
ar
X

iv
:2

20
8.

13
56

0v
1

 [
cs

.P
L

]
 2

9
A

ug
 2

02
2

From Fine- to Coarse-Grained

Dynamic Information Flow Control

and Back

A tutorial on dynamic Information Flow

Suggested Citation: Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and
Deian Stefan (2018), “From Fine- to Coarse-Grained Dynamic Information Flow Control
and Back”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Marco Vassena
CISPA Helmholtz Center for Information Security

marco.vassena@cispa.saarland

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Deepak Garg

Max Planck Institute for Software Systems

dg@mpi-sws.org

Vineet Rajani

Max Planck Institute for Security and Privacy
vineet.rajani@csp.mpg.de

Deian Stefan

University of California, San Diego
deian@cs.ucsd.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

http://arxiv.org/abs/2208.13560v1

Contents

1 Introduction 4

2 Fine-Grained IFC Calculus 9

2.1 Dynamics . 11

2.2 Security . 17

2.3 Flow-Sensitive References 24

3 Coarse-Grained IFC Calculus 43

3.1 Dynamics . 45

3.2 Security . 51

3.3 Flow-Sensitive References 57

4 Verified Artifacts 69

4.1 Artifact Analysis . 70

5 Fine- to Coarse-Grained Program Translation 74

5.1 Types and Values . 74

5.2 Expressions . 75

5.3 References . 80

5.4 Correctness . 81

5.5 Recovery of Non-Interference 82

6 Coarse- to Fine-Grained Program Translation 86

6.1 Types and Values . 87

6.2 Expressions and Thunks 89

6.3 References . 91

6.4 Cross-Language Equivalence Relation 92

6.5 Correctness . 96

6.6 Recovery of Non-Interference 98

7 Related work 102

7.1 Relative Expressiveness of IFC Systems 102

7.2 Coarse-Grained Dynamic IFC 104

7.3 Fine-Grained Dynamic IFC 105

7.4 Label Introspection and Flow-Sensitive References 106

7.5 Proof Techniques for Termination-Insensitive Non-Interference107

8 Conclusion 109

References 110

1

ABSTRACT

This tutorial provides a complete and homogeneous account

of the latest advances in fine- and coarse-grained dynamic

information-flow control (IFC) security. Since the 70’s, the

programming language and the operating system commu-

nities proposed different IFC approaches. IFC operating

systems track information flows in a coarse-grained fash-

ion, at the granularity of a process. In contrast, traditional

language-based approaches to IFC are fine-grained: they

track information flows at the granularity of program vari-

ables. For decades, researchers believed coarse-grained IFC

to be strictly less permissive than fine-grained IFC—coarse

grained IFC systems seem inherently less precise because

they track less information—–and so granularity appeared

to be a fundamental feature of IFC systems.

We show that the granularity of the tracking system does

not fundamentally restrict how precise or permissive dy-

namic IFC systems can be. To this end, we mechanize two

mostly standard languages, one with a fine-grained dynamic

IFC system and the other with a coarse-grained dynamic

IFC system, and prove a semantics-preserving translation

from each language to the other. In addition, we derive the

standard security property of non-interference of each lan-

guage from that of the other, via our verified translation.

These translations stand to have important implications

on the usability of IFC approaches. The coarse- to fine-

grained direction can be used to remove the label anno-

tation burden that fine-grained systems impose on devel-

opers, while the fine- to coarse-grained translation shows

that coarse-grained systems—which are easier to design and

implement—can track information as precisely as fine-grained

systems and provides an algorithm for automatically retrofitting

legacy applications to run on existing coarse-grained sys-

2

tems.

From Fine- to Coarse-Grained

Dynamic Information Flow Control

and Back

A tutorial on dynamic Information Flow

Suggested Citation: Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani and
Deian Stefan (2018), “From Fine- to Coarse-Grained Dynamic Information Flow Control
and Back”, : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

Marco Vassena
CISPA Helmholtz Center for Information Security

marco.vassena@cispa.saarland

Alejandro Russo
Chalmers University of Technology

russo@chalmers.se

Deepak Garg

Max Planck Institute for Software Systems

dg@mpi-sws.org

Vineet Rajani

Max Planck Institute for Security and Privacy
vineet.rajani@csp.mpg.de

Deian Stefan

University of California, San Diego
deian@cs.ucsd.edu

This article may be used only for the purpose of research, teaching,
and/or private study. Commercial use or systematic downloading
(by robots or other automatic processes) is prohibited without ex-
plicit Publisher approval. Boston — Delft

1

Introduction

Dynamic information-flow control (IFC) is a principled approach to

protecting the confidentiality and integrity of data in software systems.

Conceptually, dynamic IFC systems are very simple—they associate

security levels or labels with every bit of data in the system to subse-

quently track and restrict the flow of labeled data throughout the sys-

tem, e.g., to enforce a security property such as non-interference (Goguen

and Meseguer, 1982). In practice, dynamic IFC implementations are

considerably more complex—the granularity of the tracking system

alone has important implications for the usage of IFC technology. In-

deed, until somewhat recently (Roy et al., 2009; Stefan et al., 2017),

granularity was the main distinguishing factor between dynamic IFC

operating systems and programming languages. Most IFC operating

systems (e.g., Efstathopoulos et al., 2005; Zeldovich et al., 2006; Krohn

et al., 2007) are coarse-grained, i.e., they track and enforce information

flow at the granularity of a process or thread. Conversely, most pro-

gramming languages with dynamic IFC (e.g., Austin and Flanagan,

2009; Zdancewic, 2002; Hedin et al., 2014; Hritcu et al., 2013; Yang et

al., 2012) track the flow of information in a more fine-grained fashion,

e.g., at the granularity of program variables and references.

4

5

Dynamic coarse-grained IFC systems in the style of LIO (Stefan

et al., 2017; Stefan et al., 2011; Stefan et al., 2012; Heule et al., 2015;

Buiras et al., 2015; Vassena et al., 2017) have several advantages over

dynamic fine-grained IFC systems. Such coarse-grained systems are

often easier to design and implement—they inherently track less infor-

mation. For example, LIO protects against control-flow-based implicit

flows by tracking information at a coarse-grained level—to branch on

secrets, LIO programs must first taint the context where secrets are go-

ing to be observed. Finally, coarse-grained systems often require consid-

erably fewer programmer annotations—unlike fine-grained ones. More

specifically, developers often only need a single label-annotation to pro-

tect everything in the scope of a thread or process responsible to handle

sensitive data.

Unfortunately, these advantages of coarse-grained systems give up

on the many benefits of fine-grained ones. For instance, one main draw-

back of coarse-grained systems is that it requires developers to com-

partmentalize their application in order to avoid both false alarms and

the label creep problem, i.e., wherein the program gets too “tainted”

to do anything useful. To this end, coarse-grained systems often create

special abstractions (e.g., event processes (Efstathopoulos et al., 2005),

gates (Zeldovich et al., 2006), and security regions (Roy et al., 2009))

that compensate for the conservative approximations of the coarse-

grained tracking approach. Furthermore, fine-grained systems do not

impose the burden of focusing on avoiding the label creep problem on

developers. By tracking information at fine granularity, such systems

are seemingly more flexible and do not suffer from false alarms and label

creep issues (Austin and Flanagan, 2009) as coarse-grained systems do.

Indeed, fine-grained systems such as JSFlow (Hedin et al., 2014) can

often be used to secure existing, legacy applications; they only require

developers to properly annotate the application.

This paper removes the division between fine- and coarse-grained

dynamic IFC systems and the belief that they are fundamentally dif-

ferent. In particular, we show that dynamic fine-grained and coarse-

grained IFC are equally expressive. Our work is inspired by the recent

work of Rajani et al. (2017) and Rajani and Garg (2018), who prove

similar results for static fine-grained and coarse-grained IFC systems.

6 Introduction

Specifically, they establish a semantics- and type-preserving translation

from a coarse-grained IFC type system to a fine-grained one and vice-

versa. We complete the picture by showing a similar result for dynamic

IFC systems that additionally allow introspection on labels at run-time.

While label introspection is meaningless in a static IFC system, in a

dynamic IFC system this feature is key to both writing practical appli-

cations and mitigating the label creep problem (Stefan et al., 2017).

Using the Agda proof assistant (Norell, 2009; Bove et al., 2009), we

formalize a traditional fine-grained system (in the style of Austin and

Flanagan, 2009) extended with label introspection primitives, as well as

a coarse-grained system (in the style of Stefan et al., 2017). We then de-

fine and formalize modular semantics-preserving translations between

them. Our translations are macro-expressible in the sense of Felleisen

(1991), i.e., they can be expressed as a pure source program rewriting.

We show that a translation from fine- to coarse-grained is possible

when the coarse-grained system is equipped with a primitive that limits

the scope of tainting (e.g., when reading sensitive data). In practice,

this is not an imposing requirement since most coarse-grained systems

rely on such primitives for compartmentalization. For example, Stefan

et al. (2017) and Stefan et al. (2012), provide toLabeled(·) blocks and

threads for precisely this purpose. Dually, we show that the translation

from coarse- to fine-grained is possible when the fine-grained system has

a primitive taint(·) that relaxes precision to keep the program counter

label synchronized when translating a program to the coarse-grained

language. While this primitive is largely necessary for us to establish

the coarse- to fine-grained translation, extending existing fine-grained

systems with it is both secure and trivial.

The implications of our results are multi-fold. The fine- to coarse-

grained translation formally confirms an old OS-community hypothesis

that it is possible to restructure a system into smaller compartments

to address the label creep problem—indeed our translation is a (naive)

algorithm for doing so. This translation also allows running legacy fine-

grained IFC compatible applications atop coarse-grained systems like

LIO. Dually, the coarse- to fine-grained translation allows developers

building new applications in a fine-grained system to avoid the annota-

tion burden of the fine-grained system by writing some of the code in

7

the coarse-grained system and compiling it automatically to the fine-

grained system with our translation. The technical contributions of this

paper are:

• A pair of semantics-preserving translations between traditional

dynamic fine-grained and coarse-grained IFC systems equipped

with label introspection and flow-insensitive references (Theo-

rems 5 and 7).

• Two different proofs of termination-insensitive non-interference

(TINI) for each calculus: one is derived directly in the usual way

(Theorems 1 and 3), while the other is recovered via our verified

translation (Theorems 6 and 8).

• Mechanized Agda proofs of our results (~4,000 LOC).

This monograph is based on our conference paper (Vassena et al.,

2019) and extended with:

• A tutorial-style introduction to fine- and coarse-grained dynamic

IFC, which (i) illustrates their specific features and (apparent)

differences through examples, and (ii) supplements our proof ar-

tifacts with general explanations of the proof techniques used.

• Flow-sensitive references, a key feature for boosting the permis-

siveness of dynamic IFC systems (Austin and Flanagan, 2009).

We extend both fine- and coarse-grained language with flow-sensitive

references (Sections 2.3 and 3.3), adapt their security proofs (The-

orems 2 and 4), and the verified translations to each other.

• A discussion and analysis of our extended proof artifact (~6,900

LOC)1. Our analysis highlights that the security proofs for fine-

grained languages are between 43% and 74% longer than for

coarse-grained languages. These empirical results confirm the gen-

eral sense that coarse-grained IFC languages are easier to prove

secure than fine-grained languages.

1The extended artifact is available at https://hub.docker.com/r/marcovassena/granularity-ftpl
and supersedes the artifact archived with the conference paper.

https://hub.docker.com/r/marcovassena/granularity-ftpl
https://hub.docker.com/r/marcovassena/granularity-ftpl

8 Introduction

This tutorial is organized as follows. Our dynamic fine- and coarse-

grained IFC calculi are introduced in Sections 2 and 3, and then ex-

tended with flow-sensitive references in Sections 2.3 and 3.3, respec-

tively. We prove the soundness guarantees (i.e., termination-insensitive

non-interference) of the original languages (Sections 2.2 and 3.2), and of

the extended languages (Sections 2.3.3 and 3.3.3). In Section 4, we dis-

cuss our mechanized proof artifacts and compare the security proofs of

the two calculi, before and after the extension. In Section 5, we present

the fine- to coarse-grained translation and a proof of non-interference

for the fine-grained calculus recovered from non-interference of the

other calculus through our verified translation. Section 6 presents sim-

ilar results in the other direction. Related work is described in Section

7 and Section 8 concludes the paper.

