
CoVault: A Secure Analytics Platform

Roberta De Viti1, Isaac Sheff1, Noemi Glaeser2,4, Baltasar Dinis3, Rodrigo Rodrigues3, Jonathan Katz4,
Bobby Bhattacharjee4, Anwar Hithnawi5, Deepak Garg1, and Peter Druschel1

1Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus
2Max Planck Institute for Security and Privacy (MPI-SP)

3Instituto Superior Tecnico (ULisboa), INESC-ID
4University of Maryland

5ETH Zürich

Abstract—In a secure analytics platform, data sources consent to
the exclusive use of their data for a pre-defined set of analytics
queries performed by a specific group of analysts, and for a
limited period. If the platform is secure under a sufficiently
strong threat model, it can provide the missing link to enabling
powerful analytics of sensitive personal data, by alleviating
data subjects’ concerns about leakage and misuse of data. For
instance, many types of powerful analytics that benefit public
health, mobility, infrastructure, finance, or sustainable energy
can be made differentially private, thus alleviating concerns
about privacy. However, no platform currently exists that is
sufficiently secure to alleviate concerns about data leakage and
misuse; as a result, many types of analytics that would be in
the interest of data subjects and the public are not done.

CoVault uses a new multi-party implementation of func-
tional encryption (FE) for secure analytics, which relies on a
unique combination of secret sharing, multi-party secure com-
putation (MPC), and different trusted execution environments
(TEEs). CoVault is secure under a very strong threat model
that tolerates compromise and side-channel attacks on any
one of a small set of parties and their TEEs. Despite the cost
of MPC, we show that CoVault scales to very large data sizes
using map-reduce based query parallelization. For example, we
show that CoVault can perform queries relevant to epidemic
analytics at scale.

1. Introduction

There is a growing need for analytics of sensitive data,
such as personal mobility, activity, health, financial, and
contact data. Examples include analytics to support the
study of epidemics with high spatio-temporal resolution, to
optimize sustainable transportation systems, and to aid urban
planning; analytics of individual health records at large scale
to extract information about rare disease diagnosis and treat-
ment; and analytics of individual financial transactions to
extract economic insight or to detect systemic vulnerabilities
in the finance system. In these scenarios, analytics that
would be of significant societal value are currently not done
in many countries due to concerns about privacy and leakage

or misuse of data [6], [36]. We contend that a platform
with a sufficiently high level of security to enable such
analytics would be valuable, even if it required significant
compute resources. Such a platform would also promote the
availability and safe use of protected public-sector data for
research and the public good, a central goal of the EU’s new
Data Governance Act (DGA) [4].

A secure data analytics platform supports the execution
of a pre-defined set of analytics queries while preventing
direct data access and unauthorized queries. The need for
secure analytics arises when the raw data is sensitive, while
the results of (statistical) analytics queries are not sensitive
but highly valuable to data subjects or the public. In this
scenario, data subjects/owners may be willing to contribute
their data for specific analytics if, and only if, they have
strong assurances that the query results do not violate their
privacy, and their data cannot be leaked or used in any other
way.

Challenge. The design of a secure analytics platform in-
volves trading off the strength of the threat model, the
expressiveness of analytics queries, and the efficiency of
query processing (i.e., query latency, bandwidth, and re-
source requirements). In general, a stronger threat model
requires more complex security primitives to protect the
data, which in turn require more resources to perform an-
alytics. Depending on the scalability of a design, these ad-
ditional requirements may translate into long query latency
or additional storage and compute resources. In many cases
restricting query expressiveness can increase efficiency.

Another trade-off concerns the degree of data aggrega-
tion. At one extreme, data is aggregated by a single party,
which is efficient but challenging to secure; at the other
extreme, data remains in the hands of its owners, which
trivially prevents data leakage and misuse but limits the
expressiveness of queries that can be executed efficiently due
to communication and availability limits since a significant
percentage of owners must participate in every query.

Prior work. Existing work on secure databases and ana-
lytics platforms has explored different points in this design
space. First, hardware-secured systems rely on a Trusted

ar
X

iv
:2

20
8.

03
78

4v
1

 [
cs

.C
R

]
 7

 A
ug

 2
02

2

Execution Environment (TEE) [53], [73], [13], [11], [18],
[68], [40], [64], [51], [52]. These systems execute arbi-
trary queries on encrypted data at near native speed of
the underlying compute platform, but their threat model
excludes compromise of the TEE or its vendor, as well as
side channels; many such attacks have been reported [56].
Second, federated analytics systems support differentially
private analytics queries over distributed, encrypted data
stores [17], [66], [67], [65]. In these systems, data re-
mains under the control of its owners, which avoids many
threats associated with aggregating data from different own-
ers by a third party. However, network limitations (delay,
bandwidth), availability of data stores, and the overhead
of cryptographic primitives required to prevent data leaks
via intermediate query results limit the expressiveness of
queries. Third, some systems support analytics queries over
homomorphically encrypted (HE) data [65], [22], [26], [63],
[23], [60]. The expressiveness of queries is limited only
by the set of homomorphic operations supported by the
encryption scheme. Fully homomorphic (FHE) schemes,
which support arbitrary computation, are generally still very
expensive [72]. Also, query results are encrypted with the
same key as the raw data, and therefore a party must be
trusted to decrypt the results of approved queries, which
requires additional security mechanisms beyond HE [21],
[65], [67], [66]. In summary, the setup and trust assumptions
of prior work are not fit for the class of analytics we
target, the confidentiality guarantees we require, and the user
control on data use we wish to impose.

CoVault. This paper explores a different design based
on two complementary ideas. First, data is entrusted in
secret-shared form to a small set of independent parties
that store one data share each and jointly process queries
using secure multi-party computation (MPC). By hosting
the parties in a single data or co-location center, CoVault
combines low-latency data access with multi-party security,
thereby enabling complex queries while avoiding trust in
any one party and secure hardware technology. Second, the
parties jointly implement a form of functional encryption
(FE). FE is a generalization of public-key encryption where
possessing a secret key allows one to learn a pre-defined
set F of functions of the encrypted cleartext m, but nothing
else about m. We observe that FE provides the essential
functionality of a secure analytics platform. Data sources
can encrypt their data using the public key, and F models the
set of queries allowed on the data. As a consequence, only
the results of pre-approved queries can be obtained from
the encrypted data. Unfortunately, existing implementations
of FE are limited to specific functions, are impractically
expensive, or rely solely on hardware security [8], [5], [39].

FE construction. At the heart of CoVault’s design is a
construction of FE that combines several types of TEEs,
secret sharing, and MPC. The construction is secure under
a strong threat model that tolerates side channels as well as
compromise of any t of n parties, components, or technolo-
gies, where t and n depend on the specific MPC protocol
used (1 of 2 in our prototype). Briefly, (i) the data sources

use n-out-of-n secret-sharing on their data, generating n
shares; then, they encrypt each share with a different public
key Kpub

Fi , where F corresponds to a class of analytics
queries to which the data sources consent, and i indicates the
share; finally, they send each encrypted share to a separate
party within CoVault; (ii) each party processes data within
a TEE of a different type and vendor (e.g., Intel SGX, Intel
TDX, AMD SEV-SNP, ARM CCA [30], [70], [7], [69]);
a TEE obtains access to the private key Kpriv

Fn needed to
decrypt its share iff it was attested to implement precisely
the query class F ; (iii) to process a query f (from the set F)
on the database m, the TEEs of each party jointly perform
MPC in the malicious threat model on their shares. Each
TEE obtains a share of the query result f(m) and reveals
it to authorized queriers, who can assemble the shares to
obtain f(m).

Intuitively, this construction implements FE in the threat
model described above. In fact, (a) only TEEs implementing
f can decrypt the data m; (b) side-channel attacks against,
or compromise of, any t or fewer TEEs are unproductive,
as individual TEEs learn only their own share of m plus
their share of f(m); (c) secret sharing ensures that any n−
1 shares reveal nothing about the underlying data; and (d)
correlated attacks against TEEs are difficult because each
TEE is of a different type and vendor.

Optimizations. CoVault’s FE construction occupies a mid-
dle ground: It is more efficient than purely cryptographic
constructions and supports more general queries than feder-
ated analytics, but the use of MPC makes it more compute-
intensive than systems that rely on near-native query execu-
tion within a TEE [53], [73], [13], [11], [18], [68], [40], [64],
[51], [52], although the latter systems do not tolerate side
channels or compromise of the TEE hardware or vendor.
To ensure scalability and performance at scale, CoVault
uses a number of optimizations. In order to scale out and
support large datasets and complex queries, CoVault relies
on map-reduce style distributed processing. Each mapper
and reducer is implemented as an MPC instance, with each
party in the MPC encapsulated in a TEE of a different type.

Since CoVault’s threat model allows side channels, Co-
Vault must not leak secrets indirectly via observable be-
havior such as memory access, network communication,
and database access patterns. We use circuit-based MPC,
which has oblivious memory accesses, and CoVault pads
all network communication to hide the shape of its payload.
To make database accesses oblivious while avoiding full
scans for efficiency, CoVault uses several techniques. First,
if queries select data by a public attribute, then only the data
matching the selection needs to be fetched. Second, CoVault
includes an efficient private information retrieval (PIR) pro-
tocol for data accesses as part of queries that select data
based on private attributes, or perform data-dependent data
accesses. Finally, CoVault can produce materialized views
during its ingress processing to avoid expensive operations
like joins during interactive query processing.

Results/Limitations. CoVault is the first analytics platform
based on a practical FE construction that is fit for purpose

and secure under a very strong threat model. Thus, CoVault
can enable analytics on sensitive data, and it scales out to
large datasets using map-reduce parallelism. For instance,
§ 7 shows that CoVault can perform epidemiologically-
relevant analytics on personal mobility and contact data
at scale. The CoVault prototype uses garbled circuits, i.e.,
n = 2, t = 1. This choice was motivated in part by the
limited number TEE implementations available today, al-
though additional vendors have announced TEEs. Assuming
the availability of more TEEs, MPC protocols with n > 2
can potentially offer even better efficiency and security, but
the details remain for future work.

Contributions. (1) A multi-party functional encryption con-
struction in a strong threat model that tolerates side channels
and compromise of any t of n TEE implementations. (2)
The design, implementation, and evaluation of an analytics
platform that is secure under the same threat model. (3)
Several technical components: A provably secure secret-
sharing scheme with built-in MACs (§ 4.4), a modified 2-
party MPC (2PC) protocol that produces asymmetric outputs
(§ 4.3), and a simple PIR scheme that supports fetches in
constant time (§ 6.1). (4) A data-oblivious map-reduce in
2PC for scalable query processing (§ 6.2).

2. CoVault Overview

In this section, we describe the requirements for a secure
analytics platform and survey relevant available technolo-
gies.

2.1. System requirements

Secure analytics platforms require strong technical safe-
guards to prevent data theft, leaks, manipulation, and misuse,
including unauthorized queries. In particular:

Transparency The system is fully transparent in its design,
implementation (source code), configuration, and operation.

Decentralized trust Trust in the system does not depend
on any individual party or technology.

Integrity Data stored cannot be altered by platform compo-
nents or external third parties without detection.

Confidentiality Subject to a strong threat model (§3.2), it is
impossible to extract information from the database except
through the approved analytics query interface.

Consent Users explicitly consent to their data being used for
specific and publicly-defined analytics queries, by specific
parties, and for a limited period of time. Changes to these
categories require renewed and explicit user consent.

Privacy While privacy requires query-specific mechanisms
and cannot be provided by an analytics platform itself, the
system should be compatible with strong privacy-preserving
mechanisms like differential privacy.

2.2. Building blocks

Secret sharing is a method for sharing a secret value among
multiple parties, such that the value can be obtained only if
a sufficient fraction of shares (possibly all) are combined.
CoVault uses secret sharing to tolerate the failure of one
class of system components, such as TEEs from a particular
vendor, without risking data disclosure.

Secure multi-party computation (MPC) allows several
parties to jointly compute a function without revealing their
respective inputs. MPC protocols are secure in either a
semi-honest [80], [47] or a malicious [77] threat model.
To evaluate queries on secret-shared data, CoVault uses
oblivious MPC in the t-of-n malicious threat model, where
up to t of the n parties may be malicious. The value of the
maliciousness threshold t varies from n/3 to n−1 depending
on the protocol. Garbled circuits (GCs) are a specific 2-party
MPC (2PC) technique (n = 2, t = 1), which is practical
in many applications [62]. GCs are inherently oblivious as
circuits have no control flow constructs.

Trusted execution environments (TEE) are supported by
many recent general-purpose CPUs, e.g., Intel SGX, AMD
SEV, and the upcoming Intel TDX and ARM CCA [30],
[7], [70], [69]. TEEs provide confidentiality and integrity
of data and computation under a threat model that toler-
ates compromised operating systems, hypervisors, and even
some physical attacks [24], [30]. Unlike the first-generation
SGX, the newer SEV-SNP, TDX, and CCA encapsulate
an entire VM, providing a familiar, general programming
model and a large memory space. An attestation protocol
generates a cryptographic proof that a VM executes in an
authentic TEE of a given type and that its initial memory
state matches the expected secure hash value (measurement).
Given this proof, the VM is provided with cryptographic
material needed to authenticate itself to remote parties and to
access data sealed for it. CoVault uses TEEs to encapsulate
each party’s computation. The security guarantees of a TEE
depend on the integrity of its vendor’s certificate chain,
proprietary hardware, and firmware. To minimize the chance
of correlated compromises, CoVault relies on multiple TEE
implementations from different vendors.

Functional Encryption (FE) is a generalization of public-
key encryption, which enables the holder of a private key
to learn a pre-defined function of what the ciphertext is
encrypting, but nothing else [20]. Iron [39] implements FE
using a TEE; this construction is efficient but is vulnerable
to side channels, and its security relies on the integrity of
the TEE’s hardware implementation and its vendor. CoVault
relies on a new FE-like construction, which extends Iron to
be secure without relying on any one TEE implementation
or vendor, and tolerates side channels.

Private Information Retrieval (PIR) techniques allow a
client to fetch data from a database without disclosing which
data is fetched [29]. CoVault uses PIR to fetch data from
materialized views when executing data-dependent queries.

Figure 1: CoVault: Using FE for secure analytics

2.3. Approach and roadmap

In CoVault, data sources encrypt their data using a
variant of FE, such that only the results of a pre-defined set
of queries F can be obtained from the encrypted data, and
only by a pre-defined set of authorized queriers D, before
expiration time te (Figure 1). At the heart of CoVault is a
multi-party FE-like construction, which we develop through
successive refinement of strawman designs in § 3 and fully
describe in §4. In §5, we describe the design of the CoVault
analytics platform based on this FE-like construction, and
in § 6 we show how to execute general analytic queries in
an efficient and scalable manner. Finally, in § 7 we evaluate
CoVault in the context of epidemic analytics as an example
application scenario.

3. CoVault’s FE-like construction

In this section, we present the high-level API of Co-
Vault’s FE-like construction, and then sketch the construc-
tion by incrementally refining a series of strawman designs.

3.1. API

FE allows a party with access to only a ciphertext and an
appropriate decryption key to compute a specific function of
the cleartext. More precisely, given a set X (plaintext space)
and a set F of functions over X (function space), a FE
scheme over (X,F) enables one to evaluate f(x) given the
encryption of x ∈ X and a decryption key skf for f ∈ F
[20]. One cannot learn anything about x other than f(x)
using the decryption key skf .

We use a variant of FE that allows encryptors to specify
which functions from the function space can be run on
their data, which decryptors can request the evaluation of
these functions, and when their data expires. We reflect this
variation in the (Setup,KeyGen,Enc,Dec) API, which
defines a FE scheme in the literature.
mpk[F,D, te],msk[F,D, te]← Setup(1κ, F,D, te) This

operation takes as input a security parameter κ, a set
of functions F , a set of authorised decryptors D and
an expiration time te. It outputs a master public-private
keypair constrained to F , D and te. The public key,
mpk[F,D, te], is published for use by encryptors,
while the private key, msk[F,D, te], is held secret by
a trusted party.

skf ← KeyGen(msk[F,D, te], f, d) This operation takes
as input a constrained master secret key msk[F,D, te],

a specific function f , and a decryptor d. It outputs a
function secret key skf if f ∈ F and d ∈ D. Otherwise,
it fails and outputs ⊥. skf can be used to obtain f(m)
for any m encrypted using mpk[F,D, te] (see Dec()
below). KeyGen() is executed by the trusted party
on behalf of a decryptor d. The decryptor provides f ,
while the trusted party provides msk[F,D, te].

c← Enc(mpk[F,D, te],m) This operation takes as input
a constrained master public key mpk[F,D, te] and a
message m. It outputs a ciphertext c.

f(m)← Dec(skf , c) This operation takes as input a func-
tion secret key skf and a ciphertext c. It out-
puts f(m) if skf 6= ⊥, c was generated us-
ing Enc(mpk[F,D, te],m), skf was generated using
KeyGen(msk[F,D, te], f, d) with the same F , D and
te, and the current time is less than the expiration time
te. Otherwise, it fails and outputs ⊥.

3.2. Desired properties and threat model

Properties. We are interested in two security properties:
• (Data) Confidentiality. Plaintexts remain confidential,

except that authorized decryptors (in the set D) may
learn authorized functions (from the set F) of the plain-
texts if they execute Dec() before the expiration time
te. No other entity learns anything about plaintexts.

• (Result) Integrity. The decryptor receives the correct
value of the its provided function, f , applied to the
encrypted plaintext, m. An adversary cannot modify
f , m, or the result f(m) without detection.

Threat model. We aim to provide confidentiality and in-
tegrity in the presence of active attacks that may exploit soft-
ware or hardware vulnerabilities, including side channels.
We do not trust any single technology or vendor to produce
hardware resilient to strong attacks and, therefore, divide
trust among multiple parties and hardware technologies.
Specifically, both our FE-like construction and the CoVault
design (which builds on this construction) secret-share data
among n independent parties for confidentiality, and use n-
party MPC in the t-of-n malicious model to answer queries.
To raise the bar for compromise or malice, we encapsulate
each party in a TEE of a different vendor and the code of
the parties running in the TEEs is attested to be correct.
Moreover, we assume that no more than t parties collude
and their TEEs are not subject to simultaneous side-channel
or physical attacks [56]. To make sure a malicious party
can attack at most its own TEE in this way, the parties’
compute platforms are assumed to be physically separated,
e.g., in separate cages of a co-location center.

Our precise assumption is that at least n−t of the parties
and their TEEs remain uncompromised and free from side-
channel exploits. The remaining t TEEs may be arbitrarily
malicious: they may be subject to software or hardware
attacks (even in collusion with a hardware vendor) and may
run the wrong code (different from what was attested). Our
design provides confidentiality and integrity in this very
strong threat model.

