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We unravel a fundamental connection between supersymmetry (SUSY) and a wide class of two-dimensional
(2D) second-order topological insulators (SOTI). This particular supersymmetry is induced by applying a
half-integer Aharonov-Bohm flux f = �/�0 = 1/2 through a hole in the system. Here, three symmetries are
essential to establish this fundamental link: chiral symmetry, inversion symmetry, and mirror symmetry. At
such a flux of half-integer value, the mirror symmetry anticommutes with the inversion symmetry leading to a
nontrivial n = 1 SUSY representation for the absolute value of the Hamiltonian in each chiral sector, separately.
This implies that a unique zero-energy state and an exact twofold degeneracy of all eigenstates with nonzero
energy is found even at a finite system size. For arbitrary smooth surfaces, the link between 2D-SOTI and
SUSY can be described within a universal low-energy theory in terms of an effective surface Hamiltonian
which encompasses the whole class of supersymmetric periodic Witten models. Applying this general link to
the prototypical example of a Bernevig-Hughes-Zhang(BHZ) model with an in-plane Zeeman field, we analyze
the entire phase diagram and identify a gapless Weyl phase separating the topological from the nontopological
gapped phase. Surprisingly, we find that topological states localized at the outer surface remain in the Weyl phase,
whereas topological hole states move to the outer surface and change their spatial symmetry upon approaching
the Weyl phase. Therefore the topological hole states can be tuned in a versatile manner opening up a route toward
magnetic-field-induced topological engineering in multihole systems. Finally, we demonstrate the stability of
localized states against deviation from half-integer flux, flux penetration into the sample, surface distortions, and
random impurities for impurity strengths up to the order of the surface gap.

DOI: 10.1103/PhysRevB.107.235402

I. INTRODUCTION

Supersymmetry (SUSY) in nonrelativistic quantum me-
chanics [1–3] is a special type of symmetry allowing one
to classify system’s eigenstates into the so-called “bosonic”
and “fermionic” subspaces as well as to establish mappings
between these subspaces by the so called SUSY transforma-
tions. SUSY deepens our understanding of the level structure
and the states, and in certain cases the SUSY algebra gen-
erators facilitate an exact solution of the eigenvalue problem
by purely algebraic means. One of the central models in
nonrelativistic quantum mechanics exhibiting SUSY is the
Witten’s model [4], which serves as a prototypical example
for the explicit demonstration of the SUSY properties and
their application. The SUSY structure of the Dirac equa-
tion [5] also paves the way for the application of SUSY
in solid state systems, particularly in their low-energy de-
scription, and draws an important bridge between this field
and the field of high-energy physics where SUSY remains a
central topic to this date. Thus the occurrence of SUSY in
the description of heterojunctions with band-inverting contact
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has been highlighted in Ref. [6] and the SUSY algebra has
been applied for the description of the quantum Hall effect
in graphene [7]. A SUSY formulation of the two-dimensional
electron gas with Rashba and Dresselhaus spin-orbit coupling
is also feasible [8]. The emergence of the (space-time) SUSY
(which is a generalization of the quantum mechanical SUSY)
in topological insulators and superconductors has been un-
veiled in Refs. [9,10]. Most recently, it has been proposed
[11] to exploit the SUSY transformations for topological state
engineering.

The focus of the present work is to establish an important
link between SUSY and the field of second-order topological
insulators (SOTI), a field of tremendous recent interest in
condensed matter physics [12–19]. In particular, we establish
that a wide subclass of 2D-SOTI are close to a supersymmetric
point stabilizing zero-dimensional bound states. We find that
SUSY is an exact symmetry if one applies a half-integer
Aharonov-Bohm flux through a hole in the 2D system. The
corresponding effective 1D-surface Hamiltonian describing
the second-order topological phase transition in a low energy
description turns out to be a realization of the whole class
of supersymmetric Witten models playing a central role in
the discussion of SUSY models [1–3], see also Refs. [20,21]
for the discussion of periodic Witten models relevant for
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this work, together with the special case of the double-sine
potential in Refs. [22–24]. The important subclass of 2D-
SOTI with SUSY properties consists of those models where
the topological zero-energy states emerge as interface bound
states at those positions of the surface where the mass term of
the effective surface Hamiltonian changes its sign [15]. Such
models have been classified within the general classification
scheme of higher-order TIs [16] in terms of specific Shiozaki-
Sato symmetry classes [25]. A prototypical example is the
combination of a standard Bernevig-Hughes-Zhang (BHZ)
model [26] with an in-plane Zeeman field inducing a mass
gap between the counterpropagating helical edge modes, see,
e.g., Refs. [27,28]. For pedagogical reasons this model will be
the backbone of this work, although our conclusions hold for
an extended subclass of such 2D-SOTI. We note that Zeeman
fields play a very important role in controlling higher-order
topological states and, besides the combination with the BHZ
model, have also been used in superconducting systems to
realize and control Majorana states [29–35]. Similiarly, it will
also turn out in this work that the Zeeman term is a very
flexible tool to control the shape of the topological states, im-
plying versatile possibilities of topological engineering with
magnetic-field-only control.

The fact that inversion and/or mirror symmetries can sta-
bilize higher-order topological states in 2D systems has been
emphasized in previous works [15,16,27,28]. However, what
we add here is the insight that the simultaneous presence of
both inversion and mirror symmetry commuting with each
other can be tuned at half-integer Aharonov-Bohm flux to two
anticommuting unitary symmetries by multiplying the mirror
symmetry with an exponential factor e−iϕ , where ϕ denotes
the polar angle with respect to the mirror symmetry axis.
This exponential factor respects periodic boundary conditions,
removes the half-integer flux, and enforces the anticommuta-
tion of inversion and mirror symmetry. As a result, one can
prove that there is an exact twofold degeneracy of all eigen-
states of the model, quite analog to a Kramer’s degeneracy
but here realized via two anticommuting unitary symmetries
with one of them being an involution. If, in addition, the
model fulfils chiral symmetry, this twofold degeneracy leads
to a protection of a pair of zero-energy topological states.
Importantly, even in the absence of chiral symmetry, it turns
out that the mirror symmetry is the involution of an exact
n = 1 SUSY representation [36] with the Hermitian super-
charge operator given by the product of the Hamiltonian
and the inversion symmetry. These properties show that a
wide subclass of 2D-SOTI has a supersymmetric spectrum
and, if zero-energy states are present, those are topologically
protected by SUSY. We note that this protection is exact at
half-integer flux even for a finite system with an exact degen-
eracy of the two zero-energy states, irrespective of whether
they have a significant orbital overlap or not. When tuning the
flux away from half-filling an approximate protection up to
exponentially small splittings is found if the two topological
states have an exponentially small orbital overlap (which is
realized for a sufficiently large system). At the SUSY point,
the topological index playing the role of the topological invari-
ant is the Witten index distinguishing broken from unbroken
SUSY in the absence/presence of zero-energy states, see, e.g.,
Refs. [37–39].

The main results of our work are summarized in Figs. 1(a),
1(b), and 2. In Fig. 1(a), we show a prototypical example
of a circular hole in an infinite system, where the SUSY
structure of the spectrum applies to all states and is exact. In
the topological phase, where the band inversion parameter is
larger than the Zeeman energy, one finds topological states
localized at the positions of the hole’s surface where the
normal component of the Zeeman field with respect to the
surface of the hole changes sign (a generic rule for any shape
of the surface). The spectrum of the absolute value of the
Hamiltonian applying an additional half-integer flux through
the hole is sketched in Fig. 1(b), which demonstrates the close
relationship of the typical spectrum of a second-order TI with
the spectrum of an unbroken SUSY in each chiral sector.
The later manifests itself by an exact twofold degeneracy of
SUSY partners (labelled by the SUSY eigenvalue u = ±1) at
all positive eigenvalues, and a unique zero-energy topological
state with fixed SUSY value u = s in each chiral sector s =
±1. As typical for second-order TIs with a smooth surface,
the spectrum reveals a set of localized bound states below
the surface gap set by the Zeeman energy. Besides the two
zero-energy topological states, their energy is characterized
by a new emerging energy scale, the Witten frequency �W

which scales inversely proportional to the tangential localiza-
tion length ξt . Importantly, it turns out that ξt scales with the
square root of the hole radius, leading to well-localized bound
states in tangential direction for sufficiently large hole radius.
In between the surface and bulk gap, we find a set of helical
edge states which are extended over the whole surface. Since
the circumference of the surface is much larger than ξt for a
large hole radius, their finite-size spacing is much smaller than
the Witten frequency.

Figure 2 shows the effective surface potentials in each
chiral sector for the case of a circular hole from which all
boundary states can be analysed analytically. It results from
squaring the effective surface Hamiltonian H eff

surface which can
be written in the generic form of a periodic two-band Dirac
model (here, h̄ = 1, and the Pauli matrices σi result from a
convenient spinor transformation to be specified later)

H eff
surface = ασx

( − i∂st

) + σyEZ,n(st ) , (1)

where α is the spin-orbit interaction, st the line element along
the surface, and EZ,n(st ) the normal component of the Zee-
man field along the surface. From this Hamiltonian, one can
calculate the nontrivial tangential part of the wave function
along the surface, whereas the normal part is described by an
exponentially decaying wave function with a normal localiza-
tion length of the order of the spin-orbit length. The effective
surface Hamiltonian brings the relationship of second-order
topology and SUSY to a universal low-energy form. On the
one hand side, it contains the two important basic ingredients
to generate second-order topology: the spin-orbit interaction α

generating two counter-progagating helical edge modes along
the surface (with helicity σx = ±1) as familiar from the BHZ
model [26], and the normal component of the Zeeman term
acting as a mass term generating a surface gap in which
topological states are trapped at the positions where the mass
term changes sign [15,28]. On the other side, by squaring
the effective surface Hamiltonian, one can demonstrate the
SUSY structure of the spectrum shown in Fig. 1(b) for all
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FIG. 1. (a) Sketch of a circular hole with radius R in an infinite system. The hole is threaded by a magnetic flux � and the system is
subject to a homogeneous in-plane Zeeman field B. In the topological phase where the band inversion parameter δ is larger than the Zeeman
energy EZ , one finds two topological states (indicated by the green regions) localized at the hole’s surface where the normal component with
respect to the circle’s surface of the Zeeman field changes sign. At half-integer flux f = �/�0 = 1/2, the topological states are exactly at zero
energy due to chiral symmetry and SUSY. The eigenvalues of chiral symmetry and SUSY are labeled by s = ±1 and u = ±1, respectively.
(b) Sketch of the spectrum of the absolute value of the eigenenergies |E | in the topological phase at half-integer flux. The spectrum decomposes
into two chiral sectors s = ±1, each of them revealing an unbroken SUSY spectrum with one single zero-energy state and a set of twofold
degenerate states at positive energies labeled by the SUSY u = ±1. Below the surface gap 
surface ≈ EZ , a set of discrete localized bound
states appears due to a second-order topological mechanism, with a typical energy scale set by the Witten frequency �W = 1/(m∗λsoξt ), where
m∗ is the effective mass, λso the spin-orbit length, and ξt = lB

√
R/λso the tangential localization length of the bound states. Here, lB is the

magnetic length characterizing the Zeeman energy EZ = 1/(2m∗l2
B ). Between the surface gap 
surface and the bulk gap 
bulk = δ − EZ , pairs

of degenerate edge states appear in each chiral sector which are extended along the hole’s surface and localized in radial direction with normal
localization length ξn ∼ λso. Due to finite-size quantization in angular direction, their spacing is given by the order ∼1/(m∗λsoR) which is
much smaller than the Witten frequency �W if the magnetic length fulfils the condition lB � √

Rλso such that the topological states are well
localized ξt � R. Beyond the bulk gap a continuum of states appears which is twofold degenerate in each chiral sector such that the SUSY
structure of the spectrum applies exactly to all states.

boundary states below the bulk gap. In the two chiral sectors
s = −σz = ±1, one obtains two periodic Witten models de-
scribing a particle in an effective surface potential

H±
W = (

H eff
surface

)2∣∣
σz=∓ = −α2∂2

st
+ V ±

W (st ) , (2)

V ±
W (st ) = EZ,n(st )

2 ∓ α∂st EZ,n(st ) . (3)

Here, V ±
W (st ) are the two partner Witten potentials shown

in Fig. 2, which are given by a double-sine potential for
the special case of a circular hole but can be tuned to any
generic form depending on the choice for the shape of the
surface. Most importantly, for any mirror-symmetric surface
around the two axis parallel and perpendicular to the Zeeman
field, the Witten model has supersymmetric properties in each
chiral sector, consistent with the spectrum of the boundary
states shown in Figs. 1(b) and 2. Obviously, all bound states
below the surface gap can be described by states localized in
the potential minima of the Witten potentials, with harmonic
oscillator form in a semiclassical approximation.

We note that the topological protection of zero-energy
states does neither require inversion nor mirror symmetry,
consistent with Ref. [15]. The effective surface Hamilto-
nian (1) has always two zero-energy solutions irrespective of
the symmetry of the surface. However, regarding the exact
twofold degeneracy of all states induced by SUSY, both in-
version and mirror symmetry are essential.

Furthermore, we note that the SUSY properties obtained
here via the realization of periodic Witten models is a non-
trivial SUSY essentially related to the SOTI physics. In the
absence of the surface gap (i.e., for zero Zeeman field), the
Witten model (2) turns into a model of a free particle on a
ring with a trivial SUSY spectrum. Only the presence of the
Zeeman field gives rise to a potential with nontrivial SUSY
properties. In addition, the SUSY spectrum appears here for
each chiral sector separately, and is not a consequence of the
trivial SUSY spectrum of two partner potentials as usually
discussed within Witten models for extended systems (where
one of the zero-energy states is absent due to the asymp-
totic conditions). In contrast, for periodic Witten models, it
is essential to have additional nonlocal symmetries to realize
nontrivial SUSY spectra for each of the two partner potentials
separately.

The fundamental connection between SUSY and higher-
order topological phenomena is the center result of this work.
Additionally, we apply and relate this insight to aspects in-
cluding the analysis of the phase diagram of the prototypical
Bernevig-Hughes-Zhang (BHZ) model, the possibilities for
topological engineering and the stability of topological states
against various perturbations. First, for a finite system in the
form of a Corbino disk (see Fig. 3), we discuss the topological
phase diagram both analytically and numerically. It turns out
that the normal component of the Zeeman term controls the
localization of the bound states along the surface, whereas
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FIG. 2. The two effective surface Witten potentials for a circular
hole with radius R = 1000λso in the two chiral sectors (a) s = 1
and (b) −1 as a function of the line element st = Rϕ along the
surface (0 < ϕ < 2π denotes the polar angle and L = 2πR is the
circumference of the surface). The Zeeman energy is chosen as EZ =
Eso/25, where Eso is the spin-orbit energy. For both chiral sectors,
localized states (shown in orange) are trapped in the two potential
minima which appear to be exactly twofold degenerate due to SUSY
except for one single topological bound state with zero eigenvalue
(highlighted by the red circle) which is localized around ϕ = 0 for
s = 1 and ϕ = π for s = −1. The potential maximum is given by
the square of the surface gap 
2

surface = E 2
Z + (1/(2m∗R2))2 ≈ E 2

Z ,
and the two potential minima appear at ±�2

W /2 with the Witten
frequency defined in Fig. 1(b). As a consequence, the lowest state
has zero eigenvalue and all the excited states are twofold degener-
ate with eigenvalue n �2

W , n = 1, 2, . . . (in a semiclassical picture),
consistent with the sketch of the spectrum shown in Fig. 1(b).

the tangential component determines the normal localization
length and drives the phase transition. Of a particular interest
is the gapless Weyl phase separating the topological from
the nontopological gapped phase. At strong Zeeman field the
two topological states at the outer surface persist in the Weyl
phase, whereas the two topological hole states disappear and

FIG. 3. Topological bound states for a Corbino disk for (a) the
topological gapped phase δ > EZ and (b) the Weyl phase |δ| < EZ .
The two topological states at the outer surface persist in the Weyl
phase, whereas the two topological hole states disappear at the phase
transition and are replaced by two additional antisymmetric states
(indicated by the plus and minus sign symbol) at the outer surface.
The indices s = ±1 and u = ±1 indicate the eigenvalues of the chiral
symmetry and the SUSY.

are replaced by two antisymmetric topological states at the
outer surface. We will calculate all topological states in the
two phases analytically and find excellent agreement with
numerical results. Furthermore, by studying the lowest and
next-lowest absolute value of the energy numerically in the
whole phase diagram, we identify all phase boundaries and
find perfect qualitative agreement with the analytical consid-
erations.

Secondly, we propose the hole states to be of particular
interest for topological engineering. Taking a 2D system with
several holes, one can control the topological states of each
hole independently by local Zeeman fields and Aharonov-
Bohm fluxes. With these two magnetic-field-only control
elements, we show that one-hole and two-hole operations can
be realized by tuning the shape of the topological states in
tangential and normal direction via local Zeeman fields and
by inducing a controlled coupling between the states of the
same hole via tuning the flux away from half-integer value.

Finally, we analyze the stability of the topological states
against deviations from half-integer flux, flux penetration,
surface distortions, and random impurities. For well-localized
topological states we find rather robust stability up to impurity
strengths of the order of the surface gap (or even beyond for
particular spinor dependencies). Together with the fact that the
BHZ model is a standard model discussed in topology with
various realizations proposed in density functional theory [40]
and experiments, such as in quantum wells of HgTe/CdTe
and InAs/GaSb [41,42], ZrTe5 single crystal [43], and in cold
atom systems [44–47], we expect that our proposal for the
generic model involving only very basic ingredients can be
realized in various material systems with sufficient stability.

Our work is organized as follows. In Sec. II, we set up
the basic model and discuss the phase diagram of the bulk
spectrum. The central subject of the SUSY will be described
in Sec. III, where we show that the squared Hamiltonian has
an exact n = 1 SUSY representation. Section IV is devoted
to the full analytical theory for a Corbino disk, a prototyp-
ical example for an outer and inner surface, which contains
the essential physics for any smooth surface. The general
setup of the differential equations needed to solve for the
topological states is outlined in Sec. IV A. Subsequently we
will discuss the spectrum for zero Zeeman field in Sec. IV B,
present the derivation of the effective surface Hamiltonian in
the topological phase for a weak Zeeman field in Sec. IV C,
and study the topological states in the topological and Weyl
phase for a strong Zeeman field in Sec. IV D. In Sec. IV E, we
summarize the results for the topological states and compare
to numerics. The general validity range of the effective surface
Hamiltonian for any ratio of Zeeman and spin-orbit energy
is presented in Sec. IV F. The whole phase diagram for a
Corbino disk is presented numerically and compared to the
analytical predictions in Sec. IV G by analyzing the lowest
and next-lowest absolute value of the energy eigenvalues as
function of the model parameters. Section V is devoted to
the derivation of the effective surface Hamiltonian for any
smooth surface by using orthogonal coordinates. In Sec. V A,
we show that the square of the surface Hamiltonian is given by
a generic periodic Witten model. The supersymmetric prop-
erties of the Witten model and the low-energy spectrum of
the surface Hamiltonian is analysed in Secs. V B and V C,
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respectively. An example for an area of peanut shape is dis-
cussed numerically and analytically in Sec. V D. In the final
section, Sec. VI, we discuss the stability of the topological
states against various perturbations in Sec. VI A, and the pos-
sibilities for topological engineering in Sec. VI B. We close
with a summary and an outlook in Sec. VII.

II. MODEL

The 2D-SOTI with SUSY properties considered in this
work are an important subclass of the 2D-SOTI listed
within the general classification scheme developped in
Refs. [15,16,19] (see, e.g., Sec. VI in Ref. [16]). At zero
Aharonov-Bohm flux, the continuum version reads

H0 = 
0

(
p2

2m∗ − δ

)
+ α p · � + EZ b · � γ , (4)

where p = (px, py) is the momentum, m∗ denotes the effective
mass, and b = (bx, by ) is a two-dimensional real unit vector
in the plane of the system playing the role of the direction
of a generalized in-plane Zeeman field. The generalized band
inversion parameter, spin-orbit coupling, and Zeeman energy
are denoted by the real numbers δ, α, and EZ , respectively. In
the remainder of this work we use units h̄ = 1. The Hermitian
and unitary spinor matrices 
0, � = (
x, 
y) and γ fulfill a
certain algebra characteristic for a certain Shiozaki-Sato class
[25]. Specifically, we need the properties


i
 j = −
 j
i , 
2
i = 1 for all i, j = 0, x, y , (5)


0γ = −γ
0, 
x,y γ = γ 
x,y, γ 2 = 1. (6)

Due to rotational invariance we choose b = ey by convention
in the direction of the y-axis. Furthermore, without loss of
generality, we assume α > 0 since a sign change of α is
equivalent to changing x → −x.

Taking a hole in the system around x = (x, y) = 0 and
applying a perpendicular magnetic flux � through this hole,
we have to shift the momentum p → p + e

c A via the vector
potential A = (Ax(x, y), Ay(x, y)) (the z component Az = 0
vanishes) with

e

c
A(x) = f

r2
(−y, x) = f ∇ϕ, f = �

�0
, (7)

where �0 = hc
e is the flux quantum, r =

√
x2 + y2 denotes the

radial coordinate and 0 < ϕ < 2π is the polar angle, which
we choose by convention relative to the axis perpendicular to
the Zeeman field, see Fig. 4. Our final Hamiltonian then reads

Hf = e−i f ϕ H0 ei f ϕ (8)

= 
0

(
1

2m∗ p2
K − δ

)
+ α pK · � + EZ
yγ , (9)

where

pK = p + e

c
A = e−i f ϕ p ei f ϕ (10)

denotes the kinetic momentum. Alternatively, using the trans-
formation (8), we note that the external flux can also be treated
via the Hamiltonian (4) at zero flux but with twisted boundary
conditions for the wave functions

ψ0(ϕ + 2π ) = ei2π f ψ0(ϕ) . (11)

FIG. 4. Sketch of the system (shaded area A) with two bound-
aries formed by the inner and outer surface. A flux � is threaded
through the hole formed by the inner surface. The y coordinate is
chosen in the direction of the Zeeman field B. Polar coordinates are
denoted by (r, ϕ). If the area A is chosen symmetrically to the x and
y axes (as shown), the SUSY properties are exact and apply to all
states.

Although all our conclusions hold for the general Hamil-
tonian (9), for pedagogical reasons we mostly consider in this
work the very instructive case of a 2D-BHZ model with an
in-plane Zeeman field, realized by the special choice


0 = σz, � = σx s , γ = σx , (12)

leading to the Hamiltonian

Hf = e−i f ϕ H0 ei f ϕ (13)

= σz

(
1

2m∗ p2
K − δ

)
+ α σxpK · s + EZ sy . (14)

where s = (sx, sy) contains the Pauli matrices of the physical
spin- 1

2 operator S = 1
2 s, and σi are the Pauli matrices de-

scribing the conduction and valence band. Due to the band
inversion induced by the energy shift δ and the spin-orbit
interaction α a bulk gap is opened hosting two counter-
propagating helical edge modes at the boundary of a finite
system. The edge modes are gapless for large system sizes
but, as we will show below, acquire a finite gap induced by
the Zeeman field realizing a second order topological insu-
lator. We note that the spin-orbit interaction is equivalent to
a Rashba-type ∼(pxsy − pysx ) perpendicular to the system,
since a spin rotation (sx, sy, sz ) → (−sy, sx, sz ) around the z
axis brings the Rashba interaction into the more convenient
rotationally invariant form p · s.

By convention, we denote energies and length scales with
a tilde symbol when they are measured with respect to the
spin-orbit energy and spin-orbit length, respectively, defined
by

Eso = k2
so

2m∗ = 1

2
m∗α2 , (15)

λso = 1

kso
= 1

α m∗ . (16)
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FIG. 5. The three different phases of the model as function of the
band inversion shift δ̃ = δ/Eso and the magnetic length l̃B = lB/λso.
Two lines at δ̃ = ±1/l̃2

B = ±ẼZ = EZ/Eso separate the topological
gapped phase (TP) δ̃ > 1/l̃2

B from the Weyl phase (WP) |δ̃| < 1/l̃2
B

and the nontopological gapped phase (NTP) δ̃ < −1/l̃2
B.

For example, for the Zeeman energy EZ and the energy shift
δ, we define the dimensionless quantities

ẼZ = EZ

Eso
= 1

l̃2
B

, δ̃ = δ

Eso
. (17)

In addition, we introduced the dimensionless length scale
l̃B = lB/λso, which characterizes the Zeeman field and will
be called magnetic length in the following (note that it is not
related to any orbital magnetic field).

For an infinite system in the thermodynamic limit, i.e.,
when the outer surface goes to infinity, one can study in the
asymptotic region the energy dispersion of the bulk states,
see Appendix A. Since the magnetic flux through the inner
hole does not play any role in this regime, one obtains a
flux-independent bulk gap given by


̃bulk ≡ 
bulk/Eso

=
⎧⎨
⎩

2
√

δ̃ − 1 − 1/l̃2
B for δ̃ > max

{
2, 1+1/

(
4l̃4

B

)}
|δ̃| − 1/l̃2

B for δ̃ < 2 and |δ̃| > 1/l̃2
B

0 otherwise
.

(18)

Thus the bulk gap closes at

δ̃ =
{

1 + 1
4l̃4

B
for δ̃ > 2

± 1
l̃2
B

for δ̃ < 2
. (19)

In this work we will restrict ourselves mostly to the regime
of strong spin-orbit δ̃ < 2 and l̃B > 1/

√
2, or, equivalently, to

δ, EZ < 2Eso . (20)

In this case, the spin-orbit length λso is the smallest length
scale and is used for the lattice spacing within a discrete tight-
binding formulation of the model, see Appendix D. Therefore
only the gap closing lines at δ̃ = ±1/l̃2

B are of relevance here,
see the black lines in Fig. 5. They separate two gapped phases
with a gapless regime in between. For the numerical imple-
mentation of the model we use both a continuum version in
terms of a basis set of spherical Bessel functions (for an area
of disk shape, see Appendix C) as well as a tight-binding
version described in Appendix D. The latter approach has

FIG. 6. The spectrum ε̃k = εk/Eso of the four bands as function
of k̃x,y = kx,y/kso for l̃B = 2, with (a) δ̃ = 0 in the gapless phase and
(b) δ̃ = 0.5 in the gapped topological phase. In the gapless phase (a),
one finds two Weyl points at ±(0, k̃W ), with k̃W given by Eq. (21).

the advantage that it can deal with any shape of the area
and the stability of topological states against disorder can be
studied. For the special case of a disk, we have compared the
two different numerical methods and checked for quantitative
agreement of the low-energy spectrum.

