundary states
at the inner and outer surface with the same chirality,
and any choice would be ambigious and very unphysical.
Therefore, for a finite system, the SUSY structure of the
spectrum applies only to the effective surface Hamilto-
nian to be introduced later and is closely related to the
2nd-order mechanism of inducing zero-energy topological
surface states.

We note that the symmetry considerations in this
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section apply to all states of the system, irrespec-
tive of whether they are 2-dimensional bulk states, 1-
dimensional edge states along the boundary of the sys-
tem, or zero-dimensional bound states generated by 2nd-
order topology. However, in order for our symmetry ar-
guments to apply for a system with a boundary living
only in a finite region x ∈ A, we have to require that the
corresponding confinement potential

V (x) = σz

{
0 for x ∈ A

∞ for x 6∈ A
(35)

fulfils the same symmetries. Obviously, this is only the
case when the area A is both symmetric under reflec-
tion of the x- or y-coordinate, i.e., if (x, y) ∈ A, then
also (−x, y), (x,−y), (−x,−y) ∈ A must be fulfilled, see
Fig. 4.

Zero energy topological states are bound states local-
ized at the boundary of the system, i.e., either at the
inner or outer surface. If present, we will choose them
by convenience as eigenfunctions of the two commuting
symmetries S and U1/2 with eigenvalues s, u = ±1

H1/2|ψsu〉 = 0 , (36)

S|ψsu〉 = s|ψsu〉 , U1/2|ψsu〉 = u|ψsu〉 . (37)

Since S and U1/2 anticommute with Π we can further-
more choose the eigenstates such that the application of
the inversion symmetry changes both the sign of S and
U1/2

|ψ−s,−u〉 = −Π|ψsu〉 , (38)

where, for convenience (see later), we introduced a sign
factor here. As a consequence, topological states appear
for mirror symmetric areas always in pairs of two bound
states localized at two points of the boundary at opppo-
site positions with different signs for s and u. These two
wave functions can not hybridize since they have differ-
ent eigenvalues of the supersymmetry. For a finite sys-
tem several pairs can occur (either at different or on the
same surface), where the wave functions from different
pairs have the same value of u and different values of s.
In this case, the wave functions from two different pairs
can hybridize via the Hamiltonian, such that the exact
eigenstates are no longer eigenstates of the chiral sym-
metry but appear in two pairs at non-zero energy ±ε.
This is typical for all finite topological systems where lo-
calized bound states can appear at two different ends of
the system with an exponentially small orbital overlap.
This overlap leads to an exponentially small splitting of
the two states which can be neglected for a large system.
Therefore, when neglecting the exponentially small or-
bital overlap of wave functions from different pairs, we
can still use the states |ψsu〉 as the topological bound
states which are localized at a certain position and are
eigenstates of S and U1/2. As a consequence, (36) has to
be changed to H1/2|ψsu〉 ≈ 0 up to exponentially small

terms but (37) remains the same. Numerically, this is
achieved by first determining the two pairs of states with
energy closest to zero energy and, subsequently, diago-
nalizing S and U1/2 in this 4-dimensional subspace such
that (37) and (38) are fulfilled.

We will see that the topological bound states appear
always at the positions of the surface where the normal
component of the Zeeman field changes sign. This has
already been discussed in other works [27–35] for sharp
corners in 2D systems, where the emergence of topolog-
ical bound states via 2nd-order topology is induced by
the application of an in-plane Zeeman field breaking ro-
tational invariance around the z-axis. It is related to
the occurrence of bound states at the interface of two
effective edge state Hamiltonians with the Zeeman term
being the mass term and changing sign. Similarly, we will
show below that the same mechanism happens here but,
instead of considering sharp corners at the boundary as
in previous works, we will analyse arbitrary smooth sur-
faces where the curvature radius is much larger than the
localization length of the bound states. This will allow
us to derive effective surface Hamiltonians for a given
surface in the form of generic periodic Witten models
with supersymmetric properties. Moreover, within this
formalism, we will find a new viewpoint for the occur-
rence of topological states being trapped in minima of
effective surface potentials. In particular, this allows for
a full analytical theory to determine the wave functions
of the topological states, together with the analysis of
other bound states at higher energy. Since the Corbino
disc contains already many of the possible scenarios, we
will consider a Corbino disc in section IV and leave the
discussion of arbitrary smooth surfaces to Section V.

B. SUSY representation in terms of supercharge
operator

To write the Witten Hamiltonian HW in the formal
framework of SUSY Hamiltonians we define the hermi-
tian supercharge operator Q = Q† and the involution K
by

Q = H1/2 Π , K = U1/2 , (39)

and find the so-called n = 1 SUSY representation [36]

HW = Q2 , QK = −KQ , K2 = 1 . (40)

Using

S U1/2 = U1/2 S , SΠ = −ΠS , (41)

we find that the chiral symmetry commutes with both Q
and K. Therefore, the representation (40) is valid in both
chiral sectors separately. Within each chiral sector, the
2-fold degeneracy follows only for all states with positive
eigenvalue of HW , but not for a possible state with zero
eigenvalue. This follows by taking the eigenstates |ψ〉 of
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HW simultaneously as eigenstates of the involution K.
One then gets from QK = −KQ and K2 = 1 analog
to (33) that |ψ〉 and Q|ψ〉 are orthogonal to each other
and are both eigenstates of HW = Q2 with the same
eigenvalue E. For E > 0, we get Q|ψ〉 6= 0, leading to
a 2-fold degeneracy. However, since Q is not unitary, it
is also possible that Q|ψ〉 = 0, which must be obviously
the case for the state with E = 0. Therefore, one gets a
non-degenerate eigenstate of HW with zero eigenvalue in
each chiral sector (at least if it exists).

Equivalently, one can also find a so-called M = 1
SUSY representation (without an involution and a non-
hermitian supercharge operator) or a m = 2 realization
(with two hermitian supercharge operators and no invo-
lution) [48] via the definitions

Q̄ =
1

2
Q(1 +K) , (42)

Q1 =
1√
2

(Q̄+ Q̄†) = Q†1 , (43)

Q2 = −i 1√
2

(Q̄− Q̄†) = Q†2 . (44)

It is then straightforward to show that one gets the M =
1 form

HW = Q̄Q̄† + Q̄†Q̄ , Q̄2 = 0 , (45)

and the m = 2 form

HW = Q2
1 = Q2

2 , Q1Q2 = −Q2Q1 . (46)

We note that the general SUSY representation does
not rely on chiral symmetry and is possible for any sys-
tem with inversion and mirror symmetry, independent of
the special form (9) of the Hamiltonian. Let us assume
that the Hamiltonian has inversion symmetry Π = PxΓΠ

and mirror symmetry U0 = PϕΓU at zero flux, where
ΓΠ and ΓU are any spinor matrices which either com-
mute or anti-commute with each other (which is always
the case when they consist of any product of Pauli ma-
trices from different spinor degrees of freedom). If they
anti-commute already at zero flux, we can use the above
construction with U1/2 → U0 and get a SUSY realization
at zero flux. If they commute we can apply a half-integer
flux and define the new mirror symmetry

U1/2 = e−iϕU0 = e−iϕ/2 U0 e
iϕ/2 . (47)

By construction, U1/2 is a mirror symmetry of the Hamil-
tonian at half-integer flux and anti-commutes with Π.
As a consequence, we obtain a SUSY realization at half-
integer flux.

IV. CORBINO DISC

To discuss the phase diagram of the Hamiltonian in
terms of the number of topological states at exponen-
tially small energies it is most convenient to start with

the discussion of a Corbino disc with outer radius R>
and a hole of inner radius R< through which we apply
the flux Φ = fΦ0, see Fig. 7. We discuss here the most in-
teresting case of half-integer flux f = 1/2 and state at the
appropriate places the stability of the topological states
for small deviations from half-integer flux. We present
the analysis of the topological states and the derivation
of the effective surface Hamiltonian for the special case of
the BHZ-model with Zeeman field given by Eq. (14), but
note that analog considerations can be done for the more
general model (9). We start in Section IV A with the
general setup for the differential equations to be solved
for the topological states, and discuss subsequently the
cases of zero Zeeman field in Section IV B, weak Zee-
man field in Section IV C, and strong Zeeman field in
Section IV D. For readers not interested in the technical
details, the wave functions of the topological states are
summarized in Section IV E and compared to numerical
results. In Section IV F we will state the generic validity
range of the low-energy theory in terms of the universal
low-energy surface Hamiltonian. Based on these results
we will then discuss the phase diagram in terms of the
Witten index in Section IV G and again compare with
numerical results.

A. Topological states

For a Corbino disc it is most convenient to represent
the Hamiltonian in polar coordinates and rotate the spin
in radial and angular direction locally to the x- and y-
axis, respectively. This is achieved by the following uni-
tary transformation

H̄1/2 = X†W † U†
√
r H1/2

1√
r
U W X , (48)

with

U = e−i
1
2 (1+sz)ϕ , (49)

W =
1

2
(1 + σy) + sz

1

2
(1− σy) , (50)

X = ei
π
4 σy =

1√
2

(1 + iσy) . (51)

The transformation with
√
r is convenient due to the

transformation of the area element dxdy = rdrdϕ and
leads to the normalization condition

∫ R>

R<

dr

∫ 2π

0

dϕ
∑

σz,sz=±
|ψ̄(r, ϕ;σz, sz)|2 = 1 . (52)

for the eigenfunctions ψ̄(r, ϕ;σz, sz) of H̄1/2.
The transformation U eliminates the half-integer flux

and rotates the radial and angular spin locally to sx and
sy, respectively, according to

U†er · sU = sx , U†eϕ · sU = sy , (53)
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B

FIG. 7. Corbino disc with inner radius R< and outer radius
R> (shaded area). A flux Φ is threaded through the hole. The
y-coordinate is chosen in the direction of the Zeeman field B.
Polar coordinates are denoted by (r, ϕ) and er,ϕ denote the
local unit vectors in radial and angular direction.

where er,ϕ are the unit vectors in radial and angular di-
rection, see Fig. 7. We note that the transformation U
does not change the boundary conditions in angular di-
rection since it is periodic under ϕ→ ϕ+ 2π (note that
sz = ±1).

Finally, the unitary transformations W and X are
chosen for convenience to simplify the spinor structure.
Whereas X rotates the orbital spinor by π/2 around the
y-axis

X†σzX = σx , X†σxX = −σz , (54)

the transformation W has the effect

sx,y
W−→ sx,y σy , σx,z

W−→ σx,z sz , (55)

while keeping sz and σy invariant.

A straightforward calculation gives the following result
for the transformed Hamiltonian in dimensionless units

H̄1/2/Eso = σx

[
(−∂2

r̃ − δ̃)sz + 2i∂r̃sy)
]

(56)

+ σx(−2

r̃
i∂ϕsx −

1

r̃2
∂2
ϕsz +

1

r̃2
i∂ϕ) (57)

+ σy
1

l̃2B
(sx sinϕ+ sy cosϕ) , (58)

where r̃ = r/λso, δ̃ = δ/Eso, and l̃B = lB/λso.

After the transformation we get for the transformed

symmetry operators

S̄ = −σz , (59)

Π̄ = −Pxσx , (60)

Ū1/2 = Pϕσzsx . (61)

We also note that the total angular momentum in z-
direction Jz = Lz + sz/2, with Lz = −i∂ϕ, transforms
as

J̄z = Lz −
1

2
. (62)

To discuss the appearance of topological states at zero
energy we first write the Hamiltonian and the symmetry
operators in the σz-basis as

H̄1/2 =

(
0 Ā
Ā† 0

)
, S̄ =

(
−1 0
0 1

)
, (63)

Π̄ = −Px

(
0 1
1 0

)
, Ū1/2 = Pϕsx

(
1 0
0 −1

)
, (64)

with

Ā/Eso = (−∂2
r̃ − δ̃)sz + 2i∂r̃sy

− 2

r̃
i∂ϕsx −

1

r̃2
∂2
ϕsz +

1

r̃2
i∂ϕ

− i 1

l̃2B
(sx sinϕ+ sy cosϕ) . (65)

For the zero energy states |ψ̄su〉 of H̄1/2, we have to
solve

ĀΦu = 0 , (66)

and get from (37), (38), (59) and (60)

ψ̄1,u(r̃, ϕ;σz, sz) = Φ(u)(r̃, ϕ; sz)

(
0
1

)

σz

, (67)

ψ̄−1,u(r̃, ϕ;σz, sz) = −(Π̄ψ̄1,−u)(r̃, ϕ;σz, sz)

= Φ(−u)(r̃, ϕ+ π; sz)

(
1
0

)

σz

. (68)

Noting that Ā anticommutes with Pϕsx and using
Pϕsx = −Ū1/2 in the subsector σz = −1 according to
(61), we can choose the two zero energy states Φu as
eigenfunctions of Pϕsx with eigenvalues −u. This gives
the following form for Φu

Φ(u)(r̃, ϕ; sz) =
1√
2

{
χ

(u)
−u(r̃, ϕ)

(
1
1

)

sz

+

+ χ(u)
u (r̃, ϕ)

(
1
−1

)

sz

}
, (69)

where χ
(u)
± (r̃, ϕ) are (anti-)symmetric states in angular

space

χ
(u)
± (r̃,−ϕ) = ±χ(u)

± (r̃, ϕ) , (70)
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and normalized according to

∫ R̃>

R̃<

dr̃

∫ 2π

0

dϕ
{
|χ(u)

+ |2 + |χ(u)
− |2

}
= 1/λso , (71)

with R̃≷ = R≷/λso.
Inserting the form (69) in (66) and using (65), we get

the following two coupled differential equations to deter-

mine the functions χ
(u)
± (r̃, ϕ)

(
−∂2

r̃ − δ̃ ∓ 2u∂r̃ ±
u

l̃2B
cosϕ− 1

r̃2
∂2
ϕ

)
χ

(u)
±

−
(
±2

u

r̃
i∂ϕ ± i

u

l̃2B
sinϕ− 1

r̃2
i∂ϕ

)
χ

(u)
∓ = 0 . (72)

These two differential equations have to be solved with
the boundary condition

χ
(u)
+ (R̃≷, ϕ) = χ

(u)
− (R̃≷, ϕ) = 0 , (73)

However, for states localized at the outer or inner sur-
face, we need to consider only the boundary conditions
at one of the corresponding surfaces, thereby neglecting
exponentially small contributions at the other surface if

∆R̃ = R̃> − R̃< � 1 (74)

is fulfilled, which we always assume implicitly in the fol-
lowing. As discussed at the end of Section III, this has
the effect that the energies of the topological states are
not exactly at zero energy but only at exponentially small
energies (which we neglect).

We proceed with the discussion of zero, weak and
strong Zeeman field in the next subsections. A weak Zee-
man field l̃2B � 1 allows for a clear understanding of the
occurrence of topological states due to a 2nd-order mech-
anism via the derivation of effective surface Hamiltonians
hosting topological states in minima of effective surface
potentials. The derivation of topological states at strong
Zeeman field l̃B ∼ O(1) is more subtle and requires a
careful study of the solution of the two differential equa-
tions (72).

B. Zero Zeeman field

For the special case B = 0, the Hamiltonian H̄
(0)
1/2 =

H̄1/2|B=0 is rotationally invariant around the z-axis and
commutes with the angular momentum Lz = −i∂ϕ in z-
direction (note that J̄z and Lz differ only by a constant,
see Eq. (62)). In each eigenspace of Lz the angular de-
pendence of the eigenfunctions is given by 1√

2π
eilϕ, where

l = 0,±1,±2 . . . denotes the integer eigenvalue of Lz. In
this subspace we can replace −i∂ϕ → l and the radial
part follows from the Hamiltonian

H̄
(0)
1/2,l/Eso = σxh̃l , (75)

with

h̃l = (−∂2
r̃ − δ̃)sz + 2i∂r̃sy +

2l

r̃
sx +

l2

r̃2
sz −

l

r̃2
(76)

=

(
ΓlΓ
†
l − δ 2Γl

2Γ†l −(Γ†lΓl − δ)

)
, (77)

where we defined

Γl = ∂r̃ +
l

r̃
, Γ†l = −∂r̃ +

l

r̃
. (78)

For a flux deviating from half-integer value we have to
shift the angular momentum by f − 1/2, i.e., we replace
it by the index ν defined by

l→ ν = l + f − 1

2
. (79)

The Hamiltonian hν written in the form (77) is iden-
tical to the generalized supersymmetric Dirac Hamilto-
nian, as discussed e.g. in Section 9.1.1. of Ref. [1]. Dis-
regarding boundary conditions it can be solved exactly
for the bulk states in terms of Hankel functions, see Ap-
pendix B. Taking only one of the boundary conditions
at the inner or outer surface into account (which is valid
under the condition (74), see discussion above), we will
also determine in Appendix B the edge states localized
at the inner surface for any radius R< and the ones at
the outer surface for large radius R̃> � 1. In both cases
it turns out that edge states exist only for positive band
inversion parameter

δ > 0 , (80)

i.e., if the two bands overlap. This is standardly expected
for systems involving only band inversion and spin-orbit
coupling.

If both the inner and outer radius are large, i.e.,
R̃≷ � 1, we can neglect the last two terms of (76) for
the determination of the edge states and approximate
2l/r̃ ≈ 2l/R̃≷ at the outer/inner surface. The Hankel
functions can then be replaced by plane waves and one
can solve approximately the eigenvalue equation for the
radial part of the edge states

h̃l|ψ̄≷
n 〉 = ε̃

≷
l |ψ̄≷

n 〉 . (81)

This gives the following result for the dispersion

ε̃
≷
l ≈ ±

2ν

R̃≷
= ±2(l + f − 1/2)

R̃≷
, (82)

which differs by a sign factor for the outer/inner surface.
The radial part of the edge state wave function is inde-
pendent of ν and given by

ψ̄≷
n (r̃, sz) ≈

1√
2

(
1
±1

)

sz

Φ̄n(|r̃ − R̃≷|) , (83)
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FIG. 8. Spectrum (in units of Eso) at zero Zeeman field for a disc of radius R̃ = 40 as function of the deviation f − 1/2 from

half-integer flux, with δ̃ = 1, shown on two different scales. We use tight-binding numerics as described in Appendix D with
t = a = 1, α = 2 and m = 1/2. The spectrum is symmetric around zero energy (due to chiral symmetry) and symmetric around
f − 1/2 (since time-reversal symmetry changes the sign of the flux, see Eq. (26)). For f = 1/2, all states are 2-fold degenerate

due to SUSY. Inside the bulk gap set by δ̃, we find a set of discrete edge states localized at the disc boundary labelled by the
angular momentum l = 0,±1,±2 . . . with crossing linear dispersions given by ε̃>l = ±2(l + f − 1/2)/R̃ + O(1/R̃2) (where ±
refers to the σx-value in the transformed basis), see Eqs. (82) and (75). In addition there are two center states with a very

steep slope due to their strong sensitivity to the boundary conditions, with ε ≈ ∓4δ̃(f − 1/2) for |f − 1/2| � 1, see Eq. (87).

with r̃ ≶ R̃≷ and

Φ̄n(r̃) =
e−r̃√
λsoNn





sin
[
|δ̃ − 1|1/2 r̃

]
for δ̃ > 1

sinh
[
|δ̃ − 1|1/2 r̃

]
for 0 < δ̃ < 1

,

(84)

see Appendix B and Section IV C for details. Here, Nn
is a normalization factor given by

Nn =
|δ̃ − 1|

4δ̃
, (85)

such that the normalization condition

±
∫ R̃≷

∓∞
dr̃
∑

sz=±
|ψ̄≷
n (r̃, sz)|2 = 1 (86)

is fulfilled. Importantly, the edge states are polarized
with respect to the x-component of the transformed spin
with eigenvalue sx = ±1 for the outer/inner surface. This
is due to the fact that sx is the chiral symmetry of the
first two terms of (76) which determine the edge state
wave function in radial direction.

Since the total Hamiltonian is given by H̄
(0)
f /Eso =

σxhν , this gives rise to the two dispersions ±ε̃≷l as func-
tion of the angular momentum l − 1/2 in z-direction
(at fixed flux). They correspond to the two standard
counter-propagating helical edge modes (labelled by the
helicity σx = ±1) as known from the BHZ model [26].
The flux dependence is shown in Fig. 8 via a numerical
study of the energies of all eigenstates for a disc with
radius R̃ = R̃> = 40 and zero hole radius R̃< = 0

(i.e., the flux is applied through an infinitesimal small

hole), with δ̃ = 1. The spacing between adjacent levels

is not precisely given by the finite size quantization 2/R̃

since O(1/R̃2)-corrections are present. However, besides
this, the result of the linear dispersion of the edge modes
within the bulk gap set by δ̃ is perfectly reproduced. In
accordance with the 2-fold degeneracy implied by SUSY,
the two dispersions cross precisely at half-integer flux. At
finite Zeeman field one obtains a repulsion of adjacent
levels (without changing the degeneracy at half-integer
flux due to SUSY) leading to a modified band structure
as function of the flux which changes drastically when
the Zeeman energy ẼZ becomes much larger than the
spacing 2/R̃, see Section IV C and Fig. 9. In this case, a

surface gap of the order of ẼZ opens up, hosting bound
states localized in addition in angular space.

For the special case ν = 0, i.e., for l = 0 and half-
integer flux f = 1/2, the Hamiltonian h0 is translational

invariant, i.e., one obtains for any hole radius R̃< the
same energy ε̃<l=0 = 0 and the same radial edge state wave
function Φ̄n as for large hole radius. The fact that the
energy of the two ν = 0 states must stay at zero follows
also from symmetry arguments since SUSY and chiral
symmetry protect their 2-fold degeneracy such that they
can not split and must stay exactly at zero when reducing
the hole radius.

In contrast, the states at the inner surface at finite
ν 6= 0 have a strong flux dependence at small R̃< � 1
since they are very sensitive to the boundary conditions.
In Appendix B we find that all states at finite l 6= 0
move out of the gap in the limit of small hole radius. An
exception is the dispersion of the l = 0 center states at
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the inner surface which start with zero energy at f = 1/2
(for any hole radius, see above) but obtains a very steep
slope as function of the deviation f − 1/2 of the flux
from half-integer value which remains finite in the limit
R̃< → 0, see Fig. 8. For small |f − 1/2| � 1, we find the
result

ε̃<l=0(f) = −4δ̃(f − 1/2)√
|δ̃ − 1|

×





arctan
√
δ̃ − 1 for δ̃ > 1

1
2 ln 1+

√
δ̃−1

1−
√
δ̃−1

for 0 < δ̃ < 1
. (87)

It shows that the center states are rather unstable against
the application of a flux away from half-filling. This is
in contrast to the topological states for large radius in
the presence of a weak magnetic field as discussed in the
next subsection.