2

Fine-Grained IFC Calculus

In order to compare in a rigorous way fine- and coarse-grained dy-

namic IFC techniques, we formally define the operational semantics of

two λ-calculi that respectively perform fine- and coarse-grained IFC

dynamically. Figure 2.1 shows the syntax of the dynamic fine-grained

IFC calculus λdFG, which is inspired by Austin and Flanagan (2009)

and extended with a standard (security unaware) type system Γ ⊢ e : τ

(omitted), sum and product data types and security labels ℓ ∈ L

that form a lattice (L ,⊑).1 In order to capture flows of information

precisely at run-time, the λdFG-calculus features intrinsically labeled

values, written rℓ, meaning that raw value r has security level ℓ. Com-

pound values, e.g., pairs and sums, carry labels to tag the security level

of each component, for example a pair containing a secret and a pub-

lic boolean would be written (trueH , falseL).2 Functional values are

closures (x.e, θ), where x is the variable that binds the argument in

the body of the function e and all other free variables are mapped to

some labeled value in the environment θ. The λdFG-calculus features

1The lattice is arbitrary and fixed. In examples we will often use the two point
lattice {L, H }, which only disallows secret to public flow of information, i.e., H 6⊑ L.

2We define the boolean type bool = unit + unit, boolean values as raw values,
i.e., true = inl(()L), false = inr(()L) and if e then e1 else e2 = case e .e1 .e2.

9

10 Fine-Grained IFC Calculus

Types: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L | Ref τ

Labels: ℓ, pc ∈ L

Addresses: n ∈ N

Environments: θ ∈ Var ⇀ Value

Raw Values: r ::= () | (x.e, θ) | inl(v) | inr(v) | (v1, v2) | ℓ | nℓ

Values: v ::= rℓ

Expression: e ::= x |λx.e | e1 e2 | () | ℓ | (e1, e2) | fst(e) | snd(e)

| inl(e) | inr(e) | case(e, x.e1, x.e2)

| getLabel | labelOf(e) | e1 ⊑
? e2 | taint(e1, e2)

| new(e) | ! e | e1 := e2 | labelOfRef(e)

Type System: Γ ⊢ e : τ

Configurations: c ::= 〈Σ, e〉

Stores: Σ ∈ (ℓ : Label)→ Memory ℓ

Memory ℓ: M ::= [] | r : M

Figure 2.1: Syntax of λdFG.

a labeled partitioned store, i.e., Σ ∈ (ℓ : L) → Memory ℓ, where

Memory ℓ is the memory that contains values at security level ℓ. Each

reference carries an additional label annotation that records the label

of the memory it refers to—reference nℓ points to the n-th cell of the

ℓ-labeled memory, i.e., Σ(ℓ). Notice that this label has nothing to do

with the intrinsic label that decorates the reference itself. For exam-

ple, a reference (nH)L represents a secret reference in a public context,

whereas (nL)H represents a public reference in a secret context. Notice

that there is no order invariant between those labels—in the latter case,

the IFC runtime monitor prevents writing data to the reference to avoid

implicit flows. A program can create, read and write a labeled reference

via constructs new(e), !e and e1 := e2 and inspect its subscripted label

with the primitive labelOfRef(·).

2.1. Dynamics 11

2.1 Dynamics

The operational semantics of λdFG includes a security monitor that

propagates the label annotations of input values during program exe-

cution and assigns security labels to the result accordingly. The monitor

prevents information leakage by stopping the execution of potentially

leaky programs, which is reflected in the semantics by not providing

reduction rules for the cases that may cause insecure information flow.3

The relation 〈Σ, e〉 ⇓θ
pc 〈Σ

′, v〉 denotes the evaluation of program e with

initial store Σ that terminates with labeled value v and final store Σ′.

The environment θ stores the input values of the program and is ex-

tended with intermediate results during function application and case

analysis. The subscript pc is the program counter label (Sabelfeld and

Myers, 2006)— it is a label that represents the security level of the

context in which the expression is evaluated. The semantics employs

the program counter label to (i) propagate and assign labels to values

computed by a program and (ii) prevent implicit flow leaks that exploit

the control flow and the store (explained below).

In particular, when a program produces a value, the monitor tags

the raw value with the program counter label in order to record the secu-

rity level of the context in which it was computed. For this reason all the

introduction rules for ground and compound types ([Unit,Label,Fun,Inl,Inr,Pair])

assign security level pc to the result. Other than that, these rules are

fairly standard—we simply note that rule [Fun] creates a closure by

capturing the current environment θ.

When the control flow of a program depends on some intermediate

value, the program counter label is joined with the value’s label so that

the label of the final result will be tainted with the result of the interme-

diate value. For instance, consider case analysis, i.e., case e x.e1 x.e2.

Rules [Case1] and [Case2] evaluate the scrutinee e to a value (either

inl(v)ℓ or inr(v)ℓ), add the value to the environment, i.e., θ[x 7→ v],

and then evaluate the appropriate branch with a program counter label

tainted with v’s security label, i.e., pc ⊔ ℓ. As a result, the monitor

tracks data dependencies across control flow constructs through the

3In this work, we ignore leaks that exploit program termination and prove ter-

mination insensitive non-interference for λdFG (Theorem 1).

12 Fine-Grained IFC Calculus

(Var)

〈Σ, x〉 ⇓θ
pc 〈Σ, θ(x) ⊔ pc〉

(Unit)

〈Σ, ()〉 ⇓θ
pc 〈Σ, ()pc〉

(Label)

〈Σ, ℓ〉 ⇓θ
pc 〈Σ, ℓpc〉

(Fun)

〈Σ, λx.e〉 ⇓θ
pc 〈Σ, (x.e, θ)pc〉

(App)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, (x.e, θ′)
ℓ
〉

〈Σ′, e2〉 ⇓
θ
pc 〈Σ

′′, v2〉 〈Σ′′, e〉 ⇓
θ′[x 7→v2]
pc ⊔ ℓ 〈Σ′′′, v〉

〈Σ, e1 e2〉 ⇓
θ
pc 〈Σ

′′′, v〉

(Inl)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, v〉

〈Σ, inl(e)〉 ⇓θ
pc 〈Σ

′, inl(v)pc〉

(Inr)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, v〉

〈Σ, inr(e)〉 ⇓θ
pc 〈Σ

′, inr(v)pc〉

(Case1)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, inl(v1)ℓ〉 〈Σ′, e1〉 ⇓
θ[x 7→v1]
pc ⊔ ℓ 〈Σ′′, v〉

〈Σ, case(e, x.e1, x.e2)〉 ⇓θ
pc 〈Σ

′′, v〉

(Case2)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, inr(v2)ℓ〉 〈Σ′, e2〉 ⇓
θ[x 7→v2]
pc ⊔ ℓ 〈Σ′′, v〉

〈Σ, case(e, x.e1, x.e2)〉 ⇓θ
pc 〈Σ

′′, v〉

(Pair)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, v1〉 〈Σ′, e2〉 ⇓
θ
pc 〈Σ

′′, v2〉

〈Σ, (e1, e2)〉 ⇓θ
pc 〈Σ

′′, (v1, v2)pc〉

(Fst)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, (v1, v2)ℓ〉

〈Σ, fst(e)〉 ⇓θ
pc 〈Σ

′, v1 ⊔ ℓ〉

(Snd)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, (v1, v2)ℓ〉

〈Σ, snd(e)〉 ⇓θ
pc 〈Σ

′, v2 ⊔ ℓ〉

Figure 2.2: Big-step semantics for λdFG (part I).

2.1. Dynamics 13

(LabelOf)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, rℓ〉

〈Σ, labelOf(e)〉 ⇓θ
pc 〈Σ

′, ℓℓ〉

(GetLabel)

〈Σ, getLabel〉 ⇓θ
pc 〈Σ

′′, pcpc〉

(⊑?-T)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, ℓ1
ℓ′

1〉 〈Σ′, e2〉 ⇓
θ
pc 〈Σ

′′, ℓ2
ℓ′

2〉 ℓ1 ⊑ ℓ2

〈Σ, e1 ⊑
? e2〉 ⇓

θ
pc 〈Σ

′′, inl(()pc)ℓ′
1

⊔ ℓ′
2〉

(⊑?-F)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, ℓ1
ℓ′

1〉 〈Σ′, e2〉 ⇓
θ
pc 〈Σ

′′, ℓ2
ℓ′

2〉 ℓ1 6⊑ ℓ2

〈Σ, e1 ⊑
? e2〉 ⇓

θ
pc 〈Σ

′′, inr(()pc)ℓ′
1

⊔ ℓ′
2〉

(Taint)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, ℓℓ′
〉 ℓ′ ⊑ ℓ 〈Σ′, e2〉 ⇓

θ
ℓ 〈Σ

′′, v〉

〈Σ, taint(e1, e2)〉 ⇓θ
pc 〈Σ

′′, v〉

Figure 2.3: Big-step semantics for λdFG (part II).

label of the result. Function application follows the same principle. In

rule [App], since the first premise evaluates the function to some clo-

sure (x.e, θ′) at security level ℓ, the third premise evaluates the body

with program counter label raised to pc ⊔ ℓ. The evaluation strategy is

call-by-value: it evaluates the argument before the body in the second

premise and binds the corresponding variable to its value in the envi-

ronment of the closure, i.e., θ′[x 7→ v2]. Notice that the security level of

the argument is irrelevant at this stage and that this is beneficial to not

over-tainting the result: if the function never uses its argument then the

label of the result depends exclusively on the program counter label,

e.g., (λx.()) y ⇓
[y 7→ true

H]
L ()L. The elimination rules for variables

and pairs taint the label of the corresponding value with the program

counter label for security reasons. In rules [Var,Fst,Snd] the notation,

v ⊔ ℓ′ upgrades the label of v with ℓ′—it is a shorthand for rℓ ⊔ ℓ′
with

v = rℓ. Intuitively, public values must be considered secret when the

program counter is secret, for example x ⇓
[x 7→ ()L]
H ()H .

14 Fine-Grained IFC Calculus

2.1.1 Label Introspection

The λdFG-calculus features primitives for label introspection, namely

getLabel, labelOf(·) and ⊑?—see Figure 2.3. These operations al-

low to respectively retrieve the current program counter label, obtain

the label annotations of values, and compare two labels (inspecting la-

bels at run-time is useful for controlling and mitigating the label creep

problem).

Enabling label introspection raises the question of what label should

be assigned to the label itself (in λdFG every value, including all label

values, must be annotated with a label). As a matter of fact, labels can

be used to encode secret information and thus careless label introspec-

tion may open the doors to information leakage (Stefan et al., 2017).

Notice that in λdFG, the label annotation on the result is computed

by the semantics together with the result and thus it is as sensitive

as the result itself (the label annotation on a value depends on the

sensitivity of all values affecting the control-flow of the program up

to the point where the result is computed). This motivates the design

choice to protect each projected label with the label itself, i.e., ℓℓ and

pcpc in rules [GetLabel] and [LabelOf] in Figure 2.3. We remark

that this choice is consistent with previous work on coarse-grained IFC

languages (Buiras et al., 2014; Stefan et al., 2017), but novel in the

context of fine grained IFC.

Finally, primitive taint(e1, e2) temporarily raises the program counter

label to the label given by the first argument in order to evaluate the sec-

ond argument. The fine-to-coarse translation in Section 5 uses taint(·)

to loosen the precision of λdFG in a controlled way and match the coarse

approximation of our coarse-grained IFC calculus (λdCG) by upgrading

the labels of intermediate values systematically. In rule [Taint], the

constraint ℓ′ ⊑ ℓ ensures that the label of the nested context ℓ is at

least as sensitive as the program counter label pc. In particular, this

constraint ensures that the operational semantics have Property 1 (“the

label of the result of any λdFG program is always at least as sensitive as

the program counter label”) even with rule [Taint].

Property 1. If 〈Σ, e〉 ⇓θ
pc 〈Σ

′, rℓ〉 then pc ⊑ ℓ.

2.1. Dynamics 15

(New)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, rℓ〉 n = |Σ′(ℓ)|

〈Σ, new(e)〉 ⇓θ
pc 〈Σ

′[ℓ 7→ Σ′(ℓ)[n 7→ r]], (nℓ)
pc〉

(Read)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, nℓ
ℓ′
〉 Σ′(ℓ)[n] = r

〈Σ, !e〉 ⇓θ
pc 〈Σ

′, rℓ ⊔ ℓ′
〉

(Write)

〈Σ, e1〉 ⇓
θ
pc 〈Σ

′, nℓ
ℓ1〉 ℓ1 ⊑ ℓ 〈Σ′, e2〉 ⇓

θ
pc 〈Σ

′′, rℓ2〉 ℓ2 ⊑ ℓ

〈Σ, e1 := e2〉 ⇓
θ
pc 〈Σ

′′[ℓ 7→ Σ′′(ℓ)[n 7→ r]], pc〉

(LabelOfRef)

〈Σ, e〉 ⇓θ
pc 〈Σ

′, nℓ
ℓ′
〉

〈Σ, labelOfRef(e)〉 ⇓θ
pc 〈Σ

′, ℓℓ ⊔ ℓ′
〉

Figure 2.4: Big-step semantics for λdFG (references).

Proof. By induction on the given evaluation derivation.