The typical band structure in the gapless and gapped phase
is shown in Figs. 6(a) and 6(b). In the gapless case, we show
in Appendix A for δ̃ < 2 that two Weyl points appear at k =
±kW with kW = (0, kW ) and

k̃W = kW /kso =
√

δ̃ − 2 +
√

Ẽ2
Z + 4(1 − δ̃) , (21)

see also Fig. 6(a). As a consequence we will denote the
gapless phase by the Weyl phase (WP) in the following and
will see later that it has also interesting topological properties
(although less stable against disorder due to the absence of a
gap). The two Weyl points are characterized by an anisotropic
derivative of the dispersion in kx and ky directions

∂ε̃k

∂ k̃x

∣∣∣∣
k=kW

= 2, (22)

∂ε̃k

∂ k̃y

∣∣∣∣
k=kW

= 2k̃W

ẼZ

√
Ẽ2

Z + 4(1 − δ̃) . (23)

On the gap closing line δ = ±EZ , with EZ < 2Eso, the two
Weyl points merge together to a single point at k = 0, with
a topological gapped phase (TP) for δ > EZ and a nontopo-
logical gapped phase (NTP) for δ < −EZ , see the detailed
discussion of the phase diagram in Sec. IV G. Since we restrict
ourselves to the regime of strong spin-orbit δ, EZ < 2Eso in
this work, we note that the minimum of the dispersion is
always at k = 0 in the gapped phase, see Appendix A.

III. SUPERSYMMETRY

In this section, we will analyze the supersymmetric struc-
ture of our model. In Sec. III A, we state the exact symmetries
of the general model Hamiltonian (9) and find besides chi-
ral and inversion symmetry another important symmetry, a
mirror symmetry with respect to the axis perpendicular to
the Zeeman field. At the particular value of half-integer flux
f = 1/2, it is shown that the mirror symmetry anticommutes
with the inversion symmetry leading to a nontrivial realiza-
tion of SUSY. For this reason, the mirror symmetry is called
SUSY in the following. We show that the SUSY protects a
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twofold degeneracy of all eigenstates and, as a consequence,
will protect a pair of topological bound states at zero en-
ergy (if present). The topological invariant is then given by
the Witten index which distinguishes between unbroken and
broken SUSY, depending on whether states with zero (or
exponentially small) energies are present or not, respectively.
In Sec. III B, we present the formal representation of SUSY in
terms of the supercharge operator and show that it relies only
on the presence of inversion and mirror symmetry, indepen-
dent of the special form (9) of the model.

A. Symmetries of the model

Starting from the general form of the Hamiltonian (9), we
find chiral and inversion symmetry given by

SHf S = −Hf , S = S† = 
x
yγ , (24)

�Hf � = Hf , � = �† = Px 
0 , (25)

where Px denotes the parity transformation x → −x. The
Hamiltonian does not fulfill time-reversal symmetry but, for
the special BHZ-type realization (12), we can relate Hf and
H− f via the antiunitary transformation

σzsxH∗
f σzsx = H− f . (26)

As a consequence, the spectra of Hf and H− f are the same.
Furthermore, using (10), we find another important mirror

symmetry

Uf Hf Uf = Hf , (27)

Uf = U †
f = e−i f ϕ Pϕ 
0
yγ ei f ϕ (28)

= e−i2 f ϕ Pϕ 
0
yγ , (29)

where Pϕ denotes a sign change of the polar angle ϕ → −ϕ,
which is equivalent to changing the sign of the y coordinate,
i.e., the sign of the coordinate along the Zeeman field. The ex-
ponentials gauge away the flux such that the two components
of the kinetic momentum are transformed with different signs

Uf (px + Ax )Uf = px + Ax , (30)

Uf (py + Ay)Uf = −(py + Ay) . (31)

However, to respect periodic boundary conditions under ϕ →
ϕ + 2π , the transformation Uf is only an allowed symmetry
for integer and half-integer fluxes f = 0, 1/2 mod (1) in
units of the flux quantum. As we will show in the following
the interesting case is a half-integer flux where U1/2 turns
out to be a SUSY leading to a typical SUSY spectrum with
an exact twofold degeneracy of all eigenstates except for a
single state at zero energy (due to chiral symmetry this SUSY
spectrum turns out to occur twice for the absolute value of the
Hamiltonian, see below).

The crucial property of the SUSY operator U1/2 at half-
integer flux is its anticommutation with inversion symmetry

U1/2 � = −�U1/2 , (32)

whereas, for integer flux, one gets the commutation U0� =
�U0. Since we can choose all eigenstates |ψ〉 of the Hamil-
tonian simultaneously as eigenfunctions of the inversion
symmetry �|ψ〉 = ±|ψ〉, we find for half-integer fluxes that

|ψ〉 and its SUSY partner U1/2|ψ〉 must be orthogonal

〈ψ |U1/2|ψ〉 = 〈ψ |�U1/2 �|ψ〉
= −〈ψ |U1/2 ��|ψ〉 = −〈ψ |U1/2|ψ〉 , (33)

where we used (32) and �2 = 1 in the last two steps. Since
both |ψ〉 and U1/2|ψ〉 are eigenstates of the Hamiltonian with
the same energy, this leads necessarily to an at least twofold
degenerate spectrum of the Hamiltonian. This is similiar to
Kramers degeneracy but the orthogonality of time-reversed
partners is replaced by orthogonality of SUSY partners. For
our model, it turns out that no further degeneracies are present,
i.e., the degeneracy is given precisely by two.

Due to chiral symmetry, all eigenstates |ψ〉 at positive
energy have a counterpart S|ψ〉 with negative energy. All
eigenstates are twofold degenerate due to SUSY and, there-
fore, also a possible zero-energy state must be twofold
degenerate. Since both the bulk and edge state spectrum is
gapped in the presence of spin-orbit and Zeeman interac-
tion, the zero-energy states correspond to topological bound
states generated by second order topology. If they exist, they
are topologically protected by SUSY since a splitting would
break the twofold degeneracy (note that chiral symmetry alone
would allow for such a splitting). Furthermore, due to chiral
symmetry, a pair of zero-energy states can not shift away from
zero energy. As a result we find here a topological protection
via the combination of chiral symmetry with SUSY, quite sim-
iliar to topological protection induced by chiral symmetry and
time-reversal symmetry with T 2 = −1 (leading to Kramers
degeneracy).

To reveal the typical SUSY structure of the spectrum, it
is most convenient to start with a hole in an infinite system,
as sketched in Fig. 1(a). In this case one obtains in the TP
two topological states exactly at zero energy localized at two
opposite points of the hole surface with different chirality s
and different value u for the SUSY. This happens not only
for a circular hole but for all mirror-symmetric hole surfaces
where several pairs very close to zero energy can appear at
the positions where the normal component of the Zeeman
term changes sign. However, as explained later in more de-
tail, one of these pairs will lie exactly at zero energy at the
SUSY point for half-integer flux whereas the other ones are
at exponentially small energy for a large hole radius. Instead
of considering the Hamiltonian H , it is then more convenient
to identify the SUSY structure of the spectrum by considering
the squared Hamiltonian

HW ≡ H2
1/2 , (34)

which has only positive or zero energies. This model (with
dimension of energy squared) is called a Witten model for
supersymmetric systems. Since HW commutes with the chiral
symmetry one obtains a SUSY spectrum in each chiral sec-
tor separately, with a twofold degeneracy of all states with
positive energy (labelled by the supersymmetry u = ±1) and
a unique zero-energy state in the TP, see Fig. 1(b) where
we show the spectrum of the absolute value of the Hamilto-
nian |H | = √

HW . In this case one obtains unbroken SUSY,
whereas in the WP and the NTP the zero-energy states do
not exist, denoted by a broken SUSY. We note that the SUSY
structure of the spectrum applies to all states of the system,
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i.e., to the states localized at the boundary below the bulk gap

bulk and to the bulk states above the bulk gap (where the
continuum has a fourfold degeneracy with respect to s = ±1
and u = ±1). As already explained in the introduction the
boundary states below the bulk gap consist of three different
kinds: (1) edge states extended along the surface for energies
between the surface gap 
surface and the bulk gap, (2) localized
bound states at finite energy below the surface gap, and (3)
topological bound states exactly at zero energy. Whether the
energy scale of the first bound state at nonzero energy is given
by the Witten frequency �W or not, depends on the shape of
the hole. If 2n points are present on the hole surface where
the normal component of the Zeeman term changes sign, one
obtains one pair of topological states at zero energy and n − 1
pairs of localized bound states with an exponentially small
energy [i.e., for a disk with n = 1, the first pair of bound states
at nonzero energy starts with the Witten frequency as shown
in Fig. 1(b)].

For a finite system with both an inner and an outer surface,
we note that there are never states strictly at zero energy, due
to an exponentially small splitting induced by a hybridiza-
tion between zero-energy states localized at the inner and
outer surface, see also the more detailed discussion below.
Therefore, in a strict mathematical sense, the SUSY is always
broken for a finite system. However, when neglecting the ex-
perimentally unmeasurable and exponentially small splitting
between the zero-energy states localized at different positions
in a finite system (as is standardly done for all topological
systems), it is reasonable from a physical point of view to use
the nomenclature of unbroken SUSY also for this case. Nev-
ertheless, one should keep in mind that the SUSY structure of
the spectrum of the Witten model HW applies only to the states
localized either at the inner or the outer surface but not to the
bulk states for a finite system. The discrete bulk states are not
related to the inner or outer surface and just have a fourfold
degeneracy due to chiral symmetry and SUSY. It is then un-
clear how to associate a given SUSY pair of bulk states at fixed
chirality to the two SUSY spectra of the boundary states at the
inner and outer surface with the same chirality, and any choice
would be ambigious and very unphysical. Therefore, for a
finite system, the SUSY structure of the spectrum applies only
to the effective surface Hamiltonian to be introduced later and
is closely related to the second-order mechanism of inducing
zero-energy topological surface states.

We note that the symmetry considerations in this sec-
tion apply to all states of the system, irrespective of whether
they are two-dimensional bulk states, one-dimensional edge
states along the boundary of the system, or zero-dimensional
bound states generated by second-order topology. However, in
order for our symmetry arguments to apply for a system with
a boundary living only in a finite region x ∈ A, we have to
require that the corresponding confinement potential

V (x) = σz

{
0 for x ∈ A
∞ for x �∈ A

(35)

fulfils the same symmetries. Obviously, this is only the
case when the area A is both symmetric under reflec-
tion of the x or y coordinate, i.e., if (x, y) ∈ A, then also
(−x, y), (x,−y), (−x,−y) ∈ A must be fulfilled, see Fig. 4.

Zero-energy topological states are bound states localized
at the boundary of the system, i.e., either at the inner or outer
surface. If present, we will choose them by convenience as
eigenfunctions of the two commuting symmetries S and U1/2

with eigenvalues s, u = ±1

H1/2|ψsu〉 = 0 , (36)

S|ψsu〉 = s|ψsu〉, U1/2|ψsu〉 = u|ψsu〉 . (37)

Since S and U1/2 anticommute with � we can furthermore
choose the eigenstates such that the application of the inver-
sion symmetry changes both the sign of S and U1/2

|ψ−s,−u〉 = −�|ψsu〉 , (38)

where, for convenience (see later), we introduced a sign factor
here. As a consequence, topological states appear for mirror
symmetric areas always in pairs of two bound states localized
at two points of the boundary at oppposite positions with
different signs for s and u. These two wave functions can
not hybridize since they have different eigenvalues of the
supersymmetry. For a finite system several pairs can occur
(either at different or on the same surface), where the wave
functions from different pairs have the same value of u and
different values of s. In this case, the wave functions from two
different pairs can hybridize via the Hamiltonian, such that
the exact eigenstates are no longer eigenstates of the chiral
symmetry but appear in two pairs at nonzero-energy ±ε. This
is typical for all finite topological systems where localized
bound states can appear at two different ends of the system
with an exponentially small orbital overlap. This overlap leads
to an exponentially small splitting of the two states which can
be neglected for a large system. Therefore, when neglecting
the exponentially small orbital overlap of wave functions from
different pairs, we can still use the states |ψsu〉 as the topolog-
ical bound states which are localized at a certain position and
are eigenstates of S and U1/2. As a consequence, (36) has to
be changed to H1/2|ψsu〉 ≈ 0 up to exponentially small terms
but (37) remains the same. Numerically, this is achieved by
first determining the two pairs of states with energy closest
to zero energy and, subsequently, diagonalizing S and U1/2

in this four-dimensional subspace such that (37) and (38) are
fulfilled.

We will see that the topological bound states appear always
at the positions of the surface where the normal component
of the Zeeman field changes sign. This has already been
discussed in other works [27–35] for sharp corners in 2D
systems, where the emergence of topological bound states
via second-order topology is induced by the application of an
in-plane Zeeman field breaking rotational invariance around
the z axis. It is related to the occurrence of bound states at
the interface of two effective edge state Hamiltonians with the
Zeeman term being the mass term and changing sign. Simi-
larly, we will show below that the same mechanism happens
here but, instead of considering sharp corners at the bound-
ary as in previous works, we will analyze arbitrary smooth
surfaces where the curvature radius is much larger than the
localization length of the bound states. This will allow us to
derive effective surface Hamiltonians for a given surface in the
form of generic periodic Witten models with supersymmetric
properties. Moreover, within this formalism, we will find a
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new viewpoint for the occurrence of topological states being
trapped in minima of effective surface potentials. In particular,
this allows for a full analytical theory to determine the wave
functions of the topological states, together with the analysis
of other bound states at higher energy. Since the Corbino
disk contains already many of the possible scenarios, we will
consider a Corbino disk in Sec. IV and leave the discussion of
arbitrary smooth surfaces to Sec. V.

B. SUSY representation in terms of supercharge operator

To write the Witten Hamiltonian HW in the formal
framework of SUSY Hamiltonians we define the Hermitian
supercharge operator Q = Q† and the involution K by

Q = H1/2 �, K = U1/2 , (39)

and find the so-called n = 1 SUSY representation [36]

HW = Q2 , QK = −KQ , K2 = 1 . (40)

Using

S U1/2 = U1/2 S , S � = −� S , (41)

we find that the chiral symmetry commutes with both Q and
K . Therefore the representation (40) is valid in both chiral
sectors separately. Within each chiral sector, the twofold de-
generacy follows only for all states with positive eigenvalue
of HW , but not for a possible state with zero eigenvalue.
This follows by taking the eigenstates |ψ〉 of HW simulta-
neously as eigenstates of the involution K . One then gets
from QK = −KQ and K2 = 1 analog to (33) that |ψ〉 and
Q|ψ〉 are orthogonal to each other and are both eigenstates
of HW = Q2 with the same eigenvalue E . For E > 0, we get
Q|ψ〉 �= 0, leading to a twofold degeneracy. However, since Q
is not unitary, it is also possible that Q|ψ〉 = 0, which must
be obviously the case for the state with E = 0. Therefore one
gets a nondegenerate eigenstate of HW with zero eigenvalue
in each chiral sector (at least if it exists).

Equivalently, one can also find a so-called M = 1 SUSY
representation (without an involution and a non-Hermitian
supercharge operator) or a m = 2 realization (with two Her-
mitian supercharge operators and no involution) [48] via the
definitions

Q̄ = 1

2
Q(1 + K ), (42)

Q1 = 1√
2

(Q̄ + Q̄†) = Q†
1 , (43)

Q2 = −i
1√
2

(Q̄ − Q̄†) = Q†
2 . (44)

It is then straightforward to show that one gets the M = 1 form

HW = Q̄Q̄† + Q̄†Q̄ , Q̄2 = 0 , (45)

and the m = 2 form

HW = Q2
1 = Q2

2 , Q1Q2 = −Q2Q1 . (46)

We note that the general SUSY representation does not
rely on chiral symmetry and is possible for any system with
inversion and mirror symmetry, independent of the special
form (9) of the Hamiltonian. Let us assume that the Hamilto-
nian has inversion symmetry � = Px
� and mirror symmetry

FIG. 7. Corbino disk with inner radius R< and outer radius R>

(shaded area). A flux � is threaded through the hole. The y co-
ordinate is chosen in the direction of the Zeeman field B. Polar
coordinates are denoted by (r, ϕ) and er,ϕ denote the local unit vectors
in radial and angular direction.

U0 = Pϕ
U at zero flux, where 
� and 
U are any spinor ma-
trices which either commute or anticommute with each other
(which is always the case when they consist of any product
of Pauli matrices from different spinor degrees of freedom). If
they anticommute already at zero flux, we can use the above
construction with U1/2 → U0 and get a SUSY realization at
zero flux. If they commute, we can apply a half-integer flux
and define the new mirror symmetry

U1/2 = e−iϕU0 = e−iϕ/2 U0 eiϕ/2 . (47)

By construction, U1/2 is a mirror symmetry of the Hamiltonian
at half-integer flux and anticommutes with �. As a conse-
quence, we obtain a SUSY realization at half-integer flux.

IV. CORBINO DISC

To discuss the phase diagram of the Hamiltonian in terms
of the number of topological states at exponentially small
energies it is most convenient to start with the discussion of
a Corbino disk with outer radius R> and a hole of inner radius
R< through which we apply the flux � = f �0, see Fig. 7.
We discuss here the most interesting case of half-integer flux
f = 1/2 and state at the appropriate places the stability of
the topological states for small deviations from half-integer
flux. We present the analysis of the topological states and the
derivation of the effective surface Hamiltonian for the special
case of the BHZ model with Zeeman field given by Eq. (14),
but note that analog considerations can be done for the more
general model (9). We start in Sec. IV A with the general setup
for the differential equations to be solved for the topological
states, and discuss subsequently the cases of zero Zeeman
field in Sec. IV B, weak Zeeman field in Sec. IV C, and
strong Zeeman field in Sec. IV D. For readers not interested
in the technical details, the wave functions of the topological
states are summarized in Sec. IV E and compared to numerical
results. In Sec. IV F, we will state the generic validity range
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of the low-energy theory in terms of the universal low-energy
surface Hamiltonian. Based on these results we will then
discuss the phase diagram in terms of the Witten index in
Sec. IV G and again compare with numerical results.

A. Topological states

For a Corbino disk it is most convenient to represent the
Hamiltonian in polar coordinates and rotate the spin in radial
and angular direction locally to the x and y axes, respectively.
This is achieved by the following unitary transformation

H̄1/2 = X †W † U † √
r H1/2

1√
r

U W X , (48)

with

U = e−i 1
2 (1+sz )ϕ , (49)

W = 1

2
(1 + σy) + sz

1

2
(1 − σy) , (50)

X = ei π
4 σy = 1√

2
(1 + iσy) . (51)

The transformation with
√

r is convenient due to the trans-
formation of the area element dxdy = rdrdϕ and leads to the
normalization condition∫ R>

R<

dr
∫ 2π

0
dϕ

∑
σz,sz=±

|ψ̄ (r, ϕ; σz, sz )|2 = 1 . (52)

for the eigenfunctions ψ̄ (r, ϕ; σz, sz ) of H̄1/2.
The transformation U eliminates the half-integer flux and

rotates the radial and angular spin locally to sx and sy, respec-
tively, according to

U †er · sU = sx , U †eϕ · sU = sy , (53)

where er,ϕ are the unit vectors in radial and angular direction,
see Fig. 7. We note that the transformation U does not change
the boundary conditions in angular direction since it is peri-
odic under ϕ → ϕ + 2π (note that sz = ±1).

Finally, the unitary transformations W and X are chosen
for convenience to simplify the spinor structure. Whereas X
rotates the orbital spinor by π/2 around the y axis

X †σzX = σx , X †σxX = −σz , (54)

the transformation W has the effect

sx,y
W−→ sx,y σy , σx,z

W−→ σx,z sz , (55)

while keeping sz and σy invariant.
A straightforward calculation gives the following result for

the transformed Hamiltonian in dimensionless units:

H̄1/2/Eso = σx
[(−∂2

r̃ − δ̃
)
sz + 2i∂r̃ sy)

]
(56)

+ σx

(
−2

r̃
i∂ϕsx − 1

r̃2
∂2
ϕsz + 1

r̃2
i∂ϕ

)
(57)

+ σy
1

l̃2
B

(sx sin ϕ + sy cos ϕ) , (58)

where r̃ = r/λso, δ̃ = δ/Eso, and l̃B = lB/λso.

After the transformation we get for the transformed sym-
metry operators

S̄ = −σz, (59)

�̄ = −Pxσx, (60)

Ū1/2 = Pϕσzsx . (61)

We also note that the total angular momentum in z direction
Jz = Lz + sz/2, with Lz = −i∂ϕ , transforms as

J̄z = Lz − 1
2 . (62)

To discuss the appearance of topological states at zero
energy, we first write the Hamiltonian and the symmetry op-
erators in the σz basis as

H̄1/2 =
(

0 Ā
Ā† 0

)
, S̄ =

(−1 0
0 1

)
, (63)

�̄ = −Px

(
0 1
1 0

)
, Ū1/2 = Pϕsx

(
1 0
0 −1

)
, (64)

with

Ā/Eso = (−∂2
r̃ − δ̃

)
sz + 2i∂r̃ sy

− 2

r̃
i∂ϕsx − 1

r̃2
∂2
ϕsz + 1

r̃2
i∂ϕ

− i
1

l̃2
B

(sx sin ϕ + sy cos ϕ) . (65)

For the zero-energy states |ψ̄su〉 of H̄1/2, we have to solve

Ā�u = 0 , (66)

and get from (37), (38), (59), and (60)

ψ̄1,u(r̃, ϕ; σz, sz ) = �(u)(r̃, ϕ; sz )

(
0
1

)
σz

, (67)

ψ̄−1,u(r̃, ϕ; σz, sz ) = −(�̄ψ̄1,−u)(r̃, ϕ; σz, sz )

= �(−u)(r̃, ϕ + π ; sz )

(
1
0

)
σz

. (68)

Noting that Ā anticommutes with Pϕsx and using Pϕsx =
−Ū1/2 in the subsector σz = −1 according to (61), we can
choose the two zero-energy states �u as eigenfunctions of
Pϕsx with eigenvalues −u. This gives the following form for
�u:

�(u)(r̃, ϕ; sz ) = 1√
2

{
χ

(u)
−u (r̃, ϕ)

(
1
1

)
sz

+ χ (u)
u (r̃, ϕ)

(
1

−1

)
sz

}
,

(69)

where χ
(u)
± (r̃, ϕ) are (anti)symmetric states in angular

space

χ
(u)
± (r̃,−ϕ) = ±χ

(u)
± (r̃, ϕ) , (70)

and normalized according to∫ R̃>

R̃<

dr̃
∫ 2π

0
dϕ{|χ (u)

+ |2 + |χ (u)
− |2} = 1/λso , (71)

with R̃≷ = R≷/λso.
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Inserting the form (69) in (66) and using (65), we get the
following two coupled differential equations to determine the
functions χ

(u)
± (r̃, ϕ):(

−∂2
r̃ − δ̃ ∓ 2u∂r̃ ± u

l̃2
B

cos ϕ − 1

r̃2
∂2
ϕ

)
χ

(u)
±

−
(

±2
u

r̃
i∂ϕ ± i

u

l̃2
B

sin ϕ − 1

r̃2
i∂ϕ

)
χ

(u)
∓ = 0 . (72)

These two differential equations have to be solved with the
boundary condition

χ
(u)
+ (R̃≷, ϕ) = χ

(u)
− (R̃≷, ϕ) = 0 . (73)

However, for states localized at the outer or inner surface,
we need to consider only the boundary conditions at one of
the corresponding surfaces, thereby neglecting exponentially
small contributions at the other surface if


R̃ = R̃> − R̃< � 1 (74)

is fulfilled, which we always assume implicitly in the follow-
ing. As discussed at the end of Sec. III, this has the effect
that the energies of the topological states are not exactly at
zero energy but only at exponentially small energies (which
we neglect).

We proceed with the discussion of zero, weak and strong
Zeeman field in the next sections. A weak Zeeman field
l̃2
B � 1 allows for a clear understanding of the occurrence

of topological states due to a second-order mechanism via
the derivation of effective surface Hamiltonians hosting topo-
logical states in minima of effective surface potentials. The
derivation of topological states at strong Zeeman field l̃B ∼
O(1) is more subtle and requires a careful study of the solution
of the two differential equations (72).

B. Zero Zeeman field

For the special case B = 0, the Hamiltonian H̄ (0)
1/2 =

H̄1/2|B=0 is rotationally invariant around the z axis and com-
mutes with the angular momentum Lz = −i∂ϕ in z direction
[note that J̄z and Lz differ only by a constant, see Eq. (62)].
In each eigenspace of Lz the angular dependence of the
eigenfunctions is given by 1√

2π
eilϕ , where l = 0,±1,±2 . . .

denotes the integer eigenvalue of Lz. In this subspace, we
can replace −i∂ϕ → l and the radial part follows from the
Hamiltonian

H̄ (0)
1/2,l/Eso = σxh̃l , (75)

with

h̃l = (−∂2
r̃ − δ̃

)
sz + 2i∂r̃ sy + 2l

r̃
sx + l2

r̃2
sz − l

r̃2
(76)

=
(


l

†
l − δ 2
l

2

†
l −(
†

l 
l − δ)

)
, (77)

where we defined


l = ∂r̃ + l

r̃
, 


†
l = −∂r̃ + l

r̃
. (78)

For a flux deviating from half-integer value, we have to shift
the angular momentum by f − 1/2, i.e., we replace it by the

index ν defined by

l → ν = l + f − 1
2 . (79)

The Hamiltonian hν written in the form (77) is identi-
cal to the generalized supersymmetric Dirac Hamiltonian, as
discussed, e.g., in Section 9.1.1. of Ref. [1]. Disregarding
boundary conditions it can be solved exactly for the bulk states
in terms of Hankel functions, see Appendix B. Taking only
one of the boundary conditions at the inner or outer surface
into account [which is valid under the condition (74), see
discussion above], we will also determine in Appendix B the
edge states localized at the inner surface for any radius R< and
the ones at the outer surface for large radius R̃> � 1. In both
cases, it turns out that edge states exist only for positive band
inversion parameter

δ > 0 , (80)

i.e., if the two bands overlap. This is standardly expected for
systems involving only band inversion and spin-orbit cou-
pling.