C. Weak Zeeman field and the effective surface
Hamiltonian

We continue with a discussion of a weak Zeeman field

l̃2B � 1 , (88)

and consider either the occurrence of localized states at
the outer or inner surface r̃ ≈ R̃≷ with a large radius

R̃� 1 . (89)

Here, we use for convenience the short-hand notation
R̃ ≡ R̃≷ for the outer or inner surface, respectively. Fur-
thermore, we assume to be deep in the gapped phase

δ̃ � ẼZ = 1/l̃2B . (90)

This assumption is essential in the present section since
the derivation is only valid if the bulk gap ∆bulk = δ−EZ
is much larger than the surface gap ∆surface ≈ EZ . Both
the crossover from the gapped to the Weyl phase at
δ̃ ∼ ẼZ together with the regime of the Weyl phase
|δ̃| < ẼZ requires the treatment of the energy shift δ
and the Zeeman term on an equal footing and will be
described in the next section. Under these conditions we
can approximate the Hamiltonian H̄1/2 first by the lead-
ing order terms (56), defining an effective Hamiltonian in
normal direction to the surface

H̄n/Eso = σx

[
(−∂2

r̃ − δ̃)sz + 2i∂r̃sy)
]
. (91)

Therefore, the radial part of the bulk Hamiltonian can

be solved by plane waves eik̃r̃ leading to

H̄n,bulk(k̃)/Eso = σx

[
(k̃2 − δ̃)sz − 2k̃sy

]
. (92)

As a consequence, the bulk spectrum of the normal part
is given by

εk/Eso =

√
(k̃2 − δ̃)2 + 4k̃2 , (93)

giving rise to a bulk gap ∆bulk/Eso = δ̃ for δ̃ < 2, con-
sistent with (18).

Any eigenstate ψ̄n of H̄n localized either at the outer or
inner surface r̃ ≈ R̃ ≡ R̃≷ can be written as an eigenstate

of σx multiplied by a state ψ̄n(r̃, sz), with r̃ ≶ R̃, fulfilling
the boundary condition

ψ̄n(R̃, sz) = 0 . (94)

To obtain these states we consider a linear combination
of two bulk plane waves (multiplied with correspond-
ing spinors) with different k1,2 and finite imaginary part
Im k1,2 ≶ 0 such that the plane waves decay exponen-
tially into the bulk. To fulfil the zero boundary condi-
tion (94) for both sz = ±, this is only possible if the two
spinors are the same which is only the case for zero en-
ergy εk = 0, see Appendix B for details. Using (93) this
leads to

k̃1,2 =

{
±
√
δ̃ − 1 + i for δ̃ > 1� 1/l̃2B

i(1±
√

1− δ̃) for 1/l̃2B � δ̃ < 1
(95)

for states localized at the inner surface, whereas for the
ones localized at the outer surface we have to replace
k̃1,2 → −k̃1,2. The eigenstate in normal direction local-
ized at the outer/inner surface is then given by

ψ̄≷
n (r̃, sz) ∼

(
1
±1

)

sz

(
eik̃1(r̃−R̃) − eik̃2(r̃−R̃)

)
, (96)

which leads to Eq. (83) after normalization. From this re-

sult we get for the normal localization length ξ̃n = ξn/λso

the result

1

ξ̃n
=

{
1 for δ̃ > 1� 1/l̃2B
1−

√
1− δ̃ for 1/l̃2B � δ̃ < 1

. (97)

The zero energy solutions for the normal part have
an infinite degeneracy since they occur for any angle ϕ.
The degeneracy is lifted by the other ϕ-dependent parts
(57) and (58) of the Hamiltonian. Under the condition
(90) that the bulk gap is much larger than the surface
gap, we can project the total Hamiltonian (56-58) on
the zero energy solutions of the normal part. We find
that in first order perturbation theory the terms involving

sy,z do not contribute since ψ̄
≷
n is an eigenstate of sx.

Furthermore, for R̃� 1, we can neglect the second term
∼ r̃−2∂ϕ of (57) compared to the first term. Thus, after

projection and setting r̃ ≈ R̃, we obtain the following
effective surface Hamiltonian to determine the angular
dependence of the edge states

±H̄≷
t /Eso = σx

2

R̃
(−i∂ϕ) + σy

1

l̃2B
sinϕ , (98)
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Here, the spinor operator sx is replaced by ±1 in (98)

since ψ̄
≷
n is an eigenstate of sx with eigenvalue ±1. This

sign influences only the sign of the dispersion but not
the eigenstates. The total wave function localized at the
outer or inner surface is then a product of the solutions
along the normal and tangential direction

ψ̄≷(r̃, ϕ;σz, sz) = ψ̄≷
n (r̃, sz) ψ̄t(ϕ, σz) , (99)

where ψ̄
≷
n is given by (83) and ψ̄t is an eigenstate of the

surface Hamiltonian (98) normalized according to

∫ 2π

0

dϕ
∑

σz=±
|ψ̄t(ϕ, σz)|2 = 1 . (100)

The surface Hamiltonian has the form of a periodic
Dirac model with a potential term involving the normal
component of the Zeeman field. In Section V we will see
that the same result is obtained for an arbitrary smooth
surface. The first term leads to a linear dispersion of two
edge modes propagating in opposite directions along the
surface and crossing at zero energy. The second term acts
as a mass term leading to a gap in the edge state spec-
trum of the order of the Zeeman energy. Since the mass
term changes sign at ϕ = 0, π, we expect zero-energy
topological bound states to appear at these positions.
From the fact that the mass term changes from negative
to positive values when crossing ϕ = 0 along the surface,
and vice versa for ϕ = π, we expect different chiralities
S̄ = −σz = ±1 for the zero-energy states localized at the
two positions ϕ = 0, π, respectively. The angular spread
∆ϕ of the topological states can be estimated by compar-
ing the order of magnitude of the two terms of the surface
Hamiltonian (98). This leads to 1/(R̃∆ϕ) = ∆ϕ/l̃2B or

∆ϕ ≡ l̃B√
R̃

=
lB√
Rλso

, (101)

which gives for the tangential localization length ξt the
estimate

ξ̃t = ξt/λso = R̃∆ϕ =
√
R̃ l̃B . (102)

The angular spread is small compared to unity for large
radius

√
R̃� l̃B ⇔ ∆ϕ� 1⇔ ξ̃t � R̃ , (103)

which is the regime of well-localized states where the tan-
gential localization length is much smaller than the cir-
cumference of the surface. In this case the derivation of
the surface Hamiltonian is systematic in the sense that it
includes all sub-leading terms ∼ 1/ξ̃t beyond the leading
order terms ∼ O(1) present in the normal Hamiltonian
(91). This follows from the following estimates of the

various terms present in (57) and (58)

1

r̃2
∂2
ϕ ∼

1

R̃2∆ϕ2
∼ 1

ξ̃2
t

� 1

ξ̃t
, (104)

1

r̃2
∂ϕ ∼

1

R̃2∆ϕ
∼ 1

R̃ξ̃t
,� 1

ξ̃t
(105)

1

l̃2B
sinϕ ∼ ∆ϕ

l̃2B
∼ 1

ξ̃t
. (106)

A delicate issue is the Zeeman term in tangential direc-
tion ∼ (1/l̃2B) cosϕ ∼ R̃/ξ̃2

t which, for ξ̃t � R̃, becomes
larger than the terms considered in the surface Hamilto-
nian. However, since this term involves the Pauli matrix
sy, it can contribute only in second order perturbation

theory (with bulk states of energy ∼ δ̃ ∼ O(1) as inter-

mediate states) and therefore contributes in order 1/l̃4B
to the surface Hamiltonian. To neglect this contribution
we need in addition the condition

1

l̃4B
� 1

ξ̃t
⇔
√
R̃� l̃3B . (107)

This means that in case of strong localization the mag-

netic field must be strong enough such that l̃B �
√
R̃

but weak enough to guarantee (107). Otherwise, one
enters the regime of a strong Zeeman field discussed in
Section IV D.

We note that the additional condition (107) is auto-
matically fulfilled for the case when the Zeeman field is
so weak that the wave function is delocalized in angular

space such that ∆ϕ ∼ O(1) which happens for l̃B &
√
R̃

or ξ̃t ∼ R̃. In this case, we have considered consistently
all subleading terms ∼ 1/R̃ in the surface Hamiltonian,
since the Zeeman term in y-direction gives in second-
order perturbation theory a contribution ∼ 1/l̃4B . 1/R̃2.
In addition, for the opposite case of strong localization
∆ϕ � 1, we show in Section IV F, that the tangential
part of the Zeeman term can be included in the radial
problem and leads only to a change of the normal local-
ization length, without violating the validity regime of
the effective surface Hamiltonian. Therefore, the addi-
tional condition (107) is not very restrictive, and is only
relevant for the study of the extended edge states beyond
the surface gap in the regime of strong localization.

To visualize the emergence of localized states in poten-
tial minima it is instructive to square the surface Hamil-
tonian leading to an effective model of a particle on a
ring in a periodic double sine potential

H̃W ≡ (H̄
≷
t /Eso)2 = − 4

R̃2
∂2
ϕ + Ṽ −σzW (ϕ) , (108)

where

Ṽ ±W (ϕ) =
(
V ±W (st)/Eso

)2

=
1

l̃4B
sin2(ϕ)∓ 2

R̃ l̃2B
cos(ϕ) (109)
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are the two effective surface potentials (with dimension
of energy squared) sketched in Fig. 2 for the two chi-
ral sectors S̄ = −σz = ±1, plotted against the surface
line element st = Rϕ. As one can see there are two
potential minima for each chiral sector where localized
states are trapped. The potential maximum is given by
1/l̃4B+1/R̃2 which is approximately given by the Zeeman
energy squared for large radius of the surface. This shows
that the potential term opens a surface gap in the effec-
tive edge state Dirac model of the order of the Zeeman
energy with localized and discrete states in the gap and
a continuum of edge states above the surface gap. This
demonstrates the generation of localized bound states via
a 2nd-order mechanism.

As one can see in Fig. 2 the lowest potential minimum
is located at ϕ = 0 for the chiral sector s = 1 and at ϕ = π
for s = −1. In this minimum the lowest state is exactly
at zero energy and is non-degenerate for each chiral sec-
tor. In contrast, all higher states are 2-fold degenerate
for each chiral sector. This leads to the supersymmetric
form of the spectrum for each chiral sector separately,
which is consistent with the exact SUSY properties dis-
cussed in Section III for the squared Hamiltonian. In
Section V B we will also present the exact SUSY prop-
erties of the periodic Witten model for any smooth and
mirror-symmetric surface.

Using (98) the topological state at zero energy with
chirality S̄ = −σz = 1 follows from

ψ̄
(0)
t (ϕ, σz) = Φ̄

(0)
t (ϕ)

1√
2

(
0
1

)

σz

, (110)

[
2

R̃
(−i∂ϕ)− i 1

l̃2B
sinϕ

]
Φ̄t,1(ϕ) = 0 . (111)

The solution of the differential equation is given by (the
superindex indicates the localization at ϕ ≈ 0 which cor-
responds to S = 1)

Φ̄
(0)
t (ϕ) = f0(ϕ) ≡ 1√

Nt
e

1
2∆ϕ2 cosϕ

, (112)

where ∆ϕ = l̃B/
√
R̃ has been defined in (101) and the

normalization factor Nt is defined such that the normal-
ization condition (100) is fulfilled. For ∆ϕ � 1 we find
that the state is localized close to ϕ ≈ 0 and, after ex-
panding cosϕ ≈ 1−ϕ2/2, we find the approximate Gaus-
sian form

f0(ϕ) ≈ 1√√
2π∆ϕ

e−
1
4 (ϕ/∆ϕ)2

. (113)

Obviously, the state for positive chirality S̄ = −σz = 1
is symmetric in ϕ. This gives σz = −1, Pϕ = 1 and
sx = ±1 for the outer/inner surface according to (83). As
a consequence, the supersymmetry Ū1/2 = Pϕσzsx = ∓1
according to (61). This leads precisely to the two right
states at the outer and inner surface shown in Fig. 3(a).
The other two states with chirality S = −1 follow from

the application of the inversion symmetry (see Eq. (38))
which, by using −Π̄ = Pxσx according to (60), leads to
(here the superindex indicates the localization close to
ϕ ≈ π which corresponds to S = −1)

ψ̄
(π)
t (ϕ, σz) = f0(ϕ− π)

1√
2

(
1
0

)

σz

, (114)

f0(ϕ− π) =
1√
Nt

e
− 1

2∆ϕ2 cosϕ
, (115)

≈ 1√√
2π∆ϕ

e−
1
4 [(ϕ−π)/∆ϕ]2 . (116)

These two states at the outer and inner surface are local-
ized close to ϕ ≈ π and fulfil σz = 1, Pϕ = 1 and sx = ±1,
respectively. This leads to S = −1 and U1/2 = ±1, cor-
responding to the two left states of Fig. 3(a).

To calculate the excited bound states of H̃W we con-
sider the chirality sector S̄ = −σz = 1 and start with
the bound states localized close to ϕ ≈ 0. Expanding the
double sine potential Ṽ +

W (ϕ) shown in Fig. 2(a) around

ϕ ≈ 0 we get from (109) for ∆ϕ = l̃B/
√
R̃� 1

Ṽ +
W (ϕ) ≈ Ω̃2

W

4
ϕ̃2 − Ω̃2

W

2
, (117)

where we defined the Witten frequency ΩW for the double
sine potential in dimensionless units by

Ω̃W = ΩW /Eso =
2

R̃∆ϕ
=

2√
R̃ l̃B

=
2

ξ̃t
, (118)

and ϕ̃ = ϕ/∆ϕ, where ∆ϕ = l̃B/
√
R̃ is the angular

spread defined in (101) and ξ̃t = R̃∆ϕ is an estimation
for the tangential localization length according to (102).
This gives for the Hamiltonian (108) of the double sine
model

H̃+
W = H̃W |σz=−1 ≈ Ω̃2

W

(
−∂2

ϕ̃ +
1

4
ϕ̃2 − 1

2

)
, (119)

which is of harmonic oscillator form

H̃+
W = Ω̃2

W a†a , (120)

with the annihilation/creation operators defined by

a = ∂ϕ̃ + ϕ̃/2 , a† = −∂ϕ̃ + ϕ̃/2 . (121)

As a result, we find the eigenvalues

ẼWn = Ω̃2
W n , n = 0, 1, 2, . . . , (122)

and the normalized eigenstates

fn(ϕ) =
1√
n!

(a†)nf0(ϕ) , (123)

where f0(ϕ) defined by (113) is the ground state of the
harmonic oscillator.
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An analog result is obtained for the states localized
close to the minimum ϕ ≈ π, where we get

Ṽ −W (ϕ) ≈ Ω̃2
W

4
(ϕ̃− π)2 +

Ω̃2
W

2
. (124)

This gives the same eigenstates (123) but the angle is

shifted by π and the eigenvalue is shifted by Ω̃2
W , com-

pare with Fig. 2. Finally, the eigenstates of the other
chiral sector S̄ = −σz = −1 follow from the ones of
S̄ = −σz = 1 by shifting the angle by π and taking the
same eigenvalue.

From all eigenstates of H̃W = (H̄
≷
t /Eso)2 one can con-

struct all eigenstates of H̄
≷
t which is possible due to chi-

ral symmetry and since the Hamiltonian respects the pe-
riodic boundary conditions. We start with the regime
ϕ ≈ 0, where we can approximately write for (98) in the
σz-basis

±H̄≷
t /Eso ≈ Ω̃W

(
0 −ia
ia† 0

)
. (125)

Obviously, there is a unique zero energy state given by
(the superindex indicates the regime ϕ ≈ 0)

ψ̄
(0)
t (ϕ, σz) = f0(ϕ)

(
0
1

)

σz

, (126)

which has chirality S̄ = −σz = 1 and agrees with (110)
and (112). The eigenstates with non-zero energy are
given by

ψ̄
(0)
t,nη(ϕ, σz) =

1√
2

(
−iηfn−1(ϕ)

fn(ϕ)

)

σz

, (127)

with η = ±1 and n = 1, 2, . . . . The corresponding energy

eigenvalue of H̄
≷
t /Eso follows from

ε̃≷nη = ε≷nη/Eso = ±η Ω̃W
√
n . (128)

Here, we note that the first sign ±1 refers to the
outer/inner surface (or, equivalently, to the sign of sx
of the normal part of the wave function), and the second
sign η refers to the two eigenstates (127) resulting from

the chiral symmetry of H̄
≷
t for each given surface. For

the absolute value of the eigenenergies we get

|ε̃≷nη| = Ω̃W
√
n =

2

ξ̃t

√
n =

2√
R̃ l̃B

√
n . (129)

As expected, the energies scale with the inverse tangen-
tial localization length (the normal localization length ξn
given by (97) does not appear since it is of the order
of the spin-orbit length). Furthermore, since only the
squared Hamiltonian is of harmonic oscillator form, they
are proportional to

√
n.

For the eigenstates localized close to ϕ ≈ π, we apply
the inversion symmetry Π̄ = −Pxσx (see Eq. (60)) to

(126) and (127). This does not change the energy but
changes the states to

ψ̄
(π)
t (ϕ, σz) = f0(ϕ− π)

(
1
0

)

σz

(130)

for the zero energy state (which has chirality S̄ = −σz =
−1 and agrees with (114)), and

ψ̄
(π)
t,nη(ϕ, σz) =

1√
2

(
fn(ϕ− π)

−iηfn−1(ϕ− π)

)

σz

(131)

for the states with non-zero energy.
The eigenfunctions with non-zero energy are no longer

eigenstates of the chiral symmetry S̄ = −σz but the
states with different sign of η (or different sign for the
energy) are transformed into each other by the chiral
symmetry

σzψ̄
(0,π)
t,nη = −ψ̄(0,π)

t,n,−η . (132)

The states are eigenstates of the SUSY operator since the
property fn(−ϕ) = (−1)nfn(ϕ) leads to

PϕσzΨ̄
(0)
t,nη = −(−1)nΨ̄

(0)
t,nη , (133)

PϕσzΨ̄
(π)
t,nη = (−1)nΨ̄

(π)
t,nη . (134)

Using Ū1/2 = Pϕσzsx from (61), we get the SUSY eigen-

value u = sx(−1)n+1 and u = sx(−1)n for the states lo-
calized at ϕ ≈ 0 and ϕ ≈ π, respectively, where sx = ±1
corresponds to the outer/inner surface.

Qualitatively, all our findings are perfectly reproduced
by the numerical calculation of the spectrum of a disc
with radius R̃ = 40 for δ̃ = 1 and two values of the
Zeeman energy ẼZ = 1/4, 1/3, as shown in Figs. 9(a,b)
(here we use the tight-binding version described in Ap-
pendix D). Compared to the case of zero Zeeman field
as shown in Fig. 8, the center states behave quite similar
and show a strong dependence on the flux with a very
steep slope. In contrast, for the states at the boundary
of the disc, it can be clearly seen that a surface gap of
the order of the Zeeman energy opens up, in which a set
of bound states with energies on the scale of Ω̃W appear.
The mass term does not induce a splitting of the degen-
erate states at half-integer flux since SUSY protects the
2-fold degeneracy. It rather leads to a level repulsion be-
tween adjacent pairs pushing the states to higher energy.
In contrast, a splitting occurs at integer flux, where the
2-fold degeneracy is not protected at finite Zeeman en-
ergy. The exponential localization of the bound states in
angular space is manifested by the very small band width
as function of the flux, whereas the edge states extended
in angular space with energy close or above the surface
gap have a band width ∼ 1/R̃ similar to the case for
zero Zeeman field. This clearly manifests the semiclassi-
cal picture suggested by the double sine potential shown
in Fig. 2, hosting localized states of harmonic oscillator
form in the potential minima. We note that the energy
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FIG. 9. Spectrum (in units of Eso) of a disc with radius R̃ = 40 as function of the deviation f − 1/2 from half-integer flux,

with δ̃ = 1 and two values of the Zeeman term ẼZ = 1/l̃2B = (a)1/4, (b)1/3, compare with Fig. 8 for EZ = 0. The surface gap

is set approximately by the Zeeman energy ẼZ above which the continuum of edge states extended in angular space starts,
compare with the sketch of the double sine potential in Fig. 2. For f = 1/2 all states are 2-fold degenerate due to SUSY with
4 states at zero energy corresponding to two center states and two topological bound states at the disc boundary localized at
ϕ ≈ 0 and ϕ ≈ π. The two center states with a very steep slope have a strong flux dependence since they are very sensitive
to the boundary conditions. In contrast, the two topological states at the outer boundary are localized in angular space and
rather insensitive to the boundary conditions, giving rise to a rather flat dispersion with decreasing slope for increasing Zeeman
field. For increasing Zeeman field, additional discrete edge states localized in angular space at the outer boundary appear in
the surface gap which are labelled by n = 1, 2, . . . , NB . At f = 1/2, their energy is approximately given by ε̃>n = ±Ω̃W

√
n,

with Ω̃W = 2
√
ẼZ/R̃ =

√
ẼZ/10, see Eqs. (128) and (118). Their number inside the surface gap can be estimated from

NB ≈ (ẼZ/Ω̃W )2 = R̃ẼZ/4 = 10ẼZ , which gives roughly NB ≈ 2 and NB ≈ 3 for ẼZ = 1/4 and ẼZ = 1/3, respectively, in
rough agreement with the numerical result. At f = 1/2 these states can be chosen as eigenfunctions of the SUSY operator and
are localized either at ϕ ≈ 0 (with SUSY eigenvalue (−1)n+1) or at ϕ ≈ π (with SUSY eigenvalue (−1)n), see Eqs. (133) and
(134).

scale Ω̃W fulfils for
√
ẼZ � 1/

√
R̃ (which is equivalent

to l̃B �
√
R̃ or ∆ϕ� 1) the relation

2

R̃
� Ω̃W = 2

(
ẼZ

R̃

)1/2

� ẼZ . (135)

We note that the two inequalities are equivalent since the
ratios are the same

Ω̃W

2/R̃
= 2

ẼZ

Ω̃W
. (136)

The condition Ω̃W � ẼZ ensures that the number
of bound states within the surface gap becomes large,
whereas the relation 2/R̃ � Ω̃W guarantees that the
spacing of the localized bound states within the sur-
face gap is much larger than the spacing 1/R̃ of the ex-
tended states above the surface gap, see also the sketch
of the spectrum in Fig. 1(b). This qualitative tendency
is demonstrated by comparing Fig. 9(a) with Fig. 9(b),

where the Zeeman term increases from ẼZ = 1/4 to

ẼZ = 1/3. We note that the radius R̃ = 40 used in those
figures is not large enough to fulfil (135) with clearly
separated scales. Therefore, the scaling of the energies
ε̃>n ≈ Ω̃W

√
n of the localized bound states with

√
n can

not be precisely seen, only the bound state for n = 1 has
approximately the energy Ω̃W . The reason is that the
spacing between the levels becomes smaller when their
squared energy is close to the maximum ∼ Ẽ2

Z of the

double sine potential shown in Fig. 2. Only for Ω̃W sig-
nificantly smaller than ẼZ , one can demonstrate the

√
n-

scaling, but the huge values of R̃ needed to fulfil this
requirement are outside the scope of the numerical pos-
sibilities.