2.1.2 References

We now extend the semantics presented earlier with primitives that

inspect, access and modify the labeled store via labeled references. See

Figure 2.4. Rule [New] creates a reference nℓ, labeled with the security

level of the initial content, i.e., label ℓ, in the ℓ-labeled memory Σ(ℓ) and

updates the memory store accordingly.4 Since the security level of the

reference is as sensitive as the content, which is at least as sensitive as

the program counter label by Property 1 (pc ⊑ ℓ) this operation does

not leak information via implicit flows. When reading the content of

reference nℓ at security level ℓ′, rule [Read] retrieves the corresponding

raw value from the n-th cell of the ℓ-labeled memory, i.e., Σ′(ℓ)[n] =

r and upgrades its label to ℓ ⊔ ℓ′ since the decision to read from

4|M | denotes the length of memory M—memory indices start at 0.

16 Fine-Grained IFC Calculus

that particular reference depends on information at security level ℓ′.

When writing to a reference the monitor performs security checks to

avoid leaks via explicit or implicit flows. Rule [Write] achieves this

by evaluating the reference, i.e., (nℓ)
ℓ1 and replacing its content with

the value of the second argument, i.e., rℓ2, under the conditions that

the decision of “which” reference to update does not depend on data

more sensitive than the reference itself, i.e., ℓ1 ⊑ ℓ (not checking this

would leak via an implicit flow)5, and that the new content is no more

sensitive than the reference itself, i.e., ℓ2 ⊑ ℓ (not checking this would

leak sensitive information to a less sensitive reference via an explicit

flow). Lastly, rule [LabelOfRef] retrieves the label of the reference

and protects it with the label itself (as explained before) and taints

it with the security level of the reference, i.e., ℓℓ ⊔ ℓ′
to avoid leaks.

Intuitively, the label of the reference, i.e., ℓ, depends also on data at

security level ℓ′ as seen in the premise.

Other Extensions. We consider λdFG equipped with references as suf-

ficient foundation to study the relationship between fine-grained and

coarse-grained IFC. We remark that extending it with other side-effects

such as file operations, or other IO-operations would not change our

claims in Section 5 and 6. The main reason for this is that, typically,

handling such effects would be done at the same granularity in both

IFC enforcements. For instance, when adding file operations, both fine-

(e.g., Broberg et al., 2013) and coarse-grained (e.g., Russo et al., 2009;

Stefan et al., 2011; Efstathopoulos et al., 2005; Krohn et al., 2007) en-

forcements are likely to assign a single flow-insensitive (i.e., immutable)

label to each file in order to denote the sensitivity of its content. Then,

those features could be handled flow-insensitively in both systems (e.g.,

Pottier and Simonet, 2003; Myers et al., 2006; Stefan et al., 2011;

Vassena and Russo, 2016), in a manner similar to what we have just

shown for references in λdFG.

Importantly, fine- and coarse-grained IFC are equally expressive

also when extended with flow-sensitive (i.e., mutable) labels. Unlike

5Notice that pc ⊑ ℓ1 by Property 1, thus pc ⊑ ℓ1 ⊑ ℓ by transitivity. An
implicit flow would occur if a reference is updated in a high branch, i.e., depending
on the secret, e.g., let x = new(0) in if secret then x := 1 else ().

2.2. Security 17

(ValueL)

ℓ ⊑ L r1 ≈L r2

r1
ℓ ≈L r2

ℓ

(ValueH)

ℓ1 6⊑ L ℓ2 6⊑ L

r1
ℓ1 ≈L r2

ℓ2

(Unit)

() ≈L ()

(Label)

ℓ ≈L ℓ

(Closure)

e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(Inl)

v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)

v1 ≈L v2

inr(v1) ≈L inr(v2)

(Pair)

v1 ≈L v′
1 v2 ≈L v′

2

(v1, v2) ≈L (v′
1, v′

2)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH)

ℓ1 6⊑ L ℓ2 6⊑ L

n1ℓ1
≈L n2ℓ2

Figure 2.5: L-equivalence for λdFG values and raw values.

flow-insensitive labels, these labels can change during program exe-

cution to reflect the current sensitivity of the content of various re-

sources (e.g., references, files etc.). In order to show that fine- and

coarse-grained IFC equally support flow-sensitive features, we follow

the same approach described above. In particular, we add flow-sensitive

references (Austin and Flanagan, 2009) to λdFG (Section 2.3) and λdCG

(Section 3.3) and then complete our pair of verified semantics- and

security-preserving translations from one language to the other (Sec-

tions 5 and 6).

2.2 Security

We now prove that λdFG is secure, i.e., it satisfies termination insen-

sitive non-interference (TINI) (Goguen and Meseguer, 1982; Volpano

and Smith, 1997). Intuitively, the security condition says that no ter-

minating λdFG program leaks information, i.e., changing secret inputs

does not produce any publicly visible effect. The proof technique is

standard and based on the notion of L-equivalence, written v1 ≈L v2,

which relates values (and similarly raw values, environments, stores

and configurations) that are indistinguishable for an attacker at secu-

rity level L. For clarity we use the 2-points lattice, assume that secret

18 Fine-Grained IFC Calculus

data is labeled with H and that the attacker can only observe data at

security level L. Our mechanized proofs are parametric in the lattice

and in the security level of the attacker.

2.2.1 L-Equivalence

L-equivalence for values and raw-values is defined formally by mutual

induction in Figure 2.5. Rule [ValueL] relates observable values, i.e.,

raw values labeled below the security level of the attacker. These values

have the same observable label (ℓ ⊑ L) and related raw values, i.e.,

r1 ≈L r2. Rule [ValueH] relates non-observable values, which may

have different labels not below the attacker level, i.e., ℓ1 6⊑ L and

ℓ2 6⊑ L. In this case, the raw values can be arbitrary. Raw values are L-

equivalent when they consist of the same ground value (i.e., rules [Unit]

and [Label]), or are homomorphically related for compound values. For

example, for the sum type the relation requires that both values are

either a left or a right injection through rules [Inl] and [Inr]. Closures

are related by rule [Closure], if they contain the same function (up

to α-renaming)6 and L-equivalent environments, i.e., the environments

are L-equivalent pointwise. Formally, θ1 ≈L θ2 iff dom(θ1) ≡ dom(θ2)

and ∀x.θ1(x) ≈L θ2(x).

We define L-equivalence for stores pointwise, i.e., Σ1 ≈L Σ2 iff for all

labels ℓ ∈ L , Σ1(ℓ) ≈L Σ2(ℓ). Memory L-equivalence relates arbitrary

ℓ-labeled memories if ℓ 6⊑ L, and pointwise otherwise, i.e., M1 ≈L M2

iff M1 and M2 are memories labeled with ℓ ⊑ L, |M1| = |M2| and for all

n ∈ {0 . . |M1| − 1}, M1[n] ≈L M2[n]. Similarly, L-equivalence relates

any two secret references through rule [RefH], but requires the same

label and address for public references in rule [RefL]. We naturally lift

L-equivalence to initial configurations, i.e., c1 ≈L c2 iff c1 = 〈Σ1, e1〉,

c2 = 〈Σ2, e2〉, Σ1 ≈L Σ2 and e1 ≡α e2, and final configurations, i.e.,

c′
1 ≈L c′

2 iff c′
1 = 〈Σ′

1, v1〉, c′
2 = 〈Σ′

2, v2〉 and Σ′
1 ≈L Σ′

2 and v1 ≈L v2.

The L-equivalence relation defined above is reflexive, symmetric,

and transitive.

6Symbol ≡α denotes α-equivalence. In our mechanized proofs we use De Bruijn
indexes and syntactic equivalence.

2.2. Security 19

Σ1 Σ′
1

Σ2 Σ′
2

≈L

≈L ≈L

≈L

Figure 2.6: Square commutative diagram for stores (Lemma 2.1).

Property 2. Let x, y, z range over labeled values, raw values, environ-

ments, labeled memories, stores, and configurations:

1. Reflexivity. For all x, x ≈L x.

2. Symmetricity. For all x and y, if x ≈L y, then y ≈L x.

3. Transitivity. For all x, y, z, if x ≈L y and y ≈L z, then x ≈L z.

These properties simplify the security analysis of λdFG: they let

us reason about L-equivalent terms using commutative diagrams. For

example, consider the Square Commutative Diagram for Stores out-

lined in Figure 2.6. In the diagram, the arrows connect L-equivalent

stores (e.g., the arrow from Σ1 to Σ′
1 indicates that Σ1 ≈L Σ′

1). The

diagram provides a visual representation of Lemma 2.1: solid arrows

represent the assumptions of the lemma and the dashed arrow repre-

sents the conclusion. To prove the lemma, we have to show that the

diagram commutes, i.e., we need to construct a path from Σ′
1 to Σ′

2

using the solid arrows. Thanks to Property 2, we can derive additional

arrows to construct this path. For example, we can reverse arrows us-

ing symmetricity (e.g., Σ′
1 ≈L Σ1 from Σ1 ≈L Σ′

1) and transitivity let

us compose consecutive arrows (e.g., Σ1 ≈L Σ′
2 from Σ1 ≈L Σ2 and

Σ2 ≈L Σ′
2).

Lemma 2.1 (Square Commutative Diagram for Stores). If Σ1 ≈L Σ′
1,

Σ1 ≈L Σ2, Σ2 ≈L Σ′
2, then Σ′

1 ≈L Σ′
2.

Proof. We show that the square diagram commutes using symmetricity

20 Fine-Grained IFC Calculus

(Property 2.2) and transitivity (Property 2.3) to draw the red arrows.

Σ1 Σ′
1

Σ2 Σ′
2

≈L

≈L

≈L

2.2.2 Termination-Insensitive Non-Interference

The security monitor of λdFG enforces termination-insensitive non-interference.

Intuitively, this property guarantees that terminating programs do not

leak secret data into public values and memories of the store. More for-

mally, a program satisfies non-interference if, given indistinguishable

inputs (initial stores and environments), then it produces outputs (fi-

nal stores and values) that are also indistinguishable to the attacker.

We prove this result through two key lemmas: store confinement and L-

equivalence preservation. In the following, we give a high-level overview

of these lemmas and their proof, focusing on the general proof tech-

nique and illustrative cases. We refer to our mechanized proof scripts

for complete proofs.

Store Confinement. At a high-level, store confinement ensures that

programs cannot leak secret data implicitly through observable side-

effects in the labeled store. Intuitively, the side-effects of programs run-

ning in secret contexts must be confined to secret memories in the la-

beled store to enforce security—programs that do otherwise may leak

and are therefore conservatively aborted by the security monitor. This

lemma holds for λdFG precisely because the constraints in rules [New]

and [Write] only allow programs to write memories labeled above

the program counter label. In particular, these constraints prevent pro-

grams running in secret contexts from writing public memories, which

remain unchanged and thus indistinguishable to the attacker.

Lemma 2.2 (Store Confinement). For all configurations c = 〈Σ, e〉, c′ =

〈Σ′, v〉, program counter labels pc 6⊑ L, if c ⇓θ
pc c′, then Σ ≈L Σ′.

2.2. Security 21

Proof. The proof is by induction on the big-step reduction, using re-

flexivity (Property 2.1) in the base cases and transitivity (Property 2.3)

in the inductive cases. In the inductive cases (e.g., [Case1]), we observe

that the program counter label of the nested computations is always at

least as sensitive as the initial program counter pc, and therefore above

the attacker’s label L, i.e., if pc 6⊑ L, then pc ⊔ ℓ 6⊑ L for any label ℓ.

The interesting cases are those that change the store, i.e., cases [New]

and [Write], where we use Property 1 to show that these rules can

modify only secret memories. For example, in case [New], the program

creates a reference in a secret context (pc 6⊑ L). First, the program

computes a value labeled ℓ above the attacker’s label L, i.e., ℓ 6⊑ L by

Property 1, and then allocates it in the corresponding secret memory

also labeled ℓ. Since ℓ 6⊑ L, the original and the extended memory

are indistinguishable by the attacker and so are the initial and final

stores.

L-equivalence Preservation. Termination-insensitive non-interference

ensures that programs that receive L-equivalent inputs produce out-

puts that are also L-equivalent, i.e., terminating programs preserve

L-equivalence. Importantly, programs must preserve L-equivalence re-

gardless of the sensitivity of the context in which they are executed.

Therefore, we consider L-equivalence preservation in public and se-

cret contexts separately. Then, we combine these individual results to

prove L-equivalence preservation in arbitrary contexts, i.e., termination-

insensitive non-interference. More precisely, we prove two preservation

lemmas: the first relates executions in secret contexts (pc 6⊑ L) in-

volving arbitrary expressions, while the other relates executions of the

same expression in public contexts (pc ⊑ L).