If both the inner and outer radius are large, i.e., R̃≷ �
1, we can neglect the last two terms of (76) for the deter-
mination of the edge states and approximate 2l/r̃ ≈ 2l/R̃≷
at the outer/inner surface. The Hankel functions can then
be replaced by plane waves and one can solve approxi-
mately the eigenvalue equation for the radial part of the edge
states

h̃l |ψ̄≷
n 〉 = ε̃

≷
l |ψ̄≷

n 〉 . (81)

This gives the following result for the dispersion

ε̃
≷
l ≈ ± 2ν

R̃≷
= ±2(l + f − 1/2)

R̃≷
, (82)

which differs by a sign factor for the outer/inner surface. The
radial part of the edge state wave function is independent of ν

and given by

ψ̄≷
n (r̃, sz ) ≈ 1√

2

(
1

±1

)
sz

�̄n(|r̃ − R̃≷|) , (83)

with r̃ ≶ R̃≷ and

�̄n(r̃) = e−r̃

√
λsoNn

{
sin[|δ̃ − 1|1/2 r̃] for δ̃ > 1
sinh[|δ̃ − 1|1/2 r̃] for 0 < δ̃ < 1

,

(84)

see Appendix B and Sec. IV C for details. Here, Nn is a
normalization factor given by

Nn = |δ̃ − 1|
4δ̃

, (85)

such that the normalization condition

±
∫ R̃≷

∓∞
dr̃

∑
sz=±

|ψ̄≷
n (r̃, sz )|2 = 1 (86)

is fulfilled. Importantly, the edge states are polarized with
respect to the x component of the transformed spin with eigen-
value sx = ±1 for the outer/inner surface. This is due to the
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FIG. 8. Spectrum (in units of Eso) at zero Zeeman field for a disk of radius R̃ = 40 as function of the deviation f − 1/2 from half-integer
flux, with δ̃ = 1, shown on two different scales. We use tight-binding numerics as described in Appendix D with t = a = 1, α = 2 and m = 1/2.
The spectrum is symmetric around zero energy (due to chiral symmetry) and symmetric around f − 1/2 [since time-reversal symmetry changes
the sign of the flux, see Eq. (26)]. For f = 1/2, all states are twofold degenerate due to SUSY. Inside the bulk gap set by δ̃, we find a set of
discrete edge states localized at the disk boundary labeled by the angular momentum l = 0, ±1, ±2 . . . with crossing linear dispersions given
by ε̃>

l = ±2(l + f − 1/2)/R̃ + O(1/R̃2) (where ± refers to the σx-value in the transformed basis), see Eqs. (82) and (75). In addition there are
two center states with a very steep slope due to their strong sensitivity to the boundary conditions, with ε ≈ ∓4δ̃( f − 1/2) for | f − 1/2| � 1,
see Eq. (87).

fact that sx is the chiral symmetry of the first two terms of
(76) which determine the edge state wave function in radial
direction.

Since the total Hamiltonian is given by H̄ (0)
f /Eso = σxhν ,

this gives rise to the two dispersions ±ε̃
≷
l as function of the

angular momentum l − 1/2 in z direction (at fixed flux). They
correspond to the two standard counter-propagating helical
edge modes (labelled by the helicity σx = ±1) as known from
the BHZ model [26]. The flux dependence is shown in Fig. 8
via a numerical study of the energies of all eigenstates for a
disk with radius R̃ = R̃> = 40 and zero hole radius R̃< = 0
(i.e., the flux is applied through an infinitesimal small hole),
with δ̃ = 1. The spacing between adjacent levels is not pre-
cisely given by the finite-size quantization 2/R̃ since O(1/R̃2)
corrections are present. However, besides this, the result of the
linear dispersion of the edge modes within the bulk gap set
by δ̃ is perfectly reproduced. In accordance with the twofold
degeneracy implied by SUSY, the two dispersions cross pre-
cisely at half-integer flux. At finite Zeeman field one obtains a
repulsion of adjacent levels (without changing the degeneracy
at half-integer flux due to SUSY) leading to a modified band
structure as function of the flux which changes drastically
when the Zeeman energy ẼZ becomes much larger than the
spacing 2/R̃, see Sec. IV C and Fig. 9. In this case, a surface
gap of the order of ẼZ opens up, hosting bound states localized
in addition in angular space.

For the special case ν = 0, i.e., for l = 0 and half-integer
flux f = 1/2, the Hamiltonian h0 is translational invariant,
i.e., one obtains for any hole radius R̃< the same energy ε̃<

l=0 =
0 and the same radial edge state wave function �̄n as for large
hole radius. The fact that the energy of the two ν = 0 states
must stay at zero follows also from symmetry arguments since
SUSY and chiral symmetry protect their twofold degeneracy
such that they can not split and must stay exactly at zero when
reducing the hole radius.

In contrast, the states at the inner surface at finite ν �= 0
have a strong flux dependence at small R̃< � 1 since they are
very sensitive to the boundary conditions. In Appendix B, we
find that all states at finite l �= 0 move out of the gap in the
limit of small hole radius. An exception is the dispersion of
the l = 0 center states at the inner surface which start with
zero energy at f = 1/2 (for any hole radius, see above) but
obtains a very steep slope as function of the deviation f − 1/2
of the flux from half-integer value which remains finite in the
limit R̃< → 0, see Fig. 8. For small | f − 1/2| � 1, we find
the result

ε̃<
l=0( f ) = −4δ̃( f − 1/2)√

|δ̃ − 1|

×
⎧⎨
⎩

arctan
√

δ̃ − 1 for δ̃ > 1
1
2 ln 1+

√
δ̃−1

1−
√

δ̃−1
for 0 < δ̃ < 1

. (87)

It shows that the center states are rather unstable against the
application of a flux away from half-filling. This is in contrast
to the topological states for large radius in the presence of a
weak magnetic field as discussed in the next section.

C. Weak Zeeman field and the effective surface Hamiltonian

We continue with a discussion of a weak Zeeman field

l̃2
B � 1 , (88)

and consider either the occurrence of localized states at the
outer or inner surface r̃ ≈ R̃≷ with a large radius

R̃ � 1 . (89)

Here, we use for convenience the short-hand notation R̃ ≡ R̃≷
for the outer or inner surface, respectively. Furthermore, we
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FIG. 9. Spectrum (in units of Eso) of a disk with radius R̃ = 40 as function of the deviation f − 1/2 from half-integer flux, with δ̃ = 1
and two values of the Zeeman term ẼZ = 1/l̃2

B = (a)1/4, (b)1/3, compare with Fig. 8 for EZ = 0. The surface gap is set approximately by
the Zeeman energy ẼZ above which the continuum of edge states extended in angular space starts, compare with the sketch of the double sine
potential in Fig. 2. For f = 1/2, all states are twofold degenerate due to SUSY with four states at zero energy corresponding to two center
states and two topological bound states at the disk boundary localized at ϕ ≈ 0 and ϕ ≈ π . The two center states with a very steep slope have
a strong flux dependence since they are very sensitive to the boundary conditions. In contrast, the two topological states at the outer boundary
are localized in angular space and rather insensitive to the boundary conditions, giving rise to a rather flat dispersion with decreasing slope for
increasing Zeeman field. For increasing Zeeman field, additional discrete edge states localized in angular space at the outer boundary appear
in the surface gap which are labeled by n = 1, 2, . . . , NB. At f = 1/2, their energy is approximately given by ε̃>

n = ±�̃W
√

n, with �̃W =
2
√

ẼZ/R̃ =
√

ẼZ/10, see Eqs. (128) and (118). Their number inside the surface gap can be estimated from NB ≈ (ẼZ/�̃W )2 = R̃ẼZ/4 = 10ẼZ ,
which gives roughly NB ≈ 2 and NB ≈ 3 for ẼZ = 1/4 and ẼZ = 1/3, respectively, in rough agreement with the numerical result. At f = 1/2
these states can be chosen as eigenfunctions of the SUSY operator and are localized either at ϕ ≈ 0 (with SUSY eigenvalue (−1)n+1) or at
ϕ ≈ π (with SUSY eigenvalue (−1)n), see Eqs. (133) and (134).

assume to be deep in the gapped phase

δ̃ � ẼZ = 1/l̃2
B . (90)

This assumption is essential in the present section since the
derivation is only valid if the bulk gap 
bulk = δ − EZ is much
larger than the surface gap 
surface ≈ EZ . Both the crossover
from the gapped to the Weyl phase at δ̃ ∼ ẼZ together with
the regime of the Weyl phase |δ̃| < ẼZ requires the treatment
of the energy shift δ and the Zeeman term on an equal footing
and will be described in the next section. Under these condi-
tions, we can approximate the Hamiltonian H̄1/2 first by the
leading order terms (56), defining an effective Hamiltonian in
normal direction to the surface

H̄n/Eso = σx
[( − ∂2

r̃ − δ̃
)
sz + 2i∂r̃ sy)

]
. (91)

Therefore the radial part of the bulk Hamiltonian can be
solved by plane waves eik̃r̃ leading to

H̄n,bulk (k̃)/Eso = σx[(k̃2 − δ̃)sz − 2k̃sy] . (92)

As a consequence, the bulk spectrum of the normal part is
given by

εk/Eso =
√

(k̃2 − δ̃)2 + 4k̃2 , (93)

giving rise to a bulk gap 
bulk/Eso = δ̃ for δ̃ < 2, consistent
with (18).

Any eigenstate ψ̄n of H̄n localized either at the outer or
inner surface r̃ ≈ R̃ ≡ R̃≷ can be written as an eigenstate of
σx multiplied by a state ψ̄n(r̃, sz ), with r̃ ≶ R̃, fulfilling the
boundary condition

ψ̄n(R̃, sz ) = 0 . (94)

To obtain these states, we consider a linear combination of
two bulk plane waves (multiplied with corresponding spinors)
with different k1,2 and finite imaginary part Im k1,2 ≶ 0 such
that the plane waves decay exponentially into the bulk. To
fulfill the zero boundary condition (94) for both sz = ±, this
is only possible if the two spinors are the same which is only
the case for zero energy εk = 0, see Appendix B for details.
Using (93) this leads to

k̃1,2 =
{

±
√

δ̃ − 1 + i for δ̃ > 1 � 1/l̃2
B

i(1 ±
√

1 − δ̃) for 1/l̃2
B � δ̃ < 1

(95)

for states localized at the inner surface, whereas for the ones
localized at the outer surface we have to replace k̃1,2 → −k̃1,2.
The eigenstate in normal direction localized at the outer/inner
surface is then given by

ψ̄≷
n (r̃, sz ) ∼

(
1

±1

)
sz

(eik̃1(r̃−R̃) − eik̃2(r̃−R̃) ) , (96)

which leads to Eq. (83) after normalization. From this result,
we get for the normal localization length ξ̃n = ξn/λso the
result

1

ξ̃n
=

{
1 for δ̃ > 1 � 1/l̃2

B

1 −
√

1 − δ̃ for 1/l̃2
B � δ̃ < 1

. (97)

The zero-energy solutions for the normal part have an
infinite degeneracy since they occur for any angle ϕ. The
degeneracy is lifted by the other ϕ-dependent parts (57) and
(58) of the Hamiltonian. Under the condition (90) that the bulk
gap is much larger than the surface gap, we can project the
total Hamiltonian (56)–(58) on the zero-energy solutions of
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the normal part. We find that in first order perturbation theory
the terms involving sy,z do not contribute since ψ̄

≷
n is an eigen-

state of sx. Furthermore, for R̃ � 1, we can neglect the second
term ∼r̃−2∂ϕ of (57) compared to the first term. Thus, after
projection and setting r̃ ≈ R̃, we obtain the following effective
surface Hamiltonian to determine the angular dependence of
the edge states

± H̄≷
t /Eso = σx

2

R̃
(−i∂ϕ ) + σy

1

l̃2
B

sin ϕ , (98)

Here, the spinor operator sx is replaced by ±1 in (98) since
ψ̄

≷
n is an eigenstate of sx with eigenvalue ±1. This sign

influences only the sign of the dispersion but not the eigen-
states. The total wave function localized at the outer or inner
surface is then a product of the solutions along the normal and
tangential direction

ψ̄≷(r̃, ϕ; σz, sz ) = ψ̄≷
n (r̃, sz ) ψ̄t (ϕ, σz ) , (99)

where ψ̄
≷
n is given by (83) and ψ̄t is an eigenstate of the

surface Hamiltonian (98) normalized according to∫ 2π

0
dϕ

∑
σz=±

|ψ̄t (ϕ, σz )|2 = 1 . (100)

The surface Hamiltonian has the form of a periodic Dirac
model with a potential term involving the normal component
of the Zeeman field. In Sec. V, we will see that the same result
is obtained for an arbitrary smooth surface. The first term
leads to a linear dispersion of two edge modes propagating
in opposite directions along the surface and crossing at zero
energy. The second term acts as a mass term leading to a
gap in the edge state spectrum of the order of the Zeeman
energy. Since the mass term changes sign at ϕ = 0, π , we
expect zero-energy topological bound states to appear at these
positions. From the fact that the mass term changes from
negative to positive values when crossing ϕ = 0 along the sur-
face, and vice versa for ϕ = π , we expect different chiralities
S̄ = −σz = ±1 for the zero-energy states localized at the two
positions ϕ = 0, π , respectively. The angular spread 
ϕ of
the topological states can be estimated by comparing the order
of magnitude of the two terms of the surface Hamiltonian (98).
This leads to 1/(R̃
ϕ) = 
ϕ/l̃2

B or


ϕ ≡ l̃B√
R̃

= lB√
Rλso

, (101)

which gives for the tangential localization length ξt the esti-
mate

ξ̃t = ξt/λso = R̃
ϕ =
√

R̃ l̃B . (102)

The angular spread is small compared to unity for large radius√
R̃ � l̃B ⇔ 
ϕ � 1 ⇔ ξ̃t � R̃ , (103)

which is the regime of well-localized states where the tangen-
tial localization length is much smaller than the circumference
of the surface. In this case, the derivation of the surface Hamil-
tonian is systematic in the sense that it includes all subleading
terms ∼1/ξ̃t beyond the leading order terms ∼O(1) present in

the normal Hamiltonian (91). This follows from the following
estimates of the various terms present in (57) and (58)

1

r̃2
∂2
ϕ ∼ 1

R̃2
ϕ2
∼ 1

ξ̃ 2
t

� 1

ξ̃t
, (104)

1

r̃2
∂ϕ ∼ 1

R̃2
ϕ
∼ 1

R̃ξ̃t
� 1

ξ̃t
, (105)

1

l̃2
B

sin ϕ ∼ 
ϕ

l̃2
B

∼ 1

ξ̃t
. (106)

A delicate issue is the Zeeman term in tangential direction
∼(1/l̃2

B) cos ϕ ∼ R̃/ξ̃ 2
t which, for ξ̃t � R̃, becomes larger than

the terms considered in the surface Hamiltonian. However,
since this term involves the Pauli matrix sy, it can contribute
only in second order perturbation theory (with bulk states of
energy ∼δ̃ ∼ O(1) as intermediate states) and therefore con-
tributes in order 1/l̃4

B to the surface Hamiltonian. To neglect
this contribution we need in addition the condition

1

l̃4
B

� 1

ξ̃t
⇔

√
R̃ � l̃3

B . (107)

This means that in case of strong localization the magnetic
field must be strong enough such that l̃B �

√
R̃ but weak

enough to guarantee (107). Otherwise, one enters the regime
of a strong Zeeman field discussed in Sec. IV D.

We note that the additional condition (107) is automatically
fulfilled for the case when the Zeeman field is so weak that
the wave function is delocalized in angular space such that

ϕ ∼ O(1) which happens for l̃B �

√
R̃ or ξ̃t ∼ R̃. In this

case, we have considered consistently all subleading terms
∼1/R̃ in the surface Hamiltonian, since the Zeeman term in
y-direction gives in second-order perturbation theory a con-
tribution ∼1/l̃4

B � 1/R̃2. In addition, for the opposite case
of strong localization 
ϕ � 1, we show in Sec. IV F, that
the tangential part of the Zeeman term can be included in
the radial problem and leads only to a change of the normal
localization length, without violating the validity regime of
the effective surface Hamiltonian. Therefore the additional
condition (107) is not very restrictive, and is only relevant for
the study of the extended edge states beyond the surface gap
in the regime of strong localization.

To visualize the emergence of localized states in potential
minima, it is instructive to square the surface Hamiltonian
leading to an effective model of a particle on a ring in a
periodic double sine potential

H̃W ≡ (H̄≷
t /Eso)2 = − 4

R̃2
∂2
ϕ + Ṽ −σz

W (ϕ) , (108)

where

Ṽ ±
W (ϕ) = (V ±

W (st )/Eso)2

= 1

l̃4
B

sin2(ϕ) ∓ 2

R̃ l̃2
B

cos(ϕ) (109)

are the two effective surface potentials (with dimension of
energy squared) sketched in Fig. 2 for the two chiral sectors
S̄ = −σz = ±1, plotted against the surface line element st =
Rϕ. As one can see there are two potential minima for each
chiral sector where localized states are trapped. The potential
maximum is given by 1/l̃4

B + 1/R̃2 which is approximately
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given by the Zeeman energy squared for large radius of the
surface. This shows that the potential term opens a surface
gap in the effective edge state Dirac model of the order of the
Zeeman energy with localized and discrete states in the gap
and a continuum of edge states above the surface gap. This
demonstrates the generation of localized bound states via a
second-order mechanism.

As one can see in Fig. 2 the lowest potential minimum is
located at ϕ = 0 for the chiral sector s = 1 and at ϕ = π for
s = −1. In this minimum, the lowest state is exactly at zero
energy and is nondegenerate for each chiral sector. In contrast,
all higher states are twofold degenerate for each chiral sector.
This leads to the supersymmetric form of the spectrum for
each chiral sector separately, which is consistent with the
exact SUSY properties discussed in Sec. III for the squared
Hamiltonian. In Sec. V B, we will also present the exact SUSY
properties of the periodic Witten model for any smooth and
mirror-symmetric surface.

Using (98) the topological state at zero energy with chiral-
ity S̄ = −σz = 1 follows from

ψ̄
(0)
t (ϕ, σz ) = �̄

(0)
t (ϕ)

1√
2

(
0
1

)
σz

, (110)

[
2

R̃
(−i∂ϕ ) − i

1

l̃2
B

sin ϕ

]
�̄t,1(ϕ) = 0 . (111)

The solution of the differential equation is given by (the
superindex indicates the localization at ϕ ≈ 0 which corre-
sponds to S = 1)

�̄
(0)
t (ϕ) = f0(ϕ) ≡ 1√

Nt
e

1
2
ϕ2 cos ϕ

, (112)

where 
ϕ = l̃B/
√

R̃ has been defined in (101) and the nor-
malization factor Nt is defined such that the normalization
condition (100) is fulfilled. For 
ϕ � 1, we find that the
state is localized close to ϕ ≈ 0 and, after expanding cos ϕ ≈
1 − ϕ2/2, we find the approximate Gaussian form

f0(ϕ) ≈ 1√√
2π
ϕ

e− 1
4 (ϕ/
ϕ)2

. (113)

Obviously, the state for positive chirality S̄ = −σz = 1 is sym-
metric in ϕ. This gives σz = −1, Pϕ = 1 and sx = ±1 for the
outer/inner surface according to (83). As a consequence, the
supersymmetry Ū1/2 = Pϕσzsx = ∓1 according to (61). This
leads precisely to the two right states at the outer and inner
surface shown in Fig. 3(a). The other two states with chirality
S = −1 follow from the application of the inversion symmetry
[see Eq. (38)] which, by using −�̄ = Pxσx according to (60),
leads to (here the superindex indicates the localization close
to ϕ ≈ π which corresponds to S = −1)

ψ̄
(π )
t (ϕ, σz ) = f0(ϕ − π )

1√
2

(
1
0

)
σz

, (114)

f0(ϕ − π ) = 1√
Nt

e
− 1

2
ϕ2 cos ϕ
, (115)

≈ 1√√
2π
ϕ

e− 1
4 [(ϕ−π )/
ϕ]2

. (116)

These two states at the outer and inner surface are local-
ized close to ϕ ≈ π and fulfill σz = 1, Pϕ = 1 and sx = ±1,
respectively. This leads to S = −1 and U1/2 = ±1, corre-
sponding to the two left states of Fig. 3(a).

To calculate the excited bound states of H̃W , we consider
the chirality sector S̄ = −σz = 1 and start with the bound
states localized close to ϕ ≈ 0. Expanding the double sine
potential Ṽ +

W (ϕ) shown in Fig. 2(a) around ϕ ≈ 0, we get from

(109) for 
ϕ = l̃B/
√

R̃ � 1

Ṽ +
W (ϕ) ≈ �̃2

W

4
ϕ̃2 − �̃2

W

2
, (117)

where we defined the Witten frequency �W for the double sine
potential in dimensionless units by

�̃W = �W /Eso = 2

R̃
ϕ
= 2√

R̃ l̃B
= 2

ξ̃t
, (118)

and ϕ̃ = ϕ/
ϕ, where 
ϕ = l̃B/
√

R̃ is the angular spread
defined in (101) and ξ̃t = R̃
ϕ is an estimation for the tan-
gential localization length according to (102). This gives for
the Hamiltonian (108) of the double sine model

H̃+
W = H̃W |σz=−1 ≈ �̃2

W

(−∂2
ϕ̃ + 1

4 ϕ̃2 − 1
2

)
, (119)

which is of harmonic oscillator form

H̃+
W = �̃2

W a†a , (120)

with the annihilation/creation operators defined by

a = ∂ϕ̃ + ϕ̃/2 , a† = −∂ϕ̃ + ϕ̃/2 . (121)

As a result, we find the eigenvalues

ẼW
n = �̃2

W n , n = 0, 1, 2, . . . , (122)

and the normalized eigenstates

fn(ϕ) = 1√
n!

(a†)n f0(ϕ) , (123)

where f0(ϕ) defined by (113) is the ground state of the har-
monic oscillator.

An analog result is obtained for the states localized close
to the minimum ϕ ≈ π , where we get

Ṽ −
W (ϕ) ≈ �̃2

W

4
(ϕ̃ − π )2 + �̃2

W

2
. (124)

This gives the same eigenstates (123) but the angle is shifted
by π and the eigenvalue is shifted by �̃2

W , compare with Fig. 2.
Finally, the eigenstates of the other chiral sector S̄ = −σz =
−1 follow from the ones of S̄ = −σz = 1 by shifting the angle
by π and taking the same eigenvalue.

From all eigenstates of H̃W = (H̄≷
t /Eso)2, one can con-

struct all eigenstates of H̄≷
t which is possible due to chiral

symmetry and since the Hamiltonian respects the periodic
boundary conditions. We start with the regime ϕ ≈ 0, where
we can approximately write for (98) in the σz basis:

± H̄≷
t /Eso ≈ �̃W

(
0 −ia

ia† 0

)
. (125)
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Obviously, there is a unique zero-energy state given by (the
superindex indicates the regime ϕ ≈ 0)

ψ̄
(0)
t (ϕ, σz ) = f0(ϕ)

(
0
1

)
σz

, (126)

which has chirality S̄ = −σz = 1 and agrees with (110) and
(112). The eigenstates with nonzero energy are given by

ψ̄
(0)
t,nη(ϕ, σz ) = 1√

2

(−iη fn−1(ϕ)
fn(ϕ)

)
σz

, (127)

with η = ±1 and n = 1, 2, . . . The corresponding energy
eigenvalue of H̄≷

t /Eso follows from

ε̃≷nη = ε≷nη/Eso = ±η �̃W
√

n . (128)

Here, we note that the first sign ±1 refers to the outer/inner
surface (or, equivalently, to the sign of sx of the normal part
of the wave function), and the second sign η refers to the
two eigenstates (127) resulting from the chiral symmetry of
H̄≷

t for each given surface. For the absolute value of the
eigenenergies, we get

|ε̃≷nη| = �̃W
√

n = 2

ξ̃t

√
n = 2√

R̃ l̃B

√
n . (129)

As expected, the energies scale with the inverse tangential
localization length (the normal localization length ξn given by
(97) does not appear since it is of the order of the spin-orbit
length). Furthermore, since only the squared Hamiltonian is
of harmonic oscillator form, they are proportional to

√
n.

For the eigenstates localized close to ϕ ≈ π , we apply the
inversion symmetry �̄ = −Pxσx [see Eq. (60)] to (126) and
(127). This does not change the energy but changes the states
to

ψ̄
(π )
t (ϕ, σz ) = f0(ϕ − π )

(
1
0

)
σz

(130)

for the zero-energy state [which has chirality S̄ = −σz = −1
and agrees with (114)], and

ψ̄
(π )
t,nη(ϕ, σz ) = 1√

2

(
fn(ϕ − π )

−iη fn−1(ϕ − π )

)
σz

(131)

for the states with nonzero energy.
The eigenfunctions with nonzero energy are no longer

eigenstates of the chiral symmetry S̄ = −σz but the states
with different sign of η (or different sign for the energy) are
transformed into each other by the chiral symmetry

σzψ̄
(0,π )
t,nη = −ψ̄

(0,π )
t,n,−η . (132)

The states are eigenstates of the SUSY operator since the
property fn(−ϕ) = (−1)n fn(ϕ) leads to

Pϕσz�̄
(0)
t,nη = −(−1)n�̄

(0)
t,nη , (133)

Pϕσz�̄
(π )
t,nη = (−1)n�̄

(π )
t,nη . (134)

Using Ū1/2 = Pϕσzsx from (61), we get the SUSY eigenvalue
u = sx(−1)n+1 and u = sx(−1)n for the states localized at ϕ ≈
0 and ϕ ≈ π , respectively, where sx = ±1 corresponds to the
outer/inner surface.