The particle on a ring in a double sine potential is a
special supersymmetric model in one dimension, occur-
ring here for the special case of a surface in the form of
a ring with a large radius. The analysis will be gener-
alized to any smooth surface in Section V where we will
see that generic periodic Witten models with supersym-
metric properties can be realized.

Furthermore, we note that the two topological bound
states at the inner surface are exactly at zero energy if the
radius R̃> of the outer surface tends to infinity. In this
case, the SUSY is unbroken in an exact sense and two
states exactly at zero energy appear in the gap. Since
the degeneracy of these two states follows from SUSY,
they can not split for any radius R̃< of the inner hole.
Therefore, even for zero hole radius R̃< = 0, the two
center states discussed in Section IV B for zero magnetic
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field will remain at zero energy in the presence of a finite
magnetic field.

Concerning the stability of the topological bound
states against deviations from half-integer flux, degener-
ate states at opposite positions of the same surface with
different eigenvalues of U1/2 will get coupled and split
for f 6= 1/2. However, under the condition (103) of small
angular spread, the orbital overlap of the two states is
exponentially small and the splitting is negligible. This
is in contrast to the two zero energy center states at small
hole radius which are unstable against the application of
a flux away from half-filling, see the discussion at the end
of Section IV B.

D. Strong Zeeman field

For a strong Zeeman field, where l̃B can approachO(1),
and for the discussion of the crossover to the Weyl phase
with δ̃ ∼ 1/l̃2B , we try to solve the differential equations
(72) again with the help of clearly separated length scales.
Denoting the localization lengths of the topological states
in normal/tangential direction by ξ̃n/t (in units of the
spin-orbit length λso), we assume

O(1) ∼ ξ̃n � ξ̃t = R̃∆ϕ =
√
R̃ l̃B � R̃ . (137)

Here, we have assumed that the spread ∆ϕ in angular
direction is of the same order as we have found it in
Eq. (101) for the case of a weak Zeeman field, leading to
the same form (102) for the tangential localization length.

This assumption is also fulfilled for the regime l̃B ∼ O(1)
as we will show below. The same holds for the normal
localization length which, however, will get an additional
dependence on the Zeeman field but roughly stays of the
order of the spin-orbit length (except at phase transition
lines where the normal localization length can diverge).
We note that the conditions (137) are equivalent to the
following condition for the magnetic length

1√
R̃
� l̃B �

√
R̃ , (138)

which can always be fulfilled for large enough radius in
the thermodynamic limit for any size of the Zeeman field.

The condition l̃B �
√
R̃ of strong localization is also

essential for the consistency of the following arguments
to neglect various terms in the differential equations (in
contrast to the previous section where this condition was
not needed). However, we note that this condition is
anyhow essential for the stability of the states against
small deviations from half-integer flux as discussed at
the end of the previous section. Furthermore, we will
discuss at the end of this section that the conclusions for
the existence of zero energy states do not change when√
R̃ becomes of the same order or even smaller than l̃B .
Assuming in addition (to be checked below) that the

topological states for S = 1 are localized at ϕ ≈ 0 (for

S = −1 we get a localization at ϕ ≈ π) as for weak
Zeeman field, we can estimate the various terms in the
differential equations (72) as follows

∂r̃ ∼
1

ξ̃n
∼ O(1) ,

1

r̃
∂ϕ ∼

1

ξ̃t
∼ 1√

R̃ l̃B
, (139)

1

l̃2B
cosϕ =

1

l̃2B
+O

(
∆ϕ2

l̃2B

)
=

1

l̃2B
+O

(
1

R̃

)
, (140)

1

l̃2B
sinϕ ∼ ∆ϕ

l̃2B
∼ 1√

R̃ l̃B
. (141)

Neglecting consistently all terms of O(1/R̃) and keeping

only those of O(1) and O(1/
√
R̃), the differential equa-

tions (72) can be approximated by

(−i∂r̃ − k̃(u)
1 )(−i∂r̃ − k̃(u)

2 )χ̂
(±u)
± = ±2iu

R̃
∂ϕχ̂

(∓u)
∓ ,

(142)

where

χ
(u)
± (r̃, ϕ) = χ̂

(u)
± (r̃, ϕ)f0(ϕ) , (143)

k̃
(u)
1/2 = iu±

√
δ̃ − 1− u/l̃2B ,

= iu±
√
|δ̃ − 1− u/l̃2B |

{
1 for δ̃ > 1 + u/l̃2B
iu for δ̃ < 1 + u/l̃2B

(144)

and f0(ϕ) has been defined in (112) which can be ap-
proximated by the Gaussian form (113) for ∆ϕ� 1.

The differential equations (142) can be solved exactly

by a ϕ-independent function for χ̂
(u)
+ and a linear depen-

dence on ϕ for χ̂
(u)
−

χ̂
(u)
+ (r̃, ϕ) = χ̂

(u)
+,n(r̃) , χ̂

(u)
− (r̃, ϕ) = (ϕ/∆ϕ) χ̂

(u)
−,n(r̃) .

(145)

The linear dependence for χ̂
(u)
− on ϕ is needed to fulfil the

antisymmetry property (70). We disregard here the fact
that the linear function is not periodic since the angular

spread is assumed to be very small. For χ̂
(u)
±,n we find two

solutions. The first one is obtained by setting χ̂
(u)
−,n = 0

and solving

(−i∂r̃ − k̃(u)
1 )(−i∂r̃ − k̃(u)

2 )χ̂
(u)
+,n = 0 . (146)

Up to a normalization constant, the solution of this dif-
ferential equation with zero boundary condition at r̃ = R̃
is given by

χ̂
(u)
+,n(r̃) ∼ eik̃

(u)
1 (r̃−R̃) − eik̃

(u)
2 (r̃−R̃) , (147)

which is only a valid solution for the inner/outer surface

if both k̃
(u)
1/2 have the same positive/negative sign for the
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imaginary part, respectively. Using (144) this is only the
case for

δ̃ > u/l̃2B (148)

and u = ±1 corresponds to states localized at the in-
ner/outer surface, respectively. As a consequence, we

find for δ̃ > 1/l̃2B a state with chirality s = 1 and SUSY

u = 1 at the inner surface, and for δ̃ > −1/l̃2B a state
with chirality s = 1 and SUSY u = −1 at the outer sur-
face, both localized at ϕ ≈ 0. This is consistent with
Fig. 3, where we see that the zero energy state at the
outer surface persists in the Weyl phase whereas the one
at the inner surface disappears (and is replaced by an-
other anti-symmetric one at the outer surface, see below
for the second solution of the differential equations). In-
serting (144), we can write the two solutions also as

χ̂
(u)
+,n(r̃) =

1√
λsoN (u)

e−u(r̃−R̃)

×





sin
[
q(u) (r̃ − R̃)

]
for δ̃ > 1 + u/l̃2B

sinh
[
q(u) (r̃ − R̃)

]
for u/l̃2B < δ̃ < 1 + u/l̃2B

,

(149)

with

q(u) = |δ̃ − 1− u/l̃2B |1/2 , (150)

and the normalization factor

N (u) =
|δ̃ − 1− u/l̃2B |

4|δ̃ − u/l̃2B |
, (151)

to get ±
∫ ±∞
R̃

dr̃|χ̂(±)
+,n(r̃)|2 = 1/λso, due to the radial part

of the normalization condition (71). These two states are
consistent with the corresponding ones for weak Zeeman
field in the gapped phase, compare with Eq. (83). How-
ever, for strong Zeeman field, one obtains a significant

dependence of the normal localization lengths ξ̃
(su)
n (la-

belled by chirality s and SUSY u) on the Zeeman field,
in contrast to the form (97) for weak Zeeman field. For
the state at the inner surface with s = 1 and u = 1 (only

present for δ̃ > 1/l̃2B in the gapped phase) we get (the
same holds for s = −1 and u = −1 since it results from
applying inversion symmetry according to (38))

1

ξ̃<n
≡ 1

ξ̃
(11)
n

=
1

ξ̃
(−1,−1)
n

=

=

{
1 for δ̃ > 1 + 1/l̃2B

1−
√

1 + 1/l̃2B − δ̃ for 1/l̃2B < δ̃ < 1 + 1/l̃2B
.

(152)

At δ̃ = 1/l̃2B the normal localization length diverges and
the states move over to the outer surface (see below).
For the state at the outer surface with s = 1 and u = −1

(present for δ̃ > −1/l̃2B both in the gapped and in the
Weyl phase) we find (the same for s = −1 and u = 1)

1

ξ̃>n
≡ 1

ξ̃
(1,−1)
n

=
1

ξ̃
(−1,1)
n

=

=

{
1 for δ̃ > 1− 1/l̃2B

1−
√

1− 1/l̃2B − δ̃ for − 1/l̃2B < δ̃ < 1− 1/l̃2B
.

(153)

For this state the localization length diverges for δ̃ =
−1/l̃2B at the crossover from the Weyl phase to the non-
topological gapped phase, where all topological states
disappear. In particular the dependence of the normal
localization length of the state at the inner surface on
the Zeeman field is quite useful since it allows for a tun-
ability of the interaction between two topological states
localized at different holes, possibly of interest for topo-
logical engineering, see the discussion in Section VI B.

The second possibility to solve the differential equa-
tions (142) is to take a finite anti-symmetric part

χ̂
(u)
− (r̃, ϕ) = ϕχ̂

(u)
−,n(r̃) which, due to ∂ϕχ̂

(u)
+ = 0, has

to fulfil

(−i∂r̃ − k̃(−u)
1 )(−i∂r̃ − k̃(−u)

2 )χ̂
(u)
−,n = 0 . (154)

In addition, the second equation of (142) requires

(−i∂r̃ − k̃(u)
1 )(−i∂r̃ − k̃(u)

2 )χ̂
(u)
+,n = iu

2

R̃
χ̂

(u)
−,n . (155)

Whereas (154) can be solved analog to (147) by

χ̂
(u)
−,n(r̃) ∼ eik̃

(−u)
1 (r̃−R̃) − eik̃

(−u)
2 (r̃−R̃) , (156)

the solution of (155) is more subtle. Since χ̂
(u)
−,n contains

two exponentials involving k̃
(−u)
1,2 , the same must hold

for χ̂
(u)
+,n. However, if only those two exponentials were

present for χ̂
(u)
+,n, zero boundary conditions at r̃ = R̃

require the same form (156) for both χ̂
(u)
±,n which does

not solve Eq. (155). Therefore, a third exponential is

needed for χ̂
(u)
+,n which does not contribute to (155), i.e.,

involves either k̃
(u)
1 or k̃

(u)
2 . Since all three exponentials

must decay, we need that the imaginary parts of all three

momenta involved in χ̂
(u)
+,n must have the same sign for

the imaginary part. Using

sign Imk̃
(u)
1/2 = u

{
1 for δ̃ > u/l̃2B
±1 for δ̃ < u/l̃2B

, (157)

we find that this is only possible in the Weyl phase

|δ̃| < 1/l̃2B (158)

by choosing three exponentials involving k̃
(−1)
1/2 and k̃

(1)
2 ,

where all three imaginary parts of the momenta are neg-
ative, corresponding to a state at the outer surface with
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s = 1 and u = 1. The solution for χ̂
(1)
+,n solving (155) and

fulfilling zero boundary conditions is then given by

χ̂
(1)
+,n(r̃) ∼ c1

(
eik̃

(−1)
1 (r̃−R̃) − eik̃

(1)
2 (r̃−R̃)

)

+ c2

(
eik̃

(−1)
2 (r̃−R̃) − eik̃

(1)
2 (r̃−R̃)

)
, (159)

with

(k̃
(−1)
1/2 − k̃

(1)
1 )(k̃

(−1)
1/2 − k̃

(1)
2 )c1/2 = ±i 2

R̃
. (160)

Since both c1/2 ∼ 1/R̃ we can neglect χ̂
(1)
+ ∼ 1/R̃ com-

pared to χ̂
(1)
− ∼ ∆ϕ ∼ l̃B/

√
R̃ for l̃B � 1/

√
R̃. There-

fore, although χ̂
(1)
+ is important for the discussion of the

existence of a solution, it can be neglected finally. What

remains is the state χ̂
(1)
−,n which, according to (156), is

given by the state (149) with u = −1

χ̂
(1)
−,n(r̃) = χ̂

(−1)
+,n (r̃) θ(1/l̃2B − |δ̃|) , (161)

with the additional constraint that we are in the Weyl
phase. This gives for the normal localization length of
the antisymmetric state at the outer surface in the Weyl
phase the result

1

ξ̃
(antisymm)
n

=

=

{
1 for 1/l̃2B > δ̃ > 1− 1/l̃2B

1−
√

1− 1/l̃2B − δ̃ for − 1/l̃2B < δ̃ < 1− 1/l̃2B
,

(162)

which is identical to the normal localization length ξ̃>n of
the states at the outer surface with s = 1 and u = −1 or
s = −1 and u = 1, see Eq. (153).

The existence of two additional anti-symmetric states
with s = u = ±1 at the outer surface in the Weyl phase
is quite special. As sketched in Fig. 3 these states have
a strong orbital overlap with the states s = −u = ±1.
This makes these states rather unstable against small
perturbations violating chiral symmetry and SUSY (such
that states with the same chirality and different SUSY
eigenvalues can be coupled via the Hamiltonian). There-
fore, although the Weyl phase is a regime of theoretical
interest, concerning applications one should study the
gapped topological phase δ̃ > 1/l̃2B , where all topologi-
cal states are localized at clearly separated positions for

∆ϕ = l̃B/
√
R̃ � 1 such that weak perturbations violat-

ing symmetries have only an exponentially small effect,
see also the discussion in Section VI A.

Finally, we comment on the case when the Zeeman

field is very weak such that
√
R̃ becomes of the same

order or even much smaller than the magnetic length l̃B .
Since this happens first for the inner surface R̃ = R̃<,
we discuss the case for a hole in an infinite system. For√
R̃ . l̃B � R̃, we can still neglect the terms ∼ 1/R̃2 in

the differential equations but can no longer expand the
term ∼ (u/l̃2B) cosϕ around ϕ ≈ 0 since ∆ϕ ∼ O(1). As
a result, one obtains precisely the same differential equa-

tions (142) but k̃
(u)
1/2(ϕ) obtains an angular dependence

via

k̃
(u)
1/2(ϕ) = iu±

√
δ̃ − 1− (u/l̃2B) cosϕ . (163)

This has the consequence that we find the same zero en-
ergy solution (147) (up to the angular dependence via

k̃
(u)
1/2(ϕ)) on the hole surface (i.e., u = 1) provided that

the condition

δ̃ >
1

l̃2B
cosϕ (164)

is fulfilled, compare with Eq. (148). In the TP δ̃ > 1/l̃2B
this is fulfilled for all angles and we obtain a zero energy
solution on the hole surface. In the NTP δ̃ < −1/l̃2B ,
this condition can never be fulfilled and no zero energy
solution can exist. Finally, in the WP |δ̃| < 1/l̃2B , the
condition can be only fulfilled for a certain angle in-
terval but there is always a critical angle defined by
δ̃ = (1/l̃2B) cosϕc, where the normal localization length
tends to infinity. Therefore, for all angles with |ϕ| < |ϕc|,
a localized solution does not exist and the state is not a
true bound state but belongs to the bulk spectrum. As a
consequence, zero energy topological states can not exist
on the inner surface in the WP for any size of the Zeeman
field.

That a zero energy topological state can not exist in
the WP on the hole surface can also be derived in an
alternative and rigorous way for any hole radius. First of
all we know that any outer surface infinitely away from
the hole will host four zero energy states in the WP as

derived above for large enough outer radius

√
R̃> � l̃B .

Since these states do not care about the size of the inner
surface (provided that R̃> − R̃< � 1 is not violated),

it is impossible that by reducing the inner radius R̃<
two of the outer states move to the inner surface. In
addition, we have shown that the inner surface does not
host any zero energy state in the WP for large enough

inner radius

√
R̃< � l̃B . For these two reasons, the hole

surface will not host zero energy states when reducing
the inner radius, even not for the extreme case R̃< = 0.
Vice versa one can also argue that if two zero energy
states exist at the inner surface for small enough radius
then they can not go away by increasing R̃< since SUSY
and chiral symmetry do not allow for a splitting of the
two states. This leads to a contradiction since, for large

enough radius

√
R̃< � l̃B , they must go away as derived

above. Indeed, in the SM [49] we show numerical results

for center states at zero hole radius R̃< = 0 as function of
the outer radius R̃> in the Weyl phase at weak Zeeman
field where we confirm that the center states with s =
u = ±1 move indeed to the outer surface if the radius
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FIG. 10. (a) The topological states
∑
σz ,sz

|ψ̄su(x̃, ỹ;σz, sz)|2 as function of x̃ = x/λso and ỹ = y/λso in continuum numerics

for a disc with radius R̃> = 30, l̃B = 2, and various values of δ̃. Two upper panels of (b): A comparison of the continuum

numerics for R̃> = 30, δ̃ = 1 and l̃B = 2 to the analytical result (169) for s = 1 and u = −1 at the outer surface in the TP.

Two lower panels of (b): A comparison of the tight-binding numerics for R̃> = 60, δ̃ = 0 and l̃B = 2 to the analytical result
(171) for s = 1 and u = 1 at the outer surface in the WP. In the two left panels we show various cuts for fixed ϕ as function

of R̃> − r̃ and use the normalization to F>± (ϕ) as given by Eq. (170) and (172) for the upper/lower panel. In the two right

panels, we show various cuts for fixed r̃ as function of ϕ and use the normalization to |χ̂(−1)
+,n (r̃)|2 as given by Eq. (149). The

black solid lines in the left/right panels are the theoretical results for the radial/angular part to which all cuts should collapse.

R̃> is large enough such that

√
R̃> exceeds significantly

l̃B .

E. Summary for topological states and numerical
results

To summarize the results of the previous section, we

have found under the condition 1/
√
R̃ � l̃B �

√
R̃ the

following zero energy topological states with chirality s
and SUSY u

ψsu =
1√
r
U W X ψ̄su , (165)

where the transformations U , W and X are given by
(49), (50) and (51), respectively. A sign change of s and
u corresponds in the transformed basis to a sign change
of x and σz

ψ̄−s,−u(r̃, ϕ;σz, sz) = ψ̄su(r̃, ϕ+ π;−σz, sz) . (166)

Defining the normal part of the transformed wave func-

tion at the inner/outer surface by χ̂
(±1)
+,n (r̃), as given by

Eq. (149), we find in the TP for s = 1 two states localized
at the inner/outer surface close to ϕ ≈ 0

ψ̄1,±1(r̃, ϕ;σz, sz) =

(
0
1

)

σz

1√
2

(
1
∓1

)

sz

× χ̂
(±1)
+,n (r̃)

1

(2π)1/4(∆ϕ≶)1/2
e−

1
4 (ϕ/∆ϕ≶)2

, (167)

with ∆ϕ≶ = l̃B/
√
R̃≶. The corresponding states with

chirality s = −1 localized close to ϕ ≈ π follow from
(166). In the WP, the two states at the outer surface with
s = −u = ±1 remain, but the states at the inner surface
with s = u = ±1 are replaced by the two antisymmetric
states in angular space at the outer surface

ψ̄11(r̃, ϕ;σz, sz) =

(
0
1

)

σz

1√
2

(
1
1

)

sz

× χ̂
(−1)
+,n (r̃)

ϕ/∆ϕ>
(2π)1/4(∆ϕ>)1/2

e−
1
4 (ϕ/∆ϕ>)2

. (168)

together with ψ̄−1,−1(r̃, ϕ;σz, sz) = ψ̄11(r̃, ϕ+π;−σz, sz)
according to (166).