Confidentiality if: Integrity if:
S1 At least n−t parties trusted

and free of side-channel ex-
ploits

All parties semi-
honest (no active
attacks)

S2 At least n − t parties with
uncompromised TEEs and
free of side-channel ex-
ploits

All parties semi-
honest (no active
attacks)

S3 At least n− t parties with uncompromised TEEs
and free of side-channel exploits. (Same as our
threat model.)

Figure 2: Assumptions needed to attain confidentiality and
integrity in our Strawman designs

The prototype implementation of our FE-like construc-
tion (§ 4) uses two parties (n = 2) of which one may be
compromised (t = 1). For the 2-party MPC (2PC) protocol,
we rely on DualEx [48]. Compared to other maliciously-
secure 2PC protocols, DualEx is more efficient but may
leak one bit of information if the protocol aborts due to
an active attack on one of the two parties. This leak cannot
be amplified by repetition: DualEx informs the honest party
of the attack, so the honest party refuses to interact further
with the malicious party. We admit this 1-bit leak tacitly as it
provides significant performance gains in return. A different
implementation could use a slower 2PC protocol without
this 1-bit leak.

Denial-of-service attacks are out of scope; they can be
addressed with orthogonal techniques.

Next, we describe three strawman designs that attain
confidentiality and integrity under progressively weaker as-
sumptions. The last design matches our threat model and is
the basis of our actual FE-like construction (§ 4). Figure 2
summarizes the assumptions of the three designs.

3.3. Strawman 1 (S1): n-party FE construction

Our first strawman design, S1, implements the FE API of
§3.1 by combining secret sharing and n-party MPC. Specif-
ically, n independent parties 1 jointly implement the trusted
party of FE that holds the master secret key, msk[F,D, te].

In S1, confidentiality relies on at least n−t parties being
honest and free of side-channel exploits.
Components. Encryptors encode data using a n-of-n secret-
sharing scheme, such that the cleartext cannot be recovered
unless all of the n shares are available; then, they entrust
each data share to a different one of n parties. To decrypt
data, the parties run n-party MPC on their shares to produce
the result f(m). The chosen MPC scheme is secure in
the t-of-n malicious model: no party learns anything about
m other than f(m) as long as at least n − t parties are
honest (i.e., they follow the protocol, do not disclose any
information not required by the protocol to any other party,
and are not subject to any hardware or software attack).
Furthermore, the chosen MPC scheme is data oblivious,

1. We do not use the terms “party” or “parties” to refer to other actors
in the system like encryptors and decryptors.

i.e., without any control flow. A simple way to attain data
obliviousness is to use a circuit-based MPC scheme.

Implementation. Next, we sketch how S1 implements the
operations in § 3.1, which can be run after the n parties
are initialized. In contrast with the standard FE API, some
elements, which we denote with capital letters, are vectors.

MPK[F,D, te],MSK[F,D, te]← Setup(1κ, F,D, te)
Each party runs this function locally to produce its
own key pair and link it to F , D and te. The output
values MPK and MSK are n-element vectors, one
for each party/share. Each party keeps its secret key
locally.

SKf ← KeyGen(MSK[F,D, te], f, d) The decryptor d
calls this function on each party and provides
the parameter f . Regarding the first parameter,
MSK[F,D, te], each party provides its own secret
key. Each party runs the function locally, and inde-
pendently produces a cryptographic authorization token
skf , linked to f and te iff f ∈ F and the caller d ∈ D.
Each party returns its skf to the decryptor: the return
parameter SKf represents an n-element vector with
one authorization token per party.

C ← Enc(MPK[F,D, te],m) Every encryptor runs this
function locally. The encryptor secret-shares m into n
shares, and encrypts each share with the corresponding
party’s public key in the vector MPK[F,D, te]. C
represents the vector of encrypted shares returned to
the encryptor who may then transmit it to decryptors
over any channel.

f(m)← Dec(SKf , C) The decryptor d calls this func-
tion on each party, providing the authorization token
(previously received from a KeyGen call) and the
share encrypted with that party’s public key. If each
party accepts its authorization token as valid and each
party’s current clock time is less than te (which each
party linked with its token), then the parties decrypt
their shares using their corresponding secret key of
MSK[F,D, te], and perform MPC to compute the
result f(m) encrypted with the caller’s (decryptor’s)
public key. If any party rejects its authorization token
from SKf or believes te is past, the result is ⊥.

Properties. The S1 FE construction provides confidentiality
as long as at least n− t parties are honest and free of side-
channel exploits (all others may be arbitrarily malicious).
Since S1 does not run parties in TEEs (that is covered in
S2 below), honesty of the n− t parties assumes the absence
of malicious intent as well as hardware and software attacks
against those parties. Simultaneous side-channel attacks on
all but the n− t honest parties do not violate confidentiality,
since such attacks reveal at most n − t of the n shares
outside MPC, and nothing from within the MPC (as the
MPC scheme is data oblivious). Furthermore, the integrity
of f(m) holds as long as all parties are semi-honest and do
not manipulate their shares.

3.4. Strawman 2 (S2): S1 + TEE encapsulation

Our next strawman design, S2, weakens the assumption
of at least n − t honest parties for the confidentiality of
S1 to the assumption of at least n− t uncompromised TEE
implementations.

Components. S2 additionally executes each of the n parties
inside a TEE of a different type. The code of every party is
attested to be correct.

Implementation. The system initialization involves starting
and attesting the TEEs encapsulating each of the n parties.
Once the TEEs are started, all communication among and
with the TEEs occurs via secure channels tied to the attes-
tation. The API functions are implemented as in S1, but the
n parties run in their respective TEEs.

Properties. S2 improves S1 by providing confidentiality as
long as at least n − t TEEs are uncompromised and free
of side-channel exploits. The remaining t parties and their
underlying TEEs may be arbitrarily compromised or subject
to side-channel exploits. Furthermore, the integrity of f(m)
holds as long as all parties are semi-honest and, in particular,
do not manipulate their input shares (as in S1).

3.5. Strawman 3 (S3): S2 + MACs

Strawman S3 weakens the assumption needed for the
integrity of f(m) to at least n − t uncompromised TEE
implementations.

Components. S3 is like S2, but adds message authentication
codes (MACs) to data shares.

Implementation. Same as S2, except that Enc() adds a
MAC to each encrypted share. The MPC within a Dec()
operation checks these MACs, and produces a MAC on the
result f(m), which the caller (decryptor) should check.

Properties. S3 provides confidentiality under the same as-
sumptions in S2: At least n − t parties’ TEEs must be
uncompromised and free of side-channel exploits. Differ-
ently from S2, in S3 the integrity of f(m) holds under the
same assumption as for confidentiality. Hence, S3 attains
confidentiality and integrity in our desired threat model
(§ 3.2).

4. Details of the FE construction

CoVault’s full FE-like construction follows the S3 de-
sign. The construction uses two parties, 2PC, and two types
of TEEs (n = 2 and t = 1). The S3 strawman omits many
details, which we describe in this section. First, we discuss
the mechanisms behind the attestation of TEEs. Then, we
present our secret-sharing scheme, and discuss how we
implement 2PC using garbled circuits in the malicious threat
model by adapting the existing DualEx protocol [48] and
adding output integrity guarantees.

4.1. TEE attestation

Background. Each party is encapsulated in a different TEE
implementation, and runs each component of its processing
pipeline in a separate TEE of its given implementation.
Each party’s processing pipeline consists of two kinds of
components: a single provisioning service (PS) and one or
more data processors (DPs). The PSs perform actions on
behalf of their party, and also attest and provision the DPs
in their pipeline with the keypair necessary to decrypt shares.
The DPs of a party are the entities that jointly perform 2PC
with the DPs of the other party: each party’s DP represents a
party in S3, in the sense of 2PC. Each pair of DPs (i.e., one
per party) is specific to a pre-determined set of functions F ,
a set of decryptors D, and an expiration time te.
Assumptions. A trusted process separately attests the PSs
and signs their public keys, verifies that the DPs correctly
authorize decryptors in D, and verifies that the specification
of F matches the source code of the DPs. In §5, we describe
how we implement this trusted process in CoVault in a
dectralized fashion using community approval.
System initialization.

1) Each party instantiates its PS; then, each PS generates
its party’s private-public keypair.

2) Each party starts its DPs; then, each DP is remotely
attested and provisioned by its PS with cryptographic
keys, including the key to decrypt its share of data (in
the sense of standard asymmetric cryptography).

3) Each PS holds information on the set of triples
[F,D, te]. For each triple, this information consists of
the specification of each function in F , the public keys
of the authorized decryptors in D, the data expiration
date te, and the public keys of both DPs that implement
that [F,D, te].

4) The PSs and DPs can be safely shut down and re-
started from their sealed state [27] without requiring
re-attestation.

4.2. Secret-sharing and encryption

An encryptor wishing to encrypt a cleartext data item m
first generates a single-use random value r. The shares of m
are then r and m⊕r, where ⊕ is bitwise exclusive-or (XOR).
Encryptors can contact the PSs to retrieve information on
the set of [F,D, te] they can consent to, as well as the
public keys of the DPs that implement them. If an encryptor
consents to a particular [F,D, te], they secret-share their
data, encrypt each share with the appropriate public key, and
send the encrypted share to the respective DP. Secret sharing
ensures data confidentiality, while subsequently encrypting
the shares prevents data misuse; in fact, only correctly
attested TEEs (i.e., provisioned with the corresponding de-
cryption keys) can decrypt the shares.

4.3. Garbled circuits in the malicious model

The DPs run 2PC using Yao’s garbled circuits [80] (GCs)
in the malicious threat model. Yao’s original GC protocol

is secure only in the semi-honest threat model: One party
(the generator) generates a garbled circuit representing the
computation, and the other party (the evaluator) blindly
evaluates the circuit, using oblivious transfer (OT) to ask
the generator for the garbling of the evaluator’s inputs. A
malicious generator can easily generate an incorrect circuit
and thereby compromise both data confidentiality and result
integrity.

Extensions of Yao’s protocol to the malicious setting
are usually very expensive [77], but one recent extension –
the DualEx protocol [48] – is reasonably efficient. DualEx
runs two instances of a semi-honest GC protocol concur-
rently on parallel cores, with the roles of the generator and
evaluator swapped. Both runs use a maliciously-secure OT
protocol [79]. Each run reveals the computation result to the
respective evaluator, so both parties learn the result. A final
malicious-secure circuit [77] checks that the results match.
The 1-bit result of this check is revealed to both parties.
A malicious party can use this check to learn any one bit
of the other party’s input. However, if the result is false,
the honest party refuses to communicate further with the
other party, so this leak cannot be amplified by repetition.
Hence, DualEx is maliciously secure except for a 1-bit leak
in the information-theoretic sense. This 1-bit relaxation in
confidentiality trades-off with the better runtime efficiency
compared to other maliciously secure GC protocols, which
is why we build on DualEx.

Our extension to DualEx. We design a modified DualEx
protocol that does not reveal the output of the computation
to the two parties, but instead to the decryptor, in order
to match the needs of our FE design (strawmen S1–S3).
Specifically, our modified DualEx reveals different shares
of the output to the two parties. The two parties send these
shares to the decryptor, who reconstructs the output. (Note
that this is security-equivalent to, but more efficient than,
encrypting the output with the decryptor’s public key within
2PC, as in strawmen S1–S3.)

Our modified DualEx works as follows. Let y be the
actual computation output. The two parties first run standard
DualEx to compute y⊕r1⊕r2, where y is the actual compu-
tation output, and r1 and r2 are random values respectively
provided by each party as additional inputs to the circuit,
and ⊕ is bitwise exclusive-or (XOR) (the XOR operation
can be implemented very cheaply in garbled circuits [50]).
The computed value y ⊕ r1 ⊕ r2 is returned to the two
parties by the standard DualEx. Then, the parties recover
shares of y as follows: Party 1 computes the XOR of its
random input r1 and the output y ⊕ r1 ⊕ r2, while Party 2
ignores the output and uses r2 as its share. These resulting
values, namely y ⊕ r2 and r2, are the shares of y.

For integrity, the shares r2 and y ⊕ r2 are also MAC’d
within 2PC, using the protocol in § 4.4. The two parties
eventually reveal their shares and the MACs to the decryptor,
who checks the MACs and reconstructs the output. We prove
the security of our modified DualEx protocol in § E.3.

4.4. Secret-sharing with MACs

Following strawman S3, our design uses MACs over
input and output shares for integrity. First, encryptors locally
compute MACs on the shares of data, before encrypting
and uploading them to the DPs; the DPs check the MACs
on input shares within 2PC before computing any function.
Second, the DPs compute MACs on the shares of the func-
tion’s output in 2PC, as described in the previous subsection.

To this end, we extend the secret-sharing scheme of
§4.2 with MACs as follows: To securely share x, generate a
random key k, compute t← HMACk(x), secret-share k into
k1, k2 and x into x1, x2 using the scheme of § 4.2. Output
(xi, ki, t) to party i for i = 1, 2. The two parties can jointly
verify the MAC later, but neither party can manipulate its
share xi or ki without failing subsequent verification. Our
implementation uses a SHA-3 HMAC. We formally prove
the security of this construction in § E.2.

5. CoVault’s design

CoVault uses the FE-like construction from § 4 as the
core of a secure analytics platform. Next, we sketch how
this is done.
Roadmap. A data source (encryptor) consents to having
its data used for queries (functions) in F by queriers in D
for a period ending at time te; we call the triple [F,D, te]
a query class. A query class is the unit of consent: Data
sources decide on the query class(es) they wish to consent
to, and encrypt their data accordingly. Once time te has
passed, the DPs that implement the associated class cease
to decrypt/query the data, effectively making the data in the
query class inaccessible. Authorized queriers can request a
given query to be run on the data contributed to a query
class by contacting the DPs implementing that query class.
Next, we sketch how operations in CoVault are mapped to
the operations of the FE-like construction defined in § 3.1.
Defining a query class. To define a new query class, an
interested analyst calls the Setup operation of both PSs,
passing the appropriate F,D, te as arguments. The PSs
update their configuration state accordingly and publish the
vector of public keys MPK[F,D, te] and the public keys
of the DPs associated with the new query class.
Contributing data. Data sources choose a query class to
which they wish to contribute their data. Then, they per-
form the Enc operation locally using the vector of public
keys associated with the chosen query class to produce the
encrypted and MAC’d shares of their data, which they then
send to the DPs associated with the query class.
Querying the database. To run a query f , a querier con-
nects via secure channels to the two DPs that implement
the appropriate query class. The querier first performs a
KeyGen operation on both DPs to obtain SKf and then
performs a Dec operation on both DPs to obtain the shares
of the desired query result. These two operations check that
the function and the decryptor are in the query class, and
that the expiration time of the query class has not passed.

Community approval process. CoVault relies on a com-
munity approval process to justify trust in its implementa-
tion. In principle, each data source could inspect the source
code of the PSs, the DPs of relevant query classes, as well
as the build chain used to compile the system, in order
to verify that all components are correctly implemented
according to their specification, and then remotely attest the
PSs—which form the system’s technical root of trust—to
make sure their initial measurement hash is as expected.
However, this approach is impractical, because most data
sources lack the technical expertise and resources to perform
these actions. The community approval process provides a
level of indirection. Interested community experts inspect
the system components and publish signed statements that
a PS or DP with a given measurement hash correctly im-
plements a specification. Separately, community members
may remotely attest the PSs and sign their public keys if
their measurement hashes are as expected. Data sources can
rely on the assessments of community experts they trust. We
describe community approval in more detail in § A.
Privacy from authorized queriers. To ensure that autho-
rized queriers cannot infer private data from the results
of authorized queries, query implementations should pro-
vide strong privacy guarantees, ideally differential privacy.
Queries with weak privacy should not be approved by the
community experts. Auxiliary state needed for enforcing
privacy, such as residual privacy budgets in the case of
differential privacy, can be stored in CoVault’s database
itself (secret-shared, MAC’d and encrypted like other data),
and the enforcement of the privacy policy, such as updates
to residual privacy budgets, can be done in 2PC. The DPs
can also maintain a log of executed queries for later audit.

5.1. Security Analysis and Proofs

Our design attains the confidentiality and integrity prop-
erties in our threat model (§3.2), which assumes that at least
n − t of the TEEs in which DPs run are uncompromised
and free of side-channel exploits. This assumption, together
with our community approval process, implies that at least
n − t of the DPs to which a data source provides shares
are completely honest, i.e., they follow prescribed protocols
and do not leak additional information, even under active
attacks (side-channel or others).

Hence, the security of CoVault’s design reduces to prov-
ing that the MPC scheme we use is actually t-of-n secure
in the malicious model. Our design uses n = 2, t = 1, and
relies on a combination of our modified DualEx protocol for
MPC (§ 4.3), and our secret-sharing with MACs (§ 4.4). We
formally define and prove the security of these constructions
and the end-to-end security of CoVault’s design in § E.

6. Data processing

Each of the two parties has access to its own data store,
which contains that party’s shares. For simplicity, we refer to
both data stores as CoVault’s db (database), but we note that

any fetch operation on this db consists of two independent,
parallel fetches, one per party. In this section, we discuss the
general structure of CoVault’s db and how we run queries on
large datasets scalably. Due to space constraints, we defer
a description of data ingress processing to § B.

6.1. Database

CoVault’s (encrypted, MAC’d) data shares can be stored
in any untrusted database. In general, the db access pattern
during a query can leak secrets. A general solution is
ORAM [41]; however, ORAM – even a read-only variant –
is expensive and does not naturally permit concurrent access.
Therefore, CoVault relies on the private information retrieval
(PIR) scheme described in the next paragraph. Queries that
do not access rows data-dependently do not use this scheme
and their db accesses can be optimized (§ 6.3).
Oblivious database access. CoVault uses a simple random
shuffling scheme to shuffle tables that are accessed with non-
public keys. The shuffling hides which records are accessed,
so this forms a simple PIR scheme with no query-time
overhead. Shuffling is implemented by a pair of DPs, DP1

and DP2, without 2PC. DP1 locally shuffles the rows of
a table using a randomly generated permutation ρ1 that it
keeps secret. The shuffling is implemented obliviously but
locally on DP1; whenever two rows are read to potentially
be swapped, they are re-encrypted within DP1, so an out-
side observer cannot determine whether they were actually
swapped. DP1 then passes the shuffled table to DP2, which
re-shuffles once more with a permutation ρ2, that it (DP2)
generates uniformly at random and keeps secret. The result-
ing overall permutation ρ1 ◦ ρ2 remains unknown to either
DP alone and is uniformly random as long as one DP is
honest, so this scheme is robust to one malicious party per
our threat model. During query execution, the DPs provide
ρ1 and ρ2 as private inputs to 2PC. Using this information,
ρ1 ◦ ρ2 is computed within 2PC, and the indices of rows in
the end-to-end shuffle are calculated.