Qualitatively, all our findings are perfectly reproduced by
the numerical calculation of the spectrum of a disk with radius
R̃ = 40 for δ̃ = 1 and two values of the Zeeman energy ẼZ =
1/4, 1/3, as shown in Figs. 9(a) and 9(b) (here we use the
tight-binding version described in Appendix D). Compared to
the case of zero Zeeman field as shown in Fig. 8, the center
states behave quite similar and show a strong dependence on
the flux with a very steep slope. In contrast, for the states at
the boundary of the disk, it can be clearly seen that a surface
gap of the order of the Zeeman energy opens up, in which a
set of bound states with energies on the scale of �̃W appear.
The mass term does not induce a splitting of the degenerate
states at half-integer flux since SUSY protects the twofold
degeneracy. It rather leads to a level repulsion between ad-
jacent pairs pushing the states to higher energy. In contrast, a
splitting occurs at integer flux, where the twofold degeneracy
is not protected at finite Zeeman energy. The exponential
localization of the bound states in angular space is manifested
by the very small band width as function of the flux, whereas
the edge states extended in angular space with energy close
or above the surface gap have a band width ∼1/R̃ similar
to the case for zero Zeeman field. This clearly manifests the
semiclassical picture suggested by the double sine potential
shown in Fig. 2, hosting localized states of harmonic oscillator
form in the potential minima. We note that the energy scale
�̃W fulfils for

√
ẼZ � 1/

√
R̃ (which is equivalent to l̃B �

√
R̃

or 
ϕ � 1) the relation

2

R̃
� �̃W = 2

(
ẼZ

R̃

)1/2

� ẼZ . (135)

We note that the two inequalities are equivalent since the ratios
are the same

�̃W

2/R̃
= 2

ẼZ

�̃W
. (136)

The condition �̃W � ẼZ ensures that the number of bound
states within the surface gap becomes large, whereas the re-
lation 2/R̃ � �̃W guarantees that the spacing of the localized
bound states within the surface gap is much larger than the
spacing 1/R̃ of the extended states above the surface gap,
see also the sketch of the spectrum in Fig. 1(b). This quali-
tative tendency is demonstrated by comparing Fig. 9(a) with
Fig. 9(b), where the Zeeman term increases from ẼZ = 1/4 to
ẼZ = 1/3. We note that the radius R̃ = 40 used in those fig-
ures is not large enough to fulfill (135) with clearly separated
scales. Therefore the scaling of the energies ε̃>

n ≈ �̃W
√

n of
the localized bound states with

√
n can not be precisely seen,

only the bound state for n = 1 has approximately the energy
�̃W . The reason is that the spacing between the levels becomes
smaller when their squared energy is close to the maximum
∼Ẽ2

Z of the double sine potential shown in Fig. 2. Only for
�̃W significantly smaller than ẼZ , one can demonstrate the√

n-scaling, but the huge values of R̃ needed to fulfill this re-
quirement are outside the scope of the numerical possibilities.

The particle on a ring in a double sine potential is a special
supersymmetric model in one dimension, occurring here for
the special case of a surface in the form of a ring with a large
radius. The analysis will be generalized to any smooth surface
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in Sec. V where we will see that generic periodic Witten
models with supersymmetric properties can be realized.

Furthermore, we note that the two topological bound states
at the inner surface are exactly at zero energy if the radius R̃>

of the outer surface tends to infinity. In this case, the SUSY
is unbroken in an exact sense and two states exactly at zero
energy appear in the gap. Since the degeneracy of these two
states follows from SUSY, they can not split for any radius
R̃< of the inner hole. Therefore, even for zero hole radius
R̃< = 0, the two center states discussed in Sec. IV B for zero
magnetic field will remain at zero energy in the presence of a
finite magnetic field.

Concerning the stability of the topological bound states
against deviations from half-integer flux, degenerate states at
opposite positions of the same surface with different eigenval-
ues of U1/2 will get coupled and split for f �= 1/2. However,
under the condition (103) of small angular spread, the orbital
overlap of the two states is exponentially small and the split-
ting is negligible. This is in contrast to the two zero-energy
center states at small hole radius which are unstable against
the application of a flux away from half-filling, see the discus-
sion at the end of Sec. IV B.

D. Strong Zeeman field

For a strong Zeeman field, where l̃B can approach O(1),
and for the discussion of the crossover to the Weyl phase
with δ̃ ∼ 1/l̃2

B, we try to solve the differential equations (72)
again with the help of clearly separated length scales. De-
noting the localization lengths of the topological states in
normal/tangential direction by ξ̃n/t (in units of the spin-orbit
length λso), we assume

O(1) ∼ ξ̃n � ξ̃t = R̃
ϕ =
√

R̃ l̃B � R̃ . (137)

Here, we have assumed that the spread 
ϕ in angular direc-
tion is of the same order as we have found it in Eq. (101)
for the case of a weak Zeeman field, leading to the same form
(102) for the tangential localization length. This assumption is
also fulfilled for the regime l̃B ∼ O(1) as we will show below.
The same holds for the normal localization length which,
however, will get an additional dependence on the Zeeman
field but roughly stays of the order of the spin-orbit length
(except at phase transition lines where the normal localization
length can diverge). We note that the conditions (137) are
equivalent to the following condition for the magnetic length:

1√
R̃

� l̃B �
√

R̃ , (138)

which can always be fulfilled for large enough radius in the
thermodynamic limit for any size of the Zeeman field. The
condition l̃B �

√
R̃ of strong localization is also essential for

the consistency of the following arguments to neglect various
terms in the differential equations (in contrast to the previous
section where this condition was not needed). However, we
note that this condition is anyhow essential for the stability
of the states against small deviations from half-integer flux as
discussed at the end of the previous section. Furthermore, we
will discuss at the end of this section that the conclusions for
the existence of zero-energy states do not change when

√
R̃

becomes of the same order or even smaller than l̃B.

Assuming in addition (to be checked below) that the topo-
logical states for S = 1 are localized at ϕ ≈ 0 (for S = −1 we
get a localization at ϕ ≈ π ) as for weak Zeeman field, we can
estimate the various terms in the differential equations (72) as
follows:

∂r̃ ∼ 1

ξ̃n
∼ O(1) ,

1

r̃
∂ϕ ∼ 1

ξ̃t
∼ 1√

R̃ l̃B
, (139)

1

l̃2
B

cos ϕ = 1

l̃2
B

+ O

(

ϕ2

l̃2
B

)
= 1

l̃2
B

+ O

(
1

R̃

)
, (140)

1

l̃2
B

sin ϕ ∼ 
ϕ

l̃2
B

∼ 1√
R̃ l̃B

. (141)

Neglecting consistently all terms of O(1/R̃) and keeping only
those of O(1) and O(1/

√
R̃), the differential equations (72)

can be approximated by

(−i∂r̃ − k̃(u)
1

)( − i∂r̃ − k̃(u)
2

)
χ̂

(±u)
± = ±2iu

R̃
∂ϕχ̂

(∓u)
∓ , (142)

where

χ
(u)
± (r̃, ϕ) = χ̂

(u)
± (r̃, ϕ) f0(ϕ) , (143)

k̃(u)
1/2 = iu ±

√
δ̃ − 1 − u/l̃2

B ,

= iu ±
√∣∣δ̃ − 1 − u/l̃2

B

∣∣ {
1 for δ̃ > 1 + u/l̃2

B

iu for δ̃ < 1 + u/l̃2
B

,

(144)

and f0(ϕ) has been defined in (112) which can be approxi-
mated by the Gaussian form (113) for 
ϕ � 1.

The differential equations (142) can be solved exactly by a
ϕ-independent function for χ̂

(u)
+ and a linear dependence on ϕ

for χ̂
(u)
−

χ̂
(u)
+ (r̃, ϕ) = χ̂

(u)
+,n(r̃) , χ̂

(u)
− (r̃, ϕ) = (ϕ/
ϕ) χ̂

(u)
−,n(r̃) .

(145)

The linear dependence for χ̂
(u)
− on ϕ is needed to fulfill the

antisymmetry property (70). We disregard here the fact that
the linear function is not periodic since the angular spread is
assumed to be very small. For χ̂

(u)
±,n, we find two solutions. The

first one is obtained by setting χ̂
(u)
−,n = 0 and solving( − i∂r̃ − k̃(u)

1

)(−i∂r̃ − k̃(u)
2

)
χ̂

(u)
+,n = 0 . (146)

Up to a normalization constant, the solution of this differential
equation with zero boundary condition at r̃ = R̃ is given by

χ̂
(u)
+,n(r̃) ∼ eik̃(u)

1 (r̃−R̃) − eik̃(u)
2 (r̃−R̃) , (147)

which is only a valid solution for the inner/outer surface if
both k̃(u)

1/2 have the same positive/negative sign for the imagi-
nary part, respectively. Using (144), this is only the case for

δ̃ > u/l̃2
B (148)

and u = ±1 corresponds to states localized at the inner/outer
surface, respectively. As a consequence, we find for δ̃ > 1/l̃2

B a
state with chirality s = 1 and SUSY u = 1 at the inner surface,
and for δ̃ > −1/l̃2

B a state with chirality s = 1 and SUSY
u = −1 at the outer surface, both localized at ϕ ≈ 0. This
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is consistent with Fig. 3, where we see that the zero-energy
state at the outer surface persists in the Weyl phase whereas
the one at the inner surface disappears (and is replaced by
another antisymmetric one at the outer surface, see below for
the second solution of the differential equations). Inserting
(144), we can write the two solutions also as

χ̂
(u)
+,n(r̃) = 1√

λsoN (u)
e−u(r̃−R̃)

×
{

sin[q(u) (r̃ − R̃)] for δ̃ > 1 + u/l̃2
B

sinh[q(u) (r̃ − R̃)] for u/l̃2
B < δ̃ < 1 + u/l̃2

B
,

(149)

with

q(u) = ∣∣δ̃ − 1 − u/l̃2
B

∣∣1/2
, (150)

and the normalization factor

N (u) =
∣∣δ̃ − 1 − u/l̃2

B

∣∣
4
∣∣δ̃ − u/l̃2

B

∣∣ , (151)

to get ± ∫ ±∞
R̃ dr̃|χ̂ (±)

+,n (r̃)|2 = 1/λso, due to the radial part of
the normalization condition (71). These two states are con-
sistent with the corresponding ones for weak Zeeman field
in the gapped phase, compare with Eq. (83). However, for
strong Zeeman field, one obtains a significant dependence of
the normal localization lengths ξ̃ (su)

n (labelled by chirality s
and SUSY u) on the Zeeman field, in contrast to the form
(97) for weak Zeeman field. For the state at the inner surface
with s = 1 and u = 1 (only present for δ̃ > 1/l̃2

B in the gapped
phase), we get [the same holds for s = −1 and u = −1 since it
results from applying inversion symmetry according to (38)]

1

ξ̃<
n

≡ 1

ξ̃
(11)
n

= 1

ξ̃
(−1,−1)
n

=
{

1 for δ̃ > 1 + 1/l̃2
B

1 −
√

1 + 1/l̃2
B − δ̃ for 1/l̃2

B < δ̃ < 1 + 1/l̃2
B

.

(152)

At δ̃ = 1/l̃2
B, the normal localization length diverges and the

states move over to the outer surface (see below). For the state
at the outer surface with s = 1 and u = −1 (present for δ̃ >

−1/l̃2
B both in the gapped and in the Weyl phase), we find (the

same for s = −1 and u = 1)

1

ξ̃>
n

≡ 1

ξ̃
(1,−1)
n

= 1

ξ̃
(−1,1)
n

=
{

1 for δ̃ > 1 − 1/l̃2
B

1 −
√

1 − 1/l̃2
B − δ̃ for − 1/l̃2

B < δ̃ < 1 − 1/l̃2
B

.

(153)

For this state, the localization length diverges for δ̃ = −1/l̃2
B

at the crossover from the Weyl phase to the nontopological
gapped phase, where all topological states disappear. In par-
ticular, the dependence of the normal localization length of the
state at the inner surface on the Zeeman field is quite useful
since it allows for a tunability of the interaction between
two topological states localized at different holes, possibly
of interest for topological engineering, see the discussion in
Sec. VI B.

The second possibility to solve the differential equa-
tions (142) is to take a finite antisymmetric part χ̂

(u)
− (r̃, ϕ) =

ϕχ̂
(u)
−,n(r̃) which, due to ∂ϕχ̂

(u)
+ = 0, has to fulfill

(−i∂r̃ − k̃(−u)
1

)(−i∂r̃ − k̃(−u)
2

)
χ̂

(u)
−,n = 0 . (154)

In addition, the second equation of (142) requires

(−i∂r̃ − k̃(u)
1

)(−i∂r̃ − k̃(u)
2

)
χ̂

(u)
+,n = iu

2

R̃
χ̂

(u)
−,n . (155)

Whereas (154) can be solved analog to (147) by

χ̂
(u)
−,n(r̃) ∼ eik̃(−u)

1 (r̃−R̃) − eik̃(−u)
2 (r̃−R̃) , (156)

the solution of (155) is more subtle. Since χ̂
(u)
−,n contains two

exponentials involving k̃(−u)
1,2 , the same must hold for χ̂

(u)
+,n.

However, if only those two exponentials were present for
χ̂

(u)
+,n, zero boundary conditions at r̃ = R̃ require the same

form (156) for both χ̂
(u)
±,n which does not solve Eq. (155).

Therefore a third exponential is needed for χ̂
(u)
+,n which does

not contribute to (155), i.e., involves either k̃(u)
1 or k̃(u)

2 . Since
all three exponentials must decay, we need that the imaginary
parts of all three momenta involved in χ̂

(u)
+,n must have the

same sign for the imaginary part. Using

sign Imk̃(u)
1/2 = u

{
1 for δ̃ > u/l̃2

B
±1 for δ̃ < u/l̃2

B
, (157)

we find that this is only possible in the Weyl phase

|δ̃| < 1/l̃2
B (158)

by choosing three exponentials involving k̃(−1)
1/2 and k̃(1)

2 , where
all three imaginary parts of the momenta are negative, cor-
responding to a state at the outer surface with s = 1 and
u = 1. The solution for χ̂

(1)
+,n solving (155) and fulfilling zero

boundary conditions is then given by

χ̂
(1)
+,n(r̃) ∼ c1(eik̃(−1)

1 (r̃−R̃) − eik̃(1)
2 (r̃−R̃) )

+ c2(eik̃(−1)
2 (r̃−R̃) − eik̃(1)

2 (r̃−R̃) ), (159)

with

(
k̃(−1)

1/2 − k̃(1)
1

)(
k̃(−1)

1/2 − k̃(1)
2

)
c1/2 = ±i

2

R̃
. (160)

Since both c1/2 ∼ 1/R̃ we can neglect χ̂
(1)
+ ∼ 1/R̃ compared

to χ̂
(1)
− ∼ 
ϕ ∼ l̃B/

√
R̃ for l̃B � 1/

√
R̃. Therefore, although

χ̂
(1)
+ is important for the discussion of the existence of a

solution, it can be neglected finally. What remains is the state
χ̂

(1)
−,n which, according to (156), is given by the state (149) with

u = −1

χ̂
(1)
−,n(r̃) = χ̂

(−1)
+,n (r̃) θ

(
1/l̃2

B − ∣∣δ̃∣∣) , (161)

with the additional constraint that we are in the Weyl phase.
This gives for the normal localization length of the anti-
symmetric state at the outer surface in the Weyl phase the
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result

1

ξ̃
(antisymm)
n

=
{

1 for 1/l̃2
B > δ̃ > 1 − 1/l̃2

B

1 −
√

1 − 1/l̃2
B − δ̃ for − 1/l̃2

B < δ̃ < 1 − 1/l̃2
B

,

(162)

which is identical to the normal localization length ξ̃>
n of the

states at the outer surface with s = 1 and u = −1 or s = −1
and u = 1, see Eq. (153).

The existence of two additional antisymmetric states with
s = u = ±1 at the outer surface in the Weyl phase is quite
special. As sketched in Fig. 3 these states have a strong or-
bital overlap with the states s = −u = ±1. This makes these
states rather unstable against small perturbations violating
chiral symmetry and SUSY (such that states with the same
chirality and different SUSY eigenvalues can be coupled via
the Hamiltonian). Therefore, although the Weyl phase is a
regime of theoretical interest, concerning applications one
should study the gapped topological phase δ̃ > 1/l̃2

B, where all
topological states are localized at clearly separated positions
for 
ϕ = l̃B/

√
R̃ � 1 such that weak perturbations violating

symmetries have only an exponentially small effect, see also
the discussion in Sec. VI A.

Finally, we comment on the case when the Zeeman field
is very weak such that

√
R̃ becomes of the same order or

even much smaller than the magnetic length l̃B. Since this
happens first for the inner surface R̃ = R̃<, we discuss the case
for a hole in an infinite system. For

√
R̃ � l̃B � R̃, we can

still neglect the terms ∼1/R̃2 in the differential equations but
can no longer expand the term ∼(u/l̃2

B) cos ϕ around ϕ ≈ 0
since 
ϕ ∼ O(1). As a result, one obtains precisely the same
differential equations (142) but k̃(u)

1/2(ϕ) obtains an angular
dependence via

k̃(u)
1/2(ϕ) = iu ±

√
δ̃ − 1 − (

u/l̃2
B

)
cos ϕ . (163)

This has the consequence that we find the same zero-energy
solution (147) [up to the angular dependence via k̃(u)

1/2(ϕ)] on
the hole surface (i.e., u = 1) provided that the condition

δ̃ >
1

l̃2
B

cos ϕ (164)

is fulfilled, compare with Eq. (148). In the TP δ̃ > 1/l̃2
B, this

is fulfilled for all angles and we obtain a zero-energy solution
on the hole surface. In the NTP δ̃ < −1/l̃2

B, this condition
can never be fulfilled and no zero-energy solution can exist.
Finally, in the WP |δ̃| < 1/l̃2

B, the condition can be only ful-
filled for a certain angle interval but there is always a critical
angle defined by δ̃ = (1/l̃2

B) cos ϕc, where the normal local-
ization length tends to infinity. Therefore, for all angles with
|ϕ| < |ϕc|, a localized solution does not exist and the state is
not a true bound state but belongs to the bulk spectrum. As a
consequence, zero-energy topological states can not exist on
the inner surface in the WP for any size of the Zeeman field.

That a zero-energy topological state can not exist in the
WP on the hole surface can also be derived in an alternative
and rigorous way for any hole radius. First of all we know

that any outer surface infinitely away from the hole will host
four zero-energy states in the WP as derived above for large
enough outer radius

√
R̃> � l̃B. Since these states do not care

about the size of the inner surface (provided that R̃> − R̃< �
1 is not violated), it is impossible that by reducing the inner
radius R̃< two of the outer states move to the inner surface.
In addition, we have shown that the inner surface does not
host any zero-energy state in the WP for large enough inner
radius

√
R̃< � l̃B. For these two reasons, the hole surface will

not host zero-energy states when reducing the inner radius,
even not for the extreme case R̃< = 0. Vice versa one can
also argue that if two zero-energy states exist at the inner
surface for small enough radius then they can not go away by
increasing R̃< since SUSY and chiral symmetry do not allow
for a splitting of the two states. This leads to a contradiction
since, for large enough radius

√
R̃< � l̃B, they must go away

as derived above. Indeed, in the Supplemental Material [49],
we show numerical results for center states at zero hole radius
R̃< = 0 as function of the outer radius R̃> in the Weyl phase
at weak Zeeman field where we confirm that the center states
with s = u = ±1 move indeed to the outer surface if the radius
R̃> is large enough such that

√
R̃> exceeds significantly l̃B.

E. Summary for topological states and numerical results

To summarize the results of the previous section, we have
found under the condition 1/

√
R̃ � l̃B �

√
R̃ the following

zero-energy topological states with chirality s and SUSY u

ψsu = 1√
r

U W X ψ̄su , (165)

where the transformations U , W , and X are given by (49),
(50), and (51), respectively. A sign change of s and u corre-
sponds in the transformed basis to a sign change of x and σz

ψ̄−s,−u(r̃, ϕ; σz, sz ) = ψ̄su(r̃, ϕ + π ; −σz, sz ) . (166)

Defining the normal part of the transformed wave function at
the inner/outer surface by χ̂

(±1)
+,n (r̃), as given by Eq. (149), we

find in the TP for s = 1 two states localized at the inner/outer
surface close to ϕ ≈ 0

ψ̄1,±1(r̃, ϕ; σz, sz ) =
(

0
1

)
σz

1√
2

(
1

∓1

)
sz

χ̂
(±1)
+,n (r̃)

× 1

(2π )1/4(
ϕ≶)1/2
e− 1

4 (ϕ/
ϕ≶ )2
,

(167)

with 
ϕ≶ = l̃B/

√
R̃≶. The corresponding states with chirality

s = −1 localized close to ϕ ≈ π follow from (166). In the
WP, the two states at the outer surface with s = −u = ±1
remain, but the states at the inner surface with s = u = ±1
are replaced by the two antisymmetric states in angular space
at the outer surface

ψ̄11(r̃, ϕ; σz, sz ) =
(

0
1

)
σz

1√
2

(
1
1

)
sz

χ̂
(−1)
+,n (r̃)

× ϕ/
ϕ>

(2π )1/4(
ϕ>)1/2
e− 1

4 (ϕ/
ϕ> )2
. (168)
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FIG. 10. (a) The topological states
∑

σz ,sz
|ψ̄su(x̃, ỹ; σz, sz )|2 as function of x̃ = x/λso and ỹ = y/λso in continuum numerics for a disk with

radius R̃> = 30, l̃B = 2, and various values of δ̃. Two upper panels of (b): A comparison of the continuum numerics for R̃> = 30, δ̃ = 1,
and l̃B = 2 to the analytical result (169) for s = 1 and u = −1 at the outer surface in the TP. Two lower panels of (b) a comparison of the
tight-binding numerics for R̃> = 60, δ̃ = 0, and l̃B = 2 to the analytical result (171) for s = 1 and u = 1 at the outer surface in the WP. In the
two left panels we show various cuts for fixed ϕ as function of R̃> − r̃ and use the normalization to F>

± (ϕ) as given by Eq. (170) and (172) for
the upper/lower panel. In the two right panels, we show various cuts for fixed r̃ as function of ϕ and use the normalization to |χ̂ (−1)

+,n (r̃)|2 as
given by Eq. (149). The black solid lines in the left/right panels are the theoretical results for the radial/angular part to which all cuts should
collapse.

together with ψ̄−1,−1(r̃, ϕ; σz, sz ) = ψ̄11(r̃, ϕ + π ; −σz, sz )
according to (166).

In continuum numerics, the topological states ψ̄su in the
transformed basis are shown in Fig. 10(a) for a disk with no
hole and radius R̃> = 30 at half-integer flux both in the TP
and WP for various values of δ̃ and fixed l̃B = 2. Since the
spinor structure agrees perfectly with the theoretical results
we show only the square of the wave function averaged over
the spinor labels. In the TP, this gives from (167) for the states
with s = 1 at the inner/outer surface∑

σz,sz

|ψ̄1,±1(r̃, ϕ; σz, sz )|2 = ∣∣χ̂ (±1)
+,n (r̃)

∣∣2
F≶

+ (ϕ) , (169)

F≶
+ (ϕ) = e− 1

2 (ϕ/
ϕ≶ )2

(2π )1/2
ϕ≶
. (170)

In the WP, we get the same result for u = −1 at the outer
surface but, for u = 1, we have to use the result (168) for the
antisymmetric state at the outer surface∑

σz,sz

|ψ̄11(r̃, ϕ; σz, sz )|2 = ∣∣χ̂ (−1)
+,n (r̃)

∣∣2
F>

− (ϕ) , (171)

F>
− (ϕ) = (ϕ/
ϕ>)2 F>

+ (ϕ). (172)

A comparison of the analytical and numerical results for
the topological states is shown in Fig. 10(b). The agreement is
quite satisfactory although the condition 1/

√
R̃ � l̃B �

√
R̃

is only approximately fulfilled. The analytical results predict

a factorization in the thermodynamic limit into a radial and
angular part. Therefore one expects the numerical result to
be approximately independent of ϕ/r̃ when normalizing to
the angular/radial part [as shown in the left/right panels of
Fig. 10(b)]. This is confirmed in the two upper panels of
Fig. 10(b) for the state ψ̄1,−1 in the TP for δ̃ = 1 and l̃B = 2.
One can see that all cuts of the left/right panel at fixed ϕ/r̃
fall almost on top of each other and agree with the theoretical
results. For this comparison, we used the continuum numerics
and found already a good agreement for a rather small disk ra-
dius R̃> = 30. For the antisymmetric state ψ̄1,1 in the WP for
δ̃ = 0 and l̃B = 2, we needed a larger radius R̃> = 60 to find a
good agreement, see the two lower panels of Fig. 10(b). These
data have been obtained by using the tight-binding numerics.
In the Supplemental Material [49], we consider also a Corbino
disk with outer radius R̃> = 45 and hole radius R̃< = 20 by
using the tight-binding numerics and find in the TP in addition
a good agreement of the numerical and analytical results for
the states at the inner surface.

Concerning the spinor dependence of the topological
states, we see from the above formulas that the states at the
outer/inner surface for chirality s have the following spinor
dependence in the transformed basis

σz = −s , sx = ±1. (173)

In the original basis, this means by reversing the unitary trafos
U , X , and W , as defined in Eqs. (53), (54), and (55), that we
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get a strong correlation between the spin and orbital part of
the spinor degrees of freedom given by

sz = sσx , sr = ±σy , (174)

where sr = er · s denotes the spin in radial direction.