In continuum numerics the topological states ψ̄su in
the transformed basis are shown in Fig. 10(a) for a disc
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with no hole and radius R̃> = 30 at half-integer flux
both in the TP and WP for various values of δ̃ and fixed
l̃B = 2. Since the spinor structure agrees perfectly with
the theoretical results we show only the square of the
wave function averaged over the spinor labels. In the TP
this gives from (167) for the states with s = 1 at the
inner/outer surface

∑

σz,sz

|ψ̄1,±1(r̃, ϕ;σz, sz)|2 = |χ̂(±1)
+,n (r̃)|2 F≶

+ (ϕ) , (169)

F
≶
+ (ϕ) =

e−
1
2 (ϕ/∆ϕ≶)2

(2π)1/2∆ϕ≶
. (170)

In the WP, we get the same result for u = −1 at the
outer surface but, for u = 1, we have to use the result
(168) for the antisymmetric state at the outer surface

∑

σz,sz

|ψ̄11(r̃, ϕ;σz, sz)|2 = |χ̂(−1)
+,n (r̃)|2 F>− (ϕ) , (171)

F>− (ϕ) = (ϕ/∆ϕ>)2 F>+ (ϕ) . (172)

A comparison of the analytical and numerical results
for the topological states is shown in Fig. 10(b). The
agreement is quite satisfactory although the condition

1/
√
R̃ � l̃B �

√
R̃ is only approximately fulfilled. The

analytical results predict a factorization in the thermo-
dynamic limit into a radial and angular part. Therefore,
one expects the numerical result to be approximately in-
dependent of ϕ/r̃ when normalizing to the angular/radial
part (as shown in the left/right panels of Fig. 10(b)).
This is confirmed in the two upper panels of Fig. 10(b)

for the state ψ̄1,−1 in the TP for δ̃ = 1 and l̃B = 2.
One can see that all cuts of the left/right panel at fixed
ϕ/r̃ fall almost on top of each other and agree with the
theoretical results. For this comparison we used the con-
tinuum numerics and found already a good agreement for
a rather small disc radius R̃> = 30. For the antisymmet-
ric state ψ̄1,1 in the WP for δ̃ = 0 and l̃B = 2 we needed

a larger radius R̃> = 60 to find a good agreement, see
the two lower panels of Fig. 10(b). These data have been
obtained by using the tight-binding numerics. In the SM
[49] we consider also a Corbino disc with outer radius

R̃> = 45 and hole radius R̃< = 20 by using the tight-
binding numerics and find in the TP in addition a good
agreement of the numerical and analytical results for the
states at the inner surface.

Concerning the spinor dependence of the topological
states we see from the above formulas that the states at
the outer/inner surface for chirality s have the following
spinor dependence in the transformed basis

σz = −s , sx = ±1 . (173)

In the original basis, this means by reversing the unitary
trafos U , X, and W , as defined in Eqs. (53), (54) and
(55), that we get a strong correlation between the spin
and orbital part of the spinor degrees of freedom given

by

sz = sσx , sr = ±σy , (174)

where sr = er · s denotes the spin in radial direction.

F. Validity range of effective surface Hamiltonian

In this subsection we extend the validity range of the
effective surface Hamiltonian (98) derived in Section IV C
for the case of weak Zeeman field to the same regime
(138) we used in Section IV D to discuss the topolog-
ical states at strong Zeeman field. Besides the condi-
tion (138), we assume in addition that the surface gap
∆surface ≈ EZ is below or of the order of the bulk gap,
such that the complete parameter regime is defined by

1√
R̃
� l̃B �

√
R̃ , EZ . ∆bulk . (175)

In this regime, we aim at calculating all localized bound
states well below the surface gap which have an energy
of the order of the Witten frequency

Ω̃W =
2

ξ̃t
= 2ẼZ∆ϕ� EZ . ∆bulk , (176)

which is well below the bulk gap, such that first order
perturbation theory will be sufficient to treat the angular
part of the Hamiltonian.

To derive the effective surface Hamiltonian, it is needed
to treat the normal component of the Zeeman term

H̄Z,n/Eso = σysxẼZ sinϕ ∼ ẼZ∆ϕ (177)

as a perturbation on the same footing as the angular part
of the spin-orbit interaction which is ∼ 1/(R̃∆ϕ) ∼ 1/ξ̃t.
This requires

1

ξ̃t
= ẼZ∆ϕ� 1 . (178)

On the other hand, the tangential component of the Zee-
man term is given by

H̄Z,t/Eso = σysyẼZ cosϕ

= ηϕσysyẼZ +O(ẼZ∆ϕ2) , (179)

where ηϕ = ±1 if one considers the bound states lo-
calized around ϕ = 0, π, respectively. It can be ap-
proximated by the first leading term for strong local-
ization since the correction is of order ẼZ∆ϕ2 ∼ 1/R̃
and negligible against the other terms of the surface
Hamiltonian. Taking the leading term together with
the normal part of the Hamiltonian, we can split the
Hamiltonian H̄1/2 ≈ H̄n + H̄t into a normal and tan-
gential part, thereby including consistently all terms of

order H̄n/Eso ∼ O(1) and H̄t/Eso ∼ O(1/
√
R̃), see
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the detailed discussion in Eqs. (139-141). According to
Eqs. (91) and (98) we obtain

H̄n/Eso = σx
{

(−∂2
r̃ − δ̃)sz + 2i∂r̃sy

}
+ ηϕσysyẼZ

= σx

{[
−∂2

r̃ − (δ̃ + ηϕsxS̄EZ)
]
sz + 2i∂r̃sy

}
, (180)

H̄t/Eso = sx
{
σx

2

R̃
(−i∂ϕ) + σyẼZ sinϕ

}
, (181)

where S̄ = −σz is the chiral symmetry in transformed
basis (see Eq. (59)), and we still include sx in H̄t at this
stage (like it occurs in the Hamiltonian).

Since H̄t is an order 1/ξ̃t smaller than H̄n, we first solve
for the boundary states of H̄n. It has the same form as
the normal Hamiltonian (91) without Zeeman field, but
the band inversion parameter is shifted by

δ̃ → δ̃ + ηϕsxS̄EZ . (182)

As a consequence, for δ > EZ , we find the same two
zero-energy boundary states of H̄n with chirality s =
−σz = ±1 and polarization sx = ±1 for the states at the
outer/inner surface, with a wave function given analog
to (83) and (84) by

ψ̄≷
n,s(r̃, σz, sz) =

δσz,−s√
2

(
1
±1

)

sz

Φ̄≷
n,s(|r̃ − R̃≷|) ,

(183)

with

Φ̄≷
n,s(r̃) = Φ̄n(r̃)|δ→δ±s ηϕEZ . (184)

This leads precisely to the two different normal localiza-

tion lengths ξ
≷
n , as given by Eqs. (153) and (152) for the

boundary states at the outer/inner surface in the topo-
logical phase, respectively.

In the next step one considers H̄t as a perturbation to
calculate all localized bound states with energies of the
order of the Witten frequency which is much smaller than
the bulk gap according to Eq. (176), such that first order
perturbation theory is sufficient. Due to chiral symmetry,
only the nondiagonal matrix element

Heff
surface/Eso = 〈ψ̄≷

n,s|Ĥt/Eso|ψ̄≷
n,−s〉

= ±λ≷
{
σx

2

R̃
(−i∂ϕ) + σyẼZ sinϕ

}
(185)

enters for the effective surface Hamiltonian, where we
have inserted the polarization sx = ±1 of the bound
states at the outer/inner surface and defined the matrix
element

λ≷ = 〈Φ̄≷
n,s|Φ̄≷

n,−s〉 , (186)

which is independent of s = ±1 and only rescales the
Witten frequency. As a consequence, up to this triv-
ial rescaling factor, we obtain the same effective surface
Hamiltonian as for weak Zeeman field.
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FIG. 11. The phase diagram at half-integer flux f = 1/2 in
terms of the Witten index nW counting the number of zero
energy topological states for (a) a hole with radius R̃< in an
infinite system and (b) a Corbino disc with outer/inner radius

R̃≷.

In summary, we have found that the universal low-
energy theory in terms of the effective surface Hamilto-
nian (185) can be used for the calculation of all localized
bound states well below the surface gap, provided that
the two conditions stated in (175) are fulfilled. We em-
phasize that these conditions can be easily fulfilled by
choosing the radius R large enough and by staying not
too close to the phase transition. Therefore, the univer-
sal low-energy model can be used for arbitrary spin-orbit
interaction, even including the regime of weak spin-orbit
Eso � EZ or λso � lB .

G. Phase diagram and comparison to numerical
results

In this section we state the phase diagram in terms
of the Witten index based on the analytical results of
Section IV A, together with a comparison to numerical
results. Here, the Witten index nW denotes the number
of zero energy states or, to be more general for a large but
finite system, counts the number of states with exponen-
tially small energies which tend to zero when increasing
the system size (see the discussion at the end of Sec-
tion III). Moreover, in the Weyl phase, where the bulk
gap is zero, we count only topological bound states at
zero energy but not a possible bulk state at zero energy.
The Witten index is a standard index in supersymmetric
systems distinguishing broken from unbroken SUSY, see
e.g. Refs. 37–39, playing here the role of the topological
invariant in the presence of SUSY.

We discuss here the most interesting case close to the
SUSY point of half-integer flux f = 1/2 and the case of

a Corbino disc with outer/inner radius R̃ ≡ R̃≷ (with

R̃> − R̃< � 1) in the regime where the magnetic length
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FIG. 12. Numerical results in tight-binding for the absolute value |ε̃0| = |ε0|/Eso in logarithmic color scale of the lowest absolute

energy |ε0| in units of the spin-orbit energy Eso as function of δ̃ and magnetic length l̃B . We consider half-integer flux f = 1/2

and a Corbino disc with outer radius R̃> = 30 and inner radius given by (a) R̃< = 10 (left figure) and (b) R̃< = 0 (right

figure). The dotted red line indicates the line δ̃ = 1−1/l̃2B above which the energy is approximately a constant since the normal

localization length ξ̃n ∼ O(1) of the states at the outer surface does not vary in this regime, see (153). In the region below this

line the energy and the normal localization length are approximately a constant in the TP and WP along the lines δ̃ = c−1/l̃2B
with some constant 0 < c < 1. For decreasing c the energy becomes larger since the normal localization length increases, see
(153). The deformation of these lines when crossing from the TP to the WP phase results from an increased distance between
the hybridizing states since two of the states at the inner surface move to the outer surface in the WP. In the NTP there are
no localized bound states and the energy is of the order of the bulk gap. When the radius of the inner surface decreases (right
figure), the qualitative features remain the same but one obtains an overall decrease of the energies since the distance of the
hybridizing states increases.

FIG. 13. The same as Fig. 12 but for the second-lowest absolute energy |ε̃1| in non-logarithmic scale. Roughly, this energy

scales with 1/(
√
R̃ l̃B) according to (129) in the TP, has a significantly smaller value in the ungapped WP, and is almost

constant of the order of the bulk gap in the NTP.

fulfils the condition (138)

1√
R̃
� l̃B �

√
R̃ (187)

for both R̃ = R̃> and R̃ = R̃<. As discussed in Sec-
tion IV D this is a well-defined limit for large R̃ where
the tangential localization length is much larger than the

normal one (the first condition 1/
√
R̃ � l̃B) and where

the tangential localization length is much smaller than
the circumference (i.e., small angular spread, the second

condition l̃B � R̃). As a result, the topological bound
states are well-localized at the positions shown in Fig. 3
with an exponentially small overlap, leading to stability
against small deviations from half-integer flux or other
small perturbations violating chiral symmetry or SUSY
(like, e.g., weak disorder), see the detailed discussion in
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Section VI A.

A sketch of the phase diagram is shown in Fig. 11 for
(a) a hole in an infinite system (i.e., infinite outer radius

R̃> =∞) and (b) a Corbino disc. For a hole in an infinite
system we find two topological bound states (nW = 2)
in the topological gapped phase (TP) and no topological
bound states (nW = 0) in the Weyl phase (WP) and
the non-topological gapped phase (NTP). The normal

localization length ξ̃n of the two states in the TP is given
by (152) which diverges at the crossover line δ̃ = 1/l̃2B
between TP and WP. For a Corbino disc, two additional
topological bound states appear in the TP at the outer
surface (nW = 4). Their ξ̃n is given by (153) which does
not diverge at the crossover to the WP phase. These two
topological bound states persist in the WP and disappear
with a diverging ξ̃n at the crossover between WP and
NTP. In addition, two further topological states with the
same ξ̃n appear in the WP at the outer surface (such that
nW = 4 in the WP). They are special in the sense that

their ξ̃n does not diverge at the crossover between WP
and TP but they disappear in the TP at the outer surface
and are replaced by the two topological states at the
inner surface which have a diverging ξ̃n at the crossover.
Thus, at the crossover between TP and WP, two of the
topological states change their position (from inner to
outer surface) and change from a diverging to a finite

ξ̃n. Up to our knowledge this has not been found for any
other topological system and seems to be a special feature
generated at the crossover between a gapped topological
and a gapless Weyl phase.

In Fig. 12(a) we show the numerical results for the
phase diagram for a Corbino disc with outer radius
R̃> = 30 and inner radius R̃< = 10. To exhibit the
different phase regions we plot in logarithmic scale the
lowest absolute energy |ε̃0| = |ε0|/Eso. Due to chiral sym-
metry and SUSY this energy corresponds to four states
consisting of two pairs, one at positive and one at nega-
tive energy with the same absolute value. The splitting
occurs since two topological states with different chiral
symmetry and the same SUSY can hybridize for a fi-
nite system, leading to an exponentially small splitting
of the energy. In the TP phase this splitting occurs be-
tween the right (left) states at the outer surface with
s = −u = 1 (s = −u = −1) and the left (right) states
at the inner surface with s = u = −1 (s = u = 1),
see Fig. 3. The size of the splitting depends on the two
normal localization lengths ξ̃n of the two states which hy-
bridize and is expected to be exponentially small roughly

∼ e−(R̃>−R̃<)/ξ̃n . Since the two hybridizing states appear
at opposite angles of the two surfaces and since the an-
gular spread is small, the ξ̃n of the states at the outer
surface will dominate the orbital overlap and the split-
ting. This is reflected in the TP of Fig. 12(a) where the
logarithm ln |ε0| of the lowest absolute energy follows the

size of −1/ξ̃n of the states at the outer surface as given

by (153): (1) in the region δ̃ > 1− 1/l̃2B both the small-

est energy and ξ̃n are approximately constant; (2) in the

region 1/l̃2B < δ̃ < 1− 1/l̃2B , the lowest energy and ξ̃n are
approximately a constant in the TP and WP on the same
lines δ̃ = 1−1/l̃2B+c with 0 < c < 1. In the WP all topo-
logical states appear at the outer surface with the same
ξ̃n. Since the hybridizing states are localized at opposite
angles of the outer surface their orbital overlap is reduced
compared to the TP since their distance increases from
R̃> − R̃< to 2R̃>. As a consequence, the energy split-
ting reduces in the WP which can be seen in Fig. 12(a)
by a deformation of the lines of constant energy at the
crossover from TP to WP. In the NTP no topological
bound states and no edge states appear in the gap and
the lowest energy becomes of the order of the bulk gap,
consistent with Fig. 12(a). In Fig. 12(b) we show the

same but for zero hole radius R̃< = 0. Qualitatively the
same considerations apply, leading to the same results,
only the size of the lowest energy is slightly reduced in
the TP since the center states are farer away from the
boundary of the disc.

In Fig. 13(a,b) we show the same for the second-lowest
absolute energy |ε̃1|. In contrast to the lowest one it re-
veals clearly both the phase transition line from TP to
WP and from WP to NTP. Deep in the TP for weak Zee-

man field, it is approximately given by |ε̃1| ≈ 2/(
√
R̃ l̃B),

see Eq. (129). Therefore, it is expected to decrease

with increasing magnetic length and to scale with 1/
√
R̃,

roughly consistent with Fig. (13). In contrast, in the WP,
there is no bulk gap and therefore the second-lowest en-
ergy will drastically decrease, possibly consisting of bulk
states. In the gapped NTP, there are no states in the
bulk gap, and therefore the second-lowest energy behaves
similar to the lowest one.

V. PERIODIC WITTEN MODELS

In this section we will generalize the derivation of ef-
fective surface Hamiltonians for a Corbino disc in Sec-
tion IV C to the case of generic smooth surfaces. We
characterize the smoothness by the local curvature ra-
dius R (either for the outer or inner surface) and, in
analogy to the condition (89) for a Corbino disc, assume
the curvature radius to be much larger than the spin-
orbit length

R̃� 1 . (188)

In addition, as in Section IV D, we consider weak mag-
netic fields deep in the TP

l̃2B � 1 , δ̃ � 1/l̃2B . (189)

Under these conditions we will show that the whole
generic class of periodic Witten models can be realized
for the effective surface Hamiltonian, where the surface
potential is again characterized by the normal compo-
nent of the magnetic field to the surface. We outline in
Section V A the derivation of the effective surface Hamil-
tonian and state the central result. In Section V B we
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will exhibit the SUSY properties of the periodic Witten
model together with an explicit analytical expression for
the wave functions of the zero energy topological states
for any shape of a smooth surface. In Section V C we will
generically show how all eigenstates of the Hamiltonian
can be determined from the ones of the Witten model
and we will present a semiclassical analysis to calculate
all localized bound states of the Witten model in the
case when the tangential localization length ξt is much
smaller than the circumference of the surface. Finally, in
Section V D we demonstrate our analytical results by a
comparison to a numerical tight-binding calculation for
a surface of peanut shape.

Analog to Section IV F, we note that the derivation
of the effective surface Hamiltonian can be extended to
the regime defined by (175) if one is only interested in
the calculation of the localized bound states below the
surface gap in the case of strong localization. This holds
also for generic smooth surfaces, and shows the wide ap-
plicability regime of the universal low-energy theory.

A. Derivation of periodic Witten models

In this subsection we will outline the derivation of the
effective surface Hamiltonian describing only the edge
states at the boundary of the system. We summarize
here the essential steps and state the final result together
with the validity range of the derivation.

To describe arbitrary surfaces it is convenient to in-
troduce orthogonal coordinates (q, λ), where q denotes
the coordinate normal to the surface (with dimension
of length) and λ is a dimensionless angle variable, see
Fig. 14. We do not assume at this stage that the sur-
face is mirror-symmetric since this is not essential for
the derivation of the effective surface Hamiltonian. For
convenience, we will take half-integer flux f = 1/2 since
a flux deviating from 1/2 will only change the boundary
conditions for the states of the effective surface Hamilto-
nian. The two surfaces of the system describing the inner
and outer surface are then given by the conditions q = q<
and q = q>, respectively, such that the system is present
in the regime q< < q < q> and all λ. The orthogonal
coordinates are fully characterized by the relation

dx = hnendq + htetdλ , (190)

where hn,t > 0 are the Lame coefficients, and the or-
thogonal unit vectors en and et are directed normal and
tangential to the surface and point in the direction of
increasing q or λ, respectively, see Fig. 14. It is also
convenient to introduce the line elements

dst = htdλ , dsn = hndq (191)

along the lines where q = const or λ = const, respec-
tively. The Lame coefficient hn is dimensionless and ht
is proportional to a typical length scale such that, for a

ϕ

ϑ

enet

x

y

Φ

B

A

q = q<

q = q>

q = 0

st = 0

λ = λ1

λ = λ2

λ = λ3

λ = λ4

λ = λ5

FIG. 14. Definition of generic shapes of an area A via or-
thogonal coordinates (q, λ). The area is defined in the region
q< < q < q>. The inner and outer boundaries are defined
by q(x) = q< and q(x) = q>, respectively. The coordinate
along a closed surface is denoted by 0 < λ < Λ with periodic
boundary conditions. The origin x = 0 corresponds to q = 0.
The two unit vectors en and et are orthogonal and tangential
to the surfaces q = const, respectively. Whereas ϕ is the po-
lar angle of x = r(cosϕ, sinϕ), the angle ϑ denotes the angle
between en and the x-axis, i.e., enex = cosϑ or eney = sinϑ.
The arc length 0 < st < L along a surface q = const is defined
by dst/dλ = |dx/dλ|, measured in counterclockwise direction
with reference point st = 0 chosen on the positive x-axis.

given surface q = const, we get the order of magnitude

hn ∼ O(1) , ht ∼ R . (192)

The length scale R plays a very important role and is
assumed here to be at the same time the typical length
scale on which the Lame coefficients vary on a given sur-
face

∂qhn,t ∼
1

R
hn,t , ∂λhn,t ∼ hn,t . (193)

This means that the local curvature of the surface, de-
fined by

κt = −en∂stet =
1

D
∂qht ∼ O(

1

R
) , D = hnht ,

(194)

is proportional to the inverse of this length scale, i.e., we
can define R as the local curvature radius of the surface.
Although this length scale can vary along the surface we
assume that R defines a lower bound for the curvature
radius. We note the quantization rule of the total curva-
ture when integrating the local curvature along the whole
surface

∮

q=const

dst κt = 2π , (195)

which follows from the relation

κt = ∂stϑ , (196)
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where ϑ is the angle of the vector en normal to the surface
and the x-axis, see Fig. 14.

In (194) we also introduced the symbol D ∼ O(R)
which is the transformation coefficient between the area
elements in cartesian and orthogonal coordinates

dx dy = Ddq dλ . (197)

To write the Hamiltonian in orthogonal coordinates, it
is convenient to use an analog transformation (48) as for
the Corbino disc

H̄1/2 = X†W † U†
√
DH1/2

1√
D
U W X , (198)

with the only difference that r is replaced by D, and the
transformation U is defined by

U = e−i
1
2ϕ e−i

1
2 szϑ , (199)

where ϕ is the polar angle. This guarantees that the
normalization is given by

∫ q>

q<

dq

∮
dλ

∑

σz,sz=±
|ψ̄(q, λ;σz, sz)|2 = 1 , (200)

and U eliminates the half-integer flux and rotates the spin
to the local frame of the unit vectors en and et, defin-
ing the directions normal and tangential to the surface,
respectively.

For the special case of a mirror-symmetric surface, we
note the following properties for the transformation of
the angle ϑ under a sign change of x or ϕ

ϑ
Px−−→ ϑ+ π , ϑ

Pϕ−−→ −ϑ . (201)

This has the consequence that the chiral symmetry, the
inversion symmetry, and SUSY are given by Eqs. (59-
61), just as in the case of the Corbino disc after applying
transformation (198).

After a lengthy calculation we find for the transformed
Hamiltonian in orthogonal coordinates and dimensionless
units

H̄1/2/Eso = σx

{[
−∂q̃

1

h2
n

∂q̃ − ∂λ
1

h̃2
λ

∂λ +
1

4
(κ̃2
n + κ̃2

t ) + Ṽ − δ̃ − 1

2

(
{ κ̃t
h̃t
,−i∂λ} − {

κ̃n
hn
,−i∂q̃}

)]
sz

+

[
{ 1

h̃t
,−i∂λ}sx − {

1

hn
,−i∂q̃}sy

]}
+ σy

1

l̃2B
(sx sinϑ+ sy cosϑ) , (202)

where {·, ·} denotes the anticommutator and we defined

V = − 1

2m

1√
D

(
∂q
ht
hn
∂q + ∂λ

hn
ht
∂λ

)
1√
D
∼ O(

1

mR2
) , (203)

κn = −et∂snen =
1

D
∂λhn ∼ O(

1

R
) (204)

together with the dimensionless quantities q̃ = q/λso, κ̃n,t = κn,tλso, h̃t = ht/λso, and Ṽ = V/Eso (the Lame
coefficient hq is already dimensionless).