The first lemma ensures that programs cannot leak secret data im-

plicitly through the program control-flow. For example, consider the

program if s then e1 else e2, which branches on a secret boolean

s. Depending on the value of s, this program evaluates either expres-

sion e1 or e2, which may reveal the value of the secret through secret-

dependent store updates (e.g., if s then p := true else () for some

public reference p) or results (e.g., if s then true else false). This

lemma ensures that even these programs cannot leak secrets through

22 Fine-Grained IFC Calculus

the final result or observable changes to the stores. Formally, we have

to show that programs preserve L-equivalence in secret contexts even

if they evaluate different expressions, i.e., if Σ1 ≈L Σ2, 〈Σ1, e1〉 ⇓
θ1

H c1

and 〈Σ2, e2〉 ⇓
θ2

H c2, then c1 ≈L c2.

How should we prove this lemma? At first, we might try to prove it

directly by induction on the reduction steps. However, this approach is

not practical: since these executions involve arbitrary expressions, we

would have to reason about a large number of completely unrelated re-

duction steps! Instead, we observe that these programs are executed in

secret contexts (pc = H), so they are restricted by the security monitor

to avoid leaks. From these restrictions, we establish two program invari-

ants to show that the final stores and values are L-equivalent: in secret

contexts, programs can (i) modify only secret memories (Store Confine-

ment), and (ii) produce results labeled secret (Property 1). Notice that

these invariants hold for individual executions: we still need to combine

them to relate the final configurations of the two executions. To do that,

we reason separately about the final stores and values. The final stores

are related via a Square Commutative Diagram (Fig. 2.6), while the

secret results are trivially L-equivalent by rule [ValueH] (Fig. 2.5).

Lemma 2.3 (L-Equivalence Preservation in Secret Contexts). For all pro-

gram counter labels pc1 6⊑ L and pc2 6⊑ L, and arbitrary expressions

e1 and e2, if Σ1 ≈L Σ2, 〈Σ1, e1〉 ⇓
θ1

pc1
c1, and 〈Σ2, e2〉 ⇓

θ2

pc2
c2, then

c1 ≈L c2.

Proof. Assume pc1 6⊑ L, pc2 6⊑ L, Σ1 ≈L Σ2, and let the final

configurations be c1 = 〈Σ′
1, v1〉 and c2 = 〈Σ′

2, v2〉. First, we apply Store

Confinement (Lemma 2.2) to 〈Σ1, e1〉 ⇓
θ1

pc
1
〈Σ′

1, v1〉 and 〈Σ2, e2〉 ⇓
θ2

pc
2

〈Σ′
2, v2〉 and obtain Σ1 ≈L Σ′

1 and Σ2 ≈L Σ′
2, respectively. Then, we con-

struct the Square Commutative Diagram for Stores (Lemma 2.1) using

Σ1 ≈L Σ2, Σ′
1 ≈L Σ1 Σ2 ≈L Σ′

2, and obtain Σ′
1 ≈L Σ′

2. To show that the

values v1 = r1
ℓ1 and v2 = r2

ℓ2 are L-equivalent, it suffices to show that

they are labeled secret. Since pc1 6⊑ L and pc2 6⊑ L by assumption,

pc1 ⊑ ℓ1 and pc2 ⊑ ℓ2 by Property 1, we have ℓ1 6⊑ L and ℓ2 6⊑ L,

and thus v1 = r1
ℓ1 ≈L r2

ℓ2 = v2 by rule [ValueH]. Since Σ′
1 ≈L Σ′

2

and v1 ≈L v2, we have c1 = 〈Σ′
1, v1〉 ≈L 〈Σ

′
2, v2〉 = c2, as desired.

2.2. Security 23

We now turn our attention to L-equivalence preservation in public

contexts. Unlike L-equivalence preservation in secret contexts, we must

inspect the program executions and examine their specific reduction

steps to prove this lemma. This is because these executions occur in a

public context (pc ⊑ L), therefore their side-effects and final results

may be observable by the attacker and so we have to verify that no leaks

occur in each case. Luckily, this task is simplified by the fact that the

initial configurations are L-equivalent and thus contain α-equivalent

expressions. Intuitively, this means that the two programs are synchro-

nized and proceed in lock-step. In other words, their reductions are

almost identical, i.e., the programs perform the same operation on L-

equivalent inputs and so produce L-equivalent outputs. This makes the

proof of this lemma straightforward in most cases. However, reductions

that involve control-flow expressions (e.g., case(e, x.e1, x.e2)) are more

complicated. In general, these programs may follow different paths and

evaluate different expressions: how can they preserve L-equivalence?

Intuitively, since the programs considered in this lemma are initially

synchronized, they can start following different paths only after branch-

ing on secret data. As a result, their program counter label gets tainted

and the programs enter a secret context, in which public side-effects are

not allowed and results are guaranteed to be labeled secret, as proved

in the previous lemma.

Lemma 2.4 (L-Equivalence Preservation in Public Contexts). For all pro-

gram counter labels pc ⊑ L, if c1 ≈L c2, θ1 ≈L θ2, c1 ⇓
θ1

pc c′
1, and

c2 ⇓
θ2

pc c′
2, then c′

1 ≈L c′
2.

Proof. Let c1 = 〈Σ1, e1〉 and c2 = 〈Σ2, e2〉 and proceed by induction on

the big-step reductions. Since c1 ≈L c2, we know that the initial stores

are L-equivalent, i.e., Σ1 ≈L Σ2, and the big-step reductions evaluate

α-equivalent expressions, i.e., e1 ≡α e2. As a result, the expressions step

following the same rule in most cases and thus produce L-equivalent

values and stores.

The interesting cases are those that influence the control-flow of the

program, where the two executions may deviate from each other, i.e.,

case [Case1], [Case2], and [App]. In these cases, the security label ℓ of

the scrutinee determines whether the two executions stay in a public

24 Fine-Grained IFC Calculus

context (ℓ ⊑ L) and remain synchronized on the same path, or not

(ℓ 6⊑ L). For example, consider expression case(e, x.e1, x.e2), which

steps through rule [Case1] in the first reduction and either through rule

[Case1] or [Case2] in the second reduction (the opposite cases are sym-

metric). If both rules step through rule [Case1], then the scrutinees are

both left injections, i.e., inl(v1)ℓ1 ≈L inl(v2)ℓ2 by induction hypothe-

sis. Then, we perform case analysis on the L-equivalence judgment and

have two sub-cases: [ValueL] and [ValueH]. In the first case, both

scrutinees are public, i.e., ℓ1 = ℓ2 ⊑ L and v1 ≈L v2 by rule [ValueL],

and the proof follows by induction. In the other case, both scrutinees

are secret, i.e., ℓ1 6⊑ L and ℓ2 6⊑ L by rule [ValueH], and the program

enters a secret context and we apply L-equivalence Preservation in Se-

cret Contexts (Lemma 2.3). Finally, if case(e, x.e1, x.e2) steps through

different rules (e.g., [Case1] and [Case2]), then the scrutinees must be

secret and thus we also apply L-equivalence Preservation in Secret Con-

texts. In particular, it is impossible for L-equivalent public scrutinees

to have different injection. To see that, assume inl(v1)ℓ1 ≈L inr(v2)ℓ2

and ℓ1 = ℓ2 ⊑ L by rule [ValueL]. Then, we also have a proof that

the raw values are L-equivalent, i.e., inl(v1) ≈L inr(v2). But this is

impossible: raw values of sum type can be related only if they are the

same injection (i.e., rules [Inl] and [Inr] in Figure 2.5).

Finally, we combine the L-equivalence preservation lemmas from

above and prove termination-insensitive non-interference (TINI) for

λdFG.

Theorem 1 (λdFG-TINI). If c1 ⇓θ1

pc c′
1, c2 ⇓θ2

pc c′
2, θ1 ≈L θ2 and

c1 ≈L c2 then c′
1 ≈L c′

2.

Proof. By case analysis over the program counter label pc. If pc ⊑ L,

we apply L-equivalence Preservation in Public Contexts (Lemma 2.4).

If pc 6⊑ L, we apply L-equivalence Preservation in Secret Contexts

(Lemma 2.3).

2.3 Flow-Sensitive References

This section extends λdFG with flow-sensitive references (Austin and

Flanagan, 2009), an important feature to boost the permissiveness of

2.3. Flow-Sensitive References 25

IFC systems. These references differ slightly from the labeled references

presented in Section 2.1.2, which are instead flow-insensitive. The key

difference between them lies in the way the IFC system treats their

label. In particular, the label of flow-insensitive references is immutable,

i.e., when a program creates a reference, the IFC monitor assigns it a

label, which remains fixed throughout the execution of the program.

In contrast, the label of flow-sensitive references is mutable. Intuitively,

the label of these references can change to reflect the sensitivity of the

data that they currently store. This change is completely transparent

to the program: when the program writes some data to a flow-sensitive

reference, the IFC monitor simply replaces the label of the reference

with the label of the new content. However, if added naively, mutable

labels open a new channel for implicitly leaking data, therefore, the

IFC monitor changes the labels of flow-sensitive references only as long

as this operation does not leak information.

In this section, we formally discuss the differences of flow-sensitive

references and their subtleties for security in the context of λdFG. First,

we show that flow-sensitive references are more permissive than flow-

insensitive references with an example.

Example 2.1. Consider the following program, which creates a new

reference, initially containing some public data p, overwrites it with

secret data s, and finally reads it back from the reference.

let r = new(p) in

r := s;

! r

The execution of the λdFG program above with program counter label

public, i.e., pc = L, environment θ = [p 7→ trueL, s 7→ falseH],

and empty store Σ = λℓ.[] is aborted by the IFC monitor with flow-

insensitive references from Section 2.1.2. Rule [New] (Fig. 2.4) assigns

the fixed public label L to the reference, which then causes rule [Write]

to fail, as the program tries to write secret data (i.e., falseH) into a pub-

lic reference (i.e., 0L). In particular, the last premise of rule [Write]

does not hold (H 6⊑ L) and thus the program gets stuck. Had the

26 Fine-Grained IFC Calculus

monitor not aborted the execution, the program would have leaked the

secret value of s. Specifically, the program would have written the raw

value of s, i.e., false, into the public L-labeled memory, from where

it would be extracted by the last instruction through rule [Read] and

labeled with L, i.e., falseL, causing the leak. In contrast, the IFC moni-

tor presented in this section and extended with flow-sensitive references

does not abort the program. The extended monitor allows the program

to write secret data into the public reference, but after doing so, it up-

grades the label of the reference from L to H to indicate that it now

contains secret data. As a result, when the program reads back the

reference in the last instruction, the result gets tainted with H , i.e.,

falseH , thus eliminating the leak.

In the following, we extend λdFG with flow-sensitive references (§ 2.3.1),

define their operational semantics (§ 2.3.2), and finally reestablish non-

interference (§ 2.3.3).

2.3.1 Syntax

We introduce the syntax of λdFG extended with flow-sensitive refer-

ences in Figure 2.7a, where we omit the constructs and the syntac-

tic categories that remain unchanged. First, we annotate the type of

references with flow-sensitivity tags, e.g., Ref s τ , where the tag s

allows programs to distinguish between flow-insensitive (s = I) and

flow-sensitive (s = S) references. We do not introduce new constructs

to create, write, and read flow-sensitive references. Instead, we reuse the

same constructs introduced for flow-sensitive references (i.e., new(e),

e1 := e2, !e, and labelOfRef(e) from Fig. 2.1)7 and rely on the type-

level sensitivity tag to determine which kind of reference is used.8 Raw

values for flow-sensitive references are plain addresses n ∈ N. Since

the label of flow-sensitive references is mutable (as explained above),

these addresses are not annotated with a label like flow-insensitive ref-

erences (e.g., nℓ) and hence do not point into a labeled memory in the

7We do not bother to introduce separate constructs because the translations of
these constructs given in Sections 5 and 6 are the same for both kinds of references.

8In this presentation we assume that terms are implicitly well-typed. In our
mechanized proofs, terms are explicitly and intrinsically well-typed.

2.3. Flow-Sensitive References 27

Flow-sensitivity tags: s ::= I | S

Types: τ ::= · · · | Ref s τ

Raw Values: r ::= · · · | n

Heaps: µ ::= [] | rℓ : µ

Configurations: c ::= 〈Σ, µ, e〉

(a) Syntax.