F. Validity range of effective surface Hamiltonian

In this section, we extend the validity range of the effective
surface Hamiltonian (98) derived in Sec. IV C; for the case
of weak Zeeman field to the same regime (138), we used in
Sec. IV D to discuss the topological states at strong Zeeman
field. Besides the condition (138), we assume in addition that
the surface gap 
surface ≈ EZ is below or of the order of the
bulk gap, such that the complete parameter regime is defined
by

1√
R̃

� l̃B �
√

R̃ , EZ � 
bulk. (175)

In this regime, we aim at calculating all localized bound states
well below the surface gap which have an energy of the order
of the Witten frequency

�̃W = 2

ξ̃t
= 2ẼZ
ϕ � EZ � 
bulk , (176)

which is well below the bulk gap, such that first order pertur-
bation theory will be sufficient to treat the angular part of the
Hamiltonian.

To derive the effective surface Hamiltonian, it is needed to
treat the normal component of the Zeeman term

H̄Z,n/Eso = σysxẼZ sin ϕ ∼ ẼZ
ϕ (177)

as a perturbation on the same footing as the angular part of
the spin-orbit interaction which is ∼1/(R̃
ϕ) ∼ 1/ξ̃t . This
requires

1

ξ̃t
= ẼZ
ϕ � 1. (178)

On the other hand, the tangential component of the Zeeman
term is given by

H̄Z,t/Eso = σysyẼZ cos ϕ

= ηϕσysyẼZ + O(ẼZ
ϕ2) , (179)

where ηϕ = ±1 if one considers the bound states localized
around ϕ = 0, π , respectively. It can be approximated by the
first leading term for strong localization since the correction
is of order ẼZ
ϕ2 ∼ 1/R̃ and negligible against the other
terms of the surface Hamiltonian. Taking the leading term
together with the normal part of the Hamiltonian, we can
split the Hamiltonian H̄1/2 ≈ H̄n + H̄t into a normal and tan-
gential part, thereby including consistently all terms of order
H̄n/Eso ∼ O(1) and H̄t/Eso ∼ O(1/

√
R̃), see the detailed dis-

cussion in Eqs. (139)–(141). According to Eqs. (91) and (98),
we obtain

H̄n/Eso = σx
{(−∂2

r̃ − δ̃
)
sz + 2i∂r̃ sy

} + ηϕσysyẼZ

= σx
{[−∂2

r̃ − (δ̃ + ηϕsxS̄EZ )
]
sz + 2i∂r̃ sy

}
, (180)

H̄t/Eso = sx

{
σx

2

R̃
(−i∂ϕ ) + σyẼZ sin ϕ

}
, (181)

where S̄ = −σz is the chiral symmetry in transformed basis
[see Eq. (59)], and we still include sx in H̄t at this stage (like
it occurs in the Hamiltonian).

Since H̄t is an order 1/ξ̃t smaller than H̄n, we first solve for
the boundary states of H̄n. It has the same form as the normal
Hamiltonian (91) without Zeeman field, but the band inversion
parameter is shifted by

δ̃ → δ̃ + ηϕsxS̄EZ . (182)

As a consequence, for δ > EZ , we find the same two zero-
energy boundary states of H̄n with chirality s = −σz = ±1
and polarization sx = ±1 for the states at the outer/inner
surface, with a wave function given analog to (83) and (84)
by

ψ̄≷
n,s(r̃, σz, sz ) = δσz,−s√

2

(
1

±1

)
sz

�̄≷
n,s(|r̃ − R̃≷|) , (183)

with

�̄≷
n,s(r̃) = �̄n(r̃)|δ→δ±s ηϕEZ . (184)

This leads precisely to the two different normal localization
lengths ξ

≷
n , as given by Eqs. (153) and (152) for the bound-

ary states at the outer/inner surface in the topological phase,
respectively.

In the next step, one considers H̄t as a perturbation to
calculate all localized bound states with energies of the order
of the Witten frequency which is much smaller than the bulk
gap according to Eq. (176), such that first order perturbation
theory is sufficient. Due to chiral symmetry, only the nondi-
agonal matrix element

H eff
surface/Eso = 〈ψ̄≷

n,s|Ĥt/Eso|ψ̄≷
n,−s〉

= ±λ≷
{
σx

2

R̃
(−i∂ϕ ) + σyẼZ sin ϕ

}
(185)

enters for the effective surface Hamiltonian, where we have
inserted the polarization sx = ±1 of the bound states at the
outer/inner surface and defined the matrix element

λ≷ = 〈�̄≷
n,s|�̄≷

n,−s〉 , (186)

which is independent of s = ±1 and only rescales the Witten
frequency. As a consequence, up to this trivial rescaling factor,
we obtain the same effective surface Hamiltonian as for weak
Zeeman field.

In summary, we have found that the universal low-energy
theory in terms of the effective surface Hamiltonian (185) can
be used for the calculation of all localized bound states well
below the surface gap, provided that the two conditions stated
in (175) are fulfilled. We emphasize that these conditions can
be easily fulfilled by choosing the radius R large enough and
by staying not too close to the phase transition. Therefore the
universal low-energy model can be used for arbitrary spin-
orbit interaction, even including the regime of weak spin-orbit
Eso � EZ or λso � lB.

G. Phase diagram and comparison to numerical results

In this section, we state the phase diagram in terms of the
Witten index based on the analytical results of Sec. IV A,
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FIG. 11. The phase diagram at half-integer flux f = 1/2 in terms
of the Witten index nW counting the number of zero-energy topolog-
ical states for (a) a hole with radius R̃< in an infinite system and (b) a
Corbino disk with outer/inner radius R̃≷.

together with a comparison to numerical results. Here, the
Witten index nW denotes the number of zero-energy states or,
to be more general for a large but finite system, counts the
number of states with exponentially small energies which tend
to zero when increasing the system size (see the discussion
at the end of Sec. III). Moreover, in the Weyl phase, where
the bulk gap is zero, we count only topological bound states
at zero energy but not a possible bulk state at zero energy.
The Witten index is a standard index in supersymmetric sys-
tems distinguishing broken from unbroken SUSY, see, e.g.,
Refs. [37–39], playing here the role of the topological invari-
ant in the presence of SUSY.

We discuss here the most interesting case close to the
SUSY point of half-integer flux f = 1/2 and the case of a
Corbino disk with outer/inner radius R̃ ≡ R̃≷ (with R̃> −
R̃< � 1) in the regime where the magnetic length fulfils the
condition (138)

1√
R̃

� l̃B �
√

R̃ (187)

for both R̃ = R̃> and R̃ = R̃<. As discussed in Sec. IV D,
this is a well-defined limit for large R̃ where the tangential
localization length is much larger than the normal one (the
first condition 1/

√
R̃ � l̃B) and where the tangential local-

ization length is much smaller than the circumference (i.e.,
small angular spread, the second condition l̃B � R̃). As a
result, the topological bound states are well-localized at the
positions shown in Fig. 3 with an exponentially small overlap,
leading to stability against small deviations from half-integer
flux or other small perturbations violating chiral symmetry or
SUSY (like, e.g., weak disorder), see the detailed discussion
in Sec. VI A.

A sketch of the phase diagram is shown in Fig. 11 for (a) a
hole in an infinite system (i.e., infinite outer radius R̃> = ∞)
and (b) a Corbino disk. For a hole in an infinite system we
find two topological bound states (nW = 2) in the topological
gapped phase (TP) and no topological bound states (nW = 0)
in the Weyl phase (WP) and the nontopological gapped phase
(NTP). The normal localization length ξ̃n of the two states
in the TP is given by (152) which diverges at the crossover

line δ̃ = 1/l̃2
B between TP and WP. For a Corbino disk, two

additional topological bound states appear in the TP at the
outer surface (nW = 4). Their ξ̃n is given by (153) which
does not diverge at the crossover to the WP phase. These
two topological bound states persist in the WP and disappear
with a diverging ξ̃n at the crossover between WP and NTP.
In addition, two further topological states with the same ξ̃n

appear in the WP at the outer surface (such that nW = 4 in
the WP). They are special in the sense that their ξ̃n does
not diverge at the crossover between WP and TP but they
disappear in the TP at the outer surface and are replaced by
the two topological states at the inner surface which have a
diverging ξ̃n at the crossover. Thus, at the crossover between
TP and WP, two of the topological states change their position
(from inner to outer surface) and change from a diverging to
a finite ξ̃n. Up to our knowledge this has not been found for
any other topological system and seems to be a special feature
generated at the crossover between a gapped topological and
a gapless Weyl phase.

In Fig. 12(a), we show the numerical results for the phase
diagram for a Corbino disk with outer radius R̃> = 30 and
inner radius R̃< = 10. To exhibit the different phase regions
we plot in logarithmic scale the lowest absolute energy |ε̃0| =
|ε0|/Eso. Due to chiral symmetry and SUSY this energy cor-
responds to four states consisting of two pairs, one at positive
and one at negative energy with the same absolute value. The
splitting occurs since two topological states with different
chiral symmetry and the same SUSY can hybridize for a
finite system, leading to an exponentially small splitting of
the energy. In the TP phase this splitting occurs between the
right (left) states at the outer surface with s = −u = 1 (s =
−u = −1) and the left (right) states at the inner surface with
s = u = −1 (s = u = 1), see Fig. 3. The size of the splitting
depends on the two normal localization lengths ξ̃n of the two
states which hybridize and is expected to be exponentially
small roughly ∼e−(R̃>−R̃< )/ξ̃n . Since the two hybridizing states
appear at opposite angles of the two surfaces and since the
angular spread is small, the ξ̃n of the states at the outer surface
will dominate the orbital overlap and the splitting. This is
reflected in the TP of Fig. 12(a) where the logarithm ln |ε0|
of the lowest absolute energy follows the size of −1/ξ̃n of the
states at the outer surface as given by (153): (1) in the region
δ̃ > 1 − 1/l̃2

B both the smallest energy and ξ̃n are approxi-
mately constant; (2) in the region 1/l̃2

B < δ̃ < 1 − 1/l̃2
B, the

lowest energy and ξ̃n are approximately a constant in the TP
and WP on the same lines δ̃ = 1 − 1/l̃2

B + c with 0 < c < 1.
In the WP, all topological states appear at the outer surface
with the same ξ̃n. Since the hybridizing states are localized
at opposite angles of the outer surface their orbital overlap
is reduced compared to the TP since their distance increases
from R̃> − R̃< to 2R̃>. As a consequence, the energy splitting
reduces in the WP which can be seen in Fig. 12(a) by a
deformation of the lines of constant energy at the crossover
from TP to WP. In the NTP no topological bound states and no
edge states appear in the gap and the lowest energy becomes
of the order of the bulk gap, consistent with Fig. 12(a). In
Fig. 12(b), we show the same but for zero hole radius R̃< = 0.
Qualitatively the same considerations apply, leading to the
same results, only the size of the lowest energy is slightly
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FIG. 12. Numerical results in tight-binding for the absolute value |ε̃0| = |ε0|/Eso in logarithmic color scale of the lowest absolute energy
|ε0| in units of the spin-orbit energy Eso as function of δ̃ and magnetic length l̃B. We consider half-integer flux f = 1/2 and a Corbino disk with
outer radius R̃> = 30 and inner radius given by (a) R̃< = 10 and (b) R̃< = 0. The dotted red line indicates the line δ̃ = 1 − 1/l̃2

B above which
the energy is approximately a constant since the normal localization length ξ̃n ∼ O(1) of the states at the outer surface does not vary in this
regime, see (153). In the region below this line, the energy and the normal localization length are approximately a constant in the TP and WP
along the lines δ̃ = c − 1/l̃2

B with some constant 0 < c < 1. For decreasing c, the energy becomes larger since the normal localization length
increases, see (153). The deformation of these lines when crossing from the TP to the WP phase results from an increased distance between
the hybridizing states since two of the states at the inner surface move to the outer surface in the WP. In the NTP, there are no localized bound
states and the energy is of the order of the bulk gap. When the radius of the inner surface decreases (right figure), the qualitative features remain
the same but one obtains an overall decrease of the energies since the distance of the hybridizing states increases.

reduced in the TP since the center states are farer away from
the boundary of the disk.

In Figs. 13(a) and 13(b), we show the same for the second-
lowest absolute energy |ε̃1|. In contrast to the lowest one
it reveals clearly both the phase transition line from TP to
WP and from WP to NTP. Deep in the TP for weak Zee-
man field, it is approximately given by |ε̃1| ≈ 2/(

√
R̃ l̃B), see

Eq. (129). Therefore it is expected to decrease with increasing
magnetic length and to scale with 1/

√
R̃, roughly consistent

with Fig. 13. In contrast, in the WP, there is no bulk gap and
therefore the second-lowest energy will drastically decrease,
possibly consisting of bulk states. In the gapped NTP, there
are no states in the bulk gap, and therefore the second-lowest
energy behaves similar to the lowest one.

FIG. 13. The same as Fig. 12 but for the second-lowest absolute energy |ε̃1| in nonlogarithmic scale. Roughly, this energy scales with
1/(

√
R̃ l̃B ) according to (129) in the TP, has a significantly smaller value in the ungapped WP, and is almost constant of the order of the bulk

gap in the NTP.
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V. PERIODIC WITTEN MODELS

In this section, we will generalize the derivation of effec-
tive surface Hamiltonians for a Corbino disk in Sec. IV C
to the case of generic smooth surfaces. We characterize the
smoothness by the local curvature radius R (either for the outer
or inner surface) and, in analogy to the condition (89) for a
Corbino disk, assume the curvature radius to be much larger
than the spin-orbit length

R̃ � 1. (188)

In addition, as in Sec. IV D, we consider weak magnetic fields
deep in the TP

l̃2
B � 1 , δ̃ � 1/l̃2

B. (189)

Under these conditions, we will show that the whole generic
class of periodic Witten models can be realized for the effec-
tive surface Hamiltonian, where the surface potential is again
characterized by the normal component of the magnetic field
to the surface. We outline in Sec. V A the derivation of the
effective surface Hamiltonian and state the central result. In
Sec. V B, we will exhibit the SUSY properties of the periodic
Witten model together with an explicit analytical expression
for the wave functions of the zero-energy topological states
for any shape of a smooth surface. In Sec. V C, we will
generically show how all eigenstates of the Hamiltonian can
be determined from the ones of the Witten model and we
will present a semiclassical analysis to calculate all local-
ized bound states of the Witten model in the case when the
tangential localization length ξt is much smaller than the
circumference of the surface. Finally, in Sec. V D, we demon-
strate our analytical results by a comparison to a numerical
tight-binding calculation for a surface of peanut shape.

Analog to Sec. IV F, we note that the derivation of the
effective surface Hamiltonian can be extended to the regime
defined by (175) if one is only interested in the calculation of
the localized bound states below the surface gap in the case
of strong localization. This holds also for generic smooth sur-
faces and shows the wide applicability regime of the universal
low-energy theory.

A. Derivation of periodic Witten models

In this section, we will outline the derivation of the effec-
tive surface Hamiltonian describing only the edge states at
the boundary of the system. We summarize here the essential
steps and state the final result together with the validity range
of the derivation.

To describe arbitrary surfaces it is convenient to introduce
orthogonal coordinates (q, λ), where q denotes the coordinate
normal to the surface (with dimension of length) and λ is a
dimensionless angle variable, see Fig. 14. We do not assume at
this stage that the surface is mirror-symmetric since this is not
essential for the derivation of the effective surface Hamilto-
nian. For convenience, we will take half-integer flux f = 1/2
since a flux deviating from 1/2 will only change the boundary
conditions for the states of the effective surface Hamiltonian.
The two surfaces of the system describing the inner and outer
surface are then given by the conditions q = q< and q = q>,
respectively, such that the system is present in the regime

FIG. 14. Definition of generic shapes of an area A via orthogonal
coordinates (q, λ). The area is defined in the region q< < q < q>.
The inner and outer boundaries are defined by q(x) = q< and q(x) =
q>, respectively. The coordinate along a closed surface is denoted
by 0 < λ < � with periodic boundary conditions. The origin x = 0
corresponds to q = 0. The two unit vectors en and et are orthogonal
and tangential to the surfaces q = const, respectively. Whereas ϕ

is the polar angle of x = r(cos ϕ, sin ϕ), the angle ϑ denotes the
angle between en and the x-axis, i.e., enex = cos ϑ or eney = sin ϑ .
The arc length 0 < st < L along a surface q = const is defined
by dst/dλ = |dx/dλ|, measured in counterclockwise direction with
reference point st = 0 chosen on the positive x axis.

q< < q < q> and all λ. The orthogonal coordinates are fully
characterized by the relation

dx = hnendq + ht et dλ , (190)

where hn,t > 0 are the Lame coefficients, and the orthogonal
unit vectors en and et are directed normal and tangential to
the surface and point in the direction of increasing q or λ,
respectively, see Fig. 14. It is also convenient to introduce the
line elements

dst = ht dλ , dsn = hndq (191)

along the lines where q = const or λ = const, respectively.
The Lame coefficient hn is dimensionless and ht is propor-
tional to a typical length scale such that, for a given surface
q = const, we get the order of magnitude

hn ∼ O(1) , ht ∼ R. (192)

The length scale R plays a very important role and is assumed
here to be at the same time the typical length scale on which
the Lame coefficients vary on a given surface

∂qhn,t ∼ 1

R
hn,t , ∂λhn,t ∼ hn,t . (193)

This means that the local curvature of the surface, defined by

κt = −en∂st et = 1

D
∂qht ∼ O

(
1

R

)
, D = hnht , (194)

is proportional to the inverse of this length scale, i.e., we can
define R as the local curvature radius of the surface. Although
this length scale can vary along the surface we assume that R
defines a lower bound for the curvature radius. We note the
quantization rule of the total curvature when integrating the
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local curvature along the whole surface∮
q=const

dst κt = 2π , (195)

which follows from the relation

κt = ∂st ϑ , (196)

where ϑ is the angle of the vector en normal to the surface and
the x axis, see Fig. 14.

In (194), we also introduced the symbol D ∼ O(R) which
is the transformation coefficient between the area elements in
cartesian and orthogonal coordinates

dx dy = D dq dλ. (197)

To write the Hamiltonian in orthogonal coordinates, it is
convenient to use an analog transformation (48) as for the
Corbino disk

H̄1/2 = X †W † U †
√

D H1/2
1√
D

U W X , (198)

with the only difference that r is replaced by D, and the
transformation U is defined by

U = e−i 1
2 ϕ e−i 1

2 szϑ , (199)

where ϕ is the polar angle. This guarantees that the normal-
ization is given by

∫ q>

q<

dq
∮

dλ
∑

σz,sz=±
|ψ̄ (q, λ; σz, sz )|2 = 1 , (200)

and U eliminates the half-integer flux and rotates the spin
to the local frame of the unit vectors en and et , defining the
directions normal and tangential to the surface, respectively.

For the special case of a mirror-symmetric surface, we note
the following properties for the transformation of the angle ϑ

under a sign change of x or ϕ

ϑ
Px−→ ϑ + π , ϑ

Pϕ−→ −ϑ. (201)

This has the consequence that the chiral symmetry, the in-
version symmetry, and SUSY are given by Eqs. (59)–(61),
just as in the case of the Corbino disk after applying
transformation (198).

After a lengthy calculation, we find for the transformed
Hamiltonian in orthogonal coordinates and dimensionless
units

H̄1/2/Eso = σx

{[
−∂q̃

1

h2
n

∂q̃ − ∂λ

1

h̃2
λ

∂λ + 1

4

(
κ̃2

n + κ̃2
t

) + Ṽ − δ̃ − 1

2

({
κ̃t

h̃t
,−i∂λ

}
−

{
κ̃n

hn
,−i∂q̃

})]
sz

+
[{

1

h̃t
,−i∂λ

}
sx −

{
1

hn
,−i∂q̃}sy

]}
+ σy

1

l̃2
B

(sx sin ϑ + sy cos ϑ ) , (202)

where {·, ·} denotes the anticommutator and we defined

V = − 1

2m

1√
D

(
∂q

ht

hn
∂q + ∂λ

hn

ht
∂λ

)
1√
D

∼ O

(
1

mR2

)
, (203)

κn = −et∂sn en = 1

D
∂λhn ∼ O

(
1

R

)
(204)

together with the dimensionless quantities q̃ = q/λso, κ̃n,t =
κn,tλso, h̃t = ht/λso, and Ṽ = V/Eso (the Lame coefficient hq

is already dimensionless).
To derive the effective surface Hamiltonian for the edge

states, it is important that one can separate the solution for the
normal and tangential part of the edges. The particle on a ring
in a double sine potential is a special supersymmetric model in
one dimension, occurring here for the special case of a surface
in the form of a ring with a large radius. The analysis will be
generalized to any smooth surface in Sec. V where we will
see that generic periodic Witten models with supersymmetric
properties can be realized.

Furthermore, we note that the two topological bound states
at the inner surface are exactly at zero energy if the radius R̃>

of the outer surface tends to infinity. In this case, the SUSY
is unbroken in an exact sense and two states exactly at zero
energy appear in the gap. Since the degeneracy of these two
states follows from SUSY, they can not split for any radius
R̃< of the inner hole. Therefore, even for zero hole radius
R̃< = 0, the two center states discussed in Sec. IV B for zero

magnetic field will remain at zero energy in the presence of a
finite magnetic field.

We now want to briefly discuss the stability of the topologi-
cal bound states against deviations from half-integer flux. For
f �= 1/2 degenerate states at opposite positions of the same
surface with different eigenvalues of U1/2 will get coupled
and split. However, under the condition (103) of small angular
spread, the orbital overlap of the two states is exponentially
small and the splitting is negligible. This is in contrast to
the two zero-energy center states at small hole radius which
are unstable against the application of a flux away from half-
filling, see the discussion at the end of Sec. IV B. As for the
Corbino disk in Sec. IV C, this is possible when the typical
localization length ξn of the edge states in normal direction is
much smaller than all other characteristic length scales of the
system. In units of the spin orbit length this means

ξ̃n � ξ̃t , l̃B , R̃ , (205)

where ξ̃t denotes the localization length of the edge states in
tangential direction. Below we will show that both ξn and ξt
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are given by the same order as for the Corbino disk (with R
replaced by the curvature radius)

ξ̃n ∼ O(1) , ξ̃t ∼ l̃B
√

R̃. (206)

Therefore the condition (205) is fulfilled if l̃B, R̃ � 1.
Based on the estimates (192), (193), (194), (203), and

(204), we can now determine the leading O(1) and subleading
O(1/ξ̃t ) terms of the Hamiltonian to split the edge state wave
functions in a normal and tangential one. Thereby we use in
addition the property

1

hn
∂q̃ ∼ 1

ξ̃n
,

1

h̃t
∂λ ∼ 1

ξ̃t
, (207)

in case the differential operators act on the edge state wave
function (and not on hq or h̃t ). Together with (206) we then
get in leading order for the effective Hamiltonian in normal
direction

H̄n/Eso = σx

[(
−∂q̃

1

h2
n

∂q̃ − δ̃

)
sz −

{
1

hn
,−i∂q̃

}
sy

]

≈ σx
[(−∂2

s̃n
− δ̃

)
sz + 2i∂s̃n sy)

]
, (208)

where s̃n(λ) = q̃/h≷
n (λ), with h≷

n (λ) = hn(q≷, λ), is the co-
ordinate of the line element in normal direction involving
the Lame coefficient hn projected on the considered outer
or inner surface q = q≷. This is justified for all edge states
since they are localized close to the surface. We find the same
form for the normal Hamiltonian as for the Corbino disk, see
Eq. (91), with r̃ → s̃n. Therefore, for each given λ, we find a
zero-energy edge state in the gap and the normal part of the
edge state wave function is given by

ψ̄≷
n (q̃, λ; sz ) = h≷

n (λ)1/2

√
2

(
1

±1

)
sz

�̄n

(
|q̃ − q̃≷|

h≷
n (λ)

)
, (209)

where �̄n(r̃) is given by (84), and the prefactor accounts for
the correct normalization in terms of q̃, see (200).

Projecting the Hamiltonian on the subset defined by the
normal part of the edge state wave functions, we find in
analogy to the Corbino disk in first-order perturbation theory
for the effective surface Hamiltonian in subleading order

± H̄≷
t /Eso = σx

{
1

h̃≷
t

,−i∂λ

}
+ σy

1

l̃2
B

sin ϑ , (210)

where h̃≷
t (λ) = h̃t (q≷, λ) is the Lame coefficient projected on

the corresponding surface. Thereby we note that the two terms
of the Hamiltonian (202) involving{

κ̃n

hn
,−i∂q̃

}
sz ∼ 1

R̃
sz, (211)

1

l̃2
B

cos ϑ sy ∼ 1

l̃2
B

sy ∼ R̃

ξ̃ 2
t

sy (212)

contribute only in second-order perturbation theory since they
involve sy,z and do not lead to a direct coupling of the states
(209) since they are eigenfunctions of sx with eigenvalue ±1
for the outer/inner surface. Thus the term (211) contributes in
O(1/R̃2) and can be neglected, and, analog to the discussion
for the Corbino disk, the neglect of the Zeeman term (212) in
y direction requires the additional condition (107).

Writing the eigenfunctions of the surface Hamiltonian as

ψ̄
≷
t (λ, σz ) = h̃≷

t (λ)1/2 ψ̂
≷
t (λ, σz ) , (213)

we find that ψ̂
≷
t is the eigenfunction of

Ĥ≷
t = (h̃≷

t )−1/2 H̄≷
t (h̃≷

t )1/2 , (214)

with

± Ĥ≷
t /Eso = σx2

(−i∂s̃t

} + σy
1

l̃2
B

sin ϑ , (215)

where ∂s̃t = h̃≷
t (λ)−1∂λ is the derivative with respect to the

surface line element for q = q≷. Using (191), the normaliza-

tion of ψ̂
≷
t is defined by

∑
σz=±1

∫ L̃

0
ds̃t |ψ̂≷

t (s̃t , σz )|2 = 1 , (216)

where L̃ is the circumference of the corresponding surface in
units of the spin-orbit length.