To derive the effective surface Hamiltonian for the edge
states it is important that one can separate the solution
for the normal and tangential part of the edges. The
particle on a ring in a double sine potential is a spe-
cial supersymmetric model in one dimension, occurring
here for the special case of a surface in the form of a
ring with a large radius. The analysis will be generalized
to any smooth surface in Section V where we will see
that generic periodic Witten models with supersymmet-
ric properties can be realized.

Furthermore, we note that the two topological bound
states at the inner surface are exactly at zero energy if the
radius R̃> of the outer surface tends to infinity. In this

case, the SUSY is unbroken in an exact sense and two
states exactly at zero energy appear in the gap. Since
the degeneracy of these two states follows from SUSY,
they can not split for any radius R̃< of the inner hole.
Therefore, even for zero hole radius R̃< = 0, the two
center states discussed in Section IV B for zero magnetic
field will remain at zero energy in the presence of a finite
magnetic field.

We now want to briefly discuss the stability of the topo-
logical bound states against deviations from half-integer
flux. For f 6= 1/2 degenerate states at opposite posi-
tions of the same surface with different eigenvalues of
U1/2 will get coupled and split. However, under the con-



29

dition (103) of small angular spread, the orbital overlap
of the two states is exponentially small and the splitting is
negligible. This is in contrast to the two zero energy cen-
ter states at small hole radius which are unstable against
the application of a flux away from half-filling, see the
discussion at the end of Section IV B. tate wave function.
As for the Corbino disc in Section IV C this is possible
when the typical localization length ξn of the edge states
in normal direction is much smaller than all other char-
acteristic length scales of the system. In units of the spin
orbit length this means

ξ̃n � ξ̃t , l̃B , R̃ , (205)

where ξ̃t denotes the localization length of the edge states
in tangential direction. Below we will show that both ξn
and ξt are given by the same order as for the Corbino
disc (with R replaced by the curvature radius)

ξ̃n ∼ O(1) , ξ̃t ∼ l̃B
√
R̃ . (206)

Therefore, the condition (205) is fulfilled if l̃B , R̃� 1.
Based on the estimates (192), (193), (194), (203), and

(204), we can now determine the leading O(1) and sub-

leading O(1/ξ̃t) terms of the Hamiltonian to split the
edge state wave functions in a normal and tangential one.
Thereby we use in addition the property

1

hn
∂q̃ ∼

1

ξ̃n
,

1

h̃t
∂λ ∼

1

ξ̃t
, (207)

in case the differential operators act on the edge state
wave function (and not on hq or h̃t). Together with (206)
we then get in leading order for the effective Hamiltonian
in normal direction

H̄n/Eso = σx

[
(−∂q̃

1

h2
n

∂q̃ − δ̃)sz − {
1

hn
,−i∂q̃}sy

]

≈ σx
[
(−∂2

s̃n − δ̃)sz + 2i∂s̃nsy)
]
, (208)

where s̃n(λ) = q̃/h
≷
n (λ), with h

≷
n (λ) = hn(q≷, λ), is the

coordinate of the line element in normal direction involv-
ing the Lame coefficient hn projected on the considered
outer or inner surface q = q≷. This is justified for all
edge states since they are localized close to the surface.
We find the same form for the normal Hamiltonian as for
the Corbino disc, see Eq. (91), with r̃ → s̃n. Therefore,
for each given λ, we find a zero energy edge state in the
gap and the normal part of the edge state wave function
is given by

ψ̄≷
n (q̃, λ; sz) =

h
≷
n (λ)1/2

√
2

(
1
±1

)

sz

Φ̄n

(
|q̃ − q̃≷|
h
≷
n (λ)

)
,

(209)

where Φ̄n(r̃) is given by (84), and the prefactor accounts
for the correct normalization in terms of q̃, see (200).

Projecting the Hamiltonian on the subset defined by
the normal part of the edge state wave functions, we find
in analogy to the Corbino disc in first order perturbation
theory for the effective surface Hamiltonian in subleading
order

±H̄≷
t /Eso = σx{

1

h̃
≷
t

,−i∂λ}+ σy
1

l̃2B
sinϑ . (210)

where h̃
≷
t (λ) = h̃t(q

≷, λ) is the Lame coefficient pro-
jected on the corresponding surface. Thereby we note
that the two terms of the Hamiltonian (202) involving

{ κ̃n
hn
,−i∂q̃} sz ∼

1

R̃
sz (211)

1

l̃2B
cosϑ sy ∼

1

l̃2B
sy ∼

R̃

ξ̃2
t

sy (212)

contribute only in second-order perturbation theory since
they involve sy,z and do not lead to a direct coupling
of the states (209) since they are eigenfunctions of sx
with eigenvalue ±1 for the outer/inner surface. Thus, the

term (211) contributes in O(1/R̃2) and can be neglected,
and, analog to the discussion for the Corbino disc, the
neglect of the Zeeman term (212) in y-direction requires
the additional condition (107).

Writing the eigenfunctions of the surface Hamiltonian
as

ψ̄
≷
t (λ, σz) = h̃

≷
t (λ)1/2 ψ̂

≷
t (λ, σz) , (213)

we find that ψ̂
≷
t is the eigenfunction of

Ĥ
≷
t = (h̃

≷
t )−1/2 H̄

≷
t (h̃

≷
t )1/2 , (214)

with

±Ĥ≷
t /Eso = σx2(−i∂s̃t}+ σy

1

l̃2B
sinϑ , (215)

where ∂s̃t = h̃
≷
t (λ)−1∂λ is the derivative with respect to

the surface line element for q = q≷. Using (191), the

normalization of ψ̂
≷
t is defined by

∑

σz=±1

∫ L̃

0

ds̃t|ψ̂≷
t (s̃t, σz)|2 = 1 , (216)

where L̃ is the circumference of the corresponding surface
in units of the spin-orbit length.

The effective surface Hamiltonian (215) is the central
result of this section. It has exactly the same form as
the result (98) for the Corbino disc (where s̃t = R̃ϕ) and
involves the normal component of the Zeeman term as
the mass term. Defining the normal component along
the surface in dimensionless units by

ẼZ,n(s̃t) =
1

l̃2B
sinϑ(s̃t) , (217)
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we obtain the generic rule that zero energy topological
states will appear close to the surface points where the
normal component of the Zeeman term changes sign, i.e.,
for s̃t = s̃jt with

sinϑj = 0 , ϑj = ϑ(s̃jt ) . (218)

Expanding around such a point we obtain for ϑj = 0, π

ẼZ,n(s̃t) ≈ ±
κ̃jt

l̃2B
(s̃t − s̃jt ) ∼

ξ̃t

R̃ l̃2B
, (219)

with κ̃jt = κ̃t(s̃
j
t ), where we used (196) and the estimate

s̃t − s̃jt ∼ ξ̃t, together with the definition κ̃t = κtλso ∼
1/R̃. Comparing the order of magnitude of this term with

the first term ∼ ∂s̃t ∼ 1/ξ̃t of the surface Hamiltonian

(215), we find precisely the result (206) for ξ̃t ∼ l̃B
√
R̃.

Furthermore, depending on the sign of

pj = sign(cosϑj) sign(κ̃jt ) , (220)

the mass term changes from minus to plus or vice versa
when moving around the surface, giving rise to the chi-
rality s = pj = ±1 of the topological states, respectively.

Squaring the Hamiltonian we obtain the generic class
of periodic Witten models

H̃W = (Ĥ
≷
t /Eso)2 = −4∂2

s̃t + Ṽ −σzW (s̃t) , (221)

with the Witten potentials given by

Ṽ ±W (s̃t) = ẼZ,n(s̃t)
2 ∓ 2Ẽ′Z,n(s̃t) , (222)

where Ẽ′Z,n(s̃t) = (d/ds̃t)ẼZ,n(s̃t) denotes the derivative.

We note that the study of H̃W is sufficient to calculate the
spectrum and all eigenstates of the surface Hamiltonian.
This is due to chiral symmetry S̄ = −σz and the fact
that periodic boundary conditions under s̃t → s̃t + L̃
are respected by the surface Hamiltonian. The Witten
model and its relation to the surface Hamiltonian will be
discussed in all detail in the next two subsections.

B. Supersymmetry for the periodic Witten model

The Witten model plays a very fundamental role in the
study of SUSY models [1–3]. The two spectra of

H̃±W ≡ H̃W |σz=± = −4∂2
s̃t + Ṽ ±W (s̃t) (223)

for the two chiral sectors S̄ = −σz = ±1 of H̃W are ex-

actly the same. This follows from chiral symmetry of Ĥ
≷
t

and the definition H̃W = (Ĥ
≷
t /Eso)2. For each eigenstate

|ψ〉 of Ĥ
≷
t it follows that σz|ψ〉 is also an eigenstate with

a different sign for the energy. As a consequence, the two
states |ψ〉 ± σz|ψ〉 are eigenstates of H̃W with the same
energy belonging to two different chiral sectors. Since all
eigenstates of H̃W can be constructed in this way, the two

spectra of H̃±W must be exactly the same. However, this
2-fold degeneracy between the spectra of the two chiral
sectors is a rather trivial degeneracy for the two partner
potentials Ṽ ±W and is not related to any nontrivial SUSY
structure of the spectrum.

The nontrivial SUSY properties emerge in each chi-
ral sector separately and are associated with additional
symmetries present at half-integer flux f = 1/2 and a
mirror-symmetric surface. Using (201), we find for a
mirror-symmetric surface the following properties of the
normal component ẼZ,n(s̃t) of the Zeeman field along the
surface

ẼZ,n(s̃t) = −ẼZ,n(s̃t +
L̃

2
) , (224)

ẼZ,n(s̃t) = −ẼZ,n(L̃− s̃t) = −ẼZ,n(−s̃t) , (225)

where we used periodic boundary conditions ẼZ,n(s̃t) =

ẼZ,n(s̃t + L̃) in the last equality. Using the operators Px

and Pϕ changing the sign of x and ϕ, respectively, which
act within the space of a mirror-symmetric surface, we
can write the symmetry properties equivalently as

Px ẼZ,n Px = −ẼZ,n , Pϕ ẼZ,n Pϕ = −ẼZ,n . (226)

Defining the supercharge operator Q± by

Q± = Px(−2i∂s̃t ∓ iR(s̃t)) = Q†± , (227)

and using the symmetries (226) together with P 2
x = P 2

ϕ =
1, we obtain straightforwardly the n = 1 SUSY represen-
tation (40) for each chiral sector with K ≡ Pϕ

H̃±W = (Q±)
2

, Q±Pϕ = −PϕQ± . (228)

The SUSY of both H̃±W is unbroken, i.e., a zero energy
state exists in each chiral sector. This follows directly

from solving Q±|ψ(0),±
W 〉 = 0 with the result

ψ
(0),±
W (s̃t) =

1√
N±W

e∓F (s̃t) , (229)

where we defined the function

F (s̃t) =
1

2

∫ s̃t

−L̃/4
ds̃′t ẼZ,n(s̃′t) . (230)

Here, N±W is a normalization factor such that
∫ L̃

0
ds̃t
[
ψ±W(s̃t)

]2
= 1. The reference point −L̃/4 for the

integration in (230) has been chosen such that the sym-

metries (224) and (225) for ẼZ,n(s̃t) lead to the following
symmetries for the function F (s̃t)

F (s̃t) = −F (s̃t +
L̃

2
) , (231)

F (s̃t) = F (L̃− s̃t) = F (−s̃t) , (232)
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or

Px F Px = −F , Pϕ F Pϕ = F . (233)

As a consequence, the function F (s̃t) is symmetric
around the x-axis (i.e., under ϕ→ −ϕ) and antisymmet-
ric around the y-axis (i.e., under ϕ→ π−ϕ). E.g., for the
special case of the outer or inner surface of a Corbino disc,
where s̃t = R̃≷ϕ, L̃ = 2πR̃≷ and ẼZ,n(s̃t) = (1/l̃2B) sinϕ,

we get F (s̃t) = −R̃≷/(2l̃2B) cosϕ = −1/(2∆ϕ2) cosϕ,
consistent with (112).

We note that the existence of the zero energy states
for the two periodic Witten models does not necessarily
depend on the mirror symmetry of the surface. Only the
exact 2-fold degeneracy of all states with non-zero energy
is related to SUSY present only for a mirror symmetric
surface. This shows that the original model will always
have states close to zero energy at half-integer flux for
arbitrary smooth surfaces, provided that the conditions
(188) and (189) for the derivation of the surface Hamilto-
nian are fulfilled. This is even true away from half-integer
flux for strong localization ξt � R≷, where the devia-
tion of the flux from half-integer value will only change
the boundary conditions of the wave functions which is
not very important for localized states with small orbital
overlap. However, for a mirror-symmetric surface at half-
integer flux, the two states are exactly at zero energy even
when they have a strong orbital overlap for ξt ∼ R≷.

C. The low energy spectrum of the surface
Hamiltonian

In this section we will discuss the low energy spectrum

and the eigenstates of the surface Hamiltonian Ĥ
≷
t for

the outer/inner surface. We start with the zero energy
solutions for any size of ξt based on the zero energy solu-
tions (229) of the periodic Witten models, and continue
with a semiclassical calculation of the strongly localized
bound states with ξt � R≷, in close analogy to the case
of a Corbino disc discussed in Section IV C.

The zero energy solutions (229) of H̃ηW give rise to

two zero energy states of the surface Hamiltonian Ĥ
≷
t

for chirality s = −σz

ψ̂
≷
t,s=1(s̃t;σz) =

1√
2

(
0
1

)

σz

ψ
(0),+
W (s̃t) , (234)

ψ̂
≷
t,s=−1(s̃t;σz) =

1√
2

(
1
0

)

σz

ψ
(0),−
W (s̃t) , (235)

where the dependence of the right hand side of these
equations on the outer/inner surface is hidden in the
function R(s̃t) defined by (217), which enters into the
definition of ψ±W via (229) and (230). For a mirror sym-
metric surface we find due to (229) and (233) that

Pϕ|ψ̂≷
t,s〉 = |ψ̂≷

t,s〉 , σz|ψ̂≷
t,s〉 = −s|ψ̂≷

t,s〉 . (236)

Multiplying these solutions with the normal part (209)
and using (213) we get for the total wave function of the
zero energy states of H̄1/2 with chirality s = ±1 the result

ψ̄≷
s (q̃, λ;σz, sz)

= h̃
≷
t (λ)1/2 ψ̄≷

n (q̃, λ; sz) ψ̂
≷
t,s(s̃t(λ);σz) . (237)

This gives two zero energy states for each surface with
different values for the chiral symmetry. For a mirror
symmetric surface, the eigenvalue u of the SUSY opera-
tor Ū1/2 = Pϕσzsx is automatically fixed for given chi-

rality. Since hn(λ) and h̃t(λ) are symmetric under Pϕ for
a mirror symmetric surface, we get from (209) and (236)
that

Ū1/2|ψ̄≷
s 〉 = ∓s|ψ̄≷

s 〉 , (238)

i.e., u = −s for the outer surface and u = s for the inner
surface, in analogy to the result for the Corbino disc, see
Fig. 3.

To find all eigenstates of the surface Hamiltonian with
non-zero energy, we first note that it is sufficient to study
the eigenstates of the Witten Hamiltonian. This is due to
chiral symmetry and the fact that the surface Hamilto-
nian respects periodic boundary conditions. To see this
we start from any normalized eigenstate ψ+

W (s̃t) of H̃+
W

with positive eigenvalue ε̃2 > 0

H̃+
W |ψ+

W 〉 = ε̃2|ψ+
W 〉 , (239)

〈ψ+
W |ψ+

W 〉 =

∫ L̃

0

ds̃t|ψ+
W (s̃t)|2 = 1 . (240)

Writing the surface Hamiltonian (215) in the σz-basis as

±Ĥ≷
t /Eso =

(
0 Γ
Γ† 0

)
, (241)

with

Γ = −2i∂s̃t − iẼZ,n(s̃t) , (242)

we find H̃+
W = Γ†Γ and H̃−W = ΓΓ† (note that the su-

perindex of H̃sW refers to s = −σz). It is then straightfor-
ward to find two eigenstates of the surface Hamiltonian
with opposite energy

±(Ĥ
≷
t /Eso)|ψ̂≷,η

t 〉 = η|ε̃| |ψ̂≷,η
t 〉 , (243)

with η = ±1 and

ψ̂
≷,η
t (s̃t;σz) =

1√
2

(
η ψ−W (s̃t)
ψ+
W (s̃t)

)

σz

, (244)

ψ−W =
1

|ε̃|Γψ
+
W . (245)

Here, ψ±W are by construction normalized eigenstates

of H̃±W , respectively, with the same eigenvalue ε̃2, and
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both respecting periodic boundary conditions ψ±W (s̃t) =

ψ±W (s̃t + L̃).
The construction (244) of the eigenstates of the sur-

face Hamiltonian in terms of the eigenstates of the Wit-
ten Hamiltonian H̃+

W is possible for any smooth surface,
even if it is not mirror symmetric. For the special case
of a mirror symmetric surface, where SUSY holds and
Ū1/2 = Pϕσzsx is an exact symmetry of the full Hamil-

tonian H̄1/2, we can choose the eigenstates of the surface
Hamiltonian as eigenfunctions of Pϕσz to fix the eigen-
value u of Ū1/2 (note that the normal part of the wave
function has sx = ± for the outer/inner surface). From
the symmetry (226) we find that the Witten potential
and the Witten Hamiltonian have the symmetry

Ṽ ±W (s̃t) = Ṽ ±W (−s̃t) ⇒ PϕH̃±WPϕ = H̃±W . (246)

Therefore, we can choose the eigenstates ψ+
W of H̃+

W as
eigenstates of Pϕ with eigenvalue ηϕW = ±1

Pϕ |ψ+
W 〉 = ηϕW |ψ+

W 〉 . (247)

Using the symmetry

PϕΓPϕ = −Γ , (248)

we get a sign change for the eigenvalue of Pϕ for ψ−W =

|ε̃|−1Γψ+
W

Pϕ |ψ−W 〉 = −ηϕW |ψ−W 〉 , (249)

and find from (244) that ψ̂
≷,η
t is an eigenstate of Pϕσz

with eigenvalue −ηϕW

Pϕσz |ψ̂≷,η
t 〉 = −ηϕW |ψ̂

≷,η
t 〉 . (250)

In this way all eigenstates of H̄1/2 can be constructed

from the eigenstates of the Witten Hamiltonian H̃+
W ,

which are at the same time eigenstates of the SUSY op-
erator with eigenvalue given by

u = −ηϕW sx = ∓ηϕW , (251)

where we used sx = ± for the outer/inner surface from
the normal part of the eigenstates.

In summary, for a mirror symmetric surface, we have
found that the angular part of all eigenstates of the
Hamiltonian H̄1/2 can be constructed as a combination

of a symmetric state of H̃+
W and an antisymmetric one

of H̃−W with SUSY eigenvalue u = ∓ for the outer/inner
surface, or vice versa with u = ±. Furthermore, we note
that two degenerate eigenstates of the Hamiltonian con-
structed in this way transform into each other via the
inversion symmetry Π̄ = −Pxσx and have a different
sign for the SUSY eigenvalue u. This follows since Π̄
commutes with H̄1/2, whereas SUSY anticommutes with

H̄1/2. On the level of the surface Hamiltonian this follows

equivalenty from the symmetries

PxσxĤ
≷
t Pxσx = Ĥ

≷
t , (252)

PϕσzĤ
≷
t Pϕσz = Ĥ

≷
t , (253)

(Pxσx)(Pϕσz) = −(Pϕσz)(Pxσx) . (254)

We now turn to the explicit calculation of the localized
bound states of the two Witten models H̃±W in semiclas-

sical approximation for strong localization ξ̃t = l̃B
√
R̃�

R̃, in analogy to the treatment described in Section IV C
for the Corbino disc. The existence of the unique zero

energy states ψ
(0),±
W for the chiral sectors s = ± of the

Witten Hamiltonians H̃±W reflects the unbroken SUSY
properties of the two chiral sectors of the squared Hamil-
tonian as described in Section III. However, for a generic
smooth surface characterized by the average curvature
κ̃t ∼ 1/R̃ � 1, an arbitrary number of points with

sinϑ(s̃jt ) = 0, j = 1, . . . , NZ , can occur. In the regime of
strong localization, there will be NZ states exponentially
close to zero energy, each of them localized at s̃jt with

tangential spread ∼ ξ̃t. The two states exactly at zero
energy are a superposition of all these states and are given
by (237). In addition, there will be NZ − 1 other eigen-

states with an exponentially small energy ∼ e−R̃/ξ̃t and
it is in general quite difficult to calculate them exactly.
Therefore, in the following we will consider the region
s̃t ∼ s̃jt + O(ξ̃t), and study the spectrum via the har-
monic oscillator eigenstates in the minima of the Witten
potential by expanding the normal component ẼZ,n(s̃t)

of the Zeeman field up to linear order in s̃t− s̃jt . Accord-
ing to (219) we get

ẼZ,n(s̃t) ≈ pj
Ω̃2
j

4
(s̃t − s̃jt ) , (255)

Ṽ ±W (s̃t) ≈
Ω̃4
j

16
(s̃t − s̃jt )2 ∓ pj

Ω̃2
j

2
, (256)

where the sign factor pj has been defined in (220) and

Ω̃j denotes the Witten frequency at s̃t = s̃jt

Ω̃j =
2|κ̃jt |1/2
l̃B

=
2

ξ̃jt
, (257)

with

ξ̃jt =
l̃B

|κ̃jt |1/2
∼
√
R̃ l̃B . (258)

Defining the annihilation and creation operators by

aj =
2

Ω̃j
∂s̃t +

Ω̃j
4

(s̃t − s̃jt ) , (259)

a†j = − 2

Ω̃j
∂s̃t +

Ω̃j
4

(s̃t − s̃jt ) , (260)
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FIG. 15. (a) A generic surface which is not mirror symmetric with four points where ϑ = 0, π and four different frequencies

Ω̃j = 2
√
|κ̃jt |/l̃B . The signs pj = (sign cosϑj) (signκ̃jt) are alternating when moving along the surface. This happens since (1)

ϑ = 0, π for positive/negative x-coordinate, and (2) the sign of the curvature κ̃t changes (remains the same) when the sign
of the x-coordinate remains the same (changes) when moving from one point to the next. (b) A sketch of the corresponding

Witten potential Ṽ +
W consisting of four harmonic oscillator potentials with potential minima at −pjΩ̃2

j/2. In the absence of
accidental degeneracies due to commensurabilities, this gives rise to a set of non-degenerate and clearly separated eigenvalues.
An exception are the two zero eigenvalues which stay close to each other since the exponentially small hybridization will split
them into one eigenvalue exactly at zero and another one at a very small positive value.

we find for the Witten Hamiltonian H̃±,jW close to s̃t ≈ s̃jt
the result

H̃±,jW ≈ Ω̃2
ja
†
jaj + Ω̃2

j

{
0 for pj = ±1

1 for pj = ∓1
, (261)

and the surface Hamiltonian (215) close to s̃t ≈ s̃jt can
be written for pj = 1 in the form

Ĥ
≷,j
t |pj=1 ≈ ±Ωj

(
0 −iaj
ia†j 0

)
, (262)

and, for pj = −1, we get

Ĥ
≷,j
t |pj=−1 ≈ ±Ωj

(
0 ia†j
−iaj 0

)
(263)

= σx(Ĥ
≷,j
t |pj=1)σx . (264)

Analog to the Corbino disc, we then get for the eigen-
functions and eigenvalues of H̃±,jW in the semiclassical
approximation the result

gjn(s̃t) = (ξ̃jt )
−1/2 fn

(
(s̃t − s̃jt )/ξ̃jt

)
, (265)

Ẽ±,jn = n Ω̃2
j +

1

2
(1∓ pj)Ω̃2

j , (266)

where fn(ϕ) has been defined in (123), and n = 0, 1, . . . .
The eigenstates of the surface Hamiltonian can then be
written down via the explicit construction (244) or in the
same way as for the Corbino disc, see (126) and (127).