Shuffling cannot hide whether two lookups access the
same row. Therefore, to avoid frequency attacks, a shuffled
table is used for one query only, and a query never fetches
the same row twice. Reshuffling can be done ahead of time,
so that fresh shuffled tables are readily available to queries.

6.2. Query processing

The unit of querying in CoVault is a SQL filter-groupby-
aggregate (FGA) query, which we call a basic query. In
general, a querier may make a series of data-dependent basic
queries with query parameters of later queries depending
on the results of earlier queries. In the following, we first
describe how CoVault executes basic queries, and then how
it handles data-dependent series of basic queries.
FGA or basic queries. A FGA/basic query has the form:
SELECT aggregate([DISTINCT] column1), . . .
FROM T WHERE condition GROUP BY column2

Here, aggregate is an aggregation operator like SUM or

COUNT. The query can be executed as follows: (i) filter
(select) from table T the rows that satisfy condition, (ii)
group the selected rows by column2, and (iii) compute
the required aggregate in each group. A straightforward
way of implementing a FGA query is to build a single
garbled circuit that takes as input the two shares of the
entire table T and implements steps (i)—(iii). However, this
approach does not take advantage of core parallelism to
reduce query latency. Moreover, the size of this circuit grows
super-linearly with the size of T and the circuit may become
too large to fit in the memory available on any machine. To
exploit core parallelism and to make circuit size manageable,
CoVault relies on the observation that FGA queries can be
implemented using map-reduce [33]. We first explain how
this works in general (without 2PC) and then explain how
CoVault does this in 2PC.

Background: FGA queries with map-reduce. Suppose we
have m available cores. The records of table T are split
evenly among the m cores.

Step (i): Each core splits its allocated records into more
manageable chunks and applies a map operation to each
chunk; this operation linearly scans the chunk and filters
only the records that satisfy the WHERE condition.

Steps (ii) and (iii): These steps are implemented using
a tree-shaped reduce phase. The 1st stage of this phase
uses half the number of reducers as the map phase. Each
1st-stage reducer consumes the (filtered) records output
by two mappers, sorts the records by the grouping column
column2, and then performs a linear scan to compute an
aggregate for each value of column2. The output is a sorted
list of column2 values with corresponding aggregates.
Each subsequent stage of reduce uses half the number of
reducers of the previous stage: Every subsequent-stage
reducer merges the sorted lists output by two previous-
stage reducers adding their corresponding aggregates and
producing another sorted list. The last stage, which is a
single reducer, produces a single list of column2 values
with their aggregates.

CoVault: FGA queries with map-reduce in 2PC.
CoVault executes FGA queries by implementing the

mappers and reducers described above as separate garbled
circuits and evaluating the circuits in 2PC. Thus, CoVault
inherits scaling with cores from the map-reduce paradigm.

The challenge here is that circuits can implement only
a limited class of algorithms. In particular, a circuit is data-
oblivious – it lacks control flow – and the length of the
output of a circuit cannot depend on its inputs. However,
common algorithms for sorting rely on control flow (they
branch based on the result of integer comparison), and
standard algorithms for filtering and merging lists produce
outputs whose lengths are dependent on the values in the
input lists. Hence, to implement mappers and reducers in
circuits, we have to use specific algorithms that are data
oblivious and pad output to a size that is independent of
the inputs (this padded output size, denoted d below, is an
additional parameter of the algorithm; it should be an upper
bound on the possible output sizes). In the following, we

explain basic data-oblivious algorithms that CoVault relies
on, and then explain how it combines them with padding
when needed to implement mappers and reducers in circuits.

CoVault relies on the following standard data-oblivious
algorithms implemented in circuits:
• A linear scan passes once over a list performing some

operation (e.g., marking) on each element, or comput-
ing a running total.

• Oblivious sort on a list. While oblivious sort has a theo-
retical complexity O(n log(n)), all practical algorithms
are in O(n(log(n))2). CoVault uses bitonic sort [15].

• Oblivious sorted merge merges two sorted lists into a
longer sorted list. It retains duplicates. CoVault uses
bitonic merge, which is in O(n log(n)) [15].

• Oblivious compact moves marked records to the end
of a list, compacting the remaining records at the
beginning of the list in order. For this, CoVault uses an
O(n log(n)) butterfly circuit algorithm [42, Section 3].

CoVault uses these algorithms to implement mappers
and reducers as follows. A CoVault mapper uses a linear
scan to only mark records that do not satisfy the WHERE
condition with a discard bit; it does not actually drop
them, else the size of the output list might leak secrets.
A 1st-stage reducer obliviously sorts the outputs of two
mappers, ordering first by the discard bit, and then by the
GROUP BY criterion, column2. This pushes all records
marked by the mappers to the end of the list, and groups
the rest in sorted order of column2. Records with the same
value of column2 belong to the same group, so the reducer
must consider them just once when computing the aggregate.
To this end, it performs a linear scan to (a) compute a
running aggregate for each unique group, and (b) mark all
but one record in each group to be discarded. Finally, it does
an oblivious compact to push all marked records to the end
of the list. The unmarked records contain unique, sorted
values of column2 paired with corresponding aggregates.
This output is truncated or padded to a fixed length d,
which, as mentioned earlier, is an additional query parameter
that should be an upper bound on the possible number of
unique groups in column2. Subsequent-stage reducers
are similar to the 1st-stage reducers, except that they receive
two already sorted lists as input, so they use oblivious sorted
merge instead of the more expensive oblivious sort.

The theoretical complexities of a mapper, 1st-stage re-
ducer, and subsequent-stage reducer are O(c) where c is
the chunk size, O(c(log(c))2) and O(d log(d)), respectively.
The chunk size c has a non-trivial effect on query latency:
Larger chunks result in more expensive mappers and 1st-
stage reducers, but fewer total number of mappers and re-
ducers. In practice, we determine the chunk size empirically
to minimize query latency; our experiments typically use
c = 10, 000 records.

Running a series of data-dependent FGA queries. If the
data rows accessed by a FGA query depend on the output of
an earlier query, information about database contents may
leak via the db access pattern. To avoid such leaks, a data-
dependent series of FGA queries uses previously shuffled

tables only (§ 6.1). Also, the number of records read must
not depend on previous query results; to this end, 2PC adds
dummy record requests.

6.3. Optimizations

Indexing along public attributes. If a table contains a
non-sensitive, public attribute, we can speed up queries that
filter on this attribute by creating public indexes on this
attribute and fetching only filtered data, thus not needing to
filter within 2PC. In this case, CoVault does not MAC each
record individually, but computes MACs (one per column)
on all records with the same public attribute value, as they
would be fetched together. Of course, each data source must
consent for a given attribute to be public: CoVault’s public
configuration contains the public attributes for each query
class. In § 7.1, we show examples of tables (views) and
queries that exploit such indexes on public attributes.
Joins. Join operations are very expensive when done obliv-
iously [82], and even more expensive in 2PC. For instance,
consider a self-join: each row of a table is compared to
every other row of the same table. To hide access patterns,
an oblivious self-join scans the whole table for each row
in the table. However, if the access pattern reveals only
public information, we can speed up joins. In fact, the access
pattern is not sensitive if the data is joined on a public
attribute. In these cases, CoVault performs joins outside
2PC. We describe an example of this optimization in § C.
Materialized views. A materialized view is a stored query
result, maintained to speed up future queries that contain
the same query as a subquery. CoVault supports material-
ized views, including those on pre-joined data. If a public
attribute exists, CoVault stores materialized views with a
public primary index. If no public attribute exists, or if
a query requires secret-dependent data access to a view,
CoVault stores shuffled copies of the view, suitable for PIR
(§ 6.1).
Keeping data in garbled form. Data passed between data
sources and DPs, between pairs of DPs along the map-
reduce pipeline, and between DPs and queriers must be
MAC’d to prevent either party from modifying its shares.
MAC computation in garbled circuits is expensive to the
point that it can be the dominant cost of 2PC (see § C.3).
While the use of MACs to protect data between data sources
and DPs, and between DPs and queriers is unavoidable, we
can eliminate MACs between DPs along the map-reduce
pipeline by passing values between DPs of consecutive
stages in garbled form (i.e., their in-circuit representation).
This eliminates the need for the MACs within map-reduce.
We use this optimization in our prototype implementation.

7. Evaluation

We implemented CoVault using EMP-toolkit [76], a li-
brary that compiles and executes C/C++ programs in garbled
circuits-based 2PC, using recent optimizations such as Half

Gates [81] and FreeXOR [50]. We use bitonic sort and
bitonic merge from the EMP library, and implement our
own primitives for compaction, linear scan, and the MAC of
§4.4 (based on a SHA-3 HMAC, using a pre-existing circuit
for the core SHA-3 loop). We compose these to implement
microbenchmarks and queries. Redis (v5.0.3, non-persistent
mode) is used as the db, and we use the optimizations
mentioned in § 6.3. We implemented the two-party shuffle
operation from § 6.1 and we hold shuffled views in memory
on a DP (rather than in Redis) for efficient re-shuffling.

We run 2PC between two parties on Intel and
AMD TEE CPUs, respectively. We use 7 machines with
Intel®Xeon®Gold 6244 CPU 3.60GHz 16-core processors (2
sockets, 8 cores/socket, 1 thread/core) and 495GB RAM
each, and 7 machines with AMD EPYC 7543 2.8GHz 32-
core processors (2 sockets, 16 cores/socket, 1 thread/core)
and 525 GB RAM each. All machines run Debian 10 and
are connected via two 1/10GB Broadcom NICs to a Cisco
Nexus 7000 series switch. In addition, each pair of Intel
and AMD machines is directly connected via two 25Gbps
links over Mellanox NICs; these are used for 2PC. Fre-
quency scaling is disabled on the Intel machines, where the
CPU governor is set to performance mode; this feature is
not available on the AMD machines, which only have the
nominal frequency option.

On both types of machines, we run computations on
Linux Debian 10, hosted inside VMs managed using libvirt
5.0 libraries, the QEMU API v5.0.0, and the QEMU hy-
pervisor v3.1.0. On the AMD machines we run the VMs in
SEV-SNP TEEs provided in the sev-snp-devel branch of the
AMDSEV repo [1], along with their patched Qemu fork.
On the Intel machines, we run the VMs without a TEE,
because CPUs with TDX are not yet available and SGX
has very stringent memory limits. We believe the resulting
performance of 2PC is nevertheless representative, because
it is limited by the slower AMD CPUs, which do use TEEs.
We use at most 16 cores in the AMD SNP-SEV VMs to
match the cores available on the Intel machines (as cores
are used in pairs).

7.1. Example scenario: Epidemic analytics

We evaluate CoVault in the context of epidemic ana-
lytics. We note that epidemic analytics is only an example
scenario: CoVault’s query processing overhead is indepen-
dent of the data semantics, which impacts at the most the
choice of the upper bound on the possible output sizes (see
§ 6.2). Consequently, this evaluation applies to any other
application scenario implementing queries with the same
sequence of FGA operations and similar input and output
sizes.

We use synthetic data representing time series of GPS
locations and pairwise Bluetooth radio encounters reported
by smartphones [54], [71]. Real data of this sort would be
sensitive, and we assume that users would provide such data
for the purpose of privacy-preserving epidemic analytics
only to a secure platform like CoVault.

Figure 3: Schemas of two materialized views used for
epidemic analytics. The first column in italics is a public
index, while the rest of the record is confidential. (The full
schemas are shown in Figure 7).

TE space-time-region eid did1 did2 . . .
TP time-epoch did1, time did2 duration prev next time . . .

Figure 4: Queries used in the evaluation. The selec-
tions on the public attributes space-time-region and
time-epoch are done outside 2PC using the public in-
dexes of TE and TP . R is a set of space-time-regions.

(q1) Histogram of #encounters, in space-time regions
R, of devices in set A

SELECT HISTO(COUNT(*)) FROM TE

WHERE did1∈A AND space-time-region∈R
(q2) Histogram of #unique devices met, in space-time

regions R, by each device in set A
SELECT HISTO(COUNT(DISTINCT(did2))) FROM TE

WHERE did1∈A AND space-time-region∈R
(q3) Count #devices in set B that encountered a device

in set A in the time interval [start,end]
WITH TT AS
(SELECT * FROM TP

WHERE start<time-epoch<end)
SELECT COUNT(DISTINCT(did2)) FROM TT
WHERE did1∈A AND did2∈B

AND start<time<end

We detail the data upload process and CoVault’s data
pre-processing steps in § C. The pre-processing results in
two materialized views TE and TP , whose schemas are
shown in Figure 3. Each view has a public, coarse-grained
index, which is shown in italics font. TE is a list of pairwise
encounters with an encounter id (eid), anonymous ids of
the two devices (did1, did2) and additional information
about the encounter (indicated by dots . . . in the table). Its
public index is a coarse-grained space-time-region, which
generally is of the order of several km2h. Records within
the same space-time-region are stored together in CoVault’s
db. The resolution of space-time regions depends on public
information and is chosen so as to achieve an approximately
even number of records per space-time region. The exact
number of records in each space-time region is obfuscated
by padding all regions to the same length (§ C). The second
view TP contains encounters privately indexed by individual
device ids and the times of the encounter reports (did1,
time). A record also contains pointers to the previous and
next encounter of the same device. These pointers are used
to traverse the timeline of a given device. The public index
is a coarse-grained interval of time (∼1h) in which the
encounter occurred. We call this interval a time-epoch. TP
is used by data-dependent queries as explained later, so this
view is randomly shuffled (§ 6.1).

Our evaluation uses the three queries q1–q3 shown
in Figure 4, which we developed in consultation with an

Figure 5: Processing time vs. workload size

epidemiologist. Queries q1 and q2 are histogram queries
on frequencies of encounters. They bin devices in a given
set A by the number of total encounters and the number of
unique encounters with distinct devices they had in a given,
arbitrary space-time region R. Such queries can be used to
understand the impact of contact restrictions (such as closure
of large events) on the frequency of contacts between people.
These queries run on TE . Query q3 asks how many devices
from set B encountered a device from the set A within a
given time interval. This query can be used to determine
if two outbreaks of an epidemic (corresponding to the sets
of devices A and B) are directly connected. A related query,
discussed in §C.4, extends q3 to indirect encounters between
A and B via a third device.

7.2. Microbenchmarks

We first report the costs of basic 2PC primitives (§ 6.2),
individual mappers and reducers (§ 6.2), and random shuf-
fling (§ 6.1). All experiments reported here are on a single
pair of cores, one Intel and one AMD. We measure the
cost of only one of the two executions of DualEx since the
two executions are completely independent everywhere in
CoVault, execute in parallel, and synchronize only once at
the end of every query for DualEx’s equality check (which
is performed only at the last reducer stage). The reported
experiments ran the 2PC generator on an Intel core and the
evaluator on an AMD core, but we have tried the opposite
configuration and the results are similar.
Primitives. Figure 5 shows the time taken to execute the
basic oblivious 2PC primitives from § 6.2—linear scans on
32-bit and 256-bit records, sort, sorted merge, and compact
on 32-bit records—as a function of the number of records.
Each reported number is an average of 100 measurements.
The coefficient of variation for input size 100 elements is
17% on average and at least 8% for each operation. For
other input sizes, it is below 4% on average and at most 5%
across all operations.

The trends are as expected: The cost of linear scans
grows linearly in the input size, while the costs of sort,
sorted merge and compact are slightly super-linear. In par-
ticular, the cost of sorting is significantly higher than that
of compaction, which is why our reduce trees sort only in
the first stage and then use compact only (§ 6.2).
Map and reduce. The basic units of query processing are
map and reduce operations. Figure 5 shows the average

time taken to execute specific but representative map, 1st-
stage reduce, and subsequent-stage reduce operations as a
function of the number of input records on a single core pair.
The specific operations are from query q2 in Figure 4. The
map operation takes records from TE , pre-filtered to a given
space-time region. It linearly scans the records to mark those
whose did1 matches a given device id and projects every
marked record to just a 32-bit fingerprint of did2, in effect
finding all devices (did2s) that met the given device id. The
1st-stage reduce takes the outputs of two maps, sorts and
merges them, marks duplicate fingerprints for deletion, and
compacts, in effect counting the number of unique devices.
The subsequent-stage reduce does the same, but on the
output of the 1st-stage reduce, so it does not have to sort.
The results are as expected: map is linear in the number of
input records, while reduce is slightly super-linear.
Shuffling. Next, we evaluate the cost of random shuffling
to produce shuffled encounters views (§ 6.1). First, random
shuffling requires a one-time pre-processing step to MAC
and encrypt every record separately. A basic unit (2 AMD
+ 2 Intel cores) in our setup pre-processes records of schema
TP in 17.8ms per record, with standard deviation < 0.9ms
(6%). A country with population 80M produces 11.85B en-
counters/day, assuming conservatively 100 encounters/per-
son/day in rural areas and 200 encounters/person/day in
urban areas; pre-processing all these encounters in a day
requires 2,441 basic units, or 4,882 core pairs. An urban
town with a population of 200K would produce 40M en-
counters/day and similarly require 8 basic units, or 16 core
pairs.

Each shuffle itself requires two sequential oblivious sorts
on CPUs of different types (outside 2PC). Shuffling a view
of 617M records – a conservative upper bound on the
number of encounters generated in 1h in a urban city of
3M people – takes about 56min in our setup. Shuffling one-
tenth the number, 61M records, takes 4 minutes. Variances
are negligible. The scaling is super-linear because oblivious
sort (even outside 2PC) runs in O(n(log(n))2) steps.

Queries use a shuffle only once, but shuffles can be
generated ahead of time in parallel. Because sorting takes
place on one machine at a time, a single pair of cores can,
in less than 1h, produce 2 different shuffles for encounters
generated in 1h. Therefore, we can prepare shuffles for q
queries using q/2 pairs of cores continuously.
Bandwidth. 2PC streams large garbled circuits from the
generator to the evaluator, and the generator also transmits
the garbling of the evaluator’s inputs. During a series of
sort and scan operations, the average bandwidth from the
generator to the evaluator, measured with NetHogs [2], is
∼2.72Gbps. The bandwidth from the evaluator to the gener-
ator is negligible in comparison (0.11Gbps). With DualEx,
the average bandwidth would be 2.72Gbps in each direction.
Thus, 16 active cores on each machine need a bandwidth
of 22.64Gbps in each direction, which our 2x25Gbps links
can easily support.
Storage overhead. When storing databases in non-garbled
form (i.e., without the optimization of § 6.3), CoVault im-

Figure 6: Query latency vs. available core pairs for the basic
query of queries (q1) and (q2) from Figure 4.

poses slightly more than 2x storage overhead on the db. The
2x comes from the need to store two shares per value, and
there is slightly more storage for MACs depending on the
size of the space-time region or time-epoch (one MAC per
column per region or time-epoch). When storing in garbled
form, as we actually do, the overhead is 512x: Each bit of
data expands to 128 bits due to garbling, which doubles due
to secret sharing, and further doubles due to the two parallel
garbled circuits of DualEx. Based on the conservative cal-
culation above, 11.85B encounters/day amounts to at most
2.40 TB (non-garbled) and 618.78 TB (garbled) of added
storage per day for our largest view TE .