The effective surface Hamiltonian (215) is the central result
of this section. It has exactly the same form as the result (98)
for the Corbino disk (where s̃t = R̃ϕ) and involves the normal
component of the Zeeman term as the mass term. Defining the
normal component along the surface in dimensionless units by

ẼZ,n(s̃t ) = 1

l̃2
B

sin ϑ (s̃t ) , (217)

we obtain the generic rule that zero-energy topological states
will appear close to the surface points where the normal com-
ponent of the Zeeman term changes sign, i.e., for s̃t = s̃ j

t with

sin ϑ j = 0 , ϑ j = ϑ
(
s̃ j

t

)
. (218)

Expanding around such a point we obtain for ϑ j = 0, π

ẼZ,n(s̃t ) ≈ ± κ̃
j

t

l̃2
B

(
s̃t − s̃ j

t

) ∼ ξ̃t

R̃ l̃2
B

, (219)

with κ̃
j

t = κ̃t (s̃
j
t ), where we used (196) and the estimate s̃t −

s̃ j
t ∼ ξ̃t , together with the definition κ̃t = κtλso ∼ 1/R̃. Com-

paring the order of magnitude of this term with the first term
∼∂s̃t ∼ 1/ξ̃t of the surface Hamiltonian (215), we find pre-
cisely the result (206) for ξ̃t ∼ l̃B

√
R̃. Furthermore, depending

on the sign of

p j = sign(cos ϑ j ) sign
(
κ̃

j
t

)
, (220)

the mass term changes from minus to plus or vice versa
when moving around the surface, giving rise to the chirality
s = p j = ±1 of the topological states, respectively.

Squaring the Hamiltonian, we obtain the generic class of
periodic Witten models

H̃W = (Ĥ≷
t /Eso)2 = −4∂2

s̃t
+ Ṽ −σz

W (s̃t ) , (221)

with the Witten potentials given by

Ṽ ±
W (s̃t ) = ẼZ,n(s̃t )

2 ∓ 2Ẽ ′
Z,n(s̃t ) , (222)

where Ẽ ′
Z,n(s̃t ) = (d/ds̃t )ẼZ,n(s̃t ) denotes the derivative. We

note that the study of H̃W is sufficient to calculate the spec-
trum and all eigenstates of the surface Hamiltonian. This is
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due to chiral symmetry S̄ = −σz and the fact that periodic
boundary conditions under s̃t → s̃t + L̃ are respected by the
surface Hamiltonian. The Witten model and its relation to the
surface Hamiltonian will be discussed in all detail in the next
two sections.

B. Supersymmetry for the periodic Witten model

The Witten model plays a very fundamental role in the
study of SUSY models [1–3]. The two spectra of

H̃±
W ≡ H̃W |σz=± = −4∂2

s̃t
+ Ṽ ±

W (s̃t ) (223)

for the two chiral sectors S̄ = −σz = ±1 of H̃W are exactly
the same. This follows from chiral symmetry of Ĥ≷

t and the
definition H̃W = (Ĥ≷

t /Eso)2. For each eigenstate |ψ〉 of Ĥ≷
t ,

it follows that σz|ψ〉 is also an eigenstate with a different sign
for the energy. As a consequence, the two states |ψ〉 ± σz|ψ〉
are eigenstates of H̃W with the same energy belonging to two
different chiral sectors. Since all eigenstates of H̃W can be
constructed in this way, the two spectra of H̃±

W must be ex-
actly the same. However, this twofold degeneracy between the
spectra of the two chiral sectors is a rather trivial degeneracy
for the two partner potentials Ṽ ±

W and is not related to any
nontrivial SUSY structure of the spectrum.

The nontrivial SUSY properties emerge in each chiral sec-
tor separately and are associated with additional symmetries
present at half-integer flux f = 1/2 and a mirror-symmetric
surface. Using (201), we find for a mirror-symmetric surface
the following properties of the normal component ẼZ,n(s̃t ) of
the Zeeman field along the surface

ẼZ,n(s̃t ) = −ẼZ,n

(
s̃t + L̃

2

)
, (224)

ẼZ,n(s̃t ) = −ẼZ,n(L̃ − s̃t ) = −ẼZ,n(−s̃t ) , (225)

where we used periodic boundary conditions ẼZ,n(s̃t ) =
ẼZ,n(s̃t + L̃) in the last equality. Using the operators Px and Pϕ

changing the sign of x and ϕ, respectively, which act within
the space of a mirror-symmetric surface, we can write the
symmetry properties equivalently as

Px ẼZ,n Px = −ẼZ,n , Pϕ ẼZ,n Pϕ = −ẼZ,n. (226)

Defining the supercharge operator Q± by

Q± = Px
(−2i∂s̃t ∓ iẼZ,n(s̃t )

) = Q†
±, (227)

and using the symmetries (226) together with P2
x = P2

ϕ = 1,
we obtain straightforwardly the n = 1 SUSY representation
(40) for each chiral sector with K ≡ Pϕ

H̃±
W = (Q±)2 , Q±Pϕ = −PϕQ±. (228)

The SUSY of both H̃±
W is unbroken, i.e., a zero-energy state

exists in each chiral sector. This follows directly from solving
Q±|ψ (0),±

W 〉 = 0 with the result

ψ
(0),±
W (s̃t ) = 1√

N±
W

e∓F (s̃t ) , (229)

where we defined the function

F (s̃t ) = 1

2

∫ s̃t

−L̃/4
ds̃′

t ẼZ,n(s̃′
t ). (230)

Here, N±
W is a normalization factor such that∫ L̃

0 ds̃t [ψ±
W(s̃t )]2 = 1. The reference point −L̃/4 for the

integration in (230) has been chosen such that the symmetries
(224) and (225) for ẼZ,n(s̃t ) lead to the following symmetries
for the function F (s̃t ):

F (s̃t ) = −F

(
s̃t + L̃

2

)
, (231)

F (s̃t ) = F (L̃ − s̃t ) = F (−s̃t ) , (232)

or

Px F Px = −F , Pϕ F Pϕ = F. (233)

As a consequence, the function F (s̃t ) is symmetric around
the x axis (i.e., under ϕ → −ϕ) and antisymmetric around
the y-axis (i.e., under ϕ → π − ϕ). For example, for the spe-
cial case of the outer or inner surface of a Corbino disk,
where s̃t = R̃≷ϕ, L̃ = 2π R̃≷ and ẼZ,n(s̃t ) = (1/l̃2

B) sin ϕ, we
get F (s̃t ) = −R̃≷/(2l̃2

B) cos ϕ = −1/(2
ϕ2) cos ϕ, consistent
with (112).

We note that the existence of the zero-energy states for the
two periodic Witten models does not necessarily depend on
the mirror symmetry of the surface. Only the exact twofold de-
generacy of all states with nonzero energy is related to SUSY
present only for a mirror symmetric surface. This shows that
the original model will always have states close to zero energy
at half-integer flux for arbitrary smooth surfaces, provided
that the conditions (188) and (189) for the derivation of the
surface Hamiltonian are fulfilled. This is even true away from
half-integer flux for strong localization ξt � R≷, where the
deviation of the flux from half-integer value will only change
the boundary conditions of the wave functions which is not
very important for localized states with small orbital overlap.
However, for a mirror-symmetric surface at half-integer flux,
the two states are exactly at zero energy even when they have
a strong orbital overlap for ξt ∼ R≷.

C. The low-energy spectrum of the surface Hamiltonian

In this section, we will discuss the low energy spectrum
and the eigenstates of the surface Hamiltonian Ĥ≷

t for the
outer/inner surface. We start with the zero-energy solutions
for any size of ξt based on the zero-energy solutions (229) of
the periodic Witten models, and continue with a semiclassical
calculation of the strongly localized bound states with ξt �
R≷, in close analogy to the case of a Corbino disk discussed
in Sec. IV C.

The zero-energy solutions (229) of H̃η
W give rise to two

zero-energy states of the surface Hamiltonian Ĥ≷
t for chirality

s = −σz

ψ̂
≷
t,s=1(s̃t ; σz ) = 1√

2

(
0
1

)
σz

ψ
(0),+
W (s̃t ) , (234)

ψ̂
≷
t,s=−1(s̃t ; σz ) = 1√

2

(
1
0

)
σz

ψ
(0),−
W (s̃t ) , (235)

where the dependence of the right-hand side of these equa-
tions on the outer/inner surface is hidden in the function
ẼZ,n(s̃t ) defined by (217), which enters into the definition of
ψ

(0),±
W via (229) and (230). For a mirror symmetric surface,
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we find due to (229) and (233) that

Pϕ |ψ̂≷
t,s〉 = |ψ̂≷

t,s〉 , σz|ψ̂≷
t,s〉 = −s|ψ̂≷

t,s〉. (236)

Multiplying these solutions with the normal part (209) and
using (213) we get for the total wave function of the zero-
energy states of H̄1/2 with chirality s = ±1 the result

ψ̄≷
s (q̃, λ; σz, sz ) = h̃≷

t (λ)1/2 ψ̄≷
n (q̃, λ; sz ) ψ̂

≷
t,s(s̃t (λ); σz ).

(237)

This gives two zero-energy states for each surface with dif-
ferent values for the chiral symmetry. For a mirror symmetric
surface, the eigenvalue u of the SUSY operator Ū1/2 = Pϕσzsx

is automatically fixed for given chirality. Since hn(λ) and
h̃t (λ) are symmetric under Pϕ for a mirror symmetric surface,
we get from (209) and (236) that

Ū1/2|ψ̄≷
s 〉 = ∓s|ψ̄≷

s 〉 , (238)

i.e., u = −s for the outer surface and u = s for the inner
surface, in analogy to the result for the Corbino disk, see
Fig. 3.

To find all eigenstates of the surface Hamiltonian with
nonzero energy, we first note that it is sufficient to study the
eigenstates of the Witten Hamiltonian. This is due to chiral
symmetry and the fact that the surface Hamiltonian respects
periodic boundary conditions. To see this, we start from any
normalized eigenstate ψ+

W (s̃t ) of H̃+
W with positive eigenvalue

ε̃2 > 0

H̃+
W |ψ+

W 〉 = ε̃2|ψ+
W 〉 , (239)

〈ψ+
W |ψ+

W 〉 =
∫ L̃

0
ds̃t |ψ+

W (s̃t )|2 = 1. (240)

Writing the surface Hamiltonian (215) in the σz basis as

± Ĥ≷
t /Eso =

(
0 



† 0

)
, (241)

with


 = −2i∂s̃t − iẼZ,n(s̃t ) , (242)

we find H̃+
W = 
†
 and H̃−

W = 

† (note that the superindex
of H̃s

W refers to s = −σz). It is then straightforward to find two
eigenstates of the surface Hamiltonian with opposite energy

± (Ĥ≷
t /Eso)|ψ̂≷,η

t 〉 = η|ε̃| |ψ̂≷,η
t 〉 , (243)

with η = ±1 and

ψ̂
≷,η
t (s̃t ; σz ) = 1√

2

(
η ψ−

W (s̃t )
ψ+

W (s̃t )

)
σz

, (244)

ψ−
W = 1

|ε̃|
ψ+
W . (245)

Here, ψ±
W are by construction normalized eigenstates of H̃±

W ,
respectively, with the same eigenvalue ε̃2, and both respecting
periodic boundary conditions ψ±

W (s̃t ) = ψ±
W (s̃t + L̃).

The construction (244) of the eigenstates of the surface
Hamiltonian in terms of the eigenstates of the Witten Hamil-
tonian H̃+

W is possible for any smooth surface, even if it is not
mirror symmetric. For the special case of a mirror symmetric
surface, where SUSY holds and Ū1/2 = Pϕσzsx is an exact

symmetry of the full Hamiltonian H̄1/2, we can choose the
eigenstates of the surface Hamiltonian as eigenfunctions of
Pϕσz to fix the eigenvalue u of Ū1/2 (note that the normal part
of the wave function has sx = ± for the outer/inner surface).
From the symmetry (226), we find that the Witten potential
and the Witten Hamiltonian have the symmetry

Ṽ ±
W (s̃t ) = Ṽ ±

W (−s̃t ) ⇒ PϕH̃±
W Pϕ = H̃±

W . (246)

Therefore we can choose the eigenstates ψ+
W of H̃+

W as eigen-
states of Pϕ with eigenvalue η

ϕ
W = ±1

Pϕ |ψ+
W 〉 = η

ϕ
W |ψ+

W 〉. (247)

Using the symmetry

Pϕ
Pϕ = −
 , (248)

we get a sign change for the eigenvalue of Pϕ for ψ−
W =

|ε̃|−1
ψ+
W

Pϕ |ψ−
W 〉 = −η

ϕ
W |ψ−

W 〉 , (249)

and find from (244) that ψ̂
≷,η
t is an eigenstate of Pϕσz with

eigenvalue −η
ϕ
W

Pϕσz

∣∣ψ̂≷,η
t

〉 = −η
ϕ
W

∣∣ψ̂≷,η
t

〉
. (250)

In this way, all eigenstates of H̄1/2 can be constructed from the
eigenstates of the Witten Hamiltonian H̃+

W , which are at the
same time eigenstates of the SUSY operator with eigenvalue
given by

u = −η
ϕ
W sx = ∓η

ϕ
W , (251)

where we used sx = ± for the outer/inner surface from the
normal part of the eigenstates.

In summary, for a mirror symmetric surface, we have found
that the angular part of all eigenstates of the Hamiltonian H̄1/2

can be constructed as a combination of a symmetric state of
H̃+

W and an antisymmetric one of H̃−
W with SUSY eigenvalue

u = ∓ for the outer/inner surface, or vice versa with u = ±.
Furthermore, we note that two degenerate eigenstates of the
Hamiltonian constructed in this way transform into each other
via the inversion symmetry �̄ = −Pxσx and have a different
sign for the SUSY eigenvalue u. This follows since �̄ com-
mutes with H̄1/2, whereas SUSY anticommutes with H̄1/2. On
the level of the surface Hamiltonian this follows equivalenty
from the symmetries

PxσxĤ≷
t Pxσx = Ĥ≷

t , (252)

PϕσzĤ
≷
t Pϕσz = Ĥ≷

t , (253)

(Pxσx )(Pϕσz ) = −(Pϕσz )(Pxσx ). (254)

We now turn to the explicit calculation of the localized
bound states of the two Witten models H̃±

W in semiclas-

sical approximation for strong localization ξ̃t = l̃B
√

R̃ � R̃,
in analogy to the treatment described in Sec. IV C for the
Corbino disk. The existence of the unique zero-energy states
ψ

(0),±
W for the chiral sectors s = ± of the Witten Hamiltoni-

ans H̃±
W reflects the unbroken SUSY properties of the two

chiral sectors of the squared Hamiltonian as described in
Sec. III. However, for a generic smooth surface characterized
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by the average curvature κ̃t ∼ 1/R̃ � 1, an arbitrary number
of points with sin ϑ (s̃ j

t ) = 0, j = 1, . . . , NZ , can occur. In the
regime of strong localization, there will be NZ states exponen-
tially close to zero energy, each of them localized at s̃ j

t with
tangential spread ∼ξ̃t . The two states exactly at zero energy
are a superposition of all these states and are given by (237).
In addition, there will be NZ − 1 other eigenstates with an
exponentially small energy ∼e−R̃/ξ̃t and it is in general quite
difficult to calculate them exactly. Therefore, in the following,
we will consider the region s̃t ∼ s̃ j

t + O(ξ̃t ), and study the
spectrum via the harmonic oscillator eigenstates in the minima
of the Witten potential by expanding the normal component
ẼZ,n(s̃t ) of the Zeeman field up to linear order in s̃t − s̃ j

t .
According to (219), we get

ẼZ,n(s̃t ) ≈ p j

�̃2
j

4

(
s̃t − s̃ j

t

)
, (255)

Ṽ ±
W (s̃t ) ≈ �̃4

j

16

(
s̃t − s̃ j

t

)2 ∓ p j

�̃2
j

2
, (256)

where the sign factor pj has been defined in (220) and �̃ j

denotes the Witten frequency at s̃t = s̃ j
t

�̃ j = 2
∣∣κ̃ j

t

∣∣1/2

l̃B
= 2

ξ̃
j

t

, (257)

with

ξ̃
j

t = l̃B∣∣κ̃ j
t

∣∣1/2 ∼
√

R̃ l̃B. (258)

Defining the annihilation and creation operators by

a j = 2

�̃ j
∂s̃t + �̃ j

4

(
s̃t − s̃ j

t

)
, (259)

a†
j = − 2

�̃ j
∂s̃t + �̃ j

4

(
s̃t − s̃ j

t

)
, (260)

we find for the Witten Hamiltonian H̃±, j
W close to s̃t ≈ s̃ j

t the
result

H̃±, j
W ≈ �̃2

j a
†
j a j + �̃2

j

{
0 for p j = ±1
1 for p j = ∓1 , (261)

and the surface Hamiltonian (215) close to s̃t ≈ s̃ j
t can be

written for p j = 1 in the form

Ĥ≷, j
t |p j=1 ≈ ±� j

(
0 −ia j

ia†
j 0

)
, (262)

and, for p j = −1, we get

Ĥ≷, j
t |p j=−1 ≈ ±� j

(
0 ia†

j
−ia j 0

)
(263)

= σx
(
Ĥ≷, j

t

∣∣
p j=1

)
σx. (264)

Analog to the Corbino disk, we then get for the eigenfunctions
and eigenvalues of H̃±, j

W in the semiclassical approximation
the result

gj
n(s̃t ) = (

ξ̃
j

t

)−1/2
fn

((
s̃t − s̃ j

t

)
/ξ̃

j
t

)
, (265)

Ẽ±, j
n = n �̃2

j + 1
2 (1 ∓ p j )�̃

2
j , (266)

where fn(ϕ) has been defined in (123), and n = 0, 1, . . . The
eigenstates of the surface Hamiltonian can then be written
down via the explicit construction (244) or in the same way
as for the Corbino disk, see (126) and (127).

The spectrum of H̃+
W within the surface gap is then ap-

proximately given by n �̃2
j for p j = 1 and by (n + 1) �̃2

j for
p j = −1, with n = 0, 1, 2, . . . According to the above dis-
cussion, each nonzero eigenvalue n �̃2 of H̃+

W will lead to
two energy eigenvalues ±√

n �̃ j for the surface Hamiltonian.
This is quite analog as for the Corbino disk but the essential
difference is that many different frequencies �̃ j can occur, see
below for examples and the discussion of the qualitative form
of the spectrum for specific surfaces.

Most importantly, we find from (266) that eigenstates of
H̃±

W with eigenvalue exponentially close to zero are superpo-
sitions of all states |gj

0〉 localized at the points with p j = ±1,
i.e., for a given chiral sector s = ±1, the sign of pj is fixed
to p j = s. According to (220) this means that the signs of κ̃

j
t

and cos ϑ j for all these points must be either the same (for
s = +1) or opposite (for s = −1). To determine the number
of such points for a given chiral sector in the case of a mirror
symmetric surface, we use the properties (201) and (196), and
find that κ̃t and cos ϑ transform in the following way under a
sign change of ϕ or x

κ̃t (s̃t ) = κ̃t (−s̃t ) = κ̃t (s̃t + L̃/2) , (267)

cos ϑ (s̃t ) = cos ϑ (−s̃t ) = − cos ϑ (s̃t + L̃/2). (268)

As a consequence, we get the following transformation of the
sign factors pj = p(s̃ j

t ):

p
(
s̃ j

t

) = p
(−s̃ j

t

) = −p
(
s̃ j

t + L̃/2
)
. (269)

This means that the number of points with the same sign
of pj and s̃ j

t �= 0, L̃/2 is even. In addition, the two points
s̃t = 0, L̃/2 belong to the set {s̃ j

t } j with different sign of p j ,
since cos ϑ (0) = − cos ϑ (L̃/2) = 1 and κ̃t (0) = κ̃t (L̃/2) due
to (201), (267), and (268). As a consequence, the number of
points s̃ j

t with a definite sign of p j must be odd for a mirror
symmetric surface, i.e., the total number NZ of points with
sin ϑ j = 0 is even and NZ/2 is odd. This is consistent with
the form of the unbroken SUSY spectrum for H̃s

W since an
odd number of states in the presence of SUSY can only split
into one single state with zero eigenvalue and a set of twofold
degenerate states with positive eigenvalues.

Moreover, for a mirror symmetric surface, we can also
predict the qualitative form of the spectrum for the bound
states in the surface gap of the Witten model H̃s

W (for fixed
chirality s = ±1) significantly away from zero energy. Let us
consider M different frequencies �̃k , with k = 1, . . . , M, with
each frequency �̃k occurring mk times at the points ϑ = 0, π

along the surface, such that the total number of points is
decomposed as

NZ = m1 + m2 + · · · + mM . (270)

For a mirror symmetric surface, each number mk must be even
due to the above discussion, with mk/2 points referring to
pk = +1 and mk/2 ones to pk = −1. Therefore we get in the
semiclassical approximation from (266) that mk/2 harmonic
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FIG. 15. (a) A generic surface which is not mirror symmetric with four points where ϑ = 0, π and four different frequencies �̃ j =
2
√

|κ̃ j
t |/l̃B. The signs pj = (sign cos ϑ j ) (signκ̃

j
t ) are alternating when moving along the surface. This happens since (1) ϑ = 0, π for

positive/negative x coordinate, and (2) the sign of the curvature κ̃t changes (remains the same) when the sign of the x coordinate remains the
same (changes) when moving from one point to the next. (b) A sketch of the corresponding Witten potential Ṽ +

W consisting of four harmonic
oscillator potentials with potential minima at −pj�̃

2
j/2. In the absence of accidental degeneracies due to commensurabilities, this gives rise to

a set of nondegenerate and clearly separated eigenvalues. An exception are the two zero eigenvalues which stay close to each other since the
exponentially small hybridization will split them into one eigenvalue exactly at zero and another one at a very small positive value.

oscillator potentials have eigenvalues n �̃2
k , with n = 0, 1, . . . ,

and mk/2 ones have eigenvalues n �̃2
k , with n = 1, . . . This

gives mk/2 eigenvalues lying close to zero (leading in total to
NZ/2 states with eigenvalue close to zero in each chiral sector,
see above), and mk eigenvalues lying close to n �̃2

k for each
n = 1, 2, . . . Therefore, disregarding accidental degeneracies
from commensurabilities, the spectrum of the Witten Hamilto-
nian H̃s

W will show sequences of M different groups (labelled
by k = 1, . . . , M) of nearly degenerate states, each of them
containing mk states, except a group of mk/2 states close to
zero eigenvalue. An example will be discussed in all detail in
the next section for a surface of peanut shape, where NZ = 6,
M = 2, m1 = 4, and m2 = 2, see Fig. 18.

For generic surfaces without any symmetry one finds only
an alternation of the signs of pj when moving around the
surface, see an example for a surface with NZ = 4 and four
different frequencies �̃ j shown in Fig. 15(a), together with a
sketch of the corresponding Witten potential Ṽ +

W in Fig. 15(b).
In the case where all frequencies are different only the twofold
degeneracy of the zero-energy state is guaranteed for the sur-
face Hamiltonian but all nonzero energies are nondegenerate
(up to accidental degeneracies due to commensurabilities be-
tween the squared frequencies).

D. Peanut shape

An example for a mirror symmetric surface is shown in
Fig. 16, using a peanut shape constructed out of two cir-
cles with radia R1 and R2. This gives NZ = 6 points where
ϑ j = 0, π and the sign factors pj are given by p1 = p3 =
p5 = −1 and p2 = p4 = p6 = 1, with two frequencies �̃1 =
2/(l̃B

√
R̃1) and �̃2 = 2/(l̃B

√
R̃2). The first frequency �̃1 oc-

curs m1 = 4 times at s̃t = s̃2
t , s̃6

t (with p2 = p6 = 1) and s̃t =
s̃3

t , s̃5
t (with p3 = p5 = −1). The second frequency �̃2 occurs

m2 = 2 times at s̃t = s̃1
t = 0 (with p1 = −1) and s̃t = s̃4

t =

L̃/2 (with p4 = 1). The qualitative form of the spectrum fol-
lows from our generic analysis in Sec. V C. For R1 = R2 = R,
we get two identical frequencies �1 = �2 = �, leading to

FIG. 16. Construction of a peanut shape via the parameters R1,
R2, and x0. Here, R1 and R2 are the radia of the circles with centers on
the y and x axes, respectively, and 2 x0 denotes the width of the peanut
for y = 0. The angle γ determines the point where two circles meet.
We get 6 points with ϑ = 0, π , four of them having the frequency
�̃1 = 2/(l̃B

√
R̃1) (for j = 2, 3, 5, 6), and two with �̃2 = 2/(l̃B

√
R̃2)

(for j = 1, 4). The sign factors pj = (sign cos ϑ j ) (sign κ̃
j

t ) alternate
when moving around the surface (compare with Fig. 15), and each
frequency has the same number of positive and negative pj , i.e., 2
for �̃1 and 1 for �̃2. The angle γ is the angle between the x axis and
the connection line between the middle points of the upper and right
circle.
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FIG. 17. (a) Witten potential Ṽ +
W of a peanut surface with R̃1 = R̃2 = R̃ = 30, x̃0 = 10, and l̃B = 2, calculated via the formulas of

Appendix E. The jumps of the potential arise from the discontinuous change of the curvature at the meeting points of two circles in the
construction of the peanut surface via Fig. 16. Based on the sign factors pj and the frequency �̃ = 2/(l̃B

√
R̃) = 1/

√
30 ≈ 0.18 introduced

in Fig. 16, we obtain six harmonic oscillator potentials located at s̃ j
t , with potential minima at −pj�̃

2/2, with p2 = p4 = p6 = 1 and
p1 = p3 = p5 = −1. In these potentials, we indicate the harmonic oscillator states in a semiclassical picture (we only indicate those below the
height of the potential set by the Zeeman energy squared Ẽ 2

Z = 1/l̃4
B = 1/16 = 0.0625). As a result, we get three states with zero eigenvalue

and six states with eigenvalue �̃2 = 1/30 ≈ 0.034 which, due to SUSY, will split by an exponentially small hybridization into one state at
zero eigenvalue and a set of twofold degenerate states. Since each state of the Witten Hamiltonian H̃+

W with nonzero eigenvalue ε̃2 will lead
to two corresponding states at positive and negative energy ±|ε̃| for the surface Hamiltonian [see Eq. (244)], we get the energy spectrum of
the surface Hamiltonian shown in (b) (calculated numerically via the tight-binding formalism). It consists of groups of six nearly degenerate
states at ε̃ ≈ 0, ±�̃ (higher states at ε̃ ≈ ±√

n �̃, with n = 2, 3, . . . behave differently since they are above the surface gap set by ẼZ ). To get
the center states (indicated by an arrow) away from zero energy we have detuned the flux f = (π + 0.1)/(2π ) ≈ 0.5159 slightly away from
half-integer value. This affects the bound states at the boundary of the peanut only weakly since the states with energies within the surface gap
are well localized.

the Witten potential Ṽ +
W as shown in Fig. 17(a), based on

the explicit formulas derived in Appendix E. As a conse-
quence, the spectrum of the surface Hamiltonian (calculated
numerically within the tight-binding formalism described in
Appendix D) shows groups of 6 states lying close together in
energy as shown in Fig. 17(b). For different R1 > R2, we see
in Fig. 18(a) that the Witten potential Ṽ +

W hosts two different
groups of 4 (2) nearly degenerate states at n�̃2

1 (n�̃2
2), with

n = 1, 2, . . . This leads to the energy spectrum for the surface
Hamiltonian shown in Fig. 18(b). Besides the group of 6 states
close to zero energy, one can see groups of 4 states close to
±�̃1, consistent with the semiclassical picture. Since the two
energies ±�̃2 and ±√

2 �̃1 are quite close to each other for
the parameters used in Fig. 18, one can no longer distinguish
these two groups after the small hybridization, and groups of
six states appear close to these energies.