The spectrum of H̃+
W within the surface gap is then

approximately given by n Ω̃2
j for pj = 1 and by (n+1) Ω̃2

j

for pj = −1, with n = 0, 1, 2, . . . . According to the above

discussion, each non-zero eigenvalue n Ω̃2 of H̃+
W will lead

to two energy eigenvalues ±√n Ω̃j for the surface Hamil-
tonian. This is quite analog as for the Corbino disc but
the essential difference is that many different frequencies
Ω̃j can occur, see below for examples and the discussion
of the qualitative form of the spectrum for specific sur-
faces.

Most importantly, we find from (266) that eigenstates

of H̃±W with eigenvalue exponentially close to zero are

superpositions of all states |gj0〉 localized at the points
with pj = ±1, i.e., for a given chiral sector s = ±1, the
sign of pj is fixed to pj = s. According to (220) this

means that the signs of κ̃jt and cosϑj for all these points
must be either the same (for s = +1) or opposite (for
s = −1). To determine the number of such points for
a given chiral sector in the case of a mirror symmetric
surface we use the properties (201) and (196), and find
that κ̃t and cosϑ transform in the following way under a
sign change of ϕ or x

κ̃t(s̃t) = κ̃t(−s̃t) = κ̃t(s̃t + L̃/2) , (267)

cosϑ(s̃t) = cosϑ(−s̃t) = − cosϑ(s̃t + L̃/2) . (268)

As a consequence, we get the following transformation of
the sign factors pj = p(s̃jt )

p(s̃jt ) = p(−s̃jt ) = −p(s̃jt + L̃/2) . (269)

This means that the number of points with the same
sign of pj and s̃jt 6= 0, L̃/2 is even. In addition, the two
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points s̃t = 0, L̃/2 belong to the set {s̃jt}j with different

sign of pj , since cosϑ(0) = − cosϑ(L̃/2) = 1 and κ̃t(0) =

κ̃t(L̃/2) due to (201), (267), and (268). As a consequence,

the number of points s̃jt with a definite sign of pj must be
odd for a mirror symmetric surface, i.e., the total number
NZ of points with sinϑj = 0 is even and NZ/2 is odd.
This is consistent with the form of the unbroken SUSY
spectrum for H̃sW since an odd number of states in the
presence of SUSY can only split into one single state with
zero eigenvalue and a set of 2-fold degenerate states with
positive eigenvalues.

Moreover, for a mirror symmetric surface, we can also
predict the qualitative form of the spectrum for the
bound states in the surface gap of the Witten model
H̃sW (for fixed chirality s = ±1) significantly away from

zero energy. Let us consider M different frequencies Ω̃k,
with k = 1, . . . ,M , with each frequency Ω̃k occurring mk

times at the points ϑ = 0, π along the surface, such that
the total number of points is decomposed as

NZ = m1 +m2 + · · ·+mM . (270)

For a mirror symmetric surface, each number mk must
be even due to the above discussion, with mk/2 points
referring to pk = +1 and mk/2 ones to pk = −1. There-
fore, we get in the semiclassical approximation from (266)
that mk/2 harmonic oscillator potentials have eigenval-

ues n Ω̃2
k, with n = 0, 1, . . . , and mk/2 ones have eigen-

values n Ω̃2
k, with n = 1, . . . ). This gives mk/2 eigenval-

ues lying close to zero (leading in total to NZ/2 states
with eigenvalue close to zero in each chiral sector, see
above), and mk eigenvalues lying close to n Ω̃2

k for each
n = 1, 2, . . . . Therefore, disregarding accidental degen-
eracies from commensurabilities, the spectrum of the
Witten Hamiltonian H̃sW will show sequences of M dif-
ferent groups (labelled by k = 1, . . . ,M) of nearly degen-
erate states, each of them containing mk states, except a
group of mk/2 states close to zero eigenvalue. An exam-
ple will be discussed in all detail in the next section for a
surface of peanut shape, where NZ = 6, M = 2, m1 = 4
and m2 = 2, see Fig. 18.

For generic surfaces without any symmetry one finds
only an alternation of the signs of pj when moving around
the surface, see an example for a surface with NZ = 4
and four different frequencies Ω̃j shown in Fig. 15(a), to-
gether with a sketch of the corresponding Witten poten-
tial Ṽ +

W in Fig. 15(b). In the case where all frequencies
are different only the 2-fold degeneracy of the zero en-
ergy state is guaranteed for the surface Hamiltonian but
all non-zero energies are non-degenerate (up to acciden-
tal degeneracies due to commensurabilities between the
squared frequencies).

D. Peanut shape

An example for a mirror symmetric surface is shown
in Fig. 16, using a peanut shape constructed out of two

x

y

R1

R1

R2R2

p2 = 1p3 = − 1

x0

p6 = 1p5 = − 1

p4 = 1 p1 = − 1
γ

FIG. 16. Construction of a peanut shape via the parameters
R1, R2 and x0. Here, R1 and R2 are the radia of the cir-
cles with centers on the y- and x-axis, respectively, and 2x0
denotes the width of the peanut for y = 0. The angle γ deter-
mines the point where two circles meet. We get 6 points with

ϑ = 0, π, four of them having the frequency Ω̃1 = 2/(l̃B
√
R̃1)

(for j = 2, 3, 5, 6), and two with Ω̃2 = 2/(l̃B
√
R̃2) (for

j = 1, 4). The sign factors pj = (sign cosϑj) (sign κ̃jt) alter-
nate when moving around the surface (compare with Fig. 15),
and each frequency has the same number of positive and neg-
ative pj , i.e., 2 for Ω̃1 and 1 for Ω̃2. The angle γ is the angle
between the x-axis and the connection line between the mid-
dle points of the upper and right circle.

circles with radia R1 and R2. This gives NZ = 6 points
where ϑj = 0, π and the sign factors pj are given by p1 =
p3 = p5 = −1 and p2 = p4 = p6 = 1, with two frequen-

cies Ω̃1 = 2/(l̃B
√
R̃1) and Ω̃2 = 2/(l̃B

√
R̃2). The first

frequency Ω̃1 occurs m1 = 4 times at s̃t = s̃2
t , s̃

6
t (with

p2 = p6 = 1) and s̃t = s̃3
t , s̃

5
t (with p3 = p5 = −1). The

second frequency Ω̃2 occurs m2 = 2 times at s̃t = s̃1
t = 0

(with p1 = −1) and s̃t = s̃4
t = L̃/2 (with p4 = 1) .

The qualitative form of the spectrum follows from our
generic analysis in Section V C. For R1 = R2 = R, we
get two identical frequencies Ω1 = Ω2 = Ω , leading to
the Witten potential Ṽ +

W as shown in Fig. 17(a), based
on the explicit formulas derived in Appendix E. As a
consequence, the spectrum of the surface Hamiltonian
(calculated numerically within the tight-binding formal-
ism described in Appendix D) shows groups of 6 states
lying close together in energy as shown in Fig. 17(b). For
different R1 > R2, we see in Fig. 18(a) that the Witten

potential Ṽ +
W hosts two different groups of 4 (2) nearly

degenerate states at nΩ̃2
1 (nΩ̃2

2), with n = 1, 2, . . . . This
leads to the energy spectrum for the surface Hamiltonian
shown in Fig. 18(b). Besides the group of 6 states close to
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FIG. 17. Left figure (a): Witten potential Ṽ +
W of a peanut surface with R̃1 = R̃2 = R̃ = 30, x̃0 = 10, and l̃B = 2, calculated

via the formulas of Appendix E. The jumps of the potential arise from the discontinuous change of the curvature at the
meeting points of two circles in the construction of the peanut surface via Fig. 16. Based on the sign factors pj and the

frequency Ω̃ = 2/(l̃B
√
R̃) = 1/

√
30 ≈ 0.18 introduced in Fig. 16, we obtain 6 harmonic oscillator potentials located at s̃jt , with

potential minima at −pjΩ̃2/2, with p2 = p4 = p6 = 1 and p1 = p3 = p5 = −1. In these potentials we indicate the harmonic
oscillator states in a semiclassical picture (we only indicate those below the height of the potential set by the Zeeman energy

squared Ẽ2
Z = 1/l̃4B = 1/16 = 0.0625). As a result, we get three states with zero eigenvalue and six states with eigenvalue

Ω̃2 = 1/30 ≈ 0.034 which, due to SUSY, will split by an exponentially small hybridization into one state at zero eigenvalue

and a set of 2-fold degenerate states. Since each state of the Witten Hamiltonian H̃+
W with non-zero eigenvalue ε̃2 will lead to

two corresponding states at positive and negative energy ±|ε̃| for the surface Hamiltonian (see Eq. (244)), we get the energy
spectrum of the surface Hamiltonian shown in the right figure (b) (calculated numerically via the tight-binding formalism). It

consists of groups of 6 nearly degenerate states at ε̃ ≈ 0,±Ω̃ (higher states at ε̃ ≈ ±√n Ω̃, with n = 2, 3, . . . behave differently

since they are above the surface gap set by ẼZ). To get the center states (indicated by an arrow) away from zero energy we
have detuned the flux f = (π + 0.1)/(2π) ≈ 0.5159 slightly away from half-integer value. This affects the bound states at the
boundary of the peanut only weakly since the states with energies within the surface gap are well localized.

zero energy, one can see groups of 4 states close to ±Ω̃1,
consistent with the semiclassical picture. Since the two
energies ±Ω̃2 and ±

√
2 Ω̃1 are quite close to each other

for the parameters used in Fig. 18, one can no longer dis-
tinguish these two groups after the small hybridization,
and groups of 6 states appear close to these energies.

We note that only states within the surface gap set by
the Zeeman energy ẼZ = 1/l̃2B are shown in Figs. 17
and 18, and we detuned the flux slightly away from
half-integer value to get the center states away from
the energies of the bound states localized at the bound-
ary of the peanut. Furthermore, we note that the Wit-
ten potential contains discontinuous jumps at the points
s̃t = ±R2 γ,±(L̃/2−R2 γ), where the curvature changes

discontinuously from −1/R̃2 to 1/R̃1. However, this is
due to our special construction of the peanut shape and
does not influence the low-energy wave functions signifi-
cantly in the case of strong localization, since the points
where the jumps of the potential appear are sufficiently
away from the hotspots s̃jt , where the wave functions are
localized.

For the parameters used in Figs. 17 and 18, we show in
Fig. 19 the absolute square of the wave functions (aver-
aged over the spinor indices) for the 6 states lying close to
zero energy (labelled by ”A-F” in Figs. 17(b) and 18(b)).

For R1 = R2, the two zero energy states labelled by ”A”
and ”B” are compared with the analytical solution (229)

and (230) for the angular part ψ
(0),±
W (s̃t) ∼ e∓F (s̃t) in

Fig. 20, see Appendix E for the explicit formulas to cal-
culate the function F (s̃t) for the peanut shape. We find

two peaks at s̃2,6
t (s̃3,5

t ) for ψ
(0),+
W (ψ

(0),−
W ) which agrees

quite nicely with the analytical prediction and are consis-

tent with the tangential localization length ξ̃t = l̃B
√
R̃,

see the Gaussian fit shown in Fig. 20. Both zero energy

states ψ
(0),±
W are symmetric under a sign change of ϕ and

have chirality s = ±1 and SUSY eigenvalue u = ∓1,
consistent with the analytics.

The four states ”C-F” with finite but very small en-
ergies can be constructed from the two degenerate first
excited eigenstates of the Witten Hamiltonian H̃+

W , see
the detailed discussion in Section V C and the explicit
formula (244) to construct the eigenstates of the surface
Hamiltonian at positive and negative energy from the
ones of the Witten model H̃+

W . As shown in Fig. 17(a),

the Witten potential Ṽ +
W hosts three harmonic oscilla-

tor ground states |gj0〉 localized at s̃jt with j = 2, 4, 6.

In analogy, the Witten potential H̃−W hosts three har-

monic oscillator ground states |gj0〉 for j = 1, 3, 5. In Sec-
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FIG. 18. (a) The Witten potential Ṽ +
W of a peanut surface for the same parameters x̃0 = 10 and l̃B = 2 as in Fig. 17 but for

two different radia R̃1 = 35 and R̃2 = 20. In this case there are two different frequencies Ω̃1 = 2/(l̃B
√
R̃1) = 1/

√
35 ≈ 0.17

and Ω̃2 = 2/(l̃B
√
R̃2) = 1/

√
20 ≈ 0.22. As a result, we get 4 harmonic oscillator potentials with potential minima at −pjΩ̃2

1/2

for j = 2, 3, 5, 6, and 2 harmonic oscillator potentials with potential minima at −pjΩ̃2
2/2 for j = 1, 4, with p2 = p4 = p6 = 1

and p1 = p3 = p5 = −1. Within a semiclassical picture this gives three states with zero eigenvalue, a group of 4 states with
eigenvalue Ω̃2

1 = 1/35 ≈ 0.0285, a group of 2 states with eigenvalue Ω̃2
2 = 1/20 = 0.05, and a group of 4 states with eigenvalue

2 Ω̃2
1 = 2/35 ≈ 0.057 (all the other states are above the height of the Witten potential set by the squared Zeeman energy

Ẽ2
Z = 1/l̃4B = 0.0625). Due to the exponentially small splitting and SUSY, this leads to the energy spectrum of the surface

Hamiltonian shown in the right figure (b) (calculated numerically via the tight-binding formalism), showing a group of 6 states

close to zero energy, and groups with four states close to ±Ω̃1. Since the 2 states at ±Ω̃2 and the 4 states at ±
√

2 Ω̃1 are quite
close to each other, one can not distinguish them any longer after the hybridization, leading to groups of 6 states close to these
energies. All other states at ε̃ ≈ ±√n Ω̃1, with n = 3, 4, . . . , and ε̃ ≈ ±√n Ω̃2, with n = 2, 3, . . . , behave differently since they

are above the surface gap set by ẼZ = 1/l̃2B = 0.25. As in Fig. 17 we have detuned the flux f = (π+0.1)/(2π) ≈ 0.5159 slightly
away from half-integer value to get the center states away from zero energy.

tion V C we learnt for a mirror symmetric surface that
each eigenstate of the surface Hamiltonian with non-zero
eigenvalue can be constructed as a combination of a sym-
metric/antisymmetric state (with respect to Pϕ) of H̃+

W

and an antisymmetric/symmetric state of H̃−W , such that
they are at the same time eigenstates of the SUSY oper-
ator with SUSY eigenvalue u = −1/u + 1 for the outer
surface. As shown in Fig. 20, the symmetric combination

|g2
0〉 + |g6

0〉 is predominately present in the state ψ
(0),+
W

with zero eigenvalue. The other symmetric state |g4
0〉 of

H̃+
W is combined with the antisymmetric state |g3

0〉− |g5
0〉

of H̃−W to form the eigenstates ”C” and ”E”, which have
SUSY eigenvalue u = −1. Finally, the states ”D” and
”F” are obtained from applying the inversion operator
to ”C” and ”E”, respectively, i.e., are combinations of
the symmetric state |g1

0〉 of H̃−W and the antisymmetric

state |g2
0〉 − |g6

0〉 of H̃+
W , with SUSY eigenvalue u = 1.

VI. STABILITY AND TOPOLOGICAL
ENGINEERING

In this section we discuss the stability against various
kinds of perturbations (flux away from half-integer value
or penetrating into the sample, surface distortions, and
random disorder), and the possibilities of how to use the
topological hole states in multi-hole systems for topolog-
ical engineering.

For clarity, we summarize here again the conditions
of the validity range of the analytical theory, as it was
discussed in all detail in Sections IV C, IV D, and IV F.
For the discussion of strongly localized bound states be-
low the surface gap in the topological phase, we need the
condition specified in (175) which, in terms of the Witten
frequency ΩW = 1/(m∗λsoξt) and in dimensionfull units,
can be written as

1

m∗λsoR
� ΩW � EZ , (271)

ΩW � Eso , (272)

EZ ∼ ∆surface . ∆bulk . (273)

The first condition (271) is equivalent to the condition

of strong localization ξt = lB
√
R/λso � R and means

that we have a clear separation of energy scales between
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FIG. 19. Numerical calculation via the tight-binding formalism described in Appendix D for the wave functions ”A-F” of the
6 states with lowest absolute value of the energy, see labelling in Figs. 17(b) and 18(b). We consider a system of peanut shape

as shown in Fig. 16 using the parameters x̃0 = 10, l̃B = 2, δ̃ = 1, together with (a) R̃1 = R̃2 = R̃ = 30 (left figure) and (b)

R̃1 = 35 and R̃2 = 20 (right figure), i.e. the same parameters as in Fig. 17 and Fig. 18, respectively. In the six panels we show
the wave functions ”A-F” by plotting

∑
σzsz
|ψ(nx, ny;σz, sz)|2 in color code as function of the lattice site index (nx, ny). The

signs of the wave functions before squaring them are indicated which agrees with the analytical considerations (see main text).

the level spacing 1/(m∗λsoR) of the extended edge states,
the level spacing ΩW of the localized bound states, and
the surface gap ∼ EZ , see Fig. 1(b). We note that the
two conditions ΩW � 1/(m∗λsoR) and EZ � ΩW are
equivalent since

EZ
ΩW

=
1

2

ΩW
1/(m∗λsoR)

. (274)

The second condition (272) means that we have a clear
separation of length scales between the normal and tan-
gential localization lengths λso ∼ ξn � ξt, such that
we can split the Hamiltonian in a normal and tangential
part, see Section IV F for the details. As already pointed
out at the end of Section IV F, the two conditions can
be fulfilled for sufficiently large curvature radius R, but
do not require any condition for the ratio of spin-orbit
energy Eso and Zeeman energy EZ .

To describe the topological states in the case of strong
delocalization in tangential direction ξt ∼ R, one needs in
addition the condition of weak Zeeman energy EZ � Eso

as compared to spin-orbit energy, see the detailed discus-
sion in Section IV C. This is important for the study of
topological engineering to generate a controlled coupling
between the two topological hole states of a single hole,
see below.

A. Stability

If the topological states are well localized in normal
and angular direction, i.e., if the condition (271) is ful-
filled, only the properties of the model in a local subpart
of the surface is important. This guarantees the sta-
bility of the topological states against deviations of the
flux from half-integer value and against deformations of
the surface. Moreover, even if the flux penetrates into
the sample, the spectrum of the boundary states is not
significantly changed since they are strongly localized in
normal direction and feel only the total flux through the
area defined by the surface.

For the stability against random on-site disorder we
discuss generic impurity potentials defined in the tight-
binding version of the model by

Vim =
∑

α,β=0,1,2,3

∑

n

vαβn |n〉〈n|σα ⊗ sβ , (275)

where n labels the lattice sites, σ0 = s0 = 1, and vαβn is
randomly distributed in the interval vαβn ∈ [−d/2, d/2].
Here, d is a measure for the impurity strength. After
averaging over the disorder the self-energy will be of order
d2/Eso, where t ∼ Eso is the average hopping in the
limit of strong spin-orbit interaction. For a generic spinor
dependence of the impurity potential we then expect that
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FIG. 20. The angular part of the two zero energy topological states as function of the line element s̃t along the surface for
a system of peanut shape as shown in Fig. 16 with R̃1 = R̃2 = R̃ = 30, x0 = 10, l̃B = 2, and δ̃ = 1. In the left figure (a)

we show the analytical result e−F (s̃t) (black line), with F (s̃t) given by (230) and calculated explicitly in Appendix E. The
analytical result is compared to the numerical result (shown in blue) for the state labelled ”A” in Fig. 19(a), by showing the

average (1/A)
∑

(nx,ny)∈A(
∑
σzsz
|ψ(x, y;σz, sz)|2)1/2 over a certain area A defined by a fixed distance ∆N = 4 away from

the surface. Furthermore, to ensure for the normalization, we rescaled the numerical result to fit the peak heights. We find
two peaks at the points s̃2t and s̃6t , where the Witten Potential Ṽ +

W has a minimum, see Fig. 17. This corresponds roughly
to a symmetric combination ∼ (|g20〉 + |g60〉) of the two harmonic oscillator ground states localized at s̃2t and s̃6t (the state

|g30〉 of the third minimum of Ṽ +
W is only weakly involved). This is demonstrated by a comparison to the two Gaussian forms

g2,60 (s̃t) ∼ e−
1
4
((s̃t−s̃2,6t )/ξ̃t)

2

, with ξ̃t = l̃B
√
R̃ = 2

√
30 ≈ 11 (together with a rescaling factor to match the maximum), as shown

by the dashed orange lines in the figure. In the right figure (b) we show the comparison of the analytical result for eF (s̃t)

with the numerical result for the state labelled ”B” in Fig. 19 and with the Gaussian fits for g3,50 (s̃t), corresponding to the two

minima of the Witten potential Ṽ −W at s̃3,5t . Here both the x and y coordinates of the numerical curves have been adjusted by
multiplying a constant scale factor to fit the peak positions.

stability of the topological states is guaranteed if

d2

Eso
. ΩW , (276)

since the Witten frequency is the energy of the first ex-
cited bound state. This is equivalent to

(
d

EZ

)2

. l̃3B√
R̃
. (277)

Thus, to achieve a stability in the regime of the surface

gap d < EZ , one needs to choose l̃3B &
√
R̃. For typical

parameter values R̃ ∼ 30−60 and l̃B ∼ 2, this can easily
be achieved.