7.3. Query latency

We empirically evaluate end-to-end query latency, a key
performance metric, for the queries q1–q3 of Figure 4.

Queries q1 and q2. Queries q1 and q2 run on the view TE .
The queries fetch only the records that are in the space-time-
region R, using the public index on TE . This significantly
reduces the size of the input table and the query latency.
In both queries, we iterate over devices in the given set A.
For each device a in A we issue a basic FGA query. For
q1, this basic query counts the number of encounters of
device a in T. For q2, this basic query counts the number
of unique devices that device a met. Note that basic queries
for all devices in A can be done in parallel, independently.
We empirically evaluate the latency-resource trade-off for
the basic queries of q1 and q2 by varying the number of
available machine pairs from 1 to 7. The experiments here
are end-to-end and perform both runs of DualEx (in parallel,
on two pairs of cores).

Figure 6 shows the latency of q1’s basic query against
the number of available machines. All points are averages
of 10 runs (std. dev. < 4.7%). As input, we use a table with
28M encounter records (corresponding to a conservative
upper bound on encounters generated in a space-time region
with 10k data sources reporting 200 encounters/day over 14
days). We process these records in chunks of size 10k, which
minimizes the latency empirically. Mappers filter input en-
counters to those involving the specific user, and reducers
just aggregate the number of encounters. The latency is
almost inversely proportional to the number of core pairs
available, since the bulk of the work is map-reduce locally

on each machine (cross-machine reduce is done only once
at the end).

Figure 6 shows the latency of q2’s basic query in the
same setup. The map phase is unchanged, but each reduce
now combines and removes duplicates from two lists of
encountered devices. As explained in § 6.2, we need to
specify an upper bound on the size of each reducer’s output.
Here, we fix this to 500 (i.e., we assume that a person will
encounter at most 500 unique devices in 14 days). Numbers
are averages of 10 runs each, and coefficients of variation are
below 9.1%. Again, the query latency varies almost inversely
with the number of machines, but the costs are higher than
those of q1 since reducers do more work.

Scaling. From measurements of individual mappers and
reducers in queries, we can extrapolate the number of ma-
chines needed to attain a certain query latency with a given
number of input records. For example, if the input was 10
times larger (280M records), answering q2’s basic query in
10min needs 736 core pairs (i.e., 46 8-CPU machines). The
details of our extrapolation algorithm are explained in § D .

Query q3. This query asks for the number of devices in B
that directly encountered a device in A in the time interval
[start,end]. To implement q3, we traverse the trajec-
tories of devices in B backwards in time, by iterating over
time-epochs, from the time-epoch that contains end to the
time-epoch that contains start. This iteration over time-
epochs is done outside 2PC since time-epochs are public.
The data for each time-epoch is successively loaded into
a temporary table, called TT in the query, and this table is
then processed via a query in 2PC. The 2PC query traverses
the trajectory of each device in B from the device’s last
encounter in the time-epoch to their earliest encounter, by
following encounter pointers. For this traversal, 2PC makes
data-dependent queries to the time-epoch’s records in TT but
since the records in each time-epoch are randomly shuffled
per our PIR scheme, this does not reveal any secrets. To
ensure that no secrets leak via the number of lookups in an
time-epoch, we use a fixed, conservative number of lookups
per device (in B) per time-epoch, fetching dummies when
needed (the size of B is part of the query, hence, public).
Every other device encountered by a device (in B) during the
traversal is checked for membership in A, via a Bloom filter
initialized with devices in A (the Bloom filter is implemented
in 2PC). Whenever the membership test succeeds, we mark
the device in B as having encountered someone in A. At the
end, we simply count the number of marked devices.

In our experiments, it took (in 2PC) a constant 52ms to
initialize the Bloom filter for A = 10, 27ms (std. dev. 2ms)
to fetch an encounter from a shuffled view, 43ms (std. dev.
5ms) to check set membership against the Bloom filter, and
10ms (std. dev. 2ms) to check that an encounter’s time is
between start and end. Assuming B = 10, a total of e =
336 time-epochs (corresponding to a period of 14 days with
1h time-epochs), and at most n = 30 encounters/person/h,
the total query latency comes to 52+(27+10+43) ·e ·n · |B|
= 2.24 hours.

Note that our PIR scheme improves query latency sig-

nificantly by by enabling data-dependent accesses. If data-
dependent accesses were not possible, we would have to
scan all encounters of all encounters in the time interval
[start,end]. Assuming, as before, that 11.85B encoun-
ters are generated in a country every day, and the interval
[start,end] is 14 days long, this data-independent ap-
proach would have to process nearly 11.85B·14 = 165.9B
encounter records in 2PC. By contrast, the data-dependent
approach above processes a total of 336 · 30 · 10 = 100, 800
records in 2PC, which is a saving of over 6 orders of
magnitude in the number of records fetched from the db
and processed in 2PC.
Summary We conclude our evaluation with a list of key
takeaways.

First, CoVault’s combination of garbled circuits and
map-reduce scales well: CoVault can analyze large datasets
with reasonable latency using proportionally more cores.

Second, the core requirements are moderate even for
country-scale datasets if query latencies of the order of
hours are acceptable. For example, for a mid-sized country
with 80M people, we estimate that continuously ingesting
all incoming encounter records (11.85B records/day) re-
quires 1,660 core pairs on a continuous basis (see § C.3),
shuffling incoming records continuously – if needed for
data-dependent queries – needs another 4,882 core pairs
on a continuous basis (§ 7.2), and running an epidemic
analytics query like q2 on 14 days of such records (165.9B
records) within 10 hours requires an additional 5,600 core
pairs engaged for the 10 hours of the query’s execution.
Although high in absolute number, these core requirements
are at a level that is already available in the data centers
of individual research institutes today, and we believe that
such an investment is justifiable when the analytics has a
sufficiently high socio-economic benefit. The core require-
ments also fall directly with the size of the datasets. For
example, for a urban city with 200k people recording 200
encounters/day each (a total of 40M encounters/day), the
core requirements for continuous data ingestion, continuous
shuffling and answering q2 on 14 days of records within 10
hours would be 6, 16 and 20 core pairs, respectively.

8. Related work

We discussed work on analytics platforms secured by
TEEs only in § 1. Here, we discuss other related work.
Data-oblivious analytics. Data analytics can be imple-
mented using data-oblivious algorithms to prevent infor-
mation leaks through memory access patterns. Cipherbase’s
oblivious extension [12] proposes optimized, oblivious im-
plementations of query operators but, to the best of our
knowledge, this extension was not implemented. Ohri-
menko, Schuster et al. [58], Ohrimenko, Costa et al. [57],
and M2R [34] use similar techniques to mitigate side
channels in map-reduce and machine-learning queries.
Opaque [82], OCQ [32], and StealthDB [43] are secure
analytics platforms that run encapsulated in a (single) TEE
but, additionally, implement query operators using oblivious

algorithms. ObliDB [38] extends Opaque and Cipherbase
with optimized operators that do not need to scan the whole
table for every query. Although CoVault also relies on obliv-
ious algorithms, its threat model is stronger: it does not rely
on the honesty of any single party or TEE implementation.

ORAM [41], [75], [35] is a general technique for hiding
the memory access pattern of any computation. However,
ORAM is costly compared to custom oblivious query op-
erations. For read-only queries, private information retrieval
(PIR) offers a more efficient alternative [28], [31], [59], [74].
CoVault avoids the costs of ORAM and PIR for queries
whose access patterns reveal no secrets. For other queries,
CoVault uses a new PIR scheme based on ahead-of-time
random shuffling (§ 6.1).

Analytics using secret sharing. Like CoVault, Ob-
scure [45], SMCQL [16], Cryptε [26] and GraphSC [55]
use secret sharing to distribute trust over multiple parties,
and MPC or partially homomorphic encryption to process
queries. However, these systems rely on an undischarged
assumption about the non-collusion of the parties. CoVault
additionally encapsulates the parties in TEEs of different
types to reduce this assumption to the security of n− t TEE
types.

Encrypted databases. Several systems use variants of ho-
momorphic encryption (HE) to compute aggregates on en-
crypted data [26], [63], [23], [60], [22]. HE’s confidentiality
property relies only on cryptographic assumptions about the
adversary’s power. This threat model is seemingly stronger
than CoVault’s but, in an analytics platform, decrypting
query results after HE operations requires a trusted party
or MPC [65], which weakens the actual threat model to
something similar to our strawman S1 (or weaker). Addi-
tionally, full HE is very expensive [72], while partial HE
restricts supported queries. Furthermore, none of the systems
mentioned above protect against side-channel leaks, which
CoVault does. Early encrypted databases like CryptDB [63]
used even weaker forms of encryption like deterministic en-
cryption or order-preserving encryption, which are insecure
in practice [44], [19]. Blind Seer [61] uses strong encryption
combined with 2PC to traverse a specialized index, but
leaks information by exposing its search tree traversal and
supports only a limited set of search queries.

Federated analytics. Federated analytics (FA) systems do
not centralize data; queries requires a joint computation
between all data sources. The absence of data centralization
alleviates many confidentiality concerns faced by centralized
databases like CoVault, but all federated systems face scala-
bility issues: a large percentage of data sources must be on-
line at any time, and data sources have high bandwidth and
computational costs for query processing (unlike data center
servers, data sources may be very resource constrained).
Additionally, if done naively, query processing leaks in-
formation among data sources and to queriers. Security-
and privacy-conscious FA systems like ShrinkWrap [17],
Honeycrisp [66], Orchard [67], and Mycelium [65] deploy
techniques like differential privacy and HE to aggregate data

securely. However, these techniques are expensive and often
limit the expressiveness of queries.

By way of example, with the exception of Mycelium, no
secure FA system we know of supports graph queries, such
as query q3 from § 7.1 or q4 from § C.4. Even Mycelium’s
protocol supports only those graph queries where a limited-
hop local neighborhood of each vertex needs to be ex-
plored. Mycelium relies on level-homomorphic encryption
and zero-knowledge proofs for confidentiality- and integrity-
preserving data aggregation. The corresponding protocols
are executed on data sources, requiring the data sources to
contribute substantial computational power to query process-
ing. CoVault also uses expensive 2PC, but this expensive
computation is limited to a data center; data sources only
use simple XOR operations, standard hybrid encryption,
and standard MACs to create data shares. Finally, CoVault
can filter data on public attributes without expensive oper-
ations, using public indexes (§ 6.3). In secure FA, all data
sources must participate in all queries even if their data is
not selected, leading to needless resource consumption. In
summary, CoVault and secure FA operate at very different
points in the threat model-efficiency-expressiveness space.

9. Conclusion

CoVault is a secure anaytics platform based on a new
FE-like construction, which is secure under a strong threat
model that tolerates compromise and side-channel attacks
against any one TEE implementation. Experimental results
show that CoVault can perform powerful analytics, while
scaling out to large databases using map-reduce parallelism.

CoVault’s efficiency can be further improved using tech-
niques that we plan to explore in future work: (i) op-
portunistic use of partially-homomorphic secret sharing to
compute certain operations locally without MPC, (ii) use of
a combination of arithmetic and boolean circuits for MPC,
and (iii) use of more than 2 parties, since MPC over 3 or
more parties can be significantly cheaper than 2PC [25],
[10] (this requires the availability of more than 2 TEE types,
which will likely be the case in the future).

References

[1] GitHub: AMDSEV repo. https://github.com/AMDESE/AMDSEV/
tree/sev-snp-devel. Accessed: 2021-12-10.

[2] GitHub: Nethogs repo. https://github.com/raboof/nethogs. Accessed:
2021-12-24.

[3] “How much energy do data centers really use?”, 2020.
https://energyinnovation.org/2020/03/17/how-much-energy-do-
data-centers-really-use/.

[4] Council approves data governance act, 2022. https:
//www.consilium.europa.eu/en/press/press-releases/2022/05/16/
le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:
∼:text=The%20Data%20Governance%20Act%20(DGA,data%
20altruism%20across%20the%20EU.

[5] Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval,
Azam Soleimanian, and Hendrik Waldner. Multi-client inner-product
functional encryption in the random-oracle model. In International
Conference on Security and Cryptography for Networks, pages 525–
545. Springer, 2020.

https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/AMDESE/AMDSEV/tree/sev-snp-devel
https://github.com/raboof/nethogs
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://www.consilium.europa.eu/en/press/press-releases/2022/05/16/le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:~:text=The%20Data%20Governance%20Act%20(DGA,data%20altruism%20across%20the%20EU
https://www.consilium.europa.eu/en/press/press-releases/2022/05/16/le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:~:text=The%20Data%20Governance%20Act%20(DGA,data%20altruism%20across%20the%20EU
https://www.consilium.europa.eu/en/press/press-releases/2022/05/16/le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:~:text=The%20Data%20Governance%20Act%20(DGA,data%20altruism%20across%20the%20EU
https://www.consilium.europa.eu/en/press/press-releases/2022/05/16/le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:~:text=The%20Data%20Governance%20Act%20(DGA,data%20altruism%20across%20the%20EU
https://www.consilium.europa.eu/en/press/press-releases/2022/05/16/le-conseil-approuve-l-acte-sur-la-gouvernance-des-donnees/#:~:text=The%20Data%20Governance%20Act%20(DGA,data%20altruism%20across%20the%20EU

[6] Bethania de Araujo Almeida, Danilo Doneda, Maria Yury Ichihara,
Manoel Barral-Netto, Gustavo Correa Matta, Elaine Teixeira Rabello,
Fabio Castro Gouveia, and Mauricio Barreto. Personal data usage and
privacy considerations in the covid-19 global pandemic. Ciencia &
saude coletiva, 25:2487–2492, 2020.

[7] AMD. AMD SEV-SNP: Strengthening VM Isolation
with Integrity Protection and More. White paper at
https://www.amd.com/system/files/TechDocs/SEV-SNP-
strengthening-vm-isolation-with-integrity-protection-and-more.pdf,
2020. Accessed: 2020-05-27.

[8] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikun-
tanathan. From selective to adaptive security in functional encryption.
In Annual Cryptology Conference, pages 657–677. Springer, 2015.

[9] Apple and Google. Privacy-Preserving Contact Tracing. https://www.
apple.com/covid19/contacttracing. Accessed: 2021-12-14.

[10] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda
Lindell, Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein.
Optimized honest-majority MPC for malicious adversaries - breaking
the 1 billion-gate per second barrier. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 843–862. IEEE Computer Society, 2017.

[11] Arvind Arasu, Spyros Blanas, Ken Eguro, Raghav Kaushik, Donald
Kossmann, Ravi Ramamurthy, and Ramarathnam Venkatesan. Or-
thogonal Security With Cipherbase. In 6th Biennial Conference on
Innovative Data Systems Research (CIDR’13), January 2013.

[12] Arvind Arasu and Raghav Kaushik. Oblivious Query Processing.
CoRR, abs/1312.4012, 2013.

[13] Sumeet Bajaj and Radu Sion. TrustedDB: A Trusted Hardware Based
Database with Privacy and Data Confidentiality. In Proceedings of
the 2011 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’11, pages 205–216, New York, NY, USA, 2011.
Association for Computing Machinery.

[14] Gilles Barthe, Roberta De Viti, Peter Druschel, Deepak Garg,
Manuel Gomez-Rodriguez, Pierfrancesco Ingo, Matthew Lentz,
Aastha Mehta, and Bernhard Schölkopf. PanCast: Listening to
Bluetooth Beacons for Epidemic Risk Mitigation. arXiv preprint
arXiv:2011.08069, 2020.

[15] K. E. Batcher. Sorting Networks and Their Applications. In Proceed-
ings of the April 30–May 2, 1968, Spring Joint Computer Conference,
AFIPS 1968 (Spring), pages 307–314, New York, NY, USA, 1968.
Association for Computing Machinery.

[16] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel
Kho, and Jennie Rogers. SMCQL: Secure Querying for Federated
Databases. Proceedings of the VLDB Endowment, 10(6):673–684,
February 2017.

[17] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and
Jennie Rogers. ShrinkWrap: Efficient SQL Query Processing in Dif-
ferentially Private Data Federations. Proc. VLDB Endow., 12(3):307–
320, 2018.

[18] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding
Applications from an Untrusted Cloud with Haven. ACM Trans.
Comput. Syst., 33(3), August 2015.

[19] Vincent Bindschaedler, Paul Grubbs, David Cash, Thomas Ristenpart,
and Vitaly Shmatikov. The Tao of Inference in Privacy-Protected
Databases. Proceedings of the VLDB Endowment, 11(11):1715–1728,
July 2018.

[20] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption:
Definitions and challenges. In Theory of Cryptography Conference,
pages 253–273. Springer, 2011.

[21] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele
Orrù. Homomorphic secret sharing: Optimizations and applications.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 2105–2122, New York,
NY, USA, 2017. Association for Computing Machinery.

[22] Lukas Burkhalter, Anwar Hithnawi, Alexander Viand, Hossein
Shafagh, and Sylvia Ratnasamy. TimeCrypt: Encrypted data stream
processing at scale with cryptographic access control. In 17th
USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), pages 835–850, 2020.

[23] C. Castelluccia, E. Mykletun, and G. Tsudik. Efficient aggregation
of encrypted data in wireless sensor networks. In The Second
Annual International Conference on Mobile and Ubiquitous Systems:
Networking and Services, 2005.

[24] David Cerdeira, Nuno Santos, P. Fonseca, and S. Pinto. SoK: Under-
standing the Prevailing Security Vulnerabilities in TrustZone-assisted
TEE Systems. 2020 IEEE Symposium on Security and Privacy (SP),
pages 1416–1432, 2020.

[25] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. IACR Cryptol. ePrint Arch., page 570,
2018.

[26] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin
Machanavajjhala, and Somesh Jha. Cryptε: Crypto-Assisted Differ-
ential Privacy on Untrusted Servers. CoRR, abs/1902.07756, 2019.

[27] Intel Corp. Introduction to Intel SGX Sealing. https:
//www.intel.com/content/www/us/en/developer/articles/technical/
introduction-to-intel-sgx-sealing.html.

[28] Henry Corrigan-Gibbs and Dmitry Kogan. Private Information Re-
trieval with Sublinear Online Time. IACR Cryptol. ePrint Arch.,
2019:1075, 2019.

[29] Henry Corrigan-Gibbs and Dmitry Kogan. Private information re-
trieval with sublinear online time. In Anne Canteaut and Yuval Ishai,
editors, Advances in Cryptology – EUROCRYPT 2020, pages 44–75,
Cham, 2020. Springer International Publishing.