We note that only states within the surface gap set by the
Zeeman energy ẼZ = 1/l̃2

B are shown in Figs. 17 and 18, and
we detuned the flux slightly away from half-integer value to
get the center states away from the energies of the bound states
localized at the boundary of the peanut. Furthermore, we
note that the Witten potential contains discontinuous jumps
at the points s̃t = ±R2 γ ,±(L̃/2 − R2 γ ), where the curva-
ture changes discontinuously from −1/R̃2 to 1/R̃1. However,
this is due to our special construction of the peanut shape
and does not influence the low-energy wave functions sig-
nificantly in the case of strong localization, since the points
where the jumps of the potential appear are sufficiently

away from the hotspots s̃ j
t , where the wave functions are

localized.
For the parameters used in Figs. 17 and 18, we show

in Fig. 19 the absolute square of the wave functions (aver-
aged over the spinor indices) for the six states lying close to
zero energy [labelled by “A”–“F” in Figs. 17(b) and 18(b)].
For R1 = R2, the two zero-energy states labeled by “A” and
“B” are compared with the analytical solution (229) and
(230) for the angular part ψ

(0),±
W (s̃t ) ∼ e∓F (s̃t ) in Fig. 20, see

Appendix E for the explicit formulas to calculate the function
F (s̃t ) for the peanut shape. We find two peaks at s̃2,6

t (s̃3,5
t ) for

ψ
(0),+
W (ψ (0),−

W ) which agrees quite nicely with the analytical
prediction and are consistent with the tangential localization
length ξ̃t = l̃B

√
R̃, see the Gaussian fit shown in Fig. 20. Both

zero-energy states ψ
(0),±
W are symmetric under a sign change

of ϕ and have chirality s = ±1 and SUSY eigenvalue u = ∓1,
consistent with the analytics.

The four states “C”–“F” with finite but very small ener-
gies can be constructed from the two degenerate first excited
eigenstates of the Witten Hamiltonian H̃+

W , see the detailed
discussion in Sec. V C and the explicit formula (244) to
construct the eigenstates of the surface Hamiltonian at posi-
tive and negative energy from the ones of the Witten model
H̃+

W . As shown in Fig. 17(a), the Witten potential Ṽ +
W hosts

three harmonic oscillator ground states |gj
0〉 localized at s̃ j

t

with j = 2, 4, and 6. In analogy, the Witten potential H̃−
W

hosts three harmonic oscillator ground states |gj
0〉 for j =
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FIG. 18. (a) The Witten potential Ṽ +
W of a peanut surface for the same parameters x̃0 = 10 and l̃B = 2 as in Fig. 17 but for two different radia

R̃1 = 35 and R̃2 = 20. In this case there are two different frequencies �̃1 = 2/(l̃B

√
R̃1) = 1/

√
35 ≈ 0.17 and �̃2 = 2/(l̃B

√
R̃2) = 1/

√
20 ≈

0.22. As a result, we get four harmonic oscillator potentials with potential minima at −pj�̃
2
1/2 for j = 2, 3, 5, 6, and 2 harmonic oscillator

potentials with potential minima at −pj�̃
2
2/2 for j = 1, 4, with p2 = p4 = p6 = 1 and p1 = p3 = p5 = −1. Within a semiclassical picture

this gives three states with zero eigenvalue, a group of 4 states with eigenvalue �̃2
1 = 1/35 ≈ 0.0285, a group of 2 states with eigenvalue

�̃2
2 = 1/20 = 0.05, and a group of 4 states with eigenvalue 2 �̃2

1 = 2/35 ≈ 0.057 (all the other states are above the height of the Witten
potential set by the squared Zeeman energy Ẽ 2

Z = 1/l̃4
B = 0.0625). Due to the exponentially small splitting and SUSY, this leads to the energy

spectrum of the surface Hamiltonian shown in the right figure (b) (calculated numerically via the tight-binding formalism), showing a group
of six states close to zero energy, and groups with four states close to ±�̃1. Since the 2 states at ±�̃2 and the four states at ±√

2 �̃1 are quite
close to each other, one can not distinguish them any longer after the hybridization, leading to groups of 6 states close to these energies. All
other states at ε̃ ≈ ±√

n �̃1, with n = 3, 4, . . . , and ε̃ ≈ ±√
n �̃2, with n = 2, 3, . . . , behave differently since they are above the surface gap

set by ẼZ = 1/l̃2
B = 0.25. As in Fig. 17, we have detuned the flux f = (π + 0.1)/(2π ) ≈ 0.5159 slightly away from half-integer value to get

the center states away from zero energy.

1, 3, and 5. In Sec. V C, we learnt for a mirror symmetric
surface that each eigenstate of the surface Hamiltonian with
nonzero eigenvalue can be constructed as a combination of
a symmetric/antisymmetric state (with respect to Pϕ) of H̃+

W

and an antisymmetric/symmetric state of H̃−
W , such that they

are at the same time eigenstates of the SUSY operator with
SUSY eigenvalue u = −1/u + 1 for the outer surface. As
shown in Fig. 20, the symmetric combination |g2

0〉 + |g6
0〉 is

predominately present in the state ψ
(0),+
W with zero eigenvalue.

The other symmetric state |g4
0〉 of H̃+

W is combined with the
antisymmetric state |g3

0〉 − |g5
0〉 of H̃−

W to form the eigen-
states “C” and “E,” which have SUSY eigenvalue u = −1.
Finally, the states “D” and “F” are obtained from applying
the inversion operator to “C” and “E,” respectively, i.e., are
combinations of the symmetric state |g1

0〉 of H̃−
W and the an-

tisymmetric state |g2
0〉 − |g6

0〉 of H̃+
W , with SUSY eigenvalue

u = 1.

VI. STABILITY AND TOPOLOGICAL ENGINEERING

In this section, we discuss the stability against various
kinds of perturbations (flux away from half-integer value or
penetrating into the sample, surface distortions, and random
disorder), and the possibilities of how to use the topological
hole states in multihole systems for topological engineering.

For clarity, we summarize here again the conditions of the
validity range of the analytical theory, as it was discussed in
all detail in Secs. IV C, IV D, and IV F. For the discussion of
strongly localized bound states below the surface gap in the
topological phase, we need the condition specified in (175)

which, in terms of the Witten frequency �W = 1/(m∗λsoξt )
and in dimensionfull units, can be written as

1

m∗λsoR
� �W � EZ , (271)

�W � Eso , (272)

EZ ∼ 
surface � 
bulk. (273)

The first condition (271) is equivalent to the condition of
strong localization ξt = lB

√
R/λso � R and means that we

have a clear separation of energy scales between the level
spacing 1/(m∗λsoR) of the extended edge states, the level
spacing �W of the localized bound states, and the surface
gap ∼EZ , see Fig. 1(b). We note that the two conditions
�W � 1/(m∗λsoR) and EZ � �W are equivalent since

EZ

�W
= 1

2

�W

1/(m∗λsoR)
. (274)

The second condition (272) means that we have a clear sep-
aration of length scales between the normal and tangential
localization lengths λso ∼ ξn � ξt , such that we can split the
Hamiltonian in a normal and tangential part, see Sec. IV F for
the details. As already pointed out at the end of Sec. IV F, the
two conditions can be fulfilled for sufficiently large curvature
radius R, but do not require any condition for the ratio of
spin-orbit energy Eso and Zeeman energy EZ .

To describe the topological states in the case of strong delo-
calization in tangential direction ξt ∼ R, one needs in addition
the condition of weak Zeeman energy EZ � Eso as compared
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FIG. 19. Numerical calculation via the tight-binding formalism described in Appendix D for the wave functions “A-F” of the six states
with lowest absolute value of the energy, see labeling in Figs. 17(b) and 18(b). We consider a system of peanut shape as shown in Fig. 16
using the parameters x̃0 = 10, l̃B = 2, δ̃ = 1, together with (a) R̃1 = R̃2 = R̃ = 30 (left) and (b) R̃1 = 35 and R̃2 = 20 (right), i.e. the same
parameters as in Figs. 17 and 18, respectively. In the six panels, we show the wave functions “A”–“F” by plotting

∑
σzsz

|ψ (nx, ny; σz, sz )|2 in
color code as function of the lattice site index (nx, ny ). The signs of the wave functions before squaring them are indicated which agrees with
the analytical considerations (see main text).

FIG. 20. The angular part of the two zero-energy topological states as function of the line element s̃t along the surface for a system of
peanut shape as shown in Fig. 16 with R̃1 = R̃2 = R̃ = 30, x0 = 10, l̃B = 2, and δ̃ = 1. In the left figure (a) we show the analytical result
e−F (s̃t ) (black line), with F (s̃t ) given by (230) and calculated explicitly in Appendix E. The analytical result is compared to the numerical result
(shown in blue) for the state labeled “A” in Fig. 19(a), by showing the average (1/A)

∑
(nx ,ny )∈A(

∑
σzsz

|ψ (x, y; σz, sz )|2)1/2 over a certain area A
defined by a fixed distance 
N = 4 away from the surface. Furthermore, to ensure for the normalization, we rescaled the numerical result to
fit the peak heights. We find two peaks at the points s̃2

t and s̃6
t , where the Witten Potential Ṽ +

W has a minimum, see Fig. 17. This corresponds
roughly to a symmetric combination ∼(|g2

0〉 + |g6
0〉) of the two harmonic oscillator ground states localized at s̃2

t and s̃6
t (the state |g3

0〉 of the

third minimum of Ṽ +
W is only weakly involved). This is demonstrated by a comparison to the two Gaussian forms g2,6

0 (s̃t ) ∼ e− 1
4 ((s̃t −s̃2,6

t )/ξ̃t )2
,

with ξ̃t = l̃B

√
R̃ = 2

√
30 ≈ 11 (together with a rescaling factor to match the maximum), as shown by the dashed orange lines in the figure. In

the right figure (b) we show the comparison of the analytical result for eF (s̃t ) with the numerical result for the state labeled “B” in Fig. 19 and
with the Gaussian fits for g3,5

0 (s̃t ), corresponding to the two minima of the Witten potential Ṽ −
W at s̃3,5

t . Here both the x and y coordinates of the
numerical curves have been adjusted by multiplying a constant scale factor to fit the peak positions.

235402-33



CLARA S. WEBER et al. PHYSICAL REVIEW B 107, 235402 (2023)

to spin-orbit energy, see the detailed discussion in Sec. IV C.
This is important for the study of topological engineering to
generate a controlled coupling between the two topological
hole states of a single hole, see below.

A. Stability

If the topological states are well localized in normal and
angular direction, i.e., if the condition (271) is fulfilled, only
the properties of the model in a local subpart of the surface
is important. This guarantees the stability of the topological
states against deviations of the flux from half-integer value
and against deformations of the surface. Moreover, even if the
flux penetrates into the sample, the spectrum of the boundary
states is not significantly changed since they are strongly lo-
calized in normal direction and feel only the total flux through
the area defined by the surface.

For the stability against random on-site disorder, we dis-
cuss generic impurity potentials defined in the tight-binding
version of the model by

Vim =
∑

α,β=0,1,2,3

∑
n

vαβ
n |n〉〈n| σα ⊗ sβ , (275)

where n labels the lattice sites, σ0 = s0 = 1, and v
αβ
n is ran-

domly distributed in the interval v
αβ
n ∈ [−d/2, d/2]. Here, d

is a measure for the impurity strength. After averaging over
the disorder the self-energy will be of order d2/Eso, where
t ∼ Eso is the average hopping in the limit of strong spin-orbit
interaction. For a generic spinor dependence of the impurity
potential, we then expect that stability of the topological states
is guaranteed if

d2

Eso
� �W , (276)

since the Witten frequency is the energy of the first excited
bound state. This is equivalent to

(
d

EZ

)2

� l̃3
B√
R̃

. (277)

Thus, to achieve a stability in the regime of the surface gap
d < EZ , one needs to choose l̃3

B �
√

R̃. For typical parameter
values R̃ ∼ 30–60 and l̃B ∼ 2, this can easily be achieved.

For impurity potentials with a special spinor dependence,
the stability can be even stronger. As shown in Secs. IV C and
V A for weak Zeeman field, all edge states are eigenfunctions
of sx in the transformed basis, with eigenvalue ±1 for the
outer/inner surface, see Eq. (209). Therefore, if the impurity
potential V̄im in the transformed basis contains only terms
∼σαsy,z, no matrix elements of the Hamiltonian are possible
between any edge states within the bulk gap, leading to an
increased stability

d2

Eso
� 
bulk , (278)

i.e., the Witten frequency in (276) is replaced by the bulk
gap. Since the spinors transform under the transformation

(198) as

sx,y
UW X−−−→ ei 1

2 szϑsx,ye−i 1
2 szϑ , (279)

σx
UW X−−−→ −σzsz , (280)

σz
UW X−−−→ σxsz , (281)

sz
UW X−−−→ sz , σy

UW X−−−→ σy , (282)

we find that impurity potentials with one of the four following
spinor dependencies have the increased stability regime (278)

Vim ∼ σx, σz, sz, σysz. (283)

Furthermore, in the case of strong localization 
ϕ ∼
l̃B/

√
R̃ � 1 around a point with ϑ = 0 (analog one can treat

the case of localization around ϑ = π ), we can expand the
rotation matrix ei 1

2 szϑ ≈ 1 + i 1
2 szϑ and find from (279)

sy
UW X−−−→ sy + sxO(
ϕ). (284)

The first term involving sy leads to the stability regime (278)
involving the bulk gap. The second term involves the small
factor 
ϕ � 1 associated with sx, i.e., in (276), we have to
multiply the impurity strength d with this factor, leading to
the increased stability region

(
ϕ d )2

Eso
� � ⇔

(
d

EZ

)2

�
√

R̃ l̃B ∼ ξ̃t . (285)

This stability regime applies to all impurity potentials with a
spinor dependence of the form

Vim ∼ sy, σxsx, σysy, σzsx. (286)

Since ξ̃t � 1, the condition (285) leads to a stability regime
for impurity strengths much beyond the surface gap.

B. Topological engineering with hole states

We propose the topological hole states in the topological
phase with ẼZ < δ̃ < 1 + ẼZ to be of particular interest for
topological engineering since their localization length in nor-
mal and tangential direction change in a different way when
increasing the size of the Zeeman field. Whereas an increase
of the normal component of the Zeeman field decreases the
tangential localization length ξ̃t = l̃B

√
R̃, the normal localiza-

tion length ξ̃<
n will increase according to (152) since the bulk

gap reduces. Therefore, by considering a multihole sample as
sketched in Figs. 21(a)–21(c), where the shape of the topolog-
ical states can be controlled by local Zeeman fields, one can
increase the orbital overlap of topological states from different
holes by increasing the Zeeman field, whereas a decrease of
the Zeeman field leads to an increase of the orbital overlap
of the topological states of the same hole. In this way, it is
possible to realize controlled one- and two-hole operations.
An orbital overlap of topological states from different holes
will lead to an interaction since no symmetry protects the
hybridization via the Hamiltonian. In contrast, for topological
states from the same hole, the SUSY protects a hybridization.
However, by the local Aharonov-Bohm flux through the hole,
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FIG. 21. Tunability of topological states localized at two holes in the system. In (b) and (c), we sketch how the shape of the topological
states change qualitatively if one decreases/increases the Zeeman field B1/2 ≶ B compared to (a). Whereas an increase of the Zeeman field

localizes the state stronger in tangential direction (i.e., ξ̃t ∼
√

R̃ l̃B decreases), it delocalizes the state in normal direction since one approaches
the phase transition line δ̃ = 1/l̃2

B = ẼZ at fixed δ̃ > ẼZ . Therefore a decrease of the Zeeman field increases the overlap of the two states from
the same hole, such that their hybridization increases by tuning the flux away from half-integer value, see (b). In contrast, in a setup of two
holes, the overlap of states from neighboring holes can be increased by increasing the Zeeman field, see (c).

one can induce a controlled interaction between the topolog-
ical states from the same hole if their wave functions have a
significant orbital overlap.

We note that the proposed scenario for two-hole opera-
tions is more difficult to realize with sharp corners, where
the angle ϑ controlling the normal and tangential component
of the Zeeman term changes abruptly its sign. In this case,
the normal localization length is controlled by the difference
δ − EZ cos ϑ and will stay finite, even if the bulk gap closes at
δ = EZ . Therefore the normal localization length can be tuned
to much larger values for smooth surfaces without closing
the bulk gap. Furthermore, for sharp corners, the tangential
localization length is of order ξ̃t ∼ 1/ẼZ = l̃2

B since the nor-
mal Zeeman field is a constant along the surface, leading to
an exponentially decaying wave function for the zero-energy
state along the surface, according to the surface Hamiltonian
(215). As a result, one needs much weaker Zeeman fields to
generate an orbital overlap between the topological states of
the same hole, making one-hole operations also more difficult
to realize as compared to the case of smooth surfaces where
ξ̃t =

√
R̃ l̃B is much larger for

√
R̃ � l̃B.

Depending on the shape of the holes, a huge variety of
other scenarios can be imagined for topological engineering.
For example, if one takes a hole of peanut shape, as shown
in Fig. 22, both types of topological states with normal local-
ization lengths ξ>

n and ξ<
n can be realized on the same hole.

This has the effect that increasing the size of the Zeeman field,
the topological states with ξ<

n (which are the states labeled
by 3–6 in Fig. 22) will get an increased normal localization
such that they can overlap with topological states from neigh-
boring holes. In contrast, the topological states with ξ>

n will
get more localized and do not participate in two-hole oper-
ations, whereas they can be used in one-hole operations, by
increasing the tangential localization length by reducing the
Zeeman field. Moreover, the tangential localization length can
be tuned to different values by choosing different curvature
radia for the various topological states. This opens up many
possibilities for different protocols how interactions between
various topological states can be controlled.

VII. SUMMARY AND OUTLOOK

The present work has revealed an interesting relationship
between two different fields of condensed matter and high-

energy physics. It has been shown that the surface spectrum
of a wide class of second-order topological insulators in two
dimensions has a supersymmetric structure if one applies a
half-integer Aharonov-Bohm flux through the area of the sur-
face. It was shown that the topological states are protected
by supersymmetry and an effective surface Hamiltonian has
been set up for smooth surfaces, revealing the whole class
of supersymmetric periodic Witten models. The condition of
a smooth surface is essential for a universal description. In
contrast to sharp corners, where the topological states close
to the corner are nonuniversal and not accessible to analytical
approaches (except for very special cases), smooth surfaces
offer the possibility for a full analytical control over all bound
states localized at the surface. This has been shown via the
localization of states in the minima of effective surface po-
tentials, as they occur within the Witten models. Moreover, it
has been shown that smooth surfaces offer the possibility for
a more flexible tunability of the shape of the topological states
in tangential and normal direction, opening up the possibility
for topological engineering via one- and two-hole processes
in multihole systems by using only magnetic fields.

FIG. 22. Sketch of a system with a hole of peanut shape. The
normal localization lengths ξ j

n , with j = 1, . . . , 6, of the six indicated
topological states are given by ξ 1,2

n = ξ>
n and ξ 3,4,5,6

n = ξ<
n , with

ξ
≷
n given by (153) and (152), respectively. As a consequence, they

behave very differently when increasing the size of the Zeeman field
B. Whereas the states 1 and 2 will get more localized in normal and
tangential direction, the states 3–6 will only decrease in tangential
direction but get more extended in normal direction.
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Our analysis is based on a quite generic continuum model
for a second-order topological insulator, containing the basic
ingredients of band inversion, Rashba spin-orbit interaction,
and Zeeman field. As in previous works [27–35], it turns out
that the Zeeman term is a particularly useful and flexible tool
to induce a surface gap and to control the topological states.
We have shown that the normal and tangential component
of the Zeeman field play a very different role. Whereas the
normal component determines the position of the topological
states and controls the tangential localization length, the tan-
gential component determines the normal localization length
and contains information about occurrence of the phase tran-
sitions of the bulk. Interestingly, at the phase transition from
the gapped topological to the gapless Weyl phase, it turns out
that the normal localization length diverges only when the
curvature of the surface is negative when looking from the
side where the state is localized (e.g., for a Corbino disk, this
are the states at the hole surface). It will be interesting to study
how the behavior of those states is changed when considering
the transition to sharp corners, where it is expected that the
normal localization length will only diverge very close to the
corner but not far away from the corner (where the surface is
rather flat).

We note that our model can be extended to three di-
mensions (3D) where the topological states will change to
hinge states with a dispersion as function of the perpendicular
momentum which connects the conduction with the valence
band. Depending on the choice of the three-dimensional area
(cube, torus, sphere, etc.), a variety of anomalous Quantum
Hall setups in 3D can be realized, generalizing the standard
2D Quantum Hall effect for a Corbino disk. This will be
discussed in forthcoming works [50].

For the future it will be interesting to study how other
models of second-order topology with supersymmetric prop-
erties can be realized. The supersymmetry has the particular
advantage that the two topological states are orthogonal to
each other even if they have a strong orbital overlap, opening
up the possibility for a controlled coupling between them
by tuning the system slightly away from the supersymmetric
point (which, in our case, has been achieved by changing the
flux away from half-integer value). In particular, Majorana
systems are of interest here, as they have been discussed in
Refs. [29–35]. It will be interesting to see which kind of Dirac
model emerges for the effective surface Hamiltonian in this
case and how its universal properties in the low-energy regime
can be related to generalized multichannel Witten models.

Furthermore, our findings of topologically protected zero-
energy states in the Weyl phase might be another avenue
for future research. As shown in Refs. [51,52] (and fur-

ther references therein), general arguments have been set up
to guarantee the existence of exponentially localized states
in gapless systems based on topological phase transitions
between systems with different half-integer toplogical invari-
ants. Whether the same arguments can also be applied to
the states generated via a second-order mechanism described
in this work is an open question. As outlined in Sec. IV F,
the effective surface Hamiltonian can only be extended to
cover the regime of strong Zeeman fields for the discus-
sion of well-localized bound states in the topological phase.
It will be of interest in the future to see whether an ef-
fective surface Hamiltonian can also be derived for strong
Zeeman fields to discuss all surface states, both in the topo-
logical and in the Weyl phase, to provide more insights
for the phase transition and the relation to quantum critical
phenomena.
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APPENDIX A: BULK SPECTRUM

In this Appendix, we study the bulk spectrum for an infinite
system where the outer surface is not present. In this case, the
presence of the inner surface with the finite flux does not play
any role since the vector potential is zero in the asymptotic
region at large distances. Therefore we set the flux to zero
f = 0 in the following and consider a translationally invariant
system with plane waves ∼eikx for the spatial part of the
eigenfunctions. The spectrum of the Hamiltonian (13), with
pK replaced by k, can then be easily obtained by squaring it
twice

H2
k =

(
k2

2m∗ − δ

)2

+ α2k2 + E2
Z + 2EZ

(
k2

2m∗ − δ

)
(B̂ · s) σz + 2αEZ (B̂ · k)σx , (A1)

where B̂ = B/B, B = |B|, and k = |k|. Taking the constant part of the right-hand side to the left side and squaring again, we
obtain for the bulk spectrum of the four bands (with σ = ± and η = ±)

ε
ση

k = σ

√√√√(
k2

2m∗ − δ

)2

+ α2k2 + E2
Z + 2ηEZ

√(
k2

2m∗ − δ

)2

+ α2k2 cos2 θ , (A2)
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with cos θ = B̂ · k̂ and k̂ = k/k. In dimensionless units k̃ = k/kso, with kso = 1/λso = |α|m∗, and using the definitions intro-
duced at the end of Sec. II, this can be rewritten as

ε̃
ση

k̃
= ε

ση

k /Eso = σ

√
(
√

(k̃2 − δ̃)2 + 4k̃2 cos2 θ + ηẼZ )2 + 4k̃2 sin2 θ. (A3)

To obtain the bulk gap and the gap closing point for k, we
consider σ = +, η = − and θ = 0, and get for ε̃k̃ ≡ ε̃+−

k̃
|θ=0

the result

ε̃k̃ = |
√

(k̃2 − δ̃)2 + 4k̃2 − ẼZ |. (A4)

Using

G(k̃2) ≡ (k̃2 − δ̃)2 + 4k̃2 (A5)

= (k̃2 + 2 − δ̃)2 + 4(δ̃ − 1) , (A6)

we obtain for the minimum Gmin of G(k̃2) at k̃ = k̃min � 0

Gmin =
{

4(δ̃ − 1) for δ̃ > 2
δ̃2 for δ̃ < 2

, (A7)

k̃min =
{√

δ̃ − 2 for δ̃ > 2
0 for δ̃ < 2

. (A8)

Together with (A4) this leads to the result (18) for the bulk
gap


̃bulk =
⎧⎨
⎩

2
√

δ̃ − 1 − ẼZ for δ̃ > max
{
2, 1 + 1

4 Ẽ2
Z

}
|δ̃| − ẼZ for δ̃ < 2 and |δ̃| > ẼZ

0 otherwise
.