For impurity potentials with a special spinor depen-
dence, the stability can be even stronger. As shown in
Sections IV C and V A for weak Zeeman field, all edge
states are eigenfunctions of sx in the transformed ba-
sis, with eigenvalue ±1 for the outer/inner surface, see
Eq. (209). Therefore, if the impurity potential V̄im in
the transformed basis contains only terms ∼ σαsy,z, no
matrix elements of the Hamiltonian are possible between
any edge states within the bulk gap, leading to an in-
creased stability

d2

Eso
. ∆bulk , (278)

i.e., the Witten frequency in (276) is replaced by the bulk
gap. Since the spinors transform under the transforma-
tion (198) as

sx,y
UWX−−−−→ ei

1
2 szϑsx,ye

−i 1
2 szϑ , (279)

σx
UWX−−−−→ −σzsz , (280)

σz
UWX−−−−→ σxsz , (281)

sz
UWX−−−−→ sz , σy

UWX−−−−→ σy , (282)

we find that impurity potentials with one of the four fol-
lowing spinor dependencies have the increased stability
regime (278)

Vim ∼ σx, σz, sz, σysz . (283)

Furthermore, in the case of strong localization ∆ϕ ∼
l̃B/
√
R̃ � 1 around a point with ϑ = 0 (analog one

can treat the case of localization around ϑ = π), we can

expand the rotation matrix ei
1
2 szϑ ≈ 1 + i 1

2szϑ and find
from (279)

sy
UWX−−−−→ sy + sxO(∆ϕ) . (284)

The first term involving sy leads to the stability regime
(278) involving the bulk gap. The second term involves
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FIG. 21. Tunability of topological states localized at two holes in the system. In (b) and (c) we sketch how the shape of the
topological states change qualitatively if one decreases/increases the Zeeman field B1/2 ≶ B compared to (a). Whereas an

increase of the Zeeman field localizes the state stronger in tangential direction (i.e., ξ̃t ∼
√
R̃ l̃B decreases), it delocalizes the

state in normal direction since one approaches the phase transition line δ̃ = 1/l̃2B = ẼZ at fixed δ̃ > ẼZ . Therefore, a decrease
of the Zeeman field increases the overlap of the two states from the same hole, such that their hybridization increases by tuning
the flux away from half-integer value, see (b). In contrast, in a setup of two holes, the overlap of states from neighboring holes
can be increased by increasing the Zeeman field, see (c).

the small factor ∆ϕ� 1 associated with sx, i.e., in (276)
we have to multiply the impurity strength d with this
factor, leading to the increased stability region

(∆ϕd)2

Eso
. Ω ⇔

(
d

EZ

)2

.
√
R̃ l̃B ∼ ξ̃t . (285)

This stability regime applies to all impurity potentials
with a spinor dependence of the form

Vim ∼ sy, σxsx, σysy, σzsx . (286)

Since ξ̃t � 1, the condition (285) leads to a stability
regime for impurity strengths much beyond the surface
gap.

B. Topological engineering with hole states

We propose the topological hole states in the topolog-
ical phase with ẼZ < δ̃ < 1 + ẼZ to be of particular
interest for topological engineering since their localiza-
tion length in normal and tangential direction change
in a different way when increasing the size of the Zee-
man field. Whereas an increase of the normal component
of the Zeeman field decreases the tangential localization

length ξ̃t = l̃B
√
R̃, the normal localization length ξ̃<n

will increase according to (152) since the bulk gap re-
duces. Therefore, by considering a multi-hole sample as
sketched in Fig. 21(a-c), where the shape of the topolog-
ical states can be controlled by local Zeeman fields, one
can increase the orbital overlap of topological states from
different holes by increasing the Zeeman field, whereas
a decrease of the Zeeman field leads to an increase of
the orbital overlap of the topological states of the same
hole. In this way, it is possible to realize controlled 1-
and 2-hole operations. An orbital overlap of topological
states from different holes will lead to an interaction since
no symmetry protects the hybridization via the Hamil-
tonian. In contrast, for topological states from the same

hole, the SUSY protects a hybridization. However, by
the local Aharonov-Bohm flux through the hole, one can
induce a controlled interaction between the topological
states from the same hole if their wave functions have a
significant orbital overlap.

We note that the proposed scenario for 2-hole opera-
tions is more difficult to realize with sharp corners, where
the angle ϑ controlling the normal and tangential com-
ponent of the Zeeman term changes abruptly its sign. In
this case, the normal localization length is controlled by
the difference δ − EZ cosϑ and will stay finite, even if
the bulk gap closes at δ = EZ . Therefore, the normal
localization length can be tuned to much larger values
for smooth surfaces without closing the bulk gap. Fur-
thermore, for sharp corners, the tangential localization
length is of order ξ̃t ∼ 1/ẼZ = l̃2B since the normal Zee-
man field is a constant along the surface, leading to an
exponentially decaying wave function for the zero-energy
state along the surface, according to the surface Hamilto-
nian (215). As a result, one needs much weaker Zeeman
fields to generate an orbital overlap between the topo-
logical states of the same hole, making 1-hole operations
also more difficult to realize as compared to the case of

smooth surfaces where ξ̃t =
√
R̃ l̃B is much larger for√

R̃� l̃B .
Depending on the shape of the holes, a huge variety of

other scenarios can be imagined for topological engineer-
ing. E.g., if one takes a hole of peanut shape, as shown in
Fig. 22, both types of topological states with normal lo-
calization lengths ξ>n and ξ<n can be realized on the same
hole. This has the effect that increasing the size of the
Zeeman field, the topological states with ξ<n (which are
the states labelled by 3−6 in Fig. 22) will get an increased
normal localization such that they can overlap with topo-
logical states from neighboring holes. In contrast, the
topological states with ξ>n will get more localized and do
not participate in 2-hole operations, whereas they can be
used in 1-hole operations, by increasing the tangential
localization length by reducing the Zeeman field. More-
over, the tangential localization length can be tuned to
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Φ
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FIG. 22. Sketch of a system with a hole of peanut shape.
The normal localization lengths ξjn, with j = 1, . . . , 6, of the
six indicated topological states are given by ξ1,2n = ξ>n and

ξ3,4,5,6n = ξ<n , with ξ
≷
n given by (153) and (152), respectively.

As a consequence, they behave very differently when increas-
ing the size of the Zeeman field B. Whereas the states 1 and
2 will get more localized in normal and tangential direction,
the states 3− 6 will only decrease in tangential direction but
get more extended in normal direction.

different values by choosing different curvature radia for
the various topological states. This opens up many pos-
sibilities for different protocols how interactions between
various topological states can be controlled.

VII. SUMMARY AND OUTLOOK

The present work has revealed an interesting relation-
ship between two different fields of condensed matter and
high-energy physics. It has been shown that the surface
spectrum of a wide class of 2nd-order topological insula-
tors in two dimensions has a supersymmetric structure if
one applies a half-integer Aharonov-Bohm flux through
the area of the surface. It was shown that the topolog-
ical states are protected by supersymmetry and an ef-
fective surface Hamiltonian has been set up for smooth
surfaces, revealing the whole class of supersymmetric pe-
riodic Witten models. The condition of a smooth surface
is essential for a universal description. In contrast to
sharp corners, where the topological states close to the
corner are non-universal and not accessible to analytical
approaches (except for very special cases), smooth sur-
faces offer the possibility for a full analytical control over
all bound states localized at the surface. This has been
shown via the localization of states in the minima of effec-
tive surface potentials, as they occur within the Witten
models. Moreover, it has been shown that smooth sur-
faces offer the possibility for a more flexible tunability
of the shape of the topological states in tangential and
normal direction, opening up the possibility for topolog-
ical engineering via 1- and 2-hole processes in multi-hole

systems by using only magnetic fields.
Our analysis is based on a quite generic continuum

model for a 2nd-order topological insulator, containing
the basic ingredients of band inversion, Rashba spin-orbit
interaction, and Zeeman field. As in previous works [27–
35], it turns out that the Zeeman term is a particularly
useful and flexible tool to induce a surface gap and to
control the topological states. We have shown that the
normal and tangential component of the Zeeman field
play a very different role. Whereas the normal compo-
nent determines the position of the topological states and
controls the tangential localization length, the tangential
component determines the normal localization length and
contains information about occurence of the phase tran-
sitions of the bulk. Interestingly, at the phase transition
from the gapped topological to the gapless Weyl phase,
it turns out that the normal localization length diverges
only when the curvature of the surface is negative when
looking from the side where the state is localized (e.g.,
for a Corbino disc, this are the states at the hole sur-
face). It will be interesting to study how the behaviour
of those states is changed when considering the transition
to sharp corners, where it is expected that the normal lo-
calization length will only diverge very close to the corner
but not far away from the corner (where the surface is
rather flat) [50].

We note that our model can be extended to three di-
mensions (3D) where the topological states will change to
hinge states with a dispersion as function of the perpen-
dicular momentum which connects the conduction with
the valence band. Depending on the choice of the three-
dimensional area (cube, torus, sphere, etc.), a variety of
anomalous Quantum Hall setups in 3D can be realized,
generalizing the standard 2D Quantum Hall effect for a
Corbino disc. This will be discussed in forthcoming works
[51].

For the future it will be interesting to study how other
models of 2nd-order topology with supersymmetric prop-
erties can be realized. The supersymmetry has the par-
ticular advantage that the two topological states are or-
thogonal to each other even if they have a strong orbital
overlap, opening up the possibility for a controlled cou-
pling between them by tuning the system slightly away
from the supersymmetric point (which, in our case, has
been achieved by changing the flux away from half-integer
value). In particular, Majorana systems are of interest
here, as they have been discussed in Refs. [29–35]. It will
be interesting to see which kind of Dirac model emerges
for the effective surface Hamiltonian in this case and how
its universal properties in the low-energy regime can be
related to generalized multi-channel Witten models.
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Appendix A: Bulk spectrum

In this Appendix we study the bulk spectrum for an
infinite system where the outer surface is not present.
In this case, the presence of the inner surface with the
finite flux does not play any role since the vector poten-
tial is zero in the asymptotic region at large distances.
Therefore, we set the flux to zero f = 0 in the follow-
ing and consider a translationally invariant system with
plane waves ∼ eikx for the spatial part of the eigenfunc-
tions. The spectrum of the Hamiltonian (13), with pK
replaced by k, can then be easily obtained by squaring it
twice

H2
k =

(
k2

2m∗
− δ
)2

+ α2k2 + E2
Z + 2EZ

(
k2

2m∗
− δ
)

(B̂ · s)σz + 2αEZ(B̂ · k)σx , (A1)

where B̂ = B/B, B = |B|, and k = |k|. Taking the constant part of the right hand side to the left side and squaring
again, we obtain for the bulk spectrum of the four bands (with σ = ± and η = ±)

εσηk = σ

√√√√
(
k2

2m∗
− δ
)2

+ α2k2 + E2
Z + 2ηEZ

√(
k2

2m∗
− δ
)2

+ α2k2 cos2 θ , (A2)

with cos θ = B̂ · k̂ and k̂ = k/k. In dimensionless units k̃ = k/kso, with kso = 1/λso = |α|m∗, and using the definitions
introduced at the end of Section II, this can be rewritten as

ε̃ση
k̃

= εσηk /Eso = σ

√(√
(k̃2 − δ̃)2 + 4k̃2 cos2 θ + ηẼZ

)2

+ 4k̃2 sin2 θ . (A3)

To obtain the bulk gap and the gap closing point for
k, we consider σ = +, η = − and θ = 0, and get for
ε̃k̃ ≡ ε̃+−k̃ |θ=0 the result

ε̃k̃ = |
√

(k̃2 − δ̃)2 + 4k̃2 − ẼZ | , (A4)

Using

G(k̃2) ≡ (k̃2 − δ̃)2 + 4k̃2 (A5)

= (k̃2 + 2− δ̃)2 + 4(δ̃ − 1) , (A6)

we obtain for the minimum Gmin of G(k̃2) at k̃ = k̃min ≥
0

Gmin =

{
4(δ̃ − 1) for δ̃ > 2

δ̃2 for δ̃ < 2
, (A7)

k̃min =

{√
δ̃ − 2 for δ̃ > 2

0 for δ̃ < 2
. (A8)

Together with (A4) this leads to the result (18) for the

bulk gap

∆̃bulk =





2
√
δ̃ − 1− ẼZ for δ̃ > max{2, 1 + 1

4 Ẽ
2
Z}

|δ̃| − ẼZ for δ̃ < 2 and |δ̃| > ẼZ
0 otherwise

.

(A9)

In the parameter region where the bulk gap is finite, the
minimum of the band dispersion occurs at θ = 0 and
k/kso = k̃min, given by (A8). The gap closes at the point

Gmin = Ẽ2
Z which leads to

δ̃ =

{
1 + 1

4 Ẽ
2
Z for δ̃ > 2

±ẼZ for δ̃ < 2
, (A10)

and agrees with (19).
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Appendix B: Edge and center states for zero
Zeeman field

Here we discuss the calculation of the exact edge states
at zero Zeeman field B = 0 for a Corbino disc, either lo-
calized at the inner surface with an arbitrary radius R<
or at the outer surface for a large radius R̃> � 1. We
discuss only zero boundary condition at one of the sur-
faces, thereby neglecting exponentially small corrections
at the other surface for R̃>− R̃< � 1, see the discussion
after Eq. (74) (a similar but more complicated analysis
can be done by considering both boundary conditions at
r̃ = R̃≷, valid for any value of R̃>). Similar to the cal-
culation of boundary states in one-dimensional systems
via linear combination of plane waves with complex mo-
mentum, we present here an analog approach for a ro-
tationally invariant system in two dimensions via linear
combinations of Hankel functions in radial direction with
complex momentum. Of particular interest are the lim-
its R̃> � 1 and R̃< � 1, where explicit forms can be
provided for the dispersion and the wave functions of the
low-energy edge states as function of the angular momen-
tum l = 0,±1,±2, . . . in z-direction. In the following we
use the notation R̃ ≡ R̃< and discuss the edge states at
the inner surface, mentioning at the appropriate places
what has to be changed for the edge states at the outer
surface.

We start from the generalized supersymmetric Dirac
Hamiltonian (77) and replace the angular momentum l
by ν = l + f − 1

2 to cover also the case where the flux
deviates from half-integer values. To construct the eigen-
states we exploit the property that the operators Γν and
Γ†ν act in the space of Hankel functions like ladder oper-
ators

Γν
√
r̃H

(1)
ν+1/2(k̃r̃) = k̃

√
r̃H

(1)
ν−1/2(k̃r̃) , (B1)

Γ†ν
√
r̃H

(1)
ν−1/2(k̃r̃) = k̃

√
r̃H

(1)
ν+1/2(k̃r̃) , (B2)

where H
(1)
ν (z) = Jν(z) + iYν(z) is the Hankel function of

first kind. Disregarding boundary conditions, it is then
straightforward to see that the bulk eigenstates are given
by (up to a normalization factor)

h̃ν Φbulk
k̃ν

= ε̃Φbulk
k̃ν

, (B3)

Φbulk
k̃ν

(r̃) =
√
k̃r̃

(
ck̃H

(1)
ν−1/2(k̃r̃)

H
(1)
ν+1/2(k̃r̃)

)
, (B4)

where ck̃ is defined by

ck̃ = − 2k̃

k̃2 − δ̃ − ε̃
=
k̃2 − δ̃ + ε̃

2k̃
, (B5)

and the energy ε̃ is related to k̃ = k̃(ε̃) by the dispersion
relation

ε̃2 = (k̃2 − δ̃)2 + 4k̃2 . (B6)

For given energy ε̃, there are four solutions for k̃ in
the complex plane which we denote by k̃j(ε̃), with j =

1, 2, 3, 4. Since (B6) depends only on k̃2, we can choose

k̃3 = −k̃1 and k̃4 = −k̃2, together with Imk̃1/2 ≥ 0. Fur-

thermore, since ε̃ is real, k̃∗ is also a solution of (B6),

such that we get either k̃1/2 = −k̃∗2/1 or k̃1/2 = −k̃∗1/2
(the special point k̃1 = k̃2 is a bifurcation point which
we disregard in the following). However, not all four so-
lutions are allowed since the wave function should decay
at large distance r̃ � 1 if we consider edge states local-
ized at the inner surface. Since the Hankel function has
the asymptotic behaviour

√
z H(1)

ν (z)
|z|�1−−−−→

√
2

π
e−i(ν+1/2)(π/2) eiz , (B7)

this means that the imaginary part of k̃ must be strictly
positive, i.e., the only allowed solutions are given by k̃1/2.

For δ̃ < 2, we note that these solutions fulfil the useful
properties

k̃1(ε̃)k̃2(ε̃) = −
√
δ̃2 − ε̃2 , (B8)

k̃1(ε̃) + k̃2(ε̃) = i

√
2(2− δ̃ +

√
δ̃2 − ε̃2) , (B9)

where |ε̃| < |δ̃| to guarantee that the energy of the edge

state lies in the bulk gap set by δ̃. For edge states lo-
calized at the outer surface only k̃-values with a strictly
negative imaginary part are allowed, meaning that we
have to replace k̃1/2 → −k̃1,2.

For given ν, the radial part of the edge state wave
function Φedge

ν (r̃) with energy ε̃ can be constructed by a
linear combination of the two degenerate bulk eigenstates
with k̃ = k̃1/2(ε̃)

Φedge
ν (r̃) =

∑

j=1,2

aj Φbulk
k̃j(E),ν

(r̃) , (B10)

such that the boundary condition at the hole surface is
fulfilled

Φedge
ν (R̃) = 0 . (B11)

Inserting (B4) in (B10) we find that the boundary con-
dition can only be fulfilled if

ck̃1

H
(1)
ν−1/2(k̃1R̃)

H
(1)
ν+1/2(k̃1R̃)

= ck̃2

H
(1)
ν−1/2(k̃2R̃)

H
(1)
ν+1/2(k̃2R̃)

, (B12)

and the ratio of the two coefficients is given by

a1

a2
= −

√
k̃2R̃H

(1)
ν+1/2(k̃2R̃)

√
k̃1R̃H

(1)
ν+1/2(k̃1R̃)

. (B13)

With k̃1/2 = k̃1/2(ε̃), the condition (B12) has either no
solution or gives a certain value for the energy ε̃ = ε̃ν
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for a given index ν. If a solution can be found, the total

Hamiltonian (75), given by H̄
(0)
1/2,ν/Eso = σxhν , has two

solutions with energy ±ε̃ν . This provides two dispersions
of edge states moving clockwise or anti-clockwise along
the surface as function of the angular momentum l =
ν − f + 1/2. In the following we will explicitly solve the

condition (B12) for very large and small radius R̃.

Large radius R̃� 1: For large radius we use the
asymptotic form

H
(1)
ν−1/2(z)

H
(1)
ν+1/2(z)

|z|�1−−−−→ iz + ν

z
, (B14)

and find from (B12) by using (B5)

ε̃ν =
ν

R̃
i(k̃1 + k̃2)− δ̃ − k̃1k̃2 ,

= − ν
R̃

√
2(2− δ̃ +

√
δ̃2 − ε̃2ν)− δ̃ +

√
δ̃2 − ε̃2ν ,

(B15)

where we used (B8) and (B9) in the second step. For

|ε̃ν | < |δ̃|, this equation has only a solution for

δ̃ > 0 , (B16)

and the energy is of order ε̃ν ∼ O(1/R̃). In leading order
we obtain

ε̃ν = −2ν

R̃
. (B17)

This result is consistent with the one obtained in Sec-
tion IV C for the inner surface, see the first term of the
effective surface Hamiltonian (98). The same applies for
edge states at the outer surface, where we have to re-
place k̃1/2 → −k̃1/2, giving rise to a sign change of the
dispersion.

The edge state wave function for large R̃ follows by
using ε̃ν ≈ 0 in leading order (thereby neglecting correc-

tions of O(1/R̃)), and inserting the asymptotic form (B7)
of the Hankel function in (B12) and (B13). This gives

ck̃1
= ck̃2

,
a1

a2
= −ei(k̃2−k̃1)R̃ , (B18)

together with k̃1/2 ≈ k̃1/2(0), given by

k̃1/2(0) = i±
√
δ̃ − 1 , (B19)

where we define
√
δ̃ − 1 = i

√
1− δ̃ for 0 < δ̃ < 1. Since

k̃1/2(0)2 − δ = 2ik̃1/2(0), we find from (B5) that

ck̃1
= ck̃2

= i , (B20)

up to corrections of O(1/R̃). Using (B18) and (B20) in
(B4) and (B10), we find for the radial part of the edge

state wave function the ν-independent result (up to a
normalization factor)

Φedge
ν (r̃) = ψ̄

<

n
(r̃)

∼
(

1
−1

)(
eik̃1(0)(r̃−R̃) − eik̃2(0)(r̃−R̃)

)
, (B21)

which proves the result (83) for the edge state at the
inner surface after normalization.