(New-FS)

〈Σ, µ, e〉 ⇓θ
pc 〈Σ

′, µ′, v〉 n = |µ′| µ′′ = µ′[n 7→ v]

〈Σ, µ, new(e)〉 ⇓θ
pc 〈Σ

′, µ′′, npc〉

(Read-FS)

〈Σ, µ, e〉 ⇓θ
pc 〈Σ

′, µ′, nℓ〉 µ′[n] = rℓ′

〈Σ, µ, !e〉 ⇓θ
pc 〈Σ

′, µ′, rℓ ⊔ ℓ′
〉

(LabelOfRef-FS)

〈Σ, µ, e〉 ⇓θ
pc 〈Σ

′, µ′, nℓ1〉 µ′[n] = rℓ2

〈Σ, µ, labelOfRef (e)〉 ⇓θ
pc 〈Σ

′, µ′, ℓ2
ℓ1 ⊔ ℓ2〉

(Write-FS)

〈Σ, µ, e1〉 ⇓
θ
pc 〈Σ

′, µ′, nℓ〉 〈Σ′, µ′, e2〉 ⇓
θ
pc 〈Σ

′′, µ′′, r2
ℓ2〉

µ′′[n] = r1
ℓ1 ℓ ⊑ ℓ1 µ′′′ = µ′′[n 7→ r2

ℓ2 ⊔ ℓ]

〈Σ, µ, e1 := e2〉 ⇓
θ
pc 〈Σ

′′, µ′′′, ()pc〉

(b) Dynamics. The shaded constraint is the no-sensitive upgrade security check.

Figure 2.7: λdFG extended with flow-sensitive references.

partitioned store. Instead, we store both the content and the label of

flow-sensitive references in the new, linear heap µ, which can contain

data at different security levels. Specifically, a flow-sensitive reference

n of type Ref S τ points to the n-th cell of the heap µ, i.e., µ[n] = rℓ,

28 Fine-Grained IFC Calculus

for some raw value r of type τ at security level ℓ, which also represents

the label of the reference. Finally, we extend program configurations

with a heap µ, e.g., c = 〈Σ, µ, e〉.

2.3.2 Dynamics

Figure 2.7b gives the semantics rules for the λdFG constructs that oper-

ate on flow-sensitive references (the rules in Figure 2.2-2.4 are adapted

for configurations extended with the heap in the obvious way). Rule

[New-FS] allocates a new flow-sensitive reference in the heap at fresh

address n = |µ′|, where value v gets stored, i.e., µ′[n 7→ v]. Similarly

to rule [New] (Fig. 2.4), this rule does not leak data through implicit

flows because value v has security level at least equal to the program

counter label.9 Rule [Read-FS] is also similar to rule [Read]. The rule

reads reference n at security level ℓ from the heap µ′, i.e., µ′[n] = rℓ′
,

and upgrades the label of r to ℓ ⊔ ℓ′ to reflect the fact that read-

ing this particular reference depends on information at security level ℓ.

Rule [LabelOfRef-FS] retrieves the label of reference n by reading

the corresponding cell in the heap, i.e., µ′[n] = rℓ2, and protects it with

the label itself and taints it with the security level of the reference, i.e.,

ℓ2
ℓ1 ⊔ ℓ2. Although the label of values in the heap represent also the

label of the reference, we cannot obtain exactly the label of the refer-

ence by reading the reference and then projecting the label of the value,

i.e., in general labelOfRef(e) 6≡ labelOf(!e) for a flow-sensitive ref-

erence e. To see this, suppose e evaluates to reference nℓ1 such that

µ[n] = rℓ2 for some raw value r. Then, expression labelOfRef(e) re-

sults in ℓ2
ℓ1 ⊔ ℓ2 through rule [LabelOfRef-FS], which is in general

different from (ℓ1 ⊔ ℓ2)ℓ1 ⊔ ℓ2 obtained from labelOf(!e) through rule

[LabelOf] (Fig. 2.3) applied to rule [Read-FS]. Hence, we need to

define labelOfRef(·) as a primitive construct of the calculus.

Rule [Write-FS] updates flow-sensitive references but, in contrast

to rule [Write], it also updates the label of the (flow-sensitive) ref-

erence. In particular, the rule updates reference n at security level ℓ

by writing value r2
ℓ2 tainted with ℓ in the n-th cell of the heap, i.e.,

9In particular, Property 1 holds also for λdFG extended with flow-sensitive ref-
erences.

2.3. Flow-Sensitive References 29

µ′′[n 7→ r2
ℓ2 ⊔ ℓ]. Notice that the label of the updated reference, i.e.,

ℓ2 ⊔ ℓ, depends only on the security level of the data written into

the reference and of the reference that gets updated—this label can be

completely different from the label of the reference before the update,

i.e., ℓ1 from µ′′[n] = r1
ℓ1 . For example, the rule allows turning a public

reference into a secret one (i.e., changing the label of the reference from

L to H) by writing secret data into it (like in Example 2.1). Perhaps

more surprisingly, the rule also allows changing the label in the opposite

direction (i.e., from H to L). For example, it is possible to make a secret

reference public by overwriting its content with public data (e.g., swap

p and s in Example 2.1). However, rule [Write-FS] is not completely

unrestricted: it includes a security check known as no-sensitive upgrade

(NSU) to avoid leaking information through implicit flows (Austin and

Flanagan, 2009). Intuitively, this check (shaded in Fig. 2.7b) prohibits

updates in which the decision to update a particular reference depends

on information that is more sensitive than the label of the reference

itself. The following example shows why this check is needed to avoid

leaks.

Example 2.2. Consider the following program, which branches on se-

cret data, updates an initially public (flow-sensitive) reference in one

branch, and then reads back the reference.

let r = new(p) in

if s then r := s else ();

! r

Without the no-sensitive upgrade check described above, this program

leaks information through an implicit flow. Formally, we show that the

program above breaks non-interference (Theorem 1). Consider two ex-

ecutions of the program with program counter label public, i.e., pc =

L, and with two L-equivalent input environments, e.g., θ1 = [p 7→

trueL, s 7→ falseH] ≈L [p 7→ trueL, s 7→ trueH] = θ2. In the first

execution with environment θ1, reference r is not updated, and thus the

result of the program is public value p = trueL. Instead, in the second

execution with environment θ2, the program updates reference r (rule

30 Fine-Grained IFC Calculus

[Write-FS] without the NSU check) and thus we obtain the secret

value s = trueH as result. However, this breaks Theorem 1: the input

environments are L-equivalent, i.e., θ1 ≈L θ2, but the results of the

program are not, i.e., p = trueL 6≈L trueH = s, because L ⊑ L, but

H 6⊑ L (neither rule [ValueH] nor [ValueL] from Fig. 2.5 apply).10

To avoid such leaks, we include the no-sensitive upgrade check in

rule [Write-FS] through the constraint ℓ ⊑ ℓ1, which ensures that

the decision of updating reference n depends on information at some

security level ℓ below the current label of the reference, i.e., ℓ1 from

µ′′[n] = r1
ℓ1 . This constraint causes the IFC monitor to abort the

second execution of the program above (H 6⊑ L), which gets stuck

and thus satisfies (trivially) Theorem 1.

2.3.3 Security

λdFG extended with flow-sensitive references is also secure, i.e., it sat-

isfies termination insensitive non-interference. However, the theorem

for the extended calculus is more complicated than Theorem 1: it re-

quires a relaxed notion of L-equivalence up to a bijection, which relates

observable flow-sensitive references with different heap addresses, and

a side-condition on program configurations to rule out dangling refer-

ences (Banerjee and Naumann, 2005). In this section, we make these

differences rigorous and we reestablish non-interference.

The need for Bijections. Since the label of flow-sensitive references

can change throughout program execution, our semantics allocates cells

for both public and secret references in a single, unlabeled heap. An

unfortunate consequence of this design choice is that allocations made

in secret contexts can influence the addresses of public references al-

located in the rest of the program, which get shifted by the number

of secret references previously allocated. This can be problematic for

security because attackers can exploit these deterministic side-effects

to leak information through the address of public references (Hedin

10The mismatch in the label of the results can also be propagated to raw values
through the label introspection primitives. We refer to (Austin and Flanagan, 2009)
for a more elaborated example that leaks directly through raw values.

2.3. Flow-Sensitive References 31

and Sands, 2006). However, the addresses considered in this work are

opaque, i.e., programs cannot inspect and compare them, and so at-

tackers cannot use them to leak secrets. To show that, we extend the

L-equivalence relation from Section 2.2 with a bijection (Banerjee and

Naumann, 2005), a one-to-one correspondence between heap addresses,

which we use to relate the addresses of references allocated in public

contexts.

Definition 1 (Bijection). A bijection β : Addr ⇀ Addr is a bijective fi-

nite partial function between heap addresses. Formally, for all addresses

n and n′, β(n) = n′ ⇐⇒ β−1(n′) = n, where β−1 is the inverse function

of β.

Notation and Auxiliary Definitions. In the following, we treat par-

tial functions as sets of input-output pairs and for clarity we write

(n1, n2) ∈ β for β(n1) = n2, i.e., if the partial function β is defined on

input n1 and has output n2. We say that a bijection β′ extends another

bijection β, written β ⊆ β′, if and only if for all input-output pairs

(n1, n2), (n1, n2) ∈ β implies (n1, n2) ∈ β′. Bijection composition

is written β2 ◦ β1 = {(n1, n3) | (n1, n2) ∈ β1 ∧ (n2, n3) ∈ β2}

and the inverse operator as β−1 = {(n2, n1) | (n1, n2) ∈ β}. We

also define the domain and range of bijections in the obvious way, i.e.,

dom(β) = {n1 | (n1, n2) ∈ β}, and rng(β) = {n2 | (n1, n2) ∈ β}.

Furthermore, we write ιn for the finite, partial identity bijection defined

up to n, i.e., ιn = {(n′, n′) | n′ ∈ {0, . . . , n − 1}}. Identity bijections

satisfy the following laws.

Property 3 (Identity Laws). For all bijections β and n ∈ N:

1. Inverse Identity. ι−1
n ≡ ιn .

2. Absorb Left. If rng(β) ⊆ dom(ιn), then ιn ◦ β ≡ β.

3. Absorb Right. If dom(β) ⊆ rng(ιn), then β ◦ ιn ≡ β.

L-Equivalence up to Bijection. Formally, we redefine L-equivalence

as a relation ≈β
L ⊆ Value × Value and write v1 ≈

β
L v2 to indicate

that values v1 and v2 are indistinguishable to an attacker at security

32 Fine-Grained IFC Calculus

level L up to bijection β, which relates the heap addresses of corre-

sponding observable flow-sensitive references in v1 and v2. We extend

the L-equivalence relation for all other syntactic categories (raw values,

memories, and stores) with a bijection in the same way. Besides the bi-

jection β, which we only add to ≈L, all the rules from Figure 2.5 remain

unchanged. In particular, rules [RefL] and [RefH] for flow-insensitive

references simply ignore the bijection. Since we keep labeled memories

partitioned in the store and isolated from the heap, the problem of mis-

matching addresses does not arise for flow-insensitive references. Intu-

itively, the address space of public memories is completely independent

from the address space of secret memories, and thus allocations made

in secret contexts cannot influence the memory addresses of public ref-

erences. As a result, rule [RefL] guarantees that L-equivalent public

references have exactly the same memory address. In contrast, heap al-

locations made in secret contexts can shift the heap addresses of observ-

able flow-sensitive references (as explained above), which then may not

be necessarily the same. Therefore, we relate observable flow-sensitive

references with possibly different addresses through the following new

rule:

(Ref-FS)

(n1, n2) ∈ β

n1 ≈
β
L n2

Rule [Ref-FS] relates references with arbitrary heap addresses n1 and

n2, as long as their addresses are “matched” by the bijection β, i.e.,

(n1, n2) ∈ β. Similarly, we define heap L-equivalence by relating heap

cells that are at corresponding addresses according to the bijection.

Definition 2 (Heap L-equivalence). Two heaps µ1 and µ2 are L-equivalent

up to bijection β, written µ1 ≈
β
L µ2, if and only if:

1. dom(β) ⊆ {0, . . . , |µ1| − 1},

2. rng(β) ⊆ {0, . . . , |µ2| − 1}, and

3. For all addresses n1 and n2, if (n1, n2) ∈ β, then µ1[n1] ≈β
L

µ2[n2].

2.3. Flow-Sensitive References 33

In the definition above, the first two conditions require that the do-

main and the range of β are contained in the address space of µ1 and

µ2, respectively.11 These side-conditions ensure that the heap addresses

considered in the third condition are valid, i.e., they point to some cell

in each heap. The definition of L-equivalence for heaps is complicated

by the fact that heaps can contain both public and secret cells, i.e.,

cells allocated in public and secret contexts, respectively. In particu-

lar, the L-equivalence relation needs to relate the values contained in

corresponding public cells, which are at possibly different addresses in

the heaps.12 This task is simplified by the bijection β, which identi-

fies exactly the addresses of corresponding public cells. Therefore, the

third condition above ensures that the values contained in the cells at

addresses related by the bijection β, i.e., (n1, n2) ∈ β, are themselves

L-equivalent, i.e., µ1[n1] ≈β
L µ2[n2]. Finally, we extend L-equivalence

for configurations with a bijection and additionally require their heaps

to be related. Formally, c1 ≈
β
L c2 iff c1 = 〈Σ1, µ1, v1〉, c2 = 〈Σ2, µ2, v2〉,

and all their components are related, i.e., Σ1 ≈
β
L Σ2, µ1 ≈

β
L µ2, and

v1 ≈
β
L v2.