(A9)

In the parameter region where the bulk gap is finite, the mini-
mum of the band dispersion occurs at θ = 0 and k/kso = k̃min,
given by (A8). The gap closes at the point Gmin = Ẽ2

Z which
leads to

δ̃ =
{

1 + 1
4 Ẽ2

Z for δ̃ > 2
±ẼZ for δ̃ < 2

(A10)

and agrees with (19).

APPENDIX B: EDGE AND CENTER STATES
FOR ZERO ZEEMAN FIELD

Here we discuss the calculation of the exact edge states
at zero Zeeman field B = 0 for a Corbino disk, either lo-
calized at the inner surface with an arbitrary radius R< or
at the outer surface for a large radius R̃> � 1. We discuss
only zero boundary condition at one of the surfaces, thereby
neglecting exponentially small corrections at the other sur-
face for R̃> − R̃< � 1, see the discussion after Eq. (74) (a
similar but more complicated analysis can be done by con-
sidering both boundary conditions at r̃ = R̃≷, valid for any
value of R̃>). Similar to the calculation of boundary states
in one-dimensional systems via linear combination of plane
waves with complex momentum, we present here an analog
approach for a rotationally invariant system in two dimen-
sions via linear combinations of Hankel functions in radial
direction with complex momentum. Of particular interest are
the limits R̃> � 1 and R̃< � 1, where explicit forms can be
provided for the dispersion and the wave functions of the
low-energy edge states as function of the angular momentum

l = 0,±1,±2, . . . in z direction. In the following, we use
the notation R̃ ≡ R̃< and discuss the edge states at the inner
surface, mentioning at the appropriate places what has to be
changed for the edge states at the outer surface.

We start from the generalized supersymmetric Dirac
Hamiltonian (77) and replace the angular momentum l by
ν = l + f − 1

2 to cover also the case where the flux deviates
from half-integer values. To construct the eigenstates, we ex-
ploit the property that the operators 
ν and 
†

ν act in the space
of Hankel functions like ladder operators


ν

√
r̃H (1)

ν+1/2(k̃r̃) = k̃
√

r̃H (1)
ν−1/2(k̃r̃) , (B1)


†
ν

√
r̃H (1)

ν−1/2(k̃r̃) = k̃
√

r̃H (1)
ν+1/2(k̃r̃) , (B2)

where H (1)
ν (z) = Jν (z) + iYν (z) is the Hankel function of first

kind. Disregarding boundary conditions, it is then straightfor-
ward to see that the bulk eigenstates are given by (up to a
normalization factor)

h̃ν �bulk
k̃ν

= ε̃ �bulk
k̃ν

, (B3)

�bulk
k̃ν

(r̃) =
√

k̃r̃

(
ck̃H (1)

ν−1/2(k̃r̃)

H (1)
ν+1/2(k̃r̃)

)
, (B4)

where ck̃ is defined by

ck̃ = − 2k̃

k̃2 − δ̃ − ε̃
= k̃2 − δ̃ + ε̃

2k̃
, (B5)

and the energy ε̃ is related to k̃ = k̃(ε̃) by the dispersion
relation

ε̃2 = (k̃2 − δ̃)2 + 4k̃2. (B6)

For given energy ε̃, there are four solutions for k̃ in
the complex plane which we denote by k̃ j (ε̃), with j =
1, 2, 3, and 4. Since (B6) depends only on k̃2, we can
choose k̃3 = −k̃1 and k̃4 = −k̃2, together with Imk̃1/2 � 0.
Furthermore, since ε̃ is real, k̃∗ is also a solution of (B6), such
that we get either k̃1/2 = −k̃∗

2/1 or k̃1/2 = −k̃∗
1/2 (the special

point k̃1 = k̃2 is a bifurcation point which we disregard in the
following). However, not all four solutions are allowed since
the wave function should decay at large distance r̃ � 1 if we
consider edge states localized at the inner surface. Since the
Hankel function has the asymptotic behavior

√
z H (1)

ν (z)
|z|�1−−−→

√
2

π
e−i(ν+1/2)(π/2) eiz , (B7)

this means that the imaginary part of k̃ must be strictly pos-
itive, i.e., the only allowed solutions are given by k̃1/2. For
δ̃ < 2, we note that these solutions fulfill the useful properties

k̃1(ε̃)k̃2(ε̃) = −
√

δ̃2 − ε̃2 , (B8)

k̃1(ε̃) + k̃2(ε̃) = i

√
2(2 − δ̃ +

√
δ̃2 − ε̃2) , (B9)
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where |ε̃| < |δ̃| to guarantee that the energy of the edge
state lies in the bulk gap set by δ̃. For edge states localized
at the outer surface only k̃ values with a strictly negative
imaginary part are allowed, meaning that we have to replace
k̃1/2 → −k̃1,2.

For given ν, the radial part of the edge state wave function
�edge

ν (r̃) with energy ε̃ can be constructed by a linear combi-
nation of the two degenerate bulk eigenstates with k̃ = k̃1/2(ε̃)

�edge
ν (r̃) =

∑
j=1,2

a j �
bulk
k̃ j (E ),ν (r̃) , (B10)

such that the boundary condition at the hole surface is fulfilled

�edge
ν (R̃) = 0. (B11)

Inserting (B4) in (B10), we find that the boundary condition
can only be fulfilled if

ck̃1

H (1)
ν−1/2(k̃1R̃)

H (1)
ν+1/2(k̃1R̃)

= ck̃2

H (1)
ν−1/2(k̃2R̃)

H (1)
ν+1/2(k̃2R̃)

, (B12)

and the ratio of the two coefficients is given by

a1

a2
= −

√
k̃2R̃ H (1)

ν+1/2(k̃2R̃)√
k̃1R̃ H (1)

ν+1/2(k̃1R̃)
. (B13)

With k̃1/2 = k̃1/2(ε̃), the condition (B12) has either no solution
or gives a certain value for the energy ε̃ = ε̃ν for a given
index ν. If a solution can be found, the total Hamiltonian (75),
given by H̄ (0)

1/2,ν/Eso = σxhν , has two solutions with energy
±ε̃ν . This provides two dispersions of edge states moving
clockwise or anticlockwise along the surface as function of
the angular momentum l = ν − f + 1/2. In the following we
will explicitly solve the condition (B12) for very large and
small radius R̃.

Large radius R̃ � 1 . For large radius, we use the asymp-
totic form

H (1)
ν−1/2(z)

H (1)
ν+1/2(z)

|z|�1−−−→ iz + ν

z
, (B14)

and find from (B12) by using (B5)

ε̃ν = ν

R̃
i(k̃1 + k̃2) − δ̃ − k̃1k̃2 ,

= − ν

R̃

√
2
(
2 − δ̃ +

√
δ̃2 − ε̃2

ν

) − δ̃ +
√

δ̃2 − ε̃2
ν , (B15)

where we used (B8) and (B9) in the second step. For |ε̃ν | <

|δ̃|, this equation has only a solution for

δ̃ > 0 , (B16)

and the energy is of order ε̃ν ∼ O(1/R̃). In leading order, we
obtain

ε̃ν = −2ν

R̃
. (B17)

This result is consistent with the one obtained in Sec. IV C
for the inner surface, see the first term of the effective surface
Hamiltonian (98). The same applies for edge states at the outer
surface, where we have to replace k̃1/2 → −k̃1/2, giving rise to
a sign change of the dispersion.

The edge state wave function for large R̃ follows by us-
ing ε̃ν ≈ 0 in leading order (thereby neglecting corrections
of O(1/R̃)), and inserting the asymptotic form (B7) of the
Hankel function in (B12) and (B13). This gives

ck̃1
= ck̃2

,
a1

a2
= −ei(k̃2−k̃1 )R̃ , (B18)

together with k̃1/2 ≈ k̃1/2(0), given by

k̃1/2(0) = i ±
√

δ̃ − 1 , (B19)

where we define
√

δ̃ − 1 = i
√

1 − δ̃ for 0 < δ̃ < 1. Since
k̃1/2(0)2 − δ = 2ik̃1/2(0), we find from (B5) that

ck̃1
= ck̃2

= i , (B20)

up to corrections of O(1/R̃). Using (B18) and (B20) in (B4)
and (B10), we find for the radial part of the edge state wave
function the ν-independent result (up to a normalization fac-
tor)

�edge
ν (r̃) = ψ̄

<

n
(r̃) ∼

(
1

−1

)(
eik̃1(0)(r̃−R̃) − eik̃2(0)(r̃−R̃)

)
,

(B21)

which proves the result (83) for the edge state at the inner
surface after normalization.

To get the edge state wave function for states localized
at the outer surface, we have to replace k̃1/2 → −k̃1/2 in all
previous steps, leading to ck̃1

= ck̃2
= −i instead of (B20).

This gives the result

�edge
ν (r̃) = ψ̄

>

n
(r̃) ∼

(
1
1

)
(e−ik̃1(0)(r̃−R̃) − e−ik̃2(0)(r̃−R̃) ),

(B22)

which proves (83) for edge states at the outer surface.
Small radius R̃ � 1 . For small hole radius, we start with

the case |ν| < 1/2 which is only possible for l = 0 or ν =
f − 1/2 (since we consider only fluxes with 0 < f < 1). In
this case, we get

H (1)
ν−1/2(z)

H (1)
ν+1/2(z)

|z|�1−−−→ ie−iνπ 
(1/2 − ν)


(1/2 + ν)
(z/2)2ν . (B23)

Using this form together with (B5) in the condition (B12), we
find for the energy

ε̃ν = δ̃ − k̃2ν+1
1 − k̃2ν+1

2

k̃2ν−1
1 − k̃2ν−1

2

(B24)

= δ̃ + k̃1k̃2 − (k̃1 + k̃2)
k̃2ν

1 − k̃2ν
2

k̃2ν−1
1 − k̃2ν−1

2

. (B25)

This equation is rather hard to solve when k̃1/2 = k̃1/2(ε̃ν )
depend significantly on ε̃. Analytical results can be obtained
in the limit of small |ν| = | f − 1/2| � 1, where we obtain

ε̃ν ≈ δ̃ + k̃1k̃2 + 2
k̃1 + k̃2

k̃1 − k̃2
k̃1k̃2(ln k̃1 − ln k̃2)ν. (B26)

For the SUSY point ν = 0, we obtain

ε̃0 = δ̃ + k̃1k̃2 = δ̃ −
√

δ̃2 − ε̃2
0 , (B27)
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where we used (B8) in the last step. Since the solution ε̃0 = δ̃

is not possible (the energy is required to be in the gap), this
equation has the unique solution ε̃0 = 0 if δ̃ > 0. This means
that ε̃ν ∼ ν has a linear slope in the deviation ν = f − 1/2
from half-integer flux. As a consequence, we can neglect the
energy dependence of k̃1/2(E ) in (B26) since the corrections
are of quadratic order in ε̃ and, therefore, also in ν. For ε̃ = 0,
we insert (B19) in (B26) and obtain the following dispersion
ε̃( f ) ≡ ε̃ f −1/2 for the center state with angular momentum
l = 0 as function of the flux f

ε̃( f ) = −4δ̃( f − 1/2)√
|δ̃ − 1|

⎧⎨
⎩

arctan
√

δ̃ − 1 for δ̃ > 1
1
2 ln 1+

√
δ̃−1

1−
√

δ̃−1
for 0 < δ̃ < 1

,

(B28)

which proves Eq. (87) of the main text.
For the other angular momenta |l| > 0, we have |ν| > 1/2

and use

H (1)
ν−1/2(z)

H (1)
ν+1/2(z)

|z|�1−−−→
{

z/(2ν − 1) for ν > 1/2
(2ν + 1)/z for ν < −1/2 . (B29)

After inserting this form together with (B5) into the condition
(B12) we find that a solution can not be found for the energy.

As a result, for small radius, only the center state with
l = 0 survives with energy ε̃( f ) given by (B28) for small
| f − 1/2| � 1. The reason is that this state starts at zero en-
ergy at the SUSY point f = 1/2 at any radius (see below) and
will get a small shift when deviating from half-integer flux. In
contrast, the other edge states with finite angular momentum
already start at a finite energy at the SUSY point and get
strongly shifted by decreasing R̃ such that they move out of
the gap for small radius.

APPENDIX C: CONTINUUM NUMERICS FOR A DISC

In this Appendix, we will outline the continuum numerics
for a disk with radius R and no hole (i.e., R> = R and R< =
0). We start from the Hamiltonian (14) and choose a complete
basis of states which diagonalizes the kinetic term p2

K/(2m).
In polar coordinates, we use

p2
K = −1

r
∂rr∂r + 1

r2
(−i∂ϕ + f )2 (C1)

and decompose the eigenfunctions in a radial and angular part

p2
K

2m
ψlβ (r, ϕ) = εlβ ψlβ (r, ϕ) , (C2)

ψlβ (r, ϕ) = ulβ (r)
1√
2π

eilϕ , (C3)

where l = 0,±1,±2, . . . denotes the angular momentum and
β = 1, 2, . . . numerates the radial states. Using the dimen-
sionless variable z = √

2mεlβ r we find that ulβ (r) fulfils the
differential equation for the Bessel functions[

∂2
z + 1

z
∂z +

(
1 − (l + f )2

z2

)]
ulβ = 0. (C4)

Since ψlβ (r, ϕ) should be a well-defined wave function at r =
0, we need the following boundary condition at r = 0:

ulβ (r)
r→0−−→

{
finite value for l = 0
0 for l �= 0 . (C5)

Furthermore, at r = R, the wave function should vanish

ulβ (R) = 0. (C6)

As a consequence, the normalized radial part and the energy
eigenvalues are given by

ulβ (r) =
√

2

R

J|l+ f |(z|l+ f |,β r/R)

|J|l+ f |+1(z|l+ f |,β )| , (C7)

εlβ = z2
|l+ f |,β
2mR2

, (C8)

where Jν (z) are the Bessel functions and zνβ > 0 numerates
the positive zero’s of Jν (zν,β ) = 0 with β = 1, 2, . . . in as-
cending order, i.e., 0 < zν,1 < zν,2 < . . .

In the basis of the states ψlβ , we now state the matrix
elements 〈ψlβ |pK |ψl ′β ′ 〉 of the kinetic momentum operator

pK = (pK,x

pK,y
) in order to determine the matrix elements of the

spin-orbit interaction. A lengthy but straightforward calcula-
tion gives the result

〈ψlβ |pK |ψl ′β ′ 〉 = − 1

R

(−i(δl,l ′−1 + δl,l ′+1)
δl,l ′−1 − δl,l ′+1

)
Plβ,l ′β ′ , (C9)

where for |l + f | + |l ′ + f | > 1, we get

Plβ,l ′β ′ = (−1)β+β ′ z|l+ f |,β z|l ′+ f |,β ′

z2
|l+ f |,β − z2

|l ′+ f |,β ′
, (C10)

and for |l + f | + |l ′ + f | = 1 (which, for 0 < f < 1, can
only happen for l = 0, l ′ = −1 or l = −1, l ′ = 0), we define

Plβ,l ′β ′ = (−1)β+β ′ z|l+ f |,β z|l ′+ f |,β ′

z2
|l+ f |,β − z2

|l ′+ f |,β ′

{
1 − 2

π
sin(π f )

× (z|l+ f |,β )|l+ f |−1 (z|l ′+ f |,β ′ )|l
′+ f |−1

J|l+ f |+1(z|l+ f |,β ) J|l ′+ f |+1(z|l ′+ f |,β ′ )

}
. (C11)

We note that, for the special case f = 1/2, the latter matrix
element can be evaluated as (for both l = 0, l ′ = −1 or l =
−1, l ′ = 0)

Plβ,l ′β ′ = ββ ′

β2 − β ′2 ((−1)β+β ′ − 1). (C12)

Based on the matrix elements of pK it is then straightfor-
ward to evaluate the matrix elements of the Hamiltonian (14)
which, in dimensionless units, read (with σ = ±1 and s = ±1
denoting the eigenvalues of σz and sz, respectively)

〈ψlβ, σ, s|Hf |ψl ′β ′ , σ ′, s′〉/Eso

= δll ′δββ ′δσσ ′δss′σ

(
z2
|l+ f |,β
R̃2

− δ̃

)

+ 4i

R̃
δl,l ′−sδσ,−σ ′δs,−s′Plβ,l ′β ′

− i

l̃2
B

δll ′δββ ′δσσ ′δs,−s′s. (C13)
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For the numerical implementation, we take a cutoff NL for
the allowed values of the angular momentum in the following
way:

− NL + 1 � l � NL. (C14)

We have chosen it in the prescribed way to ensure that the
SUSY operator U1/2 at f = 1/2 stays in the space of chosen
states. This follows from the matrix elements (valid only for
f = 1/2)

〈ψlβ |e−iϕPϕ|ψl ′β ′ 〉 = δl+l ′+1,0δββ ′ . (C15)

In the chosen way, the Hamiltonian matrix fulfils exactly all
symmetries for any cutoff (i.e., chiral and inversion symmetry,
and, for the special case f = 1/2, the supersymmetry).

In addition, we have to choose a cutoff NZ for the num-
ber of zero’s of the Bessel function, i.e., β = 1, 2, . . . , NZ .
Whereas convergence is quickly reached in the cutoff NL for
the angular momentum, the cutoff NZ has to be taken rather
large for increasing R̃ such that NZ ∼ R̃ to get values of
the energy z2

|l+ f |,β/R̃2 beyond δ̃. This restricts the numerical
implementation to values R̃ ∼ 30–40 for a good efficiency.

We note that the matrix elements Plβ,l ′β ′ can be of order
O(R̃) for z|l+ f |,β , z|l ′+ f |,β ′ ∼ O(R̃) and |z|l+ f |,β − z|l ′+ f |,β ′ | ∼
O(1). Therefore the spin-orbit interaction is not ∼1/R̃ as
one might conclude from (C13) but has a weight ∼O(1).
This makes analytical treatments as function of the cutoff NZ

rather difficult and requires a careful study of convergence in
numerics. The data shown in this paper were calculated with
cutoffs NL = 10 and NZ = 150 and it was verified that they
were already converged with respect to both cutoffs.

APPENDIX D: TIGHT-BINDING NUMERICS

To set up the numerics on a discrete two-dimensional
quadratic lattice with lattice spacing a, we first consider zero
flux f = 0 and replace in the low-energy regime the momen-
tum dependent terms in the Hamiltonian H0 by

p2 →
∫

1.B.Z
dk|k〉〈k|

{
− 2

a2
(cos kx + cos ky) + 4

a2

}
, (D1)

s · p →
∫

1.B.Z
dk|k〉〈k|1

a
(sx sin kx + sy sin ky) , (D2)

where k = (kx, ky) denotes the dimensionless quasimomen-
tum vector with −π < kx,y < π defining the first Brioullin
zone (1BZ). Here, we have used the plane wave states

|kx,y〉 = 1√
2π

∑
nx,y

eikx,ynx,y |nx,y〉 , (D3)

where |n〉 denotes the state with an electron on lattice site n =
(nx, ny), with nx,y = 0,±1,±2, . . .

To obtain the tight-binding Hamiltonian in real space rep-
resentation, we use∑

n

|n + ex,y〉〈n| + H.c. = 2
∫

1.B.Z
dk cos(kx,y)|k〉〈k| , (D4)

i
∑

n

|n + ex,y〉〈n| + H.c. = 2
∫

1.B.Z
dk sin(kx,y)|k〉〈k| ,

(D5)

where ex = (1, 0) and ey = (0, 1). Inserting these relation-
ships in (D1) and (D2), we find for the Hamiltonian (14) at
zero flux the nearest-neighbor tight-binding model

H0 = −tσz

∑
n

∑
i=x,y

(|n + ei〉〈n| + H.c.) (D6)

+ iα

2a
σx

∑
n

∑
i=x,y

(si|n + ei〉〈n| − H.c.) (D7)

+ (4t − δ)σz + 1

2
gμBB · s , (D8)

with t = 1/(2m∗a2). For the case of strong spin-orbit inter-
action as considered in the present work, the spin-orbit length
λso is the smallest length scale in the continuum model. There-
fore we choose the lattice spacing a in the discretized model of
the order of the spin-orbit length a ∼ λso ∼ 1/(αm∗), which
gives

t = 1/(2m∗a2) ∼ Eso. (D9)

In the presence of a finite flux f , we use

Hf = e−i f ϕH0ei f ϕ , (D10)

which leads to the following change of the tight-binding
Hamiltonian:

|n〉〈m| → e−i f 
ϕn,m |n〉〈m| , (D11)

where 
ϕn,m = ϕn − ϕm mod(2π ) and 0 � ϕn < 2π de-
notes the polar angle (measured relative to the positive x axis
in the anticlockwise direction) of the lattice site at position
x = a(nx, ny) (hereby, we assume that no lattice site is located
on the x axis). In order to get the total phase factor e−i2π f when
hopping in a closed loop anticlockwise around the origin we
have to choose the mod(2π ) contribution equal to 2π (−2π ),
when the hopping occurs in y direction at x > 0 in positive
(negative) y direction. With this definition it is guaranteed that
|
ϕn,m| < π is always the smallest possible one.

We note that the tight-binding model fulfils exactly the
same symmetries (inversion, chiral, SUSY) as the continuum
model. For inversion symmetry, it is essential that the shape of
the lattice is symmetric under x → −x and for SUSY we need
half-integer flux f = 1/2 and a shape which is symmetric
under both x → −x or y → −y.

APPENDIX E: WITTEN POTENTIAL AND ZERO-ENERGY
WAVE FUNCTIONS FOR A PEANUT SHAPE

In this Appendix, we derive the formulas needed to cal-
culate the Witten potential Ṽ +

W and the zero-energy wave
functions ψ

(0)±
W for a surface of peanut shape. From the con-

struction shown in Fig. 16, we see that the peanut shape is
completely determined by the three parameters R1, R2, and
x0. The point with s̃t = R̃2γ determines the position on the
surface where the curvature changes discontinuously from
κ̃t = −1/R̃2 to κ̃t = 1/R̃1. This gives rise to discontinuities
in the Witten potential which can be washed out and do not
influence the low-lying states too much if the radii R̃1,2 � 1
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are large enough. The angle γ is determined from

cos γ = x0 + R2

R1 + R2
. (E1)

The Witten potential follows from the formulas

Ṽ +
W (s̃t ) = ẼZ,n(s̃t )

2 − 2Ẽ ′
Z,n(s̃t ) , (E2)

ẼZ,n(s̃t ) = 1

l̃2
B

sin ϑ (s̃t ) , (E3)

Ẽ ′
Z,n(s̃t ) = −2

κ̃t (s̃t )

l̃2
B

cos ϑ (s̃t ) , (E4)

where the angle ϑ (s̃t ) of the normal vector en with the x axis

and the curvature κ̃t (s̃t ) = d
ds̃t

ϑ (s̃t ) fulfill the symmetries

ϑ (s̃t ) = π − ϑ (L̃/2 − s̃t ) = −ϑ (L̃ − s̃t ) , (E5)

κ̃t (s̃t ) = κ̃t (L̃/2 − s̃t ) = κ̃t (L̃ − s̃t ) , (E6)

which lead to the relations

ẼZ,n(s̃t ) = ẼZ,n(L̃/2 − s̃t ) = −ẼZ,n(L̃ − s̃t ) , (E7)

Ẽ ′
Z,n(s̃t ) = −Ẽ ′

Z,n(L̃/2 − s̃t ) = Ẽ ′
Z,n(L̃ − s̃t ). (E8)

Therefore it is sufficient to know ϑ (s̃t ) and κ̃t (s̃t ) in the regime
0 < s̃t < L̃/4. For the total length L̃ we obtain

L̃ = 4(R̃1 + R̃2)γ + 2π R̃1. (E9)

For 0 < s̃t < L̃/4, a straightforward analysis gives for ϑ (s̃t )
the result

ϑ (s̃t ) =
{−s̃t/R̃2 for 0 < s̃t < R̃2 γ

[s̃t − (R̃1 + R̃2)γ ]/R̃1 for R̃2 γ < s̃t < L̃/4
,

(E10)

and from the derivative, we find for the curvature

κ̃t (s̃t ) =
{−1/R̃2 for 0 < s̃t < R̃2 γ

1/R̃1 for R̃2 γ < s̃t < L̃/4
. (E11)

From (E10), (E3), and (230), we can also calculate
the function F (s̃t ) entering the zero-energy wave functions
ψ

(0)±
W (s̃t ) of the Witten Hamiltonian via (229). Using the

symmetries (231) and (232), we get

F (s̃t ) = −F (L̃/2 − s̃t ) = F (L̃ − s̃t ). (E12)

Therefore it is sufficient to calculate F (s̃t ) for 0 < s̃t < L̃/4.
Using R(s̃t ) = −R(−s̃t ), we can replace the lower integration
limit in (230) by L̃/4 and find

F (s̃t ) = −1

2

∫ L̃/4

s̃t

d s̃′
t ẼZ,n(s̃′

t ). (E13)

Therefore, for 0 < s̃t < L̃/4, we need the function ẼZ,n(s̃t )
only in the same regime. Inserting (E3) and (E10) in (E13)
we find for 0 < s̃t < R2 γ

F (s̃t ) = 1

2l̃2
B

[
R̃2 cos

(
s̃t

R̃2

)
− (R̃1 + R̃2) cos γ

]
, (E14)

and for R2 γ < s̃t < L̃/4,

F (s̃t ) = − 1

2l̃2
B

R̃1 cos

(
s̃t − (R̃1 + R̃2)γ

R̃1

)
. (E15)
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