To get the edge state wave function for states localized
at the outer surface we have to replace k̃1/2 → −k̃1/2 in
all previous steps, leading to ck̃1

= ck̃2
= −i instead of

(B20). This gives the result

Φedge
ν (r̃) = ψ̄

>

n
(r̃)

∼
(

1
1

)(
e−ik̃1(0)(r̃−R̃) − e−ik̃2(0)(r̃−R̃)

)
, (B22)

which proves (83) for edge states at the outer surface.

Small radius R̃� 1: For small hole radius we start
with the case |ν| < 1/2 which is only possible for l = 0
or ν = f − 1/2 (since we consider only fluxes with
0 < f < 1). In this case we get

H
(1)
ν−1/2(z)

H
(1)
ν+1/2(z)

|z|�1−−−−→ ie−iνπ
Γ(1/2− ν)

Γ(1/2 + ν)
(z/2)2ν . (B23)

Using this form together with (B5) in the condition
(B12), we find for the energy

ε̃ν = δ̃ − k̃2ν+1
1 − k̃2ν+1

2

k̃2ν−1
1 − k̃2ν−1

2

(B24)

= δ̃ + k̃1k̃2 − (k̃1 + k̃2)
k̃2ν

1 − k̃2ν
2

k̃2ν−1
1 − k̃2ν−1

2

. (B25)

This equation is rather hard to solve when k̃1/2 =

k̃1/2(ε̃ν) depend significantly on ε̃. Analytical results can
be obtained in the limit of small |ν| = |f − 1/2| � 1,
where we obtain

ε̃ν ≈ δ̃ + k̃1k̃2 + 2
k̃1 + k̃2

k̃1 − k̃2

k̃1k̃2

(
ln k̃1 − ln k̃2

)
ν . (B26)

For the SUSY point ν = 0 we obtain

ε̃0 = δ̃ + k̃1k̃2 = δ̃ −
√
δ̃2 − ε̃20 , (B27)

where we used (B8) in the last step. Since the solution

ε̃0 = δ̃ is not possible (the energy is required to be in
the gap), this equation has the unique solution ε̃0 = 0

if δ̃ > 0. This means that ε̃ν ∼ ν has a linear slope in
the deviation ν = f − 1/2 from half-integer flux. As a
consequence, we can neglect the energy dependence of
k̃1/2(E) in (B26) since the corrections are of quadratic
order in ε̃ and, therefore, also in ν. For ε̃ = 0 we insert
(B19) in (B26) and obtain the following dispersion ε̃(f) ≡
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ε̃f−1/2 for the center state with angular momentum l = 0
as function of the flux f

ε̃(f) = −4δ̃(f − 1/2)√
|δ̃ − 1|





arctan
√
δ̃ − 1 for δ̃ > 1

1
2 ln 1+

√
δ̃−1

1−
√
δ̃−1

for 0 < δ̃ < 1
,

(B28)

which proves Eq. (87) of the main text.
For the other angular momenta |l| > 0 we have |ν| >

1/2 and use

H
(1)
ν−1/2(z)

H
(1)
ν+1/2(z)

|z|�1−−−−→
{
z/(2ν − 1) for ν > 1/2

(2ν + 1)/z for ν < −1/2
.

(B29)

After inserting this form together with (B5) into the con-
dition (B12) we find that a solution can not be found for
the energy.

As a result, for small radius, only the center state with
l = 0 survives with energy ε̃(f) given by (B28) for small
|f −1/2| � 1. The reason is that this state starts at zero
energy at the SUSY point f = 1/2 at any radius (see
below) and will get a small shift when deviating from
half-integer flux. In contrast, the other edge states with
finite angular momentum already start at a finite energy
at the SUSY point and get strongly shifted by decreasing
R̃ such that they move out of the gap for small radius.

Appendix C: Continuum numerics for a disc

In this Appendix we will outline the continuum numer-
ics for a disc with radius R and no hole (i.e., R> = R
and R< = 0). We start from the Hamiltonian (14) and
choose a complete basis of states which diagonalizes the
kinetic term p2

K/(2m). In polar coordinates we use

p2
K = −1

r
∂rr∂r +

1

r2
(−i∂ϕ + f)2 , (C1)

and decompose the eigenfunctions in a radial and angular
part

p2
K

2m
ψlβ(r, ϕ) = εlβ ψlβ(r, ϕ) , (C2)

ψlβ(r, ϕ) = ulβ(r)
1√
2π
eilϕ , (C3)

where l = 0,±1,±2, . . . denotes the angular momentum
and β = 1, 2, . . . numerates the radial states. Using the
dimensionless variable z =

√
2mεlβ r we find that ulβ(r)

fulfils the differential equation for the Bessel functions

[
∂2
z +

1

z
∂z + (1− (l + f)2

z2
)

]
ulβ = 0 . (C4)

Since ψlβ(r, ϕ) should be a well-defined wave function at
r = 0, we need the following boundary condition at r = 0

ulβ(r)
r→0−−−→

{
finite value for l = 0

0 for l 6= 0
. (C5)

Furthermore, at r = R, the wave function should vanish

ulβ(R) = 0 . (C6)

As a consequence, the normalized radial part and the
energy eigenvalues are given by

ulβ(r) =

√
2

R

J|l+f |(z|l+f |,β r/R)

|J|l+f |+1(z|l+f |,β)| , (C7)

εlβ =
z2
|l+f |,β
2mR2

, (C8)

where Jν(z) are the Bessel functions and zνβ > 0 numer-
ates the positive zero’s of Jν(zν,β) = 0 with β = 1, 2, . . .
in ascending order, i.e., 0 < zν,1 < zν,2 < . . . .

In the basis of the states ψlβ we now state the matrix
elements 〈ψlβ |pK |ψl′β′〉 of the kinetic momentum oper-

ator pK =

(
pK,x
pK,y

)
in order to determine the matrix

elements of the spin-orbit interaction. A lengthy but
straightforward calculation gives the result

〈ψlβ |pK |ψl′β′〉 =

= − 1

R

(
−i(δl,l′−1 + δl,l′+1)
δl,l′−1 − δl,l′+1

)
Plβ,l′β′ , (C9)

where, for |l + f |+ |l′ + f | > 1, we get

Plβ,l′β′ = (−1)β+β′ z|l+f |,β z|l′+f |,β′

z2
|l+f |,β − z2

|l′+f |,β′
, (C10)

and for |l + f | + |l′ + f | = 1 (which, for 0 < f < 1, can
only happen for l = 0, l′ = −1 or l = −1, l′ = 0) we
define

Plβ,l′β′ = (−1)β+β′ z|l+f |,β z|l′+f |,β′

z2
|l+f |,β − z2

|l′+f |,β′

×
{

1− 2

π
sin(πf)

(z|l+f |,β)|l+f |−1 (z|l′+f |,β′)|l
′+f |−1

J|l+f |+1(z|l+f |,β) J|l′+f |+1(z|l′+f |,β′)

}
.

(C11)

We note that, for the special case f = 1/2, the latter
matrix element can be evaluated as (for both l = 0, l′ =
−1 or l = −1, l′ = 0)

Plβ,l′β′ =
ββ′

β2 − β′2
(

(−1)β+β′ − 1
)
. (C12)

Based on the matrix elements of pK it is then straight-
forward to evaluate the matrix elements of the Hamil-
tonian (14) which, in dimensionless units, read (with
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σ = ±1 and s = ±1 denoting the eigenvalues of σz and
sz, respectively)

〈ψlβ , σ, s|Hf |ψl′β′ , σ′, s′〉/Eso =

= δll′δββ′δσσ′δss′σ(
z2
|l+f |,β

R̃2
− δ̃)

+
4i

R̃
δl,l′−sδσ,−σ′δs,−s′Plβ,l′β′

− i

l̃2B
δll′δββ′δσσ′δs,−s′s . (C13)

For the numerical implementation we take a cutoff NL
for the allowed values of the angular momentum in the
following way

−NL + 1 ≤ l ≤ NL . (C14)

We have chosen it in the prescribed way to ensure that
the SUSY operator U1/2 at f = 1/2 stays in the space
of chosen states. This follows from the matrix elements
(valid only for f = 1/2)

〈ψlβ |e−iϕPϕ|ψl′β′〉 = δl+l′+1,0δββ′ . (C15)

In the chosen way, the Hamiltonian matrix fulfils exactly
all symmetries for any cutoff (i.e., chiral and inversion
symmetry, and, for the special case f = 1/2, the super-
symmetry).

In addition, we have to choose a cutoff NZ for the num-
ber of zero’s of the Bessel function, i.e., β = 1, 2, . . . , NZ .
Whereas convergence is quickly reached in the cutoff NL
for the angular momentum, the cutoff NZ has to be taken
rather large for increasing R̃ such that NZ ∼ R̃ to get
values of the energy z2

|l+f |,β/R̃
2 beyond δ̃. This restricts

the numerical implementation to values R̃ ∼ 30− 40 for
a good efficiency.

We note that the matrix elements Plβ,l′β′ can be of

order O(R̃) for z|l+f |,β , z|l′+f |,β′ ∼ O(R̃) and |z|l+f |,β −
z|l′+f |,β′ | ∼ O(1). Therefore, the spin-orbit interaction

is not ∼ 1/R̃ as one might conclude from (C13) but has
a weight ∼ O(1). This makes analytical treatments as
function of the cutoff NZ rather difficult and requires
a careful study of convergence in numerics. The data
shown in this paper were calculated with cutoffs NL = 10
and NZ = 150 and it was verified that they were already
converged with respect to both cutoffs.

Appendix D: Tight-binding numerics

To set up the numerics on a discrete two-dimensional
quadratic lattice with lattice spacing a, we first consider
zero flux f = 0 and replace in the low-energy regime the

momentum dependent terms in the Hamiltonian H0 by

p2 →
∫

1.B.Z

dk|k〉〈k|
{
− 2

a2
(cos kx + cos ky) +

4

a2

}
,

(D1)

s · p→
∫

1.B.Z

dk|k〉〈k|1
a

(sx sin kx + sy sin ky) , (D2)

where k = (kx, ky) denotes the dimensionless quasimo-
mentum vector with −π < kx,y < π defining the first
Brioullin zone (1. BZ.). Here, we have used the plane
wave states

|kx,y〉 =
1√
2π

∑

nx,y

eikx,ynx,y |nx,y〉 , (D3)

where |n〉 denotes the state with an electron on lattice
site n = (nx, ny), with nx,y = 0,±1,±2, . . . .

To obtain the tight-binding Hamiltonian in real space
representation we use

∑

n

|n + ex,y〉〈n|+ h.c. = 2

∫

1.B.Z

dk cos(kx,y)|k〉〈k| ,

(D4)

i
∑

n

|n + ex,y〉〈n|+ h.c. = 2

∫

1.B.Z

dk sin(kx,y)|k〉〈k| ,

(D5)

(D6)

where ex = (1, 0) and ey = (0, 1). Inserting these rela-
tionships in (D1) and (D2), we find for the Hamiltonian
(14) at zero flux the nearest-neighbor tight-binding model

H0 = −tσz
∑

n

∑

i=x,y

(|n + ei〉〈n|+ h.c.) (D7)

+
iα

2a
σx
∑

n

∑

i=x,y

(si|n + ei〉〈n| − h.c.) (D8)

+ (4t− δ)σz +
1

2
gµBB · s , (D9)

with t = 1/(2m∗a2). For the case of strong spin-orbit in-
teraction as considered in the present work, the spin-orbit
length λso is the smallest length scale in the continuum
model. Therefore, we choose the lattice spacing a in the
discretized model of the order of the spin-orbit length
a ∼ λso ∼ 1/(αm∗), which gives

t = 1/(2m∗a2) ∼ Eso . (D10)

In the presence of a finite flux f we use

Hf = e−ifϕH0e
ifϕ , (D11)

which leads to the following change of the tight-binding
Hamiltonian

|n〉〈m| → e−if∆ϕn,m |n〉〈m| , (D12)
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where ∆ϕn,m = ϕn − ϕm mod(2π) and 0 ≤ ϕn < 2π
denotes the polar angle (measured relative to the posi-
tive x-axis in anti-clockwise direction) of the lattice site
at position x = a(nx, ny) (hereby, we assume that no
lattice site is located on the x-axis). In order to get the
total phase factor e−i2πf when hopping in a closed loop
anti-clockwise around the origin we have to choose the
mod(2π)-contribution equal to 2π (−2π), when the hop-
ping occurs in y-direction at x > 0 in positive (negative)
y-direction. With this definition it is guaranteed that
|∆ϕn,m| < π is always the smallest possible one.

We note that the tight-binding model fulfils exactly the
same symmetries (inversion, chiral, SUSY) as the contin-
uum model. For inversion symmetry it is essential that
the shape of the lattice is symmetric under x→ −x and
for SUSY we need half-integer flux f = 1/2 and a shape
which is symmetric under both x→ −x or y → −y.

Appendix E: Witten potential and zero energy wave
functions for peanut shape

In this Appendix we derive the formulas needed to cal-
culate the Witten potential Ṽ +

W and the zero energy wave

functions ψ
(0)±
W for a surface of peanut shape. From the

construction shown in Fig. 16 we see that the peanut
shape is completely determined by the three parameters
R1, R2 and x0. The point with s̃t = R̃2γ determines the
position on the surface where the curvature changes dis-
continuously from κ̃t = −1/R̃2 to κ̃t = 1/R̃1. This gives
rise to discontinuities in the Witten potential which can
be washed out and do not influence the low-lying states
too much if the radia R̃1,2 � 1 are large enough. The
angle γ is determined from

cos γ =
x0 +R2

R1 +R2
. (E1)

The Witten potential follows from the formulas

Ṽ +
W (s̃t) = ẼZ,n(s̃t)

2 − 2Ẽ′Z,n(s̃t) , (E2)

ẼZ,n(s̃t) =
1

l̃2B
sinϑ(s̃t) , (E3)

Ẽ′Z,n(s̃t) = −2
κ̃t(s̃t)

l̃2B
cosϑ(s̃t) , (E4)

where the angle ϑ(s̃t) of the normal vector en with the
x-axis and the curvature κ̃t(s̃t) = d

ds̃t
ϑ(s̃t) fulfil the sym-

metries

ϑ(s̃t) = π − ϑ(L̃/2− s̃t) = −ϑ(L̃− s̃t) , (E5)

κ̃t(s̃t) = κ̃t(L̃/2− s̃t) = κ̃t(L̃− s̃t) , (E6)

which lead to the relations

ẼZ,n(s̃t) = ẼZ,n(L̃/2− s̃t) = −ẼZ,n(L̃− s̃t) , (E7)

Ẽ′Z,n(s̃t) = −Ẽ′Z,n(L̃/2− s̃t) = Ẽ′Z,n(L̃− s̃t) . (E8)

Therefore, it is sufficient to know ϑ(s̃t) and κ̃t(s̃t) in the

regime 0 < s̃t < L̃/4. For the total length L̃ we obtain

L̃ = 4(R̃1 + R̃2)γ + 2πR̃1 . (E9)

For 0 < s̃t < L̃/4, a straightforward analysis gives for
ϑ(s̃t) the result

ϑ(s̃t) =

=

{
−s̃t/R̃2 for 0 < s̃t < R̃2 γ[
s̃t − (R̃1 + R̃2)γ

]
/R̃1 for R̃2 γ < s̃t < L̃/4

,

(E10)

and from the derivative we find for the curvature

κ̃t(s̃t) =

{
−1/R̃2 for 0 < s̃t < R̃2 γ

1/R̃1 for R̃2 γ < s̃t < L̃/4
. (E11)

From (E10), (E3) and (230), we can also calculate the
function F (s̃t) entering the zero energy wave functions

ψ
(0)±
W (s̃t) of the Witten Hamiltonian via (229). Using

the symmetries (231) and (232), we get

F (s̃t) = −F (L̃/2− s̃t) = F (L̃− s̃t) . (E12)

Therefore, it is sufficient to calculate F (s̃t) for 0 < s̃t <

L̃/4. Using R(s̃t) = −R(−s̃t), we can replace the lower

integration limit in (230) by L̃/4 and find

F (s̃t) = −1

2

∫ L̃/4

s̃t

ds̃′t ẼZ,n(s̃′t) . (E13)

Therefore, for 0 < s̃t < L̃/4, we need the function

ẼZ,n(s̃t) only in the same regime. Inserting (E3) and
(E10) in (E13) we find for 0 < s̃t < R2 γ

F (s̃t) =
1

2l̃2B

[
R̃2 cos

(
s̃t

R̃2

)
− (R̃1 + R̃2) cos γ

]
, (E14)

and for R2 γ < s̃t < L̃/4

F (s̃t) = − 1

2l̃2B
R̃1 cos

(
s̃t − (R̃1 + R̃2)γ

R̃1

)
. (E15)
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mann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang,
Science 318, 766 (2007).

[42] I. Knez, R.-R. Du, and G. Sullivan, Phys. Rev. Lett.
107, 136603 (2011).

[43] R. Wu, J.-Z. Ma, S.-M. Nie, L.-X. Zhao, X. Huang, J.-X.
Yin, B.-B. Fu, P. Richard, G.-F. Chen, Z. Fang, X. Dai,
H.-M. Weng, T. Qian, H. Ding, and S. H. Pan, Phys.
Rev. X 6, 021017 (2016).

[44] N. Goldman, I. Satija, P. Nikolic, A. Bermudez, M. A.
Martin-Delgado, M. Lewenstein, and I. B. Spielman,
Phys. Rev. Lett. 105, 255302 (2010).

[45] B. Béri and N. R. Cooper, Phys. Rev. Lett. 107, 145301
(2011).

[46] M. C. Beeler, R. A. Williams, K. Jiménez-Garćıa, L. J.
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I. WEYL PHASE FOR SMALL MAGNETIC
FIELDS

To substantiate the analytical result that topological
hole states will not exist for a Corbino disc in the Weyl
phase by numerical results, we show in Fig. 1 the four
wave functions of lowest absolute value of the energy for
a disc in the Weyl phase for increasing value of the radius
of the disc. For small radius it seems as if a center state
is present, but this state moves to the outer surface if the
square root of the radius of the disc exceeds significantly
the magnetic length. This is consistent with the analyti-
cal theory which predicts an additional topological state
at the outer surface in the regime of strong localization
l̃B �

√
R>.

II. TOPOLOGICAL STATES FOR CORBINO
DISC: COMPARISON BETWEEN NUMERICS

AND ANALYTICS

Here we compare the analytical and numerical results
for the topological states of a Corbino disc in the topo-
logical phase. There are four topological states ψ̄su in the
transformed basis, labelled by chiral symmetry s = ±1
and SUSY u = ±1, two at the outer surface (s = −u =
±1) and two at the inner surface (s = u = ±1). Since
ψ̄su and ψ̄−s,−u are related by the inversion symmetry,
we concentrate on the two states with chirality s = +1,
localized around the polar angle ϕ = 0.

The analytical formulas for ψ̄1,±1(r̃, ϕ;σz, sz have been
provided in Section IV.E of the main text as function of
the radial coordinate r̃ = r/λso, the polar angle ϕ, and
the spinors σz and sz. Omitting the normalization factor,
we obtained

ψ̄1,±1(r̃, ϕ;σz, sz) ∼

∼
(

0
1

)

σz

(
1
∓1

)

sz

χ̂
(±1)
+,n (r̃) e−

1
4 (ϕ/∆ϕ≶)2 , (1)

with ∆ϕ≷ = l̃B/
√
R̃≷,

χ̂
(±1)
+,n (r̃) ∼ eik̃

(±1)
1 (r̃−R̃≶) − eik̃

(±1)
2 (r̃−R̃≶) , (2)

FIG. 1. The wave functions
∑
σz ,sz

|ψ̄su(x, y;σz, sz)|2 as func-

tion of x̃ = x/λso and ỹ = y/λso of the four states with lowest

absolute value of the energy for a disc with various radius R̃>
and zero hole radius R̃< = 0 at half-integer flux f = 1/2 in

the Weyl regime δ̃ = 0 and l̃B = 5. As one can see two of the
center states with s = u = ±1 move to the outer surface when
R̃> is sufficiently large such that

√
R̃> exceeds significantly

l̃B .

and

k̃
(u)
1/2 = iu±

√
|δ̃ − 1− u/l̃2B |

{
1 for δ̃ > 1 + u/l̃2B
iu for δ̃ < 1 + u/l̃2B

.

(3)

Using the tight-binding approach for a Corbino disc
with R̃> = 45 and R̃< = 20, we show in the left/right
parts of Fig. 2(a) the absolute value squared of the two
topological states averaged over the spinor degrees of
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FIG. 2. Left/right part: The comparison between the analytical form (1) and the tight-binding numerics for the inner/outer
topological state ψ̄1,±1. (a) ρ̄1,±1 as defined in (4) as function of the lattice sites labelled by (x̃, ỹ). (b) The absolute value
of the wave function |ψ̄1,±1(n)| with the index n accounting for both the position and spinor component. Here, the labelling

(1, 2, 3, 4) corresponds to (σz, sz) = (1, 1), (1,−1), (−1, 1), (−1,−1). (c) The fitting for the radial dependence |χ̂(±1)
+,n (r̃)| between

the analytical form (2) and the tight-binding result, where the polar angle is fixed to ϕ = 0. (d) The fitting for the angular
dependence F<+ (ϕ) between the analytical result (6) and the tight-binding result, where the radial coordinate is fixed to

r̃ = 22/45. The other parameters in the tight-binding calculation are: R̃> = 45, R̃< = 20, δ̃ = 0.5, l̃B = 2, and f = 1/2.

freedom

ρ̄1,±1(x̃, ỹ) =
∑

σz,sz

|ψ̄1,±1(x̃, ỹ;σz, sz)|2 (4)

∼ |χ̂(±1)
+,n (r̃)|2 F≶

+ (ϕ) , (5)

where (x̃, ỹ) are the coordinates of the lattice sites, and

F
≶
+ (ϕ) ∼ e− 1

2 (ϕ/∆ϕ≶)2 . (6)

Fixing either the polar angle to ϕ = 0 or the radial coor-
dinate to r̃ = 22/45 for the inner/outer state, we find in
Fig. 2(c,d) a very good agreement between the numeri-
cal and analytical results for both the radial and angular
dependence of the wave functions. To check the spinor
dependence we show in Fig. 2(b) also the four spinor com-
ponents of the wave functions for each fixed lattice site.
The results are consistent with the analytical predictions.
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