Next, we discuss some side-conditions over program configurations

and inputs that are needed for reasoning with L-equivalence relations

up to bijection.

Valid References. In Section 2.2, we proved that the L-equivalence

relation is reflexive, symmetric, and transitive, and showed how these

properties helped us structure and simplify the proof of non-interference.

Does the L-equivalence extended with bijection also enjoy these prop-

erties? Unfortunately, reflexivity does not hold unconditionally any-

more for L-equivalence relations up to bijection. The culprit of the

problem is in the definition of L-equivalence for heaps. In this case,

proving reflexivity requires showing that any heap is L-equivalent to

itself up to the identity bijection defined over its address space, i.e.,

∀µ.µ ≈
ι|µ|

L µ. Technically, this property does not hold in general for

any arbitrary heap µ. To see this, consider for example the ill-formed

11Heap addresses start at 0 just like memory addresses.
12Secret cells in each heap are simply disregarded as they may not necessarily

have a counterpart in the other heap.

34 Fine-Grained IFC Calculus

(Valid-Value)

n ⊢ Valid(r)

n ⊢ Valid(rℓ)

(Valid-FS-Ref)

n′ < n

n ⊢ Valid(n′)

(Valid-FI-Ref)

n ⊢ Valid(n′
ℓ)

(Valid-Closure)

n ⊢ Valid(θ)

n ⊢ Valid((x.e, θ))

(a) Judgment for values n ⊢ Valid(v) and raw values n ⊢ Valid(r) (selected cases).

(Valid-Inputs)

c = 〈Σ, µ, e〉

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(θ)

⊢ Valid(c, θ)

(Valid-Outputs)

c = 〈Σ, µ, v〉

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(v)

⊢ Valid(c)

(b) Judgments for valid program inputs and outputs in λdFG.

Figure 2.8: Some valid judgments for λdFG.

heap µ′ = 1L :[], which contains the dangling flow-sensitive reference 1L.

In order to prove µ′ ≈ι1

L µ′, we must show that this dangling reference

is L-equivalent to itself up to bijection ι1 (Def. 2.3), i.e., 1L ≈ι1

L 1L,

which by rule [Ref-FS] would require a proof for the false statement

(1, 1) ∈ ι1 = {(0, 0)}. One may be tempted to repair reflexivity by

choosing a sufficiently large domain for the identity bijection, so that

also dangling references can be related (e.g., for µ′ we could pick ι2

and prove 1L ≈ι2

L 1L). Unfortunately, this is not possible without

breaking the first and the second condition of Definition 2. For any

heap µ, the identity bijection ι|µ| has the largest domain and range

that satisfies the side-conditions dom(ι|µ|) ⊆ {0 . . |µ| − 1} (Def. 2.1)

2.3. Flow-Sensitive References 35

and rng(ι|µ|) ⊆ {0 . . |µ| − 1} (Def. 2.2).

The solution to this technical nuisance is to simply prove a weaker

version of reflexivity, which holds only for well-formed heaps (and sim-

ilarly values, stores, memories, and configurations) that contain only

valid (i.e., not dangling) references. Luckily, this restriction is inconse-

quential in our setting because references are always valid in λdFG. Intu-

itively, references are unforgeable: programs can only create fresh, valid

references through the new(·) construct. After creation references sim-

ply remain valid throughout program execution: they can be accessed,

passed around, or stored, but never deallocated (we simply provide no

construct to do so) or tempered. We now formalize this insight in the

form of a valid judgment, which rules out dangling reference from all the

categories of the calculus together with the proof that this judgment is

an invariant of the operational semantics of λdFG.

Valid Judgment. Figure 2.8 defines a valid judgment for λdFG values

and configurations. These judgments ensure that all flow-sensitive ref-

erences values of a program configuration are valid (i.e., not dangling)

in a heap of a given size. For values (Fig. 2.8a), this judgment takes

the form of n ⊢ Valid(v), which indicates that all heap addresses con-

tained in value v are valid in a heap of size n. This judgment is mutually

defined with similar judgments for raw values, i.e., n ⊢ Valid(r), and

environments n ⊢ Valid(θ). Importantly, rule [Valid-FS-Ref] disal-

lows dangling references: a flow-sensitive reference is valid if and only

if its heap address n′ is strictly smaller than the size n of the heap.

Notice that this judgment holds unconditionally for flow-insensitive

values through rule [Valid-FI-Ref]. Intuitively, these references con-

tain memory addresses, which are not affected by the technical issue

described above. Most of the remaining rules are fairly straightforward:

they simply require that all sub-values are homogeneously valid in

heaps of the same size. For example, values rℓ is valid only if and

only if the raw value r is also valid (rule [Valid-Value]) and closures

(x.e, θ) are valid if and only if the value environment θ is also valid

36 Fine-Grained IFC Calculus

(rule [Valid-Closure]).13 Environments θ are valid if they contain

only valid values, i.e., n ⊢ Valid(θ) iff ∀x ∈ dom(θ).n ⊢ Valid(θ(x)).

Similarly, valid stores Σ contain only valid memories, i.e., n ⊢ Valid(Σ)

iff ∀ℓ ∈ L .n ⊢ Valid(Σ(ℓ)), and so on for memories and heaps,

i.e., n ⊢ Valid(M) iff ∀n ∈ {0, . . . , |M | − 1}.n ⊢ Valid(M [n]) and

n ⊢ Valid(µ) iff ∀n ∈ {0, . . . , |µ| − 1}.n ⊢ Valid(µ[n]), respectively.

Finally, the judgments for initial and final configurations (Fig. 2.8b) in-

stantiate the parameter n of the judgments above with the size of the

heap. For example, a configuration c = 〈Σ, µ, e〉 and input environment

θ are valid through rule [Valid-Inputs] if and only if all the compo-

nents of the configuration and the value environment are valid in the

heap of size n = |µ|, i.e., ⊢ Valid(c, θ) iff n ⊢ Valid(Σ), n ⊢ Valid(µ),

and n ⊢ Valid(θ). Rule [Valid-Final] is for final configurations and

is similar.

Before showing that this valid judgment is an invariant of the se-

mantics of λdFG, we prove two simple helping lemmas. The first lemma

shows that values that are valid in a heap of a certain size, are also

valid in any larger heap, while the second lemma shows that heaps can

only grow larger in the semantics of λdFG.

Lemma 2.5 (Valid Weakening). For all values v, environments θ, raw

values r and natural numbers n and n′:

1. If n ⊢ Valid(v) and n 6 n′, then n′ ⊢ Valid(v),

2. If n ⊢ Valid(r) and n 6 n′, then n′ ⊢ Valid(r)

3. If n ⊢ Valid(θ) and n 6 n′, then n′ ⊢ Valid(θ)

Proof. By mutual induction over the judgments and using transitivity

of 6 for the case [Valid-FS-Ref].

Lemma 2.6 (Heaps Only Grow). Let c = 〈Σ, µ, e〉, c′ = 〈Σ′, µ′, v〉, if

c ⇓θ
pc c′, then |µ| 6 |µ′|.

Proof. By induction on the big-step reduction. In particular, notice

that no rule deallocates cells from the heap, which can only grow

through rule [New-FS].
13Since expressions do not contain heap addresses or values (they belong to dis-

tinct syntactic categories), we do not need to define a valid judgment for expressions.

2.3. Flow-Sensitive References 37

Property 4 (Valid Invariant). If c ⇓θ
pc c′ and ⊢ Valid(c, θ), then

⊢ Valid(c′).

Proof. By induction on the big-step reduction and using Lemmas 2.5

and 2.6.

We now reconsider the properties of L-equivalence up to bijection.

Property 5. For all values, raw values, environments, memories, and

stores x, y, z, and n ∈ N:

1. Restricted Reflexivity. If n ⊢ Valid(x), then x ≈ιn

L x.

2. Symmetricity. If x ≈β
L y, then y ≈β−1

L x.

3. Transitivity. If x ≈β1

L y and y ≈β2

L z, then x ≈β2 ◦ β1

L z.

4. Weakening. If x ≈β
L y and β ⊆ β′, then x ≈β′

L y.

First, reflexivity up to a identity bijection ιn is restricted to program

constructs that are valid in a heap of size n, as explained above. In a

relation x ≈β
L y, the bijection β maps the heap addresses of x to

the corresponding heap addresses of y. Then, in order to obtain the

mapping from y to x, the bijection must be inverted in the symmetric

relation, i.e., y ≈β−1

L x. Similarly, when composing x ≈β1

L y and

y ≈β2

L z through transitivity, the bijections must also be composed,

i.e., x ≈β2 ◦ β1

L z, so that the composed bijection β2 ◦ β1 first maps the

addresses of x to the corresponding addresses of y through β1, and then

the addresses of y to those of z through β2. Lastly, weakening allows

to relax a relation x ≈β
L y with an extended bijection β′ ⊇ β. All the

properties above hold also for L-equivalence for heaps (Def. 2), with

the exception for weakening, due to the side conditions on the domain

and range of the bijection.

We conclude this part with the square commutative digram for

heaps, outlined in Figure 2.9.14 In the diagram, the arrows connect

L-equivalent heaps up to a given bijection, e.g., the arrow from µ1 to

µ′
1 labeled β1 indicates that µ1 ≈

β1

L µ′
1. Compared to the square dia-

gram without bijections from Figure 2.6, this diagram is complicated

14We omit the analogous square commutative diagram for stores.

38 Fine-Grained IFC Calculus

µ1 µ′
1

µ2 µ′
2

β1

β β′ = β2 ◦ β ◦ β−1

1

β2

Figure 2.9: Square commutative diagram for heaps (Lemma 2.7). Solid arrows rep-
resent the assumptions of the lemma and the dashed arrow represents the conclusion.
If β1 = ι|µ1|, β2 = ι|µ2|, then β′ is simply equal to β.

by the fact that the bijections must be composed and inverted appro-

priately, as needed by symmetricity and transitivity, in order to obtain

the dashed arrow that completes the square. However, when β1 and

β2 are (appropriate) identity bijections, the bijection between the final

heaps can be simplified and shown to be equal to the bijection between

the initial heaps.

Lemma 2.7 (Square Commutative Diagram for Heaps). If µ1 ≈
β
L µ2,

µ1 ≈
β1

L µ′
1, and µ2 ≈

β2

L µ′
2, then µ′

1 ≈
β′

L µ′
2, where β′ = β2 ◦ β ◦ β−1

1 .

Furthermore, if β1 = ι|µ1| and β2 = ι|µ2|, then µ′
1 ≈

β
L µ′

2.

Proof. By applying symmetricity (Property 5.2) and transitivity (Prop-

erty 5.3) like in Lemma 2.1, we obtain directly µ′
1 ≈β′

L µ′
2 and

β′ = β2 ◦ β ◦ β−1
1 . If β1 = ι|µ1| and β2 = ι|µ2|, then β′ =

ι|µ2| ◦ β ◦ ι−1
|µ1|. Using the identity laws (Property 3), we show that

β′ = ι|µ2| ◦ β ◦ ι−1
|µ1| = β and thus we have µ′

1 ≈
β
L µ′

2.

Termination-Insensitive Non-Interference. We now turn our atten-

tion to the termination-insensitive non-interference theorem for λdFG

extended with flow-sensitive references. First, the theorem assumes that

the initial configurations are L-equivalent up to a bijection, which we

use to account for secret-dependent heap allocations and hence relate

the heap addresses of corresponding public flow-sensitive references, as

explained above. Then, the theorem guarantees that the final configu-

rations are also L-equivalent, but up to some extended bijection. Intu-

itively, programs may dynamically allocate new cells in the heap, there-

fore the heap addresses contained in their final configurations must be

shown to be related with respect to the address space of the final heaps.

2.3. Flow-Sensitive References 39

Additionally, the theorem explicitly assumes that the initial program

configurations are valid and thus do not contain dangling references. As

explained before, this extra assumption is needed for technical reasons

and, besides having to explicitly propagate it as needed in our mecha-

nized proof scripts, it does not impact the security guarantees of λdFG.

The proof of this theorem is also structured on two key lemmas: store

and heap confinement and L-equivalence preservation. In the following,

we focus on the changes needed to adapt these lemmas for flow-sensitive

references, heaps, and L-equivalence up to bijection.

Confinement guarantees that programs running in a secret context

cannot leak secret data implicitly through the program state, i.e., the

store and the heap. Formally, we show that if the program counter

label is above the attacker’s label (pc 6⊑ L), then the initial store

and heap are L-equivalent to the final store and heap obtained at the

end of the execution, up to the identity bijection. In the lemma, L-

equivalence is up to the identity bijection defined over the address space

of the initial heap. Intuitively, this is because the references allocated

in secret contexts cannot be observed by the attacker, and therefore

must be disregarded by the bijection, which instead keeps track only

of observable references, i.e., those allocated in public contexts.