[30] V. Costan and S. Devadas. Intel SGX Explained. IACR Cryptol.
ePrint Arch., 2016:86, 2016.

[31] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Universal
Service-Providers for Private Information Retrieval. J. Cryptology,
14:37–74, 2001.

[32] Ankur Dave, Chester Leung, Raluca Ada Popa, Joseph E. Gonzalez,
and Ion Stoica. Oblivious Coopetitive Analytics Using Hardware
Enclaves. In Proceedings of the Fifteenth European Conference
on Computer Systems, EuroSys ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. 2004.

[34] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin
Ooi, and Chunwang Zhang. M2R: Enabling Stronger Privacy in
MapReduce Computation. In 24th USENIX Security Symposium
(USENIX Security 15), pages 447–462, Washington, D.C., August
2015. USENIX Association.

[35] Jack Doerner and Abhi Shelat. Scaling ORAM for secure compu-
tation. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 523–535, 2017.

[36] Samuel Dooley, Dana Turjeman, John P Dickerson, and Elissa M.
Redmiles. Field evidence of the effects of privacy, data transparency,
and pro-social appeals on covid-19 app attractiveness. In CHI
Conference on Human Factors in Computing Systems, CHI ’22, New
York, NY, USA, 2022. Association for Computing Machinery.

[37] Morris Dworkin. SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, 2015-08-04 2015.

[38] Saba Eskandarian and Matei Zaharia. ObliDB: Oblivious query
processing for secure databases. Proc. VLDB Endow., 13(2):169–183,
2019.

[39] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey
Gorbunov. Iron: functional encryption using intel sgx. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 765–782, 2017.

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-intel-sgx-sealing.html

[40] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Flo-
rian Kerschbaum, and Ahmad-Reza Sadeghi. HardIDX: Practical and
secure index with SGX. In IFIP Annual Conference on Data and
Applications Security and Privacy, pages 386–408. Springer, 2017.

[41] Oded Goldreich and Rafail Ostrovsky. Software Protection and
Simulation on Oblivious RAMs. J. ACM, 43(3):431–473, May 1996.

[42] Michael T. Goodrich. Data-Oblivious External-Memory Algorithms
for the Compaction, Selection, and Sorting of Outsourced Data. In
Proceedings of the Twenty-Third Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA 2011, pages 379–388,
New York, NY, USA, 2011. Association for Computing Machinery.

[43] Alexey Gribov, Dhinakaran Vinayagamurthy, and Sergey Gorbunov.
StealthDB: a scalable encrypted database with full SQL query sup-
port. CoRR, abs/1711.02279, 2017.

[44] Paul Grubbs, Thomas Ristenpart, and Vitaly Shmatikov. Why Your
Encrypted Database Is Not Secure. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, HotOS ’17, pages
162–168, New York, NY, USA, 2017. Association for Computing
Machinery.

[45] Peeyush Gupta, Yin Li, Sharad Mehrotra, Nisha Panwar, Shantanu
Sharma, and Sumaya Almanee. Obscure: Information-Theoretic
Oblivious and Verifiable Aggregation Queries. Proceedings of the
VLDB Endowment, 12(9):1030–1043, May 2019.

[46] Yan Huang, David Evans, and Jonathan Katz. Private set intersection:
Are garbled circuits better than custom protocols?

[47] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster
secure two-party computation using garbled circuits. In USENIX
Security Symposium, number 1, pages 331–335, 2011.

[48] Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-tocols:
Strengthening Semi-honest Protocols with Dual Execution. In 2012
IEEE Symposium on Security and Privacy, pages 272–284, San
Francisco, CA, USA, May 2012. IEEE.

[49] John Kelsey, Shu jen Chang, and Ray Perlner. SHA-3 Derived
Functions: cSHAKE, KMAC, TupleHash and ParallelHash, 2016-12-
22 2016.

[50] Vladimir Kolesnikov and Thomas Schneider. Improved garbled
circuit: Free XOR gates and applications. In International Collo-
quium on Automata, Languages, and Programming, pages 486–498.
Springer, 2008.

[51] OASIS labs. A better way to Contact Trace, Part I. https://medium.
com/oasislabs/a-better-way-to-contact-trace-7beb12889017.

[52] OASIS labs. A better way to Contact Trace, Part II.
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-
ii-code-to-back-it-up-50046c4fa6e1.

[53] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to
Build a Trusted Database System on Untrusted Storage. In Proceed-
ings of the 4th Conference on Symposium on Operating System Design
& Implementation - Volume 4, OSDI 2000, USA, 2000. USENIX
Association.

[54] Justin Manweiler, Ryan Scudellari, and Landon P. Cox. SMILE:
Encounter-Based Trust for Mobile Social Services. In Proceedings
of the 16th ACM Conference on Computer and Communications
Security, CCS ’09, pages 246–255, New York, NY, USA, 2009.
Association for Computing Machinery.

[55] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and
E. Shi. GraphSC: Parallel Secure Computation Made Easy. In 2015
IEEE Symposium on Security and Privacy, pages 377–394, 2015.

[56] Alexander Nilsson, Pegah Nikbakht Bideh, and Joakim Brorsson. A
Survey of Published Attacks on Intel SGX, 2020.

[57] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Markulf Kohlweiss, and Divya Sharma. Observing and Preventing
Leakage in MapReduce. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, Oc-
tober 12-16, 2015, pages 1570–1581. ACM, 2015.

[58] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha Mehta, Se-
bastian Nowozin, Kapil Vaswani, and Manuel Costa. Oblivious Multi-
Party Machine Learning on Trusted Processors. In 25th USENIX
Security Symposium (USENIX Security 16), pages 619–636, Austin,
TX, August 2016. USENIX Association.

[59] Femi G. Olumofin and Ian Goldberg. Privacy-Preserving Queries over
Relational Databases. In Mikhail J. Atallah and Nicholas J. Hopper,
editors, Privacy Enhancing Technologies, 10th International Sympo-
sium, PETS 2010, Berlin, Germany, July 21-23, 2010. Proceedings,
volume 6205 of Lecture Notes in Computer Science, pages 75–92.
Springer, 2010.

[60] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ra-
machandran Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek
Modi, and Saikrishna Badrinarayanan. Big data analytics over
encrypted datasets with seabed. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI’16), pages
587–602, 2016.

[61] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal
Malkin, Seung Geol Choi, Wesley George, Angelos D. Keromytis,
and Steven M. Bellovin. Blind Seer: A Scalable Private DBMS. In
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley,
CA, USA, May 18-21, 2014, pages 359–374. IEEE Computer Society,
2014.

[62] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen C
Williams. Secure two-party computation is practical. In Interna-
tional conference on the theory and application of cryptology and
information security, pages 250–267. Springer, 2009.

[63] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and
Hari Balakrishnan. Cryptdb: protecting confidentiality with encrypted
query processing. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pages 85–100, 2011.

[64] Christian Priebe, Kapil Vaswani, and Manuel Costa. EnclaveDB: A
Secure Database Using SGX. In 2018 IEEE Symposium on Security
and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 264–278. IEEE Computer Society, 2018.

[65] Edo Roth, Karan Newatia, Yiping Ma, Ke Zhong, Sebastian Angel,
and Andreas Haeberlen. Mycelium: Large-Scale Distributed Graph
Queries with Differential Privacy, page 327–343. Association for
Computing Machinery, New York, NY, USA, 2021.

[66] Edo Roth, Daniel Noble, Brett Hemenway Falk, and Andreas Hae-
berlen. Honeycrisp: Large-scale Differentially Private Aggregation
Without a Trusted Core. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP’19), October 2019.

[67] Edo Roth, Hengchu Zhang, Andreas Haeberlen, and Benjamin C.
Pierce. Orchard: Differentially Private Analytics at Scale. In Proceed-
ings of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), November 2020.

[68] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis,
Marcus Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. VC3:
Trustworthy Data Analytics in the Cloud Using SGX. In Proceedings
of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages
38–54, USA, 2015. IEEE Computer Society.

[69] ARM Developer Site. ARM confidential compute architecture
(cca). https://developer.arm.com/architectures/architecture-security-
features/confidential-computing.

[70] Intel Developer Site. Intel Trust Domain Extensions (Intel
TDX). https://www.intel.com/content/www/us/en/developer/articles/
technical/intel-trust-domain-extensions.html.

[71] Lillian Tsai, Roberta De Viti, Matthew Lentz, Stefan Saroiu, Bobby
Bhattacharjee, and Peter Druschel. EnClosure: Group Communication
via Encounter Closures. In Proceedings of the 17th Annual Inter-
national Conference on Mobile Systems, Applications, and Services,
MobiSys ’19, pages 353–365, New York, NY, USA, 2019. Associa-
tion for Computing Machinery.

https://medium.com/oasislabs/a-better-way-to-contact-trace-7beb12889017
https://medium.com/oasislabs/a-better-way-to-contact-trace-7beb12889017
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-ii-code-to-back-it-up-50046c4fa6e1
https://medium.com/oasislabs/a-better-way-to-contact-trace-part-ii-code-to-back-it-up-50046c4fa6e1
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://developer.arm.com/architectures/architecture-security-features/confidential-computing
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html

[72] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully
homomorphic encryption compilers. In 2021 IEEE Symposium on
Security and Privacy (SP), pages 1092–1108, 2021.

[73] Radek Vingralek. GnatDb: A Small-Footprint, Secure Database
System. In Proceedings of 28th International Conference on Very
Large Data Bases, VLDB 2002, Hong Kong, August 20-23, 2002,
pages 884–893. Morgan Kaufmann, 2002.

[74] Frank Wang, Catherine Yun, Shafi Goldwasser, Vinod Vaikun-
tanathan, and Matei Zaharia. Splinter: Practical Private Queries
on Public Data. In Aditya Akella and Jon Howell, editors, 14th
USENIX Symposium on Networked Systems Design and Implemen-
tation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, pages
299–313. USENIX Association, 2017.

[75] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On Tight-
ness of the Goldreich-Ostrovsky Lower Bound. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, CCS 2015, pages 850–861, New York, NY, USA, 2015.
Association for Computing Machinery.

[76] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://github.com/emp-
toolkit, 2016. Accessed: 2020-05-27.

[77] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated
Garbling and Efficient Maliciously Secure Two-Party Computation.
Cryptology ePrint Archive, Report 2017/030, 2017. https://eprint.iacr.
org/2017/030.

[78] Lucie White and Philippe van Basshuysen. Without a trace: Why did
Corona apps fail? Journal of Medical Ethics, 2021.

[79] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang.
Ferret: Fast Extension for coRRElated oT with small communication.
Cryptology ePrint Archive, Report 2020/924, 2020. https://eprint.iacr.
org/2020/924.

[80] A. C. Yao. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982), pages
160–164, 1982.

[81] Samee Zahur, Mike Rosulek, and David Evans. Two Halves Make a
Whole: Reducing Data Transfer in Garbled Circuits using Half Gates.
Cryptology ePrint Archive, Report 2014/756, 2014. https://eprint.iacr.
org/2014/756.

[82] Wenting Zheng, Ankur Dave, Jethro G. Beekman, Raluca Ada Popa,
Joseph E. Gonzalez, and Ion Stoica. Opaque: An Oblivious and En-
crypted Distributed Analytics Platform. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), pages
283–298, Boston, MA, March 2017. USENIX Association.

Appendix A.
Community approval process

As discussed in § 5, CoVault relies on a community
approval process to justify trust in the system. Specifically,
CoVault relies on community approval for two purposes: (i)
to justify the trust in the PSs, which form CoVault’s root of
trust by attesting and provisioning DPs; (ii) to justify data
sources’ trust that the query classes to which they contribute
their data do what their specification says it does. In both
cases, data sources and users can rely on experts they trust
who have attested the PSs or reviewed the implementation
of PSs and DPs.

Any interested community member can inspect the
source code of each system component, verify their mea-
surement hashes, remotely attest the PSs, and publish a
signed statement of their opinion. To do so, a witness per-
forms the following operations: 1) Check if another witness

it trusts has already verified and attested the PSs (it would
not scale to have every witness remotely attesting the PSs);
if not, inspect the source code of the PSs and the build chain
used to compile all system components, make sure they
correctly implement the system’s specification, and verify
that the measurement hash recorded in the system configu-
ration matches the source code, and remotely attest the PSs
accordingly; 2) Obtain the current system configuration from
the PSs; 3) Review the specification and source code of each
query in a given class, and verify the measurement hash of
the class’s DPs recorded in the configuration; 4) Publish a
signed statement of their (the witness’s) assessment.

We note that attackers could remove or suppress witness
statements, and false witnesses could post false statements
about PS attestations or PS and DP (query class) reviews.
However, this amounts at most to denial-of-service (DoS) as
long as data sources are not distracted by reviews (positive
or negative) from witnesses they do not fully trust. Further-
more, we note that the state of the PSs could be rolled back
by deleting their sealed states or replacing the sealed states
with an earlier version. However, this also amounts to DoS,
as it would merely have the effect of making inaccessible
some recently defined query classes and their data.

Appendix B.
Ingress processing of data with public at-
tributes

Many analytics applications like epidemic or financial
transaction analytics rely on (spatio-)temporal data. In these
applications, it is likely that the queries analyse data in
a given (space-)time period. If the (spatio-)time attribute
reveals no sensitive information, we can exploit data lo-
cality: grouping and storing together data according to their
public (spatio-)temporal information speeds up the queries
that fetch a whole group for processing. To exploit data
locality, CoVault creates a materialized view(s) indexed by a
public attribute(s): e.g., a public, coarse-grained (space-)time
region. In fact, CoVault is a read-only platform, but supports
appends to the db in order of a public attribute(s): CoVault’s
ingress processing pipeline allows incremental data upload
from several data sources and produces materialized views
securely and efficiently. In this section, we explain CoVault’s
ingress processing, which is implemented in 2PC by two
dedicated DPs called the two Ingress Processors (IPs).
Batch append Data sources upload new data in batches,
which are padded to obfuscate the exact amount of data
being uploaded. Data sources may pre-partition data accord-
ing to public attributes, or locally pre-join or pre-select data
prior to upload. Once a batch is uploaded, the batch becomes
immutable and queryable. Before appending that batch to
CoVault’s db, the IPs can perform pre-processing operations
in 2PC; for instance, the IPs can buffer different batches and
run group or sort operations (within 2PC) in order to produce
or append to materialized views. The actual operations
and materialized views are application-specific; in § C, we
discuss the example scenario of epidemics analytics. Note

https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2020/924
https://eprint.iacr.org/2020/924
https://eprint.iacr.org/2014/756
https://eprint.iacr.org/2014/756

that data sources can contribute data to one or more query
classes. CoVault’s IP pairs are query-class specific.

Ingress security and integrity Data sources upload batches
to IPs using session keys, thus are not identifiable by the
IPs. The batches are padded, and the padding is “revealed”
only within 2PC: no single IP party can determine the actual
amount of data in any batch. For added security, data sources
can split a single batch into multiple batches randomly and
upload them with different session keys. They may also
use VPN/Tor to obfuscate their Internet addresses while
uploading.

Storing data in garbled form As discussed in § 6.3,
computing MACs in 2PC is expensive. So, we eliminate the
MACs between IPs and DPs as well, by storing values in
CoVault’s db directly in garbled form. Doing so significantly
increases the size of stored data: garbling codes each bit in a
128-bit space. However, this choice eliminates the need for
the IPs to compute MACs within 2PC, and for the DPs to
verify them. (However, recall that IPs need to verify within
2PC the MACs added to their shares by the data sources,
and this is unavoidable). This optimization of storing garbled
values can be generalized to different query classes by using
a separate secret to garble circuits for each query class: an IP
pair garbles every datum once for the query class it manages,
and each DP pair gets access to the secret of its query class
only.

Appendix C.
Further Details and Evaluation of Our Exam-
ple Epidemics Analytics Scenario

The staggering human, social, and economic cost of
the COVID-19 pandemic has led researchers across the
sciences to try and build tools that can assist with the
containment and mitigation of the virus’ spread. Analytics
of user mobility, contact and location data could provide
insight into how and why a pandemic is spreading, with
potentially tremendous benefits to society. But legitimate
and serious privacy concerns led most countries to forego the
use of such information in the context of COVID-19 [78].
Interestingly, the tension between analytics of personal data
and the privacy of data sources is not inherent: Most relevant
analytics queries produce statistics (e.g., the basic repro-
duction number R0 of an epidemic), which do not reveal
information about individuals; in many cases, they can be
made even differentially private without significant loss of
utility.

The fundamental problem, instead, is the lack of a
scalable analytics platform that can be trusted to aggregate,
store, and use sensitive personal data only for approved
analytics. This is precisely the kind of situation for which
CoVault is designed. Accordingly, we evaluated CoVault in
the context of epidemic analytics (§ 7). In this appendix, we
give some supplemental information on CoVault’s design to
contextualize more in detail our evaluation.

C.1. Database

Epidemic analytics operates on a time series of indi-
vidual locations and pairwise contacts among data sources’
devices. Such data may originate, for instance, from smart-
phone apps that record GPS coordinates and pairwise Blue-
tooth encounters [54], [71], or from a combination of per-
sonal devices and Bluetooth beacons installed in strategic
locations [9], [14]. We assume that data sources consent to
consider as public coarse-grained spatio-temporal informa-
tion related to the data they upload, as well as the inputs
and the results of statistical epidemiological queries.

Here, we describe the records and materialized views
used in our epidemic analytics scenario. Each view consists
of a variable number of records of the form described in
Figure 7. There is a separate view for every query class.
The views include encounters identified by an encounter id
(eid). If two data sources share an encounter, they report the
same eid for that encounter, along with their own device id
did. Only mutually confirmed encounters – encounters that
were reported by both peers with consistent information on
the encounter – are used for analytics. For this purpose, the
IPs perform a join of the individual encounter reports, and
add a validity attribute to potentially mark an encounter as
confirmed (see § C.2). Furthermore, the records may report
time, which is a fine-grained temporal information indicat-
ing when an encounter begins, duration, which refers to
the duration of the encounter, and aux, which represents
any additional information not currently used in the queries
we evaluate in § 7 (e.g., fine-grained locations or signal
strength). Finally, note that the records in TP are organized
by device trajectories: these records are indexed by did1 and
time, and each entry contains the indexes of the previous
(prev) and next (next) encounters of did1. This view is used
by queries that search trajectories in an encounter graph (q3
in Figure 4 and q4 in Figure 9).
Space-time views These materialized views speed up
queries that have no data-dependent flow control. The views
are grouped in space-time regions, indexed by a public,
coarse-grained space time index (coarse-grained spatio-
temporal information is public in this setting). Space-time
views contain either encounter records (TE) or information
related to sick people (TS). When a data source uploads a
batch of encounters, it pre-selects the coarse-grained space-
time index that batch maps to. The IPs collect batches from
different data sources, and generate space-time views group-
ing data in the same space-time region. Using space-time
views accelerates queries whose input parameters specify
an arbitrary space-time region in input: in fact, the DPs can
locally fetch all records whose coarse-grained index falls
within the space-time region in input prior to run the query
in 2PC.

The resolution of the space-time regions depends on
publicly known population density information and mobility
patterns at a given location, day of the week, and time of the
day, and is chosen so as to achieve an approximately even
number of records per region. Each region is padded to its
nominal size to hide the actual number of records contained

Figure 7: Materialized views used for epidemic analytics. The first column is a public index.

View Record fields
TE space-time-region eid did1 did2 time duration aux validity
TS space-time-region did1 aux period of contagion
TP time-epoch did1, time did2 duration prev next aux validity

in it. (Note that many shards corresponding to locations at
sea, in the wilderness, or night time have a predicted size
of zero and therefore do not exist in the views.)
Shuffled encounter views As discussed in § 6.3, space-
time views can be leveraged only if the queries do not
require any secret-dependent data access. Otherwise, we use
shuffled encounter views, which support our PIR scheme.
These views allow running a sequence of basic queries on
TP ; however, CoVault cannot reveal the sequence of space-
time regions analysed, as such sequence might reveal data
sources’ movements in time. Thus, the only public attribute
is a conservatively coarse-grained time information, which
we call a time epoch. The primary key is encrypted and
the records within each epoch are randomly shuffled. The
mapping between a record, its encrypted key, and its position
within the view can be reconstructed only inside 2PC. The
views are produced by the IPs and the records in an epoch
are re-shuffled by the DPs after each use in a query, using
the protocol of § 6.1.
Risk encounter view This materialized view contains en-
counters that involve a diagnosed patient and took place
during the patient’s contagion period. Conceptually, it is the
result of a join of TE and TS , computed incrementally dur-
ing ingress processing and in cooperation with data sources.
The view supports efficient queries that focus on potential
and actual infections.

We discuss concrete queries running on TE and TP in
7.3.

C.2. Ingress Processing

Next, we discuss CoVault’s ingress processing (§ B)
specific to epidemic analytics. As mentioned in § C.1, the
IPs check whether an encounter is confirmed, and potentially
mark it as valid. Here, we give more details about this
computation. Before uploading data to a view, the data
source partitions its encounters into per-space-time-region
batches, sorts each batch by eid, and randomly pads each
batch to hide the actual number of encounters in the batch
(see § B). Then, the data source secret-shares and MACs
the batches following the protocol of § 4.4, and uploads the
batches to the two IPs using session keys.

Throughout a day, each IP pair receives batches from
data sources and stores them locally (outside 2PC). Period-
ically, e.g., once per day, each IP pairs run a 2PC, which:
• consumes all per-device batches for the space-time

region
• reconstructs the batches from the shares
• verifies the per-batch MACs

Figure 8: Cost of ingress processing on a single space-time
region as a function of region size

• merges the (sorted) batches into a space-time region
buffer using oblivious sorted merge [46]

• and truncates or pads the sorted list to the expected
space-time region size.

The sorting puts padding uploaded by the data sources at the
end of the buffer, so truncating the buffer deletes padding
first.

Next, the IPs perform a 2PC to confirm encounters.
For each eid, they check if both peers have uploaded the
encounter with consistent locations and times, and set the
validity bit of each encounter accordingly. This requires a
linear scan of the space-time region. Finally, each IP in the
pair appends the space-time region (in garbled form; see §B)
to the appropriate tables and materialized views, performing
random shuffling when needed.

C.3. Evaluation of Ingress Processing

Ingress processing (§§ B and C.2) converts batches of
records uploaded by data sources to tables/views used by
queries. Again, we report the costs of only one of the
two circuits of DualEx because ingress does not perform
DualEx’s equality check and runs the two circuits of com-
pletely independently in parallel (the tables/views created by
the IPs are stored in their in-circuit, garbled representation
in a db, § 6.3).

The two highest lines of Figure 8 – which nearly overlap
– show the average time for ingress processing to generate a
single space-time region in TE , as a function of the region
size (x-axis) and the upload batch size (20 encs/batch or
100 encs/batch) on a pair of cores (i.e., a pair of IPs). The
processing performs all the steps mentioned in § C.2. The

costs are slightly super-linear because the IPs sort each batch
and merge the sorted batches.

A significant part of this cost – between 40% and 65%
depending on the region size – is the verification of per-
batch MACs (cf. the third line, which shows the cost without
MAC verification). This high cost of MAC verification in
2PC is why we store tables/views in garbled form and avoid
verifying MACs again in query processing. Note that the
cost of ingress processing without MAC verification depends
on the region size but not the batch size; in fact, in this case,
the batch size impacts only the number of batches and the
time to upload each batch to the IPs via a different, secure
connection. This cost is negligible compared to the costs of
2PC operations.

The lowest line of Figure 8 is the cost of ingress oper-
ations to populate the table of data sources diagnosed sick
(TS). This cost is much lower than that of generating a
space-time region since TS is not sorted and each record in
TS has fewer bits, which reduces MAC verification time.

Scaling The relevant performance metric for ingress pro-
cessing is throughput: We want to determine how many core
pairs we need to keep up with the rate of data generated by
a given administrative entity (e.g., country, city, town). To
this end, we run a 5h experiment where m core pairs gen-
erate space-time regions containing 100 records each from
uploads in batches of size 20. We measured the throughput
of ingress processing (in encounters processed per hour),
varying m from 1 to 8.

As expected, the results show perfect linear scaling with
the number of available core pairs, from 584k to 4.75M
encounters processed per hour for 1 and 8 core pairs,
respectively. From this, we can extrapolate the number of
core pairs needed to keep up with all encounters generated
in a given world region. For example, very conservatively
assuming 200 encounters/person/day in urban areas and 100
encounters/person/day in rural areas, we estimate that, every
24h: (a) a mid-sized country with population 80M would
generate 11.85B encounters; (b) a big metropolitan area with
population 8M would generate 1.6B encounters; (c) a urban
city with population 3M would generate 600M encounters;
(d) a urban town with population 200k would generate 40M
encounters.

Extrapolating from the linear scaling above, we estimate
that the two runs of DualEx will need a total of 1660, 226,
86, and 6 core pairs, respectively, for ingress processing.
According to these estimates, the ingress processing of a
whole country is well within the means of a small-scale
data center, while that of a town would require a single pair
of machines.

Power overhead The Thermal Design Power (TDP), which
is the maximum continuous power, consumed by the 8
hardware core Intel Intel(R) Xeon(R) Gold 6244 CPU is
150W, and is 225W for the 32 hardware core AMD EPYC
7543 CPU used in our experiments. A 100,000 core pair
deployment of such a system, sufficient for the full ingress
processing of 60.25 of such countries with 80M people
each (4.82B people in total, more than half of the world’s

Figure 9: Additional query q4. The selection on the public
attribute epoch is done outside 2PC using the public index
of TP .

(q4) Count #devices in B that encountered a de-
vice which previously encountered a device in
A, with both encounters in the time interval
[start,end]

WITH TT AS
(SELECT * FROM TP

WHERE start<time-epoch<end)
SELECT COUNT(DISTINCT(T2.did2))
FROM (TT AS T1) JOIN (TT AS T2)
ON T1.did2 == T2.did1
WHERE T1.did1∈A AND T2.did2∈B AND
start<T1.time<T2.time<end

population) on a running basis, would consume 2.57MW,
which is 0.011% the total power consumed by data centers
globally in 2018 [3]. We believe this cost is justifiable
for applications like epidemic analytics where the return to
society in terms of human lives saved (through faster and
better understanding of an emerging pandemic) is enormous.

C.4. Evaluation of an additional data-dependent
query

This section describes another data dependent query q4,
which we also evaluate for latency. The query is shown
in Figure 9. This query asks how many devices from set
B encountered a device from the set A indirectly through
an intermediate device (all within a given time interval).
This query can be used to determine if two outbreaks of an
epidemic (corresponding to the sets A and B) are indirectly
connected over 1-hop.
Latency evaluation We implemented and evaluated the
latency of q4 in the same setting as q3 (§ 7.3). Unlike q3,
which makes one traversal over the trajectories of devices in
B, q4 uses two traversals. One traversal collects all encoun-
ters of devices in A moving forwards in time; the second
traversal collects all encounters of devices in B moving
backwards in time. We then sort the collected encounters
of A ∪ B ascending by time, and make a linear pass over
them maintaining two Bloom filters, one of all devices that
have encountered a device in A and the other of devices in
B who have encountered a device already in the first Bloom
filter. The result of the query is the size of the second filter
at the end.

In our experiments, Bloom filter operations take 709ms
per encounter and there is a one-time setup cost of 129ms.
Sorting the encounter list of A ∪ B has negligible cost
in comparison. Assuming e = 336 time-epochs, n = 30
encounters/person/h, |A| = 10 and |B| = 10 (these are the
same values that we assumed for query q3), this encounter
list has length m = e · n · (|A|+ |B|) = 201, 600. The total
query latency is 129+27 ·e ·n ·(|A|+ |B|)+(10+709) ·m =
1.74 days. In this case, the savings over a naive approach of

scanning all encounter records are even more pronounced
than those in the case of query q3 (§ 7.3), since the naive
approach would have to first sort 165.9B records in 2PC and
then scan them maintaining the same two Bloom filters.

Appendix D.
Estimation of end-to-end query latency

We describe how we estimate the end-to-end latency of
a query executed in 2PC using our map-reduce approach,
as a function of the number of available machine pairs.
By reversing the estimation function, we can also easily
determine the number of machines needed to attain a given
query latency.

We start with two basic mathematical facts that we need
for our estimates.

Lemma 1. Given n i.i.d. random variables X1, . . . , Xn with
normal distributions of mean µ and standard deviation σ,
let X = max(X1, . . . , Xn). Then, E[X] ≤ µ+ σ

√
2 ln(n).

Proof. This is a folklore result. We provide a simple proof
here. Let t > 0 be a parameter. Since ey is a convex
function of y, by Jensen’s inequality, etE[X] ≤ E[etX] =
E[maxi e

tXi] ≤ E[
∑n

i=1 e
tXi] =

∑n
i=1 E[etXi]. From the

moment generating function of the normal distribution,
E[etXi] = tµ + 1

2σ
2t2. Hence, etE[X] ≤ ne(tµ+ 1

2σ
2t2),

and E[X] ≤ ln(n)
t + µ + tσ2

2 . The function on the right

is minimized for t =

√
2 ln(n)

σ , and its minimum value is
µ+ σ

√
2 ln(n), as required.

In the sequel, we let E[D;n] denote the expected value
of the maximum of n i.i.d. random variables, each drawn
from the normal distribution D. Lemma 1 says that

E[D;n] ≤ µ+ σ
√

2 ln(n)

where µ and σ are the mean and standard deviation of D.

Lemma 2. For any natural number K ≥ 0,
√
K +

√
K − 1 + . . .+

√
1 ≤ 2

3
((K + 1)3/2 − 1)

Proof.
√
K +

√
K − 1 + . . .+

√
1

=

∫
K+1

K

√
K dx+ . . .+

∫
2

1

√
1 dx

≤

∫
K+1

K

√
x dx+ . . .+

∫
2

1

√
x dx

=

∫
K+1

1

√
x dx

= 2
3 ((K + 1)3/2 − 1)

Now we explain our estimation of end-to-end latency.
Suppose we have M available machines pairs and each
machine has 2C available cores. This gives us a total of

C units of DualEx execution per machine pair and a total of
MC units of DualEx execution. In the sequel, we use the
term unit to mean “a unit of DualEx execution”.

For a given query, let the queried table have N records.
We divide the records of the table into chunks of t records
each, and then divide the chunks evenly among the MC
units. So, each unit starts with Nc chunks, where

Nc =
N

tMC

The best value of t is determined empirically: If t is too
small, each mapping and initial reducing circuit does very
little work (and setup costs dominate). If t is too high,
the state of all parallel cores on a machine may not fit in
memory. For tables in our evaluation, we usually pick t to
be 10,000 records.

The query actually executes in 4 fine-grained stages. All
but the last stage do not perform the final equality check of
DualEx, but each stage does run the two symmetric DualEx
2PC computations.

1) (Unit-level) Each unit (2+2 cores on a machine pair)
maps two chunks out of its Nc chunks and then reduces
them to an intermediate result. Each unit then alternates
mapping a new chunk and reducing the mapped chunk
with the intermediate result previously available on the
unit, producing a new intermediate result. This second
step is repeated Nc−2 times on each unit till all chunks
are consumed and one intermediate result is obtained
on each unit. All MC units do these computations in
parallel. Let Dmmr be the latency distribution of the
first two maps followed by reduce on a single unit,
and let Dmr be the latency distribution of each of one
subsequent map+reduce on a single unit.

2) (Machine-pair-level) All C units on a single machine
pair reduce their results to a single result using a
balanced reduction tree. All M machine pairs do this
independently in parallel. Let Dmach be the latency
distribution of this on a single machine.

3) (Cross-machine) All intermediate results across all ma-
chine pairs are reduced using a balanced reduce tree
to two final results, which are on a single machine.
Only one unit per machine pair is used. At the end,
one machine ends up with two results. Let Dcmr be
the latency distribution of the following cross-machine
computation: Two pairs of machines reduce in parallel
and one pair sends its result to the other pair at the end.
We call this a cross-machine reduction unit (cmru).

4) (Final reduce) The machine pair getting the last two
intermediate results performs one final reduce with
the DualEx equality check at the end. Let the latency
distribution of this final step be Dfr.

We empirically estimate Dmmr, Dmr, Dmach, Dcmr, and
Dfr by observing the means and standard deviations of
the corresponding latencies while running a query on a
small number of machines. Let µmmr and σmmr denote the
mean and standard deviations of Dmmr, and similarly for
the remaining four distributions. For our end-to-end latency

estimate we model each of these distributions as a normal
distribution with the measured mean and standard deviation.

There is no synchronization at the end of each stage
in our implementation, e.g., if all units on a machine pair
have finished stage 1, that machine pair goes ahead with
stage 2 without waiting for other machine pairs to finish
stage 1. However, we estimate the end-to-end query latency
conservatively by instead calculating the latency of a hypo-
thetical execution model where there is a full, instantaneous
synchronization at the end of each of the first three stages.
This latter latency is definitely a conservative upper bound
on the actual latency, and is much easier to calculate.

Let cost1–cost4 be the expected costs of the four stages
above in the conservative (synchronizing) model. We upper-
bound each of these separately.
Estimating cost1 The latency of stage 1 on each unit has
a normal distribution given by D1 = Dmmr + (Nc − 2)Dmr.
From standard properties of normal distributions, D1 has
mean and standard deviation µ1 and σ1 where

µ1 = µmmr + (Nc − 2)µmr

σ1 =
√
σ2

mmr + (Nc − 2)σ2
mr

Then, since stage 1 consists of MC parallel units, we have:

cost1 = E[D1;MC] ≤ µ1 + σ1

√
2 ln(MC)

Estimating cost2 In stage 2, M machines operate in paral-
lel, each with latency Dmach. Thus, we have:

cost2 = E[Dmach;M] ≤ µmach + σmach

√
2 ln(M)

Estimating cost3 Stage 3 is a tree-shaped cross-machine
reduce. The number of levels in this tree is K where:

K = dlog2(M)e

At the first level, we have dM/4e parallel cmrus. At the
second level, we have dM/8e parallel cmrus, and so on, till
we have only 1 cmru. Hence, we get:

cost3 ≤
K∑
i=2

E[Dcmr; dM/(2i)e]

≤
K∑
i=2

(
µcmr + σcmr

√
2 ln (dM/(2i)e)

)
= (K − 1)µcmr + σcmr

√
2 ln 2

K∑
i=2

√
(dM/(2i)e)

≤ (K − 1)µcmr + σcmr
√

2 ln 2

K−2∑
i=1

√
i

≤ (K − 1)µcmr + 2
3σcmr

√
2 ln 2

(
(K − 1)3/2 − 1

)
Estimating cost4 This cost is immediate:

cost4 = µfr

Our computed upper-bound on the query latency is then
cost1 + cost2 + cost3 + cost4.

Appendix E.
Proofs of Security

In this section, we prove the security of CoVault. Co-
Vault combines many building blocks and therefore we
slowly build up to the security proof in §E.5.1 and define
several intermediate building blocks and properties. Fig-
ure 10 gives and outline of how these building blocks fit
together.

In §E.1, we introduce notation and the preliminaries
necessary for our proofs of security: message authentication
codes and their properties (§E.1.1) and secure secret sharing
(§E.1.2). In §E.2, we combine MACs and secret sharing to
give a construction of a secure secret sharing scheme and
a proof of its security. In §E.3, we modify DualEx, a sym-
metric protocol with one-bit leakage, to enable asymmetric
outputs, then prove that this modified protocol (asymmetric
DualEx) is secure.

Next, we combine these two building blocks and show
that the resulting protocol securely computes a function on a
reconstructed input while maintaining output integrity. This
follows from our proof in §E.4 that a secure secret sharing is
secure for computing on authenticated data (Def. 12) even in
the presence of one-bit leakage. Finally, in §E.5, we define
CoVault’s ideal functionality and provide a proof of end-to-
end security for the system.

E.1. Notation and preliminaries

For any deterministic functionality H, let H− be the
functionality that computes H with one-bit leakage. That
is, for a malicious party Pi, the two-party functionality
H− returns the same output as H along with some one-
bit leakage function ` of Pi’s choice applied to the other
party’s input x (|`(x)| = 1). For a randomized functionality,
` can depend on the other party’s input and the randomness
used by the functionality.

Throughout this appendix, we assume that some algo-
rithms can output a distinguished symbol ⊥. Our security
proofs consider PPT (probabilistic polynomial-time) adver-
saries A. As is standard in cryptography, the security proper-
ties of the schemes we introduce are proven by showing that
the advantage (defined separately for every property) of a
PPT adversary A is upper-bounded by a negligible function:

Definition 1 (negligible function). A function f is negligible
if for all c ∈ N there exists an N ∈ N such that f(n) < n−c

for all n > N .

E.1.1. Message authentication codes. In CoVault, we use
MACs to provide integrity for the data sent by a device to
the system. When a device generates data, it secret-shares it
before sending one share to each of the two TEEs. Because
standard, additive secret sharing schemes are malleable,
we utilize message authentication codes (MACs) to add
integrity.

sforge, kauth,
nmall, private

MAC

Additive SS

(XOR-SS)

Secure SS

(MtS construction)

Theorem 1

Protocol realizing

(Asymmetric DualEx)
ℱ−𝖺𝗌𝗒𝗆

Protocol realizing

(DualEx)

ℱ−𝗌𝗒𝗆

Asym
transformation

Theorem 2

Protocol realizing

(CoVault’s 2PC)
ℱ−𝗈𝗂Theorem 3 CoVault Protocol

Theorem 4

Figure 10: An overview of the proof of security of CoVault.