Lemma 2.8 (Store and Heap Confinement). For all configurations c =

〈Σ, µ, e〉, c′ = 〈Σ′, µ′, v〉, program counter labels pc 6⊑ L, if ⊢ Valid(c, θ)

and c ⇓θ
pc c′, then Σ ≈

ι|µ|

L Σ′ and µ ≈
ι|µ|

L µ′.

Proof. By induction on the big-step reduction and using the fact the se-

mantics preserves valid references (Property 4) to propagate the valid

judgment through the intermediate configurations. In particular, we

apply restricted reflexivity (Property 5.1) in the base cases, and tran-

sitivity (Property 5.3) and the bijection identity laws (Property 3) in

the inductive cases. Intuitively, when we apply transitivity, we need to

show that the composition of identity bijections defined over different

heaps results in the identity bijection over the initial heap required by

the lemma. For example, to show that µ ≈
ι|µ|

L µ′′ through some in-

termediate heap µ′ such that µ ≈
ι|µ|

L µ′ and µ′ ≈
ι|µ′|

L µ′′, we apply

transitivity and obtain µ ≈
ι|µ′| ◦ ι|µ|

L µ′′. Since heaps only grow in size

(Lemma 2.6), we have that |µ| 6 |µ′|, thus rng(ι|µ|) ⊆ dom(ι|µ′|)

40 Fine-Grained IFC Calculus

and ι|µ′| ◦ ι|µ| = ι|µ| by Property 3.2 and so we have µ ≈
ι|µ|

L µ′′, as

required.

For L-equivalence preservation, we assume that the program inputs

are L-equivalent up to some bijection β and must show that the final

configurations are L-equivalent up to some extended bijection β′ ⊇ β.

Since we cannot predict, in general, how arbitrary programs allocate

references at run-time, in these lemmas we existentially quantify the

bijection β′ that relates the heap addresses in final configurations, but

guarantee that the final bijection β′ is at least as large as the initial

bijection β, i.e., β ⊆ β′. This invariant is critical for the proof, where

the inductive steps require combining L-equivalent values and environ-

ments with different bijections. In particular, the fact that bijections

only get extended, e.g., β ⊆ β′, lets us lift L-equivalence relations

up to a small bijection β into L-equivalence relations up to a larger

bijection β′ via weakening (Property 5.4).

Like before, we prove two L-equivalence preservation lemmas, for

secret and public contexts, respectively, which we then combine in the

proof of termination-insensitive non-interference. For preservation in

secret contexts, we observe that the bijection that relates the final

configurations is exactly the same bijection that relates the initial con-

figurations.15 Since the program executions occur in secret contexts,

their allocations are secret-dependent and therefore not observable by

the attacker, which is reflected in the lemma by relating the initial

and final configurations with the same bijection. The proof technique

for this lemma is similar to that of the previous L-equivalence preser-

vation lemma. We consider each program execution individually and

reason independently about program state (i.e., heap and store) and

values in the final configurations. In particular, we apply store and heap

confinement to each execution and relate the initial and final program

states with the identity bijection, which are then combined in a square

commutative diagram (Figure 2.9) to relate the final configurations.

15This is a special case of L-equivalence preservation, where we can predict the
final bijection β, and therefore we omit the existential quantification. Notice that in
this case the invariant β ⊆ β is trivially satisfied.

2.3. Flow-Sensitive References 41

Lemma 2.9 (L-Equivalence Preservation in Secret Contexts). For all

program counter labels pc1 6⊑ L and pc2 6⊑ L, valid inputs ⊢

Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that c1 = 〈Σ1, µ1, e1〉, c2 =

〈Σ2, µ2, e2〉, Σ1 ≈
β
L Σ2 and µ1 ≈

β
L µ2, if 〈Σ1, µ1, e1〉 ⇓

θ1

pc1
c1 and

〈Σ2, µ2, e2〉 ⇓
θ2

pc
2

c2, then c1 ≈
β
L c2.

Proof. Assume pc1 6⊑ L, pc2 6⊑ L, Σ1 ≈
β
L Σ2, µ1 ≈

β
L µ2, and let

the final configurations be c1 = 〈Σ′
1, µ′

1, v1〉 and c2 = 〈Σ′
2, µ′

2, v2〉. First,

we apply Store and Heap Confinement (Lemma 2.8) to 〈Σ1, µ1, e1〉 ⇓
θ1

pc1

〈Σ′
1, µ′

1, v1〉 and 〈Σ2, µ2, e2〉 ⇓
θ2

pc2
〈Σ′

2, µ2, v2〉 and obtain µ1 ≈
ι|µ1|

L µ′
1

and µ2 ≈
ι|µ2|

L µ′
2, respectively. Then, we construct the Square Commu-

tative Diagram for Heaps (Lemma 2.7) using µ1 ≈
β
L µ2, µ1 ≈

ι|µ1|

L µ′
1

and µ2 ≈
ι|µ2|

L µ′
2, and obtain µ′

1 ≈
β
L µ′

2. We derive Σ′
1 ≈

β
L Σ′

2 with a

similar construction and prove v1 ≈
β
L v2 like in Lemma 2.3.

The proof of L-equivalence preservation in public contexts also fol-

lows the same structure of the proof without heaps. In particular, the

proof is by simultaneous induction on the two big-step reductions and

relies on L-Equivalence Preservation in Secret Contexts when the pro-

gram executions deviate from each other at a secret-dependent control-

flow point. Here, we discuss only the interesting case where the pro-

grams allocate a flow-sensitive reference and we must extend the bijec-

tion with a new pair of matching addresses.

Lemma 2.10 (L-Equivalence Preservation in Public Contexts). For all

program counter labels pc ⊑ L, valid inputs ⊢ Valid(c1, θ1) and

⊢ Valid(c2, θ2), such that c1 ≈
β
L c2, θ1 ≈

β
L θ2, if c1 ⇓

θ1

pc c′
1, and

c2 ⇓
θ2

pc c′
2, then there exists an extended bijection β′ ⊇ β, such that

c′
1 ≈

β′

L c′
2.

Proof. From L-equivalence, i.e., c1 ≈
β
L c2, the program expressions are

α-equivalent, therefore the two reductions step following the same rule

and produce L-equivalent results and perform L-equivalent operations

on the program store and heap. In particular, for rule [New-FS], the

programs allocate L-equivalent heap cells, e.g., v1 ≈
β′

L v2 for some

extended bijection β′ ⊇ β by induction hypothesis, at fresh addresses

n1 = |µ′
1| and n2 = |µ′

2| of related heaps µ′
1 ≈

β′

L µ′
2, which remain

42 Fine-Grained IFC Calculus

related under the extended bijection β′′ = β′ ∪ {(n1, n2)} ⊇ β by

transitivity, i.e., µ1[n1 7→ v1] ≈β′′

L µ2[n2 7→ v2], and so produce related

references n1
L ≈β′′

L n2
L by rule [ValueL] applied to rule [Ref-FS].

Lastly, we combine the L-equivalence preservation lemmas for pub-

lic and secret contexts and prove termination-insensitive non-interference

for λdFG extended with flow-sensitive references.

Theorem 2 (λdFG-TINI with Bijections). For all program counter la-

bels pc and valid inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that

c1 ≈
β
L c2, θ1 ≈

β
L θ2, if c1 ⇓

θ1

pc c′
1, and c2 ⇓

θ2

pc c′
2, then there exists

an extended bijection β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Conclusion. Dynamic language-based fine-grained IFC, of which λdFG

is just a particular instance, represents an intuitive approach to track-

ing information flows in programs. Programmers annotate input values

with labels that represent their sensitivity and a label-aware instru-

mented security monitor propagates those labels during execution and

computes the result of the program together with a conservative approx-

imation of its sensitivity. The next section describes an IFC monitor

that tracks information flows at coarse granularity.

3

Coarse-Grained IFC Calculus

One of the drawbacks of dynamic fine-grained IFC is that the pro-

gramming model requires all input values to be explicitly and fully

annotated with their security labels. Imagine a program with many

inputs and highly structured data: it quickly becomes cumbersome, if

not impossible, for the programmer to specify all the labels. The la-

bel of some inputs may be sensitive (e.g., passwords, pin codes, etc.),

but the sensitivity of the rest may probably be irrelevant for the com-

putation, yet a programmer must come up with appropriate labels for

them as well. The programmer is then torn between two opposing risks:

over-approximating the actual sensitivity can negatively affect execu-

tion (the monitor might stop secure programs), under-approximating

the sensitivity can endanger security. Even worse, specifying many la-

bels manually is error-prone and assigning the wrong security label to a

piece of sensitive data can be catastrophic for security and completely

defeat the purpose of IFC. Dynamic coarse-grained IFC represents an

attractive alternative that requires fewer annotations, in particular it

allows the programmer to label only the inputs that need to be pro-

tected.

43

44 Coarse-Grained IFC Calculus

Types: τ ::= unit | τ1 → τ2 | τ1 + τ2 | τ1 × τ2 | L

| LIO τ | Labeled τ | Ref τ

Labels: ℓ, pc ∈ L

Addresses: n ∈ N

Environments: θ ∈ Var ⇀ Value

Values: v ::= () | (x.e, θ) | inl(v) | inr(v) | (v1, v2) | ℓ

| Labeled ℓ v | (t, θ) | nℓ

Expressions: e ::= x |λx.e | e1 e2 | () | ℓ | (e1, e2) | fst(e) | snd(e)

| inl(e1) | inr(e2) | case(e, x.e1, x.e2) | e1 ⊑
? e2 | t

Thunks: t ::= return(e) | bind(e, x.e) | unlabel(e)

| toLabeled(e) | labelOf(e) | getLabel | taint(e)

| new(e) | ! e | e1 := e2 | labelOfRef(e)

Type System: Γ ⊢ e : τ

Configurations: c ::= 〈Σ, pc, e〉

Stores: Σ ∈ (ℓ : Label)→ Memory ℓ

Memory ℓ: M ::= [] | v : M

Figure 3.1: Syntax of λdCG.

Syntax. Figure 3.1 shows the syntax of λdCG, a standard simply-

typed λ-calculus extended with security primitives for dynamic coarse-

grained IFC, inspired by Stefan et al. (2011) and adapted to use call-

by-value instead of call-by-name to match λdFG. The λdCG-calculus

features both standard (unlabeled) values and explicitly labeled values.

For example, Labeled H true represents a secret boolean value of

type Labeled bool.1 The type constructor LIO encapsulates a se-

curity state monad, whose state consists of a labeled store and the

program counter label. In addition to standard return(·) and bind(·)

1As in λdFG, we define bool = unit + unit and if e then e1 else e2 =
case(e, .e1, .e2). Unlike λdFG values, λdCG values are not intrinsically labeled,
thus we encode boolean constants simply as true = inl(()) and false = inr(()).

3.1. Dynamics 45

(Thunk)

t ⇓θ (t, θ)

(Fun)

λx.e ⇓θ (x.e, θ)

(Var)

x ⇓θ θ(x)

(App)

e1 ⇓
θ (x.e, θ′) e2 ⇓

θ v2 e ⇓θ′[x 7→v2] v

e1 e2 ⇓
θ v

(Case1)

e1 ⇓
θ inl(v1) e1 ⇓

θ[x 7→v1] v

case(e, x.e1, x.e2) ⇓θ v

(Case2)

e1 ⇓
θ inr(v2) e2 ⇓

θ[x 7→v2] v

case(e, x.e1, x.e2) ⇓θ v

Figure 3.2: Pure semantics: e ⇓θ v (selected rules).

constructs, the monad provides primitives that regulate the creation

and the inspection of labeled values, i.e., toLabeled(·), unlabel(·)

and labelOf(·), and the interaction with the labeled store, allowing

the creation, reading and writing of labeled references nℓ through the

constructs new(e), !e, e1 := e2, respectively.2 The primitives of the

LIO monad are listed in a separate sub-category of expressions called

thunk. Intuitively, a thunk is just a description of a stateful computa-

tion, which only the top-level security monitor can execute—a thunk

closure, i.e., (t, θ), provides a way to suspend nested computations.

3.1 Dynamics

In order to track information flows dynamically at coarse granularity,

λdCG employs a technique called floating-label, which was originally

developed for IFC operating systems (e.g., Zeldovich et al., 2006; Zel-

dovich et al., 2008) and that was later applied in a language-based

setting. In this technique, throughout a program’s execution, the pro-

gram counter label floats above the label of any value observed during

program execution and thus represents (an upper bound on) the sensi-

tivity of all the values that are not explicitly labeled. For this reason,

2We extend λdCG with flow-sensitive references and heaps in Section 3.3.