Definition 2 (message authentication code (MAC)). A mes-
sage authentication code (MAC) is a triple of polynomial-
time algorithms M = (KeyGen,Mac,Verify) such that
• KeyGen takes as input a security parameter 1κ and

outputs a random key k←$Dκ
• Mac takes as input a key k in some domain Dκ asso-

ciated with a security parameter 1κ and a message m
in some domain Dm and outputs a tag t.

• Verify takes as input a key k ∈ Dκ, a message m ∈
Dm, and a tag t and outputs one of two distinguished
symbols >,⊥.

For correctness, we require that for all m ∈ Dm and
k ∈ Dκ, Verify(k,m,Mac(k,m)) = >.

*Notation. Define Mack(m) := Mac(k,m) and
Verifyk(m, t) := Verify(k,m, t).

The security guarantees of MACs span a wide range. We
define the relevant notions below.
*One-time strong unforgeability. Informally, one-time strong
unforgeability says that it is infeasible to forge a tag on a
message without knowing the key (including a new tag on
a message for which the attacker already knows a tag).

Let M = (KeyGen,Mac,Verify) be a MAC. For a given
PPT adversary A, we define A’s advantage with respect to
M as MAC1-sforge-adv[A,M] :=

Pr

 m← A(1κ);
k ← KeyGen(1κ);
t← Mack(m);
(m′, t′)← A(t)

:
(m′, t′) 6= (m, t)

∧
Verifyk(m′, t′) = >

 .
Definition 3 (one-time strong unforgeability). We say a
MAC M = (KeyGen,Mac,Verify) is one-time strongly
unforgeable (alternatively, one-time strongly secure) if, for
all PPT adversaries A, there exists a negligible function negl
such that MAC1-sforge-adv[A,M] ≤ negl(κ).

*One-time key authenticity. Standard notions of MAC secu-
rity deal only with the consequences of an attacker viewing a
message-tag pair. In our setting, we introduce a new notion
of security for MACs which considers the case in which

A has access to a message-key pair. Informally, a MAC is
key authentic if it is difficult to find a new key which still
authenticates a given message-tag pair.

Let M = (KeyGen,Mac,Verify) be a MAC. For a given
PPT adversary A, we define A’s advantage with respect to
M as MAC1-kauth-adv[A,M] :=

Pr

 m← A(1κ);
k ← KeyGen(1κ);
t← Mack(m);
k′ ← A(k)

:
k′ 6= k

∧
Verifyk′(m, t) = >

 .
Definition 4 (one-time key authenticity). We say a MAC
M = (KeyGen,Mac,Verify) is one-time key authentic if, for
all PPT adversaries A, there exists a nonnegligible function
negl such that MAC1-kauth-adv[A,M] ≤ negl(κ).

*One-time non-malleability. In this case, we require that
an adversary cannot cause a fixed, known tag to verify a
message even if it can modify the message and key by some
additive shift.

Let M = (KeyGen,Mac,Verify) be a MAC. For a given
PPT adversary A, we define A’s advantage with respect to
M as MAC1-nmall-adv[A,M] :=

Pr

 m← A(1κ);
k ← KeyGen(1κ);
t← Mack(m);

(∆m,∆k)← A(t)

:
(∆m,∆k) 6= (0, 0)

∧
Verifyk+∆k

(m+ ∆m, t) = >

 .
Definition 5 (one-time non-malleability). We say a MAC
M = (KeyGen,Mac,Verify) is one-time non-malleable if,
for all PPT adversaries A, there exists a nonnegligible func-
tion negl such that MAC1-nmall-adv[A,M] ≤ negl(κ).

*Privacy. Let M = (KeyGen,Mac,Verify) be a MAC. For
a given PPT adversary A, we define A’s advantage with
respect to M as MAC-priv-adv[A,M] :=∣∣∣∣∣∣∣Pr

 (m0,m1)← A(1κ);
k ← KeyGen(1κ);
b←$ {0, 1};

tb ← Mack(mb)

: A(tb) = b

− 1

2

∣∣∣∣∣∣∣ .
Definition 6 (privacy). We say a MAC M = (KeyGen,
Mac,Verify) is private if, for all PPT adversaries

A, there is a negligible function negl such that
MAC-priv-adv[A,M] ≤ negl(κ).

E.1.2. Secure secret-sharing. As mentioned previously, the
data sent to CoVault is secret-shared by the source between
two TEEs. Basic secret-sharing schemes only deal with
privacy of the shared data and do not consider accuracy of
reconstruction. In this section, we define (in addition to the
notion of privacy) a notion of authenticity which captures
the property that the holder of a share of the data cannot,
without being detected, change its share in a way that causes
the reconstructed data to be altered. A secret sharing scheme
with this additional property is called “secure” and will
ultimately be achieved by leveraging MACs (§E.2).

Definition 7 (secret-sharing scheme). A pair of polynomial-
time algorithms Σ = (Share,Rec) is a (two-party) secret-
sharing scheme if
• Share takes as input a security parameter 1κ and a

value x in the domain Dκ associated with κ (e.g., Dκ =
{0, 1}κ) and outputs two shares sh1, sh2. We assume κ
is implicit in each share.

• Rec takes as input two shares and outputs either a value
y ∈ Dκ or ⊥.

For correctness, we require that for all κ and x ∈ Dκ,
Rec(Share(1κ, x)) = x.

*Privacy. Informally, privacy says that, given a share of one
of two values x0, x1, an adversary A cannot distinguish
whether x0 or x1 was shared.

Let Σ = (Share,Rec) be a secret-sharing scheme. For
a given PPT adversary A, we define A’s advantage with
respect to Σ as SS-priv-adv[A,Σ] :=∣∣∣∣∣∣Pr

 (x0, x1, i)← A(1κ);
b←$ {0, 1};

(shb,1, shb,2)← Share(1κ, xb)
: A(shb,i) = b

− 1

2

∣∣∣∣∣∣ .
Definition 8 (privacy). We say a secret-sharing scheme Σ =
(Share,Rec) is private if, for all PPT adversaries A, there is
a negligible function negl such that SS-priv-adv[A,Σ] ≤
negl(κ).

*Authenticity. Informally, authenticity guarantees that any
modification to a share will result in Rec returning ⊥ with
high probability.

Let Σ = (Share,Rec) be a secret-sharing scheme. For
a given PPT adversary A, we define A’s advantage with
respect to Σ as SS-auth-adv[A,Σ] :=

Pr

 (x, i)← A(1κ);
(sh1, sh2)← Share(1κ, x);

sh′i ← A(shi)
:

sh′i 6= shi
∧

Rec(sh′i, sh3−i) 6=⊥

 .
Definition 9 (authenticity). We say a secret-sharing
scheme Σ = (Share,Rec) is authenticated if, for all
PPTadversaries A, there is a negligible function negl such
that SS-auth-adv[A,Σ] ≤ negl(κ).

Definition 10 (security). We say a secret-sharing scheme
Σ = (Share,Rec) is secure if it is both private and authen-
ticated.

E.2. Secure secret sharing construction

There are several ways to construct a secure secret-
sharing scheme ΣM = (ShareM ,RecM) using a MAC
M = (KeyGen,Mac,Verify) and base (non-authenticated)
secret-sharing scheme Σ = (Share,Rec). We introduce
MAC-then-Share, the construction used in CoVault, and
analyze its security.

Definition 11 (MAC-then-share (MtS)). Let M = (KeyGen,
Mac,Verify) be a MAC and Σ = (Share,Rec) a secret-
sharing scheme. Define ΣM = (ShareM ,RecM), the MtS
secret-sharing scheme based on M and Σ, as follows:
• ShareM takes as input a security parameter 1κ and a

value x in the domain Dκ associated with κ. It gener-
ates a single key k using KeyGen and uses it to com-
putes one tag t on the secret value x as t := Mack(x).
Now it shares x, k by computing (x1, x2)← Share(x)
and (k1, k2)← Share(k), and outputs two shares sh1,
sh2 with shi := (xi, ki, t).

• RecM takes as input two shares. If the tags match, it
reconstructs y := Rec(x1, x2) and k′ := Rec(k1, k2).
Then, if Verifyk′(y, t) = >, it returns y; otherwise it
returns ⊥.

What properties are required of the MAC and secret-
sharing scheme in order for their composition to be a
secure secret-sharing scheme? In Theorem 1, we show that
the MAC must meet all four properties presented in Sec-
tion E.1.1 in order for the MtS construction to be secure.

Theorem 1. If M is a one-time strongly unforgeable, key
authentic, non-malleable, and private MAC and Σ an ad-
ditive secret-sharing scheme, then the MtS secret-sharing
scheme ΣM constructed from M and Σ is secure.

Proof. The privacy of ΣM follows directly from privacy of
M (since Mack(x) reveals nothing about x) and Σ (xi also
reveals nothing about x).

Authenticity of ΣM is a bit more unwieldy. We prove
the contrapositive that if ΣM is not authenticated, then either
(1) M is not strongly secure, (2) M lacks key authenticity,
or (3) M is malleable. As before, we do this by reduction
of an adversary A with SS-auth-adv[A,ΣM] nonnegligible
to three adversaries for each of the three corresponding
games, and show that at least one of them has nonnegligible
advantage in its game.

First, we construct an adversary Asforge for the game
MAC1-sforgeAsforge,M

. Asforge receives x, i from A and
constructs a MtS triple shi := (xi, ki, ti) as follows: it sends
x to its game to get t := Mack(x), picks a random ki ∈ Dκ,
and runs Share on x, t to get x1, x2, t1, t2. Now Asforge runs
A on shi to get sh′i := (x′i, k

′
i, t
′
i) and returns (x′, t′), where

x′ ← Rec(x′i, x3−i) and t′ ← Rec(t′i, t3−i).
Next, we construct an adversary Akauth for the game

MAC-kauthAkauth,M . Akauth is given x, i by A and sends x
to its game, which sends back a key k. It uses this key to
construct a MtS triple shi := (xi, ki, t), computing t :=
Macki(x) and running Share on x, k to get x1, x2, k1, k2.

Now Akauth runs A on shi to get sh′i := (x′i, k
′
i, t
′) and

returns k′ ← Rec(k′i, k3−i).
Third, we construct an adversary AnmallM for the MAC

non-malleability game.AnmallM is given x, i by A and sends
x to its game to receive t. It constructs anMtS triple
shi := (xi, ki, ti) by choosing a random k ∈ Dκ and
running Share on x, k, t. Now AnmallM runs A on shi to get
sh′i := (x′i, k

′
i, t
′). It computes x′ ← Rec(x′i, x3−i), k

′ ←
Rec(k′i, k3−i), and returns (x′, k′).

We now analyze the winning probability of each of the
three adversaries. By our assumption, A wins its game with
nonnegligible probability, implying t′ = t. If A returns
sh′i such that k′i = ki with nonnegligible probability, then
Asforge has nonnegligible advantage and we are done. If
not, then with nonnegligible probability, A returns sh′i with
k′i 6= ki. If x′i = xi a nonnegligible fraction of the time,
Akauth has nonnegligible advantage in its game, and we are
done. Otherwise, x′i 6= xi and AnmallM has nonnegligible
advantage in the non-malleability game for M : it has a pair
(∆m := x′i−xi,∆k := k′i−ki) such that Verifyk′i+k3−i

(x′i+
x3−i, t) = Verify(ki+k3−i)+∆k

((xi + x3−i) + ∆m, t) = >.
Thus, if M is authenticated, it is not strongly secure,

lacks key authenticity, or is malleable, all of which contra-
dict our assumptions.

Note that the proof also holds for the XOR secret sharing
scheme by substituting +,− for ⊕.

Concrete Construction. CoVault uses KMAC256[49], a
NIST-standardized SHA3-based MAC. It can be abstracted
as follows, where || indicates concatenation. (We omit some
additional parameters which are constant and public in
CoVault; see Appendix A in [49] and Section 6.1 in [37].)

KeyGen:Use SHA3’s key generation algorithm.
Mack(m):Compute h := SHA3(k) and announce it pub-

licly. Output t := SHA3(k||m).
Verifyk(m, t):Output > iff SHA3(k) = h ∧ SHA3(k||m) =

t.

This MAC meets the conditions of Theorem 1 in the random
oracle model (ROM):

• one-time strong unforgeability: Due to randomness
of the output SHA3(k||m′).

• one-time key authenticity: Due to collision-resistance,
which guarantees that for k 6= k′ we have
with overwhelming probability that SHA3(k||m) 6=
SHA3(k′||m).

• one-time non-malleability: Again due to collision-
resistance, since for (k,m) 6= (k′,m′) we have
with overwhelming probability that SHA3(k||m) 6=
SHA3(k′||m′).

• privacy: Due to randomness of the output of SHA3.

Hence, CoVault’s MtS construction of ΣM with Σ as
the additive secret sharing scheme and M as KMAC256 is
secure. In §E.4, we will show that this means it can safely
be used inside a secure computation.

E.3. DualEx functionality with asymmetric outputs

Before turning to the use of our secure secret sharing
construction within a secure multi-party (two-party) com-
putation protocol, we must discuss the exact protocol used
by CoVault and its non-standard security guarantees.

CoVault uses the DualEx protocol[48] as a building
block. DualEx guarantees security against malicious adver-
saries at almost the cost of of semi-honest protocols, but
with the following caveats: it can compute any symmetric
two-party functionality Fsym, and it does so with one-bit
leakage. By symmetric we mean that both parties are re-
quired to receive the same output.

In this section, we will address how to modify DualEx
to allow for the computation of asymmetric functionalities
while maintaining the same security guarantees (malicious
with one-bit leakage). This modified DualEx, which we dub
“asymmetric DualEx”, will be used to implement the core
functionality of CoVault, and the one-bit leakage will carry
through the remainder of the proofs.

Let f : X × X → Y be some function. In the CoVault
setting, we want the output of f to be shared between the
parties so that neither learns the output. More specifically,
we want to compute the functionality Fasym that takes as
input x1 from one party and x2 from the other, and returns
a uniformly random r to the first party and f(x1, x2)⊕ r to
the second party. When P1 is honest, r is chosen by Fasym;
when P1 is malicious, P1 chooses r.

To do this, we construct a two-party protocol Π that
computes Fasym via access to the symmetric functionality
Fsym that takes inputs (x1, r1), (x2, r2) ∈ X × Y from the
parties, computes y := f(x1, x2)⊕ r1⊕ r2, and returns y to
both parties. The protocol proceeds as follows:
• Each party Pi holds an input xi ∈ X . It additionally

samples a uniform blinding value ri ∈ Y . The parties
then provide their inputs (x1, r1) and (x2, r2), respec-
tively, to Fsym.

• Both parties receive in return y := f(x1, x2)⊕ r1⊕ r2.
• P1 computes its output as y1 := r1, while P2 computes

its output as y2 := y ⊕ r2.
Notice that y ⊕ r2 = f(x1, x2) ⊕ r1, so the protocol

outputs f(x1, x2) ⊕ r1 to the second party and the parties
now hold shares of f(x1, x2). Below we show that this
modified protocol maintains the same security guarantees
as the base DualEx.

Theorem 2. Π securely computes F−asym against malicious
adversaries in the F−sym-hybrid model.

Proof. Let A be a PPT adversary corrupting party Pi. To
prove the security of Π against malicious adversaries in the
F−sym-hybrid world, we give an adversary Si in the ideal
world that simulates an execution of Π in the hybrid world.
We first consider the case of a corrupted P1.

Simulator S1: S1 has access to the ideal functionality F−asym
computing f(x1, x2)⊕ r with one-bit leakage. Given f, S1

works as follows:

• Receive inputs x′1, r
′
1, and a leakage function ` : X ×

Y → {0, 1} from P1.
• Sample y∗←$Y . Convert ` into a function `∗ : X →
{0, 1} by letting `∗(x) = `(x, y∗ ⊕ r′1 ⊕ f(x′1, x)) for
all x ∈ X .

• Send (x′1, r
′
1) and `∗ to the ideal functionality F−asym;

the honest party sends x2 to F−asym.
• Receive in return from F−asym r′1 and some one-bit

leakage b∗ := `∗(x2). The honest party receives y∗2 :=
f(x′1, x2)⊕ r′1.

• Send y∗, b∗ to P1.

We prove indistinguishability of the following distribution
ensembles.
*Ideal experiment. This is defined by the interaction of
S1 with the ideal functionality F−asym. A outputs an ar-
bitrary function of its view; the honest party outputs
what it received from the experiment, namely y∗2 . Let
IDEALS1(1κ, x1, x2, `, f) be the joint random variable con-
taining the output of the adversary S1 and the output of the
honest party. Concretely,

IDEALS1(1κ, x1, x2, `, f) = ((y∗, b∗), y∗2).

*Hybrid experiment. let HA(1κ, x1, x2, `, f) be the joint
random variable containing the view of the adversary A
and the output of the honest party in the F−sym-hybrid world.
Concretely,

HA(1κ, x1, x2, `, f) = ((y, b), y2).

S1 perfectly simulates the view of a malicious P1 in the
hybrid world. Because r2 is chosen uniformly at random,
both y∗ and y are distributed uniformly at random and are
thus perfectly indistinguishable. By the definition of `∗, b∗ =
`(x2, y

∗ ⊕ f(x′1, x2)⊕ r′1. Furthermore, by the definition of
y, r2 = y ⊕ f(x′1, x2) ⊕ r′1, so b = `(x2, r2) is perfectly
indistinguishable from b∗. Hence the joint distributions of
(y∗, b∗) and (y, b) are perfectly indistinguishable. Finally,
y∗2 and y2 are identical by the definition of y2 and thus
perfectly indistinguishable.

Next, we give a simulator S2 for the case of a corrupted
P2.

Simulator S2: S2 has access to the ideal functionality F−asym
computing f(x1, x2)⊕ r with one-bit leakage. Given f , S2

works as follows:
• Receive inputs x′2, r

′
2, and a leakage function ` from

P2.
• Forward x′2 and ` to the ideal functionality F−asym; the

honest party sends x1 to F−asym.
• Receive in return from F−asym the output z :=
f(x1, x

′
2)⊕r1 for uniformly random r1 and some one-

bit leakage b := `(x1). The honest party receives r1.
• Compute y∗ := z ⊕ r′2. Send y∗, b to P2.

We prove indistinguishability of the following distribution
ensembles.

*Ideal experiment. This is defined by the interaction
of S2 with the ideal functionality F−asym. A outputs an
arbitrary function of its view; the honest party out-
puts its honestly computed value of y1, namely r1. Let
IDEALS2(1κ, x1, x2, `, f) be the joint random variable con-
taining the output of the honest party and the output of the
adversary S2. Concretely,

IDEALS2(κ, x1, x2, `, f) = (r1, (y
∗, b)).

*Hybrid experiment. let HA(1κ, x1, x2, `, f) be the joint
random variable containing the the output of the honest party
and the view of the adversary A in the F−sym-hybrid world.
Concretely,

HA(1κ, x1, x2, `, f) = (r1, (y, b)).

S2 perfectly simulates the view of a malicious P2 in the
hybrid world, since y∗ = z⊕ r′2 = f(x1, x

′
2)⊕ r1⊕ r′2 = y.

Therefore, Π is secure (up to 1 bit of leakage) against
malicious adversaries in the F−sym-hybrid model.

Notice that the DualEx protocol is an instantiation of
F−sym, so our modified protocol is a real-world protocol with
the same security guarantees against malicious parties as the
original DualEx: privacy up to one bit of leakage and full
correctness of the output.

E.4. Secure computation on shared data

We are now ready to pull together the two branches
of CoVault’s approach: secure secret sharing and secure
computation with one-bit leakage.

In CoVault, we wish to securely run some function on
the data collected from various data sources; as is common,
we will achieve this via secure multi-party (two-party) com-
putation. That data is stored in secret-shared form, and must
therefore be reconstructed within the secure computation.
In this section, we define the desired functionality in this
case: one that outputs only either the correct computation
f(x) or aborts (⊥) (we call this ideal functionality Foi, for
“output integrity”). A secret sharing scheme which, when
used to reconstruct within the secure computation, enables
this ideal functionality is called secure for computing on
authenticated data.

Fix some function f and secret-sharing scheme Σ =
(Share,Rec). Define the function fΣ as

fΣ(sh1, sh2) =

{
⊥ Rec(sh1, sh2) =⊥

f(Rec(sh1, sh2)) otherwise.

We consider a hybrid-world execution in which a dealer
D shares some value x between two parties P1 and P2.
At some later point in time, the parties invoke an ideal
functionality F that computes fΣ (with abort). In more
detail, the hybrid-world execution with some function f
using an input x, both potentially chosen by the malicious
party, proceeds as follows:

Initial sharing: D runs (sh1, sh2) ← Share(1κ, x) and
sends shi to Pi.

Parties invoke ideal functionality: Party Pi sends an in-
put sh′i to the ideal functionality F computing fΣ;
an honest party sends the share it received from the
dealer. F computes y := fΣ(sh′1, sh

′
2) and sends y to

the malicious party.
Output delivery: After receiving y, the malicious party

tells the ideal functionality to either continue or abort.
In the former case, F sends y to the honest party;
in the latter case, it sends ⊥ to the honest party. The
honest party outputs whatever it receives from the ideal
functionality.

For an adversary A, let HΣ
A(1κ, x, f) be the joint random

variable containing the view of the malicious party and the
output of the honest party.

We compare a hybrid-world execution to an ideal-world
execution in which the parties have access to an ideal
functionality Foi that can (only) return y = f(x) (oi stands
for “output integrity”). Concretely, the ideal-world execution
proceeds as follows:
Parties invoke ideal functionality: The parties invoke

Foi, which sends f(x) to the malicious party.
Output delivery: After receiving f(x), the malicious party

tells Foi to either continue or abort. In the former
case, the ideal functionality sends f(x) to the honest
party; in the latter case, it sends ⊥ to the honest party.
The honest party outputs whatever it receives from the
ideal functionality; the malicious party can output an
arbitrary function of its view.

For an adversary S, let IDEALS(1κ, x, f) be the joint
random variable containing the output of the adversary and
the output of the honest party.

Definition 12. We say Σ is secure for computing on au-
thenticated data if for all PPT A there exists a PPT S
such that distribution ensembles {HΣ

A(1κ, x, f)}κ,x,f and
{IDEALS(1κ, x, f)}κ,x,f are computationally indistinguish-
able.

However, things are not as simple as that: CoVault uses
asymmetric DualEx, so we have one bit of leakage to
contend with. Specifically, in our case both functionalities F
and Foi will leak one bit of information. Next, we will show
that this is not a problem and that any secure secret sharing
scheme is secure for computing on authenticated data (even
when the secure computation leaks one bit of information).

Let F− be the ideal two-party functionality that takes as
input two secret shares sh1, sh2, computes y := fΣ(sh1, sh2)
(where fΣ is defined as in Section E.4), and outputs y to
both parties with one-bit leakage.

Define the following protocol Π for computing fΣ with
one-bit leakage in the F−-hybrid model:

1) The dealer D shares some value x as (sh1, sh2) ←
Share(1κ, x) and sends shi to Pi.

2) Pi sends an input sh′i to F−; the honest party sends the
share it received from the dealer. The malicious party
additionally sends a leakage function `.

3) F− computes y := fΣ(sh′1, sh
′
2) and sends y and `

evaluated on the honest party’s share to the malicious
party.

4) The malicious party tells F− to either continue or
abort. In the former case, F− sends y to the honest
party; in the latter case, it sends ⊥. The honest party
then outputs whatever it received from the ideal func-
tionality.

Theorem 3. If Σ is a secure secret-sharing scheme, then it
is secure for computing on authenticated data (even in the
presence of one-bit leakage).

Proof. Let A be a PPT adversary corrupting party Pi and
let A fix x, f . We prove security by simulation: to prove
the security of Π against malicious adversaries in the F−-
hybrid world, we give an adversary S (the simulator) in the
ideal world that interacts with Pi and the ideal functionality
computing f with one-bit leakage. S simulates an execution
of Π in the hybrid world.

Simulator S : Given 1κ, S works as follows:
1) S simulates the dealer by choosing a random value x̂

and running (ŝh1, ŝh2)← Share(1κ, x̂). It gives ŝhi to
Pi.

2) S receives ŝh
′
i and a leakage function ` from Pi.

3) If ŝh
′
i 6= ŝhi, then S sends abort to the ideal function-

ality computing f with one-bit leakage, gives ⊥ to Pi,
and halts. Otherwise, S sends a new leakage function
`∗ : X → {0, 1}, where `∗(x) := `(x ⊕ ŝh1) ∀x ∈ X ,
and receives y := f(x) and a bit b∗ := `∗(x). S
forwards both values to Pi.

4) If Pi aborts, then S also aborts; otherwise, it sends
continue to the ideal functionality.

We prove indistinguishability of the ideal and F−-hybrid
distribution ensembles using a sequence of experiments.

Ideal experiment. This is defined by the interaction of S
with the ideal functionality computing f with one-bit leak-
age. A outputs an arbitrary function of its view; the honest
party outputs what it received from the experiment. Let
IDEALS(1κ, x, `, f) be the joint random variable containing
the output of the adversary S and the output y2 of the honest
party, which is either y or ⊥. Concretely,

IDEALS(1κ, x, `, f) = ((ŝh1, ŝh
′
1`, y, b

∗, continue/abort), y2).

Hybrid experiment 1. The first hybrid experiment proceeds
in the same way as the ideal world except, instead of S
simulating the dealer, the true dealer D runs (sh1, sh2) ←
Share(1κ, x) and gives shi to Pi.

For the adversary A, let H1A(1κ, x, f) be the joint
random variable containing the view of the adversary and
the output of the honest party in this hybrid experiment.
Concretely,

H1A(1κ, x, `, f) = ((sh1, sh
′
1`, y, b

∗, continue/abort), y2).

Hybrid experiment 2 (F−-hybrid experiment). Next, we
define a second hybrid experiment, substituting ideal func-
tionality F− computing fΣ with one-bit leakage for the ideal
functionality computing f(x) with one-bit leakage. This
experiment proceeds in the same way as hybrid experiment
1, except that, upon receipt of sh′i and ` from Pi, the
experiment fowards this value to F− (the honest party sends
its true share sh3−i) and then returns the output of F−,
namely y′ := fΣ(sh′1, sh

′
2) and b := `(sh3−i), to A.

For the adversary A, let H2F
−

A (1κ, x, f) be the joint
random variable containing the view of the adversary and
the output of the honest party in this hybrid experiment.
Concretely,

H2F
−

A (1κ, x, `, f) = ((sh1, sh
′
1`, y

′, b, continue/abort), y2).

First, we claim the distribution ensembles
{H1A(1κ, x, f)}κ,x,f and {IDEALS(1κ, x, f)}κ,x,f are
indistinguishable.

Suppose, towards a contradiction, thatA is able to distin-
guish the ensembles with nonnegligible probability. Then we
can construct an adversary A′ with nonnegligible advantage
in the privacy game for Σ: A′ chooses two random values
x0, x1 and a bit i, which it sends to its game to get shb,i of
xb for unknown b. It now communicates with A, acting as S
in a run of the ideal experiment with x̂ := x0 and x := x1.

At the end of the run, A guesses whether it participated
in an execution of the ideal experiment or hybrid experiment
1. In the former case, A′ returns b′ := 0; in the latter, it re-
turns b′ := 1. With nonnegligible probability, the run was an
instance in which A was able to distinguish correctly (with-
out guessing), implying it was able to distinguish between
a share of x0 and a share of x1. Thus with nonnegligible
probability, b′ = b and A′ wins.

This contradicts our assumption that Σ is private, so the
ensembles must be indistinguishable.

Next, we show the distribution ensembles {H1A(1κ, x,

f)}κ,x,f and {H2F
−

A (1κ, x, f)}κ,x,f are indistinguishable.
Note first that, by definition, b∗ = `(ŝh

′
2) and b = `(sh2),

with Rec(ŝh1, ŝh
′
2) = Rec(sh1, sh2) = x. Since ŝh

′
2 and

sh2 are both distributed uniformly at random, b∗ and b are
identically distributed.

The only other potentially different component in the
two ensembles is y (resp. y′). Suppose towards a contradic-
tion, that A is able to distinguish the ensembles with non-
negligible probability. Then we can construct an adversary
A′ with nonnegligible advantage in the authenticity game
for Σ. Given shi, A′ chooses a random x and receives a
share shi of x from the game. It now communicates with
A in a run of hybrid experiment 2, acting as the simulator
S2. When A sends sh′i, A′ forwards this value to its game.

At the end of the run, A guesses which experiment
was run. With nonnegligible probability, the run was an in-
stance in which A was able to distinguish correctly (without
guessing), implying fΣ(sh′i, sh3−i) 6=⊥ and sh′i 6= shi. So
A′ wins with nonnegligible probability. (The other case, in

which fΣ(sh′i, sh3−i) =⊥ and sh′i = shi, would violate the
correctness requirement of Σ.)

This contradicts our assumption that Σ is authenticated,
so the ensembles must be indistinguishable.

To conclude, notice that by transitivity, we have compu-
tational indistinguishability of {IDEALS(1κ, x, f)}κ,x,f and
{H2F

−

A (1κ, x, f)}κ,x,f , so Σ is secure for computing on
authenticated data in the F−-hybrid world.

Notably, if Σ is secure for computing on authenticated
data, it also guarantees the integrity of the output y, since
it guarantees the integrity of A’s input.

E.5. CoVault security analysis

Finally, we can prove the end-to-end security of the
full CoVault protocol. Let ΣM be a secure secret shar-
ing scheme, and for sets V1, V2, define Rec(V1, V2) as
reconstructing each pair of corresponding shares in V1, V2.
That is, Rec(V1, V2) =

{
Rec(sh1

k, sh
2
k)
}|V1|
k=1

(return ⊥ if
|V1| 6= |V2|). Define the ideal functionality F−asym as a
modified version of the ideal functionality of the same name
defined in §E.3: F−asym first takes as input two functions
f1, f2. If f1 6= f2, the functionality aborts; otherwise, it
continues as before, computing f = f1 = f2. Additionally,
when the leakage bit is 1 (without loss of generality), F−asym
sends a distinguished message cheat to the honest party.
This captures the probability that a malicious adversary at-
tempting to learn some leakage bit is caught with probability
1/2 (derived from the DualEx protocol).

E.5.1. Ideal functionality. Let Q (a querier) and DP1,DP2

(two DPs) be potentially malicious parties; an adversary can
corrupt at most the set {Q,DPi} of parties for some i ∈
{1, 2}.

The parties interact with the ideal functionality F−CV as
follows. Q sends two (potentially different) functions f1, f2

to DP1,DP2, respectively. The (trusted) dealer D send sets
V1, V2 ∈ Xm, respectively, to DP1,DP2. DP1 and DP2 send
f ′1, f

′
2, V

′
1 , V

′
2 to the ideal functionality F−CV . At this point

a corrupted DPi can additionally send a leakage function `
to F−CV .

Upon receiving f ′1, f
′
2, V

′
1 , V

′
2 , `, F−CV computes an out-

put y and evaluates ` on the honest party’s input to get a
leakage bit b. If f ′1 6= f ′2, y =⊥; otherwise, it sets f = f ′1
(without loss of generality) and computes y = fΣM

(V ′1 , V
′
2).

The ideal functionality sends y to Q and b to the malicious
DP. If b = 1, it also alerts the honest DP by sending it a
distinguished message cheat, in which case that DP aborts.

E.5.2. Full protocol. Let ΣM = (ShareM ,RecM) be a
secure secret-sharing scheme. Define the following protocol
Π in the F−asym-hybrid model:

1) Q sends two (potentially different) functions f1, f2 to
DP1,DP2, respectively, who send functions f ′1, f

′
2 to

the ideal functionality F−asym; an honest Q sends f1 =
f2, and and honest DP sends the function it received

from Q. (Notice that leaking the equality of f ′1, f
′
2 does

not reveal additional information to the adversary, since
it already knows the two functions.)

2) D sends V1, V2 to DP1,DP2, respectively, who send
inputs V ′1 , V

′
2 to F−asym; an honest DP sends the set it

received from the dealer. A malicious DP can addition-
ally send a one-bit leakage function `.

3) F−asym computes authenticated shares y1, y2 ∈ Y , where
y1, y2 := ShareM (fΣM

(V ′1 , V
′
2))) and sends yi to DPi.

It also computes ` evaluated on the honest party’s input
and sends the leakage bit to the malicious DP.

4) If the leakage bit is 1, F−asym alerts the honest DP by
sending it a distinguished message cheat. Importantly,
once cheating is detected, the honest DP completes
the current execution but never runs any subsequent
iterations of the protocol.

5) Each party DPi sends a value y′i to Q; the honest
party sends the value yi it received from the ideal
functionality.

6) Q recovers y′ = RecM (y′1, y
′
2).

E.5.3. Proof of security.

Theorem 4. Π securely computes F−CV in the F−asym-hybrid
model against malicious adversaries capable of corrupting
at most the set {Q,DPi} for i ∈ {1, 2}.

Proof. Let A be a PPT adversary corrupting parties Q,DPi.
To prove the security of Π against malicious adversaries in
the F−asym-hybrid world, we give an adversary S in the ideal
world that interacts with Q,DPi to simulate an execution of
Π in the hybrid world.

Simulator S: S has access to the ideal functionality F−CV .
S works as follows:
• Receive f3−i from Q and f ′i , V

′
i , ` from DPi. Forward

f3−i to DP3−i.
• Send f ′i , V

′
i , ` to F−CV ; the honest party DP3−i sends

f3−i, V3−i.
• Receive y := fΣM

(V ′i , V3−i)) and some one-bit leak-
age b := `(V3−i) from F−CV .

• Let y∗i , y
∗
3−i ← ShareM (y)). Send y∗i , b to DPi and

y∗3−i to Q.

We now prove indistinguishability of the ideal and F−asym-
hybrid distribution ensembles.
Ideal experiment. This is defined by the interaction of S
with the ideal functionality F−CV . A outputs an arbitrary
function of its view; the honest party outputs nothing. Let
IDEALS(V, `, f) be the joint random variable containing the
transcript of S in the ideal world. Concretely,

IDEALS(V, `, f) = (f3−i, f
′
i , V

′
i , `, y

∗
i , b, y

∗
3−i).

Hybrid experiment. Let HA(V, `, f) be the joint random
variable containing the view of the adversary A in the F−asym-
hybrid world. Concretely,

HA(V, `, f) = (f3−i, f
′
i , V

′
i , `, yi, b, y3−i).

S perfectly simulates the view of the malicious parties in
the hybrid world since the joint distributions of (y∗i , y

∗
3−i)

and (yi, y3−i) are both distributed uniformly at random
conditioned on RecM (y∗i , y

∗
3−i) = RecM (yi, y3−i) =

fΣM
(V1, V3).

Let pi be the probability the leakage bit is 0 in iteration
i (that is, the attacker is not caught). Without loss of gener-
ality, we can assume pi ≥ 1/2 (if not, the attacker can flip
the leakage and learn the same information while lowering
its probability of being caught). Then the probability that
the attacker is never caught is p∗ =

∏
i pi. Define the

information learned in iteration i as Ii = max{− log pi} =
− log max{pi}. Let I∗ =

∑
i Ii. Then I∗ ≥ − log p∗. So

I∗ ≥ κ implies p∗ ≤ 2−κ, i.e., the probability that the
attacker learns at least κ bits is at most 2−κ.

Security follows by a hybrid argument and Theorems 1,
2, and 3.

	1 Introduction
	2 CoVault Overview
	2.1 System requirements
	2.2 Building blocks
	2.3 Approach and roadmap

	3 CoVault’s FE-like construction
	3.1 API
	3.2 Desired properties and threat model
	3.3 Strawman 1 (S1): n-party FE construction
	3.4 Strawman 2 (S2): S1 + TEE encapsulation
	3.5 Strawman 3 (S3): S2 + MACs

	4 Details of the FE construction
	4.1 TEE attestation
	4.2 Secret-sharing and encryption
	4.3 Garbled circuits in the malicious model
	4.4 black Secret-sharing with MACs

	5 CoVault's design
	5.1 Security Analysis and Proofs

	6 Data processing
	6.1 Database
	6.2 Query processing
	6.3 Optimizations

	7 Evaluation
	7.1 Example scenario: Epidemic analytics
	7.2 Microbenchmarks
	7.3 Query latency

	8 Related work
	9 Conclusion
	References
	Appendix A: Community approval process
	Appendix B: Ingress processing of data with public attributes
	Appendix C: Further Details and Evaluation of Our Example Epidemics Analytics Scenario
	C.1 Database
	C.2 Ingress Processing
	C.3 Evaluation of Ingress Processing
	C.4 Evaluation of an additional data-dependent query

	Appendix D: Estimation of end-to-end query latency
	Appendix E: Proofs of Security
	E.1 Notation and preliminaries
	E.1.1 Message authentication codes
	E.1.2 Secure secret-sharing

	E.2 Secure secret sharing construction
	E.3 DualEx functionality with asymmetric outputs
	E.4 Secure computation on shared data
	E.5 CoVault security analysis
	E.5.1 Ideal functionality
	E.5.2 Full protocol
	E.5.3 Proof of security