46 Coarse-Grained IFC Calculus

(Force)

e ⇓θ (t, θ′) 〈Σ, pc, t〉 ⇓θ′
〈Σ′, pc′, v〉

〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉

(a) Forcing semantics: 〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉.

(Return)

e ⇓θ v

〈Σ, pc, return(e)〉 ⇓θ 〈Σ, pc, v〉

(Bind)

〈Σ, pc, e1〉 ⇓
θ 〈Σ′, pc′, v1〉 〈Σ′, pc′, e2〉 ⇓

θ[x 7→v1] 〈Σ′′, pc′′, v〉

〈Σ, pc, bind(e1, x.e2)〉 ⇓θ 〈Σ′′, pc′′, v〉

(ToLabeled)

〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉

〈Σ, pc, toLabeled(e)〉 ⇓θ 〈Σ′, pc, Labeled pc′ v〉

(Unlabel)

e ⇓θ Labeled ℓ v

〈Σ, pc, unlabel(e)〉 ⇓θ 〈Σ, pc ⊔ ℓ, v〉

(LabelOf)

e ⇓θ Labeled ℓ v

〈Σ, pc, labelOf(e)〉 ⇓θ 〈Σ, pc ⊔ ℓ, ℓ〉

(GetLabel)

〈Σ, pc, getLabel〉 ⇓θ 〈Σ, pc, pc〉

(Taint)

e ⇓θ ℓ

〈Σ, pc, taint(e)〉 ⇓θ 〈Σ, pc ⊔ ℓ, ()〉

(b) Thunk semantics: 〈Σ, pc, t〉 ⇓θ 〈Σ′, pc′, v〉.

Figure 3.3: Big-step semantics for λdCG.

3.1. Dynamics 47

λdCG stores the program counter label in the program configuration,

so that the primitives of the LIO monad can control it explicitly. In

technical terms the program counter is said to be flow-sensitive, i.e.,

it may assume different values in the final configuration depending on

the control flow of the program.3

Like λdFG, the operational semantics of λdCG consists of a security

monitor that fully evaluates secure programs but prevents the execu-

tion of insecure programs and similarly enforces termination-insensitive

non-interference (Theorem 3). The big-step operational semantics of

λdCG is structured in two parts: (i) a straightforward call-by-value side-

effect-free semantics for pure expressions (Fig. 3.2), and (ii) a top-level

security monitor for monadic programs (Fig. 3.3). The semantics of

the security monitor is further split into two mutually recursive reduc-

tion relations, one for arbitrary expressions (Fig. 3.3a) and one specific

to thunks (Fig. 3.3b). These constitute the forcing semantics of the

monad, which reduces a thunk to a pure value and perform side-effects.

In particular, given the initial store Σ, program counter label pc, ex-

pression e of type LIO τ for some type τ and input values θ (which

may or may not be labeled), the monitor executes the program, i.e.,

〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉 and gives an updated store Σ′, updated pro-

gram counter pc′ and a final value v of type τ , which also might not

be labeled. The execution starts with rule [Force], which reduces the

pure expression to a thunk closure, i.e., (t, θ′) and then forces the thunk

t in its environment θ′ with the thunk semantics. The pure semantics

is fairly standard—we report some selected rules in Fig. 3.2 for com-

parison with λdFG. A pure reduction, written e ⇓θ v, evaluates an

expression e with an appropriate environment θ to a pure value v. No-

tice that, unlike λdFG, all reduction rules of the pure semantics ignore

security, even those that affect the control flow of the program, like

rules [App], [Case1], and [Case2]: they do not feature the program

counter label or label annotations. This is because these reductions are

pure—they cannot perform side-effects and so leak sensitive data—and

thus are inherently secure and need not to be monitored (Vassena et

3In contrast, we consider λdFG’s program counter flow-insensitive because it is
part of the evaluation judgment and its value changes only inside nested judgments.

48 Coarse-Grained IFC Calculus

al., 2017).4 For example, since pure programs do not have access to

the store, they cannot leak through implicit flows, which are then a

concern only for monadic programs.

How does the semantics prevent pure programs from performing

side-effects, without getting the program stuck and raising a false alarm?

If the pure evaluation reaches a side-effectful computation, i.e., thunk

t, it suspends the computation by creating a thunk closure that cap-

tures the current environment θ (see rule [Thunk]).5 Notice that thunk

closures and function closures are distinct values created by different

rules, [Thunk] and [Fun] respectively.6 Function application succeeds

only when the function evaluates to a function closure (rule [App]). In

the thunk semantics, rule [Return] evaluates a pure value embedded

in the monad via return(·) and leaves the state unchanged, while rule

[Bind] executes the first computation with the forcing semantics, binds

the result in the environment i.e., θ[x 7→ v1], passes it on to the sec-

ond computation together with the updated state and returns the final

result and state. Rule [Unlabel] is interesting. Following the floating-

label principle, it returns the value wrapped inside the labeled value,

i.e., v, and raises the program counter with its label, i.e., pc ⊔ ℓ, to

reflect the fact that new data at security level ℓ is now in scope.

Floating-label based coarse-grained IFC systems like LIO suffer

from the label creep problem, which occurs when the program counter

gets over-tainted, e.g., because too many secrets have been unlabeled,

to the point that no useful further computation can be performed. Prim-

itive toLabeled(·) provides a mechanism to address this problem by (i)

creating a separate context where some sensitive computation can take

4The strict separation between side-effect-free and side-effectful code is a dis-
tinctive feature of coarse-grained IFC, which is crucial to lightweight approaches to
enforce security via software libraries (Russo et al., 2009; Buiras et al., 2015; Russo,
2015; Stefan et al., 2012)

5Notice that type preservation for the pure semantics preserves types exactly i.e.,
if Γ ⊢ e :τ , e ⇓θ v and ⊢ θ :Γ, then ⊢ v :τ , which reflects the suspending behavior for
the monadic type LIO τ . In contrast, type preservation for the thunk and forcing

semantics assumes that the expression (resp. thunk) has a monadic type, i.e., LIO τ

for some type τ , and guarantees that the final value has type τ .
6It would have also been possible to define thunk values in terms of func-

tion closures using explicit suspension and an opaque constructor wrapper, e.g.,
LIO (.t, θ).

3.1. Dynamics 49

place and (ii) restoring the original program counter label afterwards.

Rule [ToLabeled] formalizes this idea. Notice that the result of the

nested sensitive computation, i.e., v, cannot be simply returned to the

lower context—that would be a leak, so toLabeled(·) wraps that piece

of information in a labeled value protected by the final program counter

of the sensitive computation, i.e., Labeled pc′ v.7 Furthermore, notice

that pc′, the label that tags the result v, is as sensitive as the result

itself because the final program counter depends on all the unlabel(·)

operations performed to compute the result. This motivates why prim-

itive labelOf(·) does not simply project the label from a labeled value,

but additionally taints the program counter with the label itself in rule

[LabelOf]–a label in a labeled value has sensitivity equal to the label

itself, thus the program counter label rises to accommodate reading

new sensitive data.

Lastly, rule [GetLabel] returns the value of the program counter,

which does not rise (because pc ⊔ pc = pc), and rule [Taint] simply

taints the program counter with the given label and returns unit (this

primitive matches the functionality of taint(·) in λdFG). Note that,

in λdCG, taint(·) takes only the label with which the program counter

must be tainted whereas, in λdFG, it additionally requires the expression

that must be evaluated in the tainted environment. This difference

highlights the flow-sensitive nature of the program counter label in

λdCG.

3.1.1 References

λdCG features flow-insensitive labeled references similar to λdFG and

allows programs to create, read, update and inspect the label inside

the LIO monad (see Figure 3.4). The API of these primitives takes

explicitly labeled values as arguments, by making explicit at the type

level, the tagging that occurs in memory, which was left implicit in

previous work (Stefan et al., 2017). Rule [New] creates a reference

labeled with the same label annotation as that of the labeled value it

7Stefan et al. (2017) have proposed an alternative flow-insensitive primitive,
i.e., toLabeled(ℓ, e), which labels the result with the user-assigned label ℓ. The
semantics of λdFG forced us to use toLabeled(e).

50 Coarse-Grained IFC Calculus

(New)

e ⇓θ Labeled ℓ v pc ⊑ ℓ n = |Σ(ℓ)|

〈Σ, pc, new(e)〉 ⇓θ 〈Σ[ℓ 7→ Σ(ℓ)[n 7→ v]], pc, nℓ〉

(Read)

e ⇓θ nℓ Σ(ℓ)[n] = v

〈Σ, pc, !e〉 ⇓θ 〈Σ, pc ⊔ ℓ, v〉

(Write)

e1 ⇓
θ nℓ1

e2 ⇓
θ Labeled ℓ2 v ℓ2 ⊑ ℓ1 pc ⊑ ℓ1

〈Σ, pc, e1 := e2〉 ⇓
θ 〈Σ[ℓ1 7→ Σ(ℓ1)[n 7→ v]], pc, ()〉

(LabelOfRef)

e ⇓θ nℓ

〈Σ, pc, labelOfRef(e)〉 ⇓θ 〈Σ, pc ⊔ ℓ, ℓ〉

Figure 3.4: Big-step semantics for λdCG (references).

receives as an argument, and checks that pc ⊑ ℓ in order to avoid

implicit flows. Rule [Read] retrieves the content of the reference from

the ℓ-labeled memory and returns it. Since this brings data at security

level ℓ in scope, the program counter is tainted accordingly, i.e., pc ⊔

ℓ. Rule [Write] performs security checks analogous to those in λdFG

and updates the content of a given reference and rule [LabelOfRef]

returns the label on a reference and taints the context accordingly.

We conclude this section by noting that the forcing and the thunk

semantics of λdCG satisfy Property 6 (“the final value of the program

counter label of any λdCG program is always at least as sensitive as the

initial value”).

Property 6.

• If 〈Σ, pc, e〉 ⇓θ 〈Σ′, pc′, v〉 then pc ⊑ pc′.

• If 〈Σ, pc, t〉 ⇓θ 〈Σ′, pc′, v〉 then pc ⊑ pc′.

Proof. By mutual induction on the given evaluation derivations.

3.2. Security 51

(LabeledL)

ℓ ⊑ L v1 ≈L v2

Labeled ℓ v1 ≈L Labeled ℓ v2

(LabeledH)

ℓ1 6⊑ L ℓ2 6⊑ L

Labeled ℓ1 v1 ≈L Labeled ℓ2 v2

(Inl)

v1 ≈L v2

inl(v1) ≈L inl(v2)

(Inr)

v1 ≈L v2

inr(v1) ≈L inr(v2)

(F-Closure)

e1 ≡α e2 θ1 ≈L θ2

(e1, θ1) ≈L (e2, θ2)

(T-Closure)

t1 ≡α t2 θ1 ≈L θ2

(t1, θ1) ≈L (t2, θ2)

(RefL)

ℓ ⊑ L

nℓ ≈L nℓ

(RefH)

ℓ1 6⊑ L ℓ2 6⊑ L

n1
ℓ1 ≈L n2

ℓ2

(PcH)

Σ1 ≈L Σ2 pc1 6⊑ L pc2 6⊑ L

〈Σ1, pc1, v1〉 ≈L 〈Σ2, pc2, v2〉

(PcL)

Σ1 ≈L Σ2 pc ⊑ L v1 ≈L v2

〈Σ1, pc, v1〉 ≈L 〈Σ2, pc, v2〉

Figure 3.5: L-equivalence for λdCG values (selected rules) and configurations.

3.2 Security

We now prove that λdCG is secure, i.e., it satisfies termination-insensitive

non-interference. The meaning of the security condition is intuitively

similar to that presented in Section 2.2 for λdFG— when secret inputs

are changed, terminating programs do not produce any publicly observ-

able effect—and based on a similar indistinguishability relation.

3.2.1 L-Equivalence

Figure 3.5 presents the definition of L-equivalence for the interest-

ing cases only. Firstly, L-equivalence for λdCG labeled values relates

public and secret values analogously to λdFG values. Specifically, rule

52 Coarse-Grained IFC Calculus

[LabeledL] relates public labeled values that share the same observ-

able label, i.e., ℓ ⊑ L, and contain related values, i.e., v1 ≈L v2,

while rule [LabeledH] relates secret labeled values, with arbitrary sen-

sitivity labels not below L, i.e., ℓ1 6⊑ L and ℓ2 6⊑ L, and con-

tents. Secondly, L-equivalence relates standard (unlabeled) values ho-

momorphically. For example, values of the sum type are related only

as follows: inl(v1) ≈L inl(v′
1) iff v1 ≈L v′

1 through rule [Inl] and

inr(v2) ≈L inr(v′
2) iff v2 ≈L v′

2 through rule [Inr], i.e., we do not pro-

vide any rule to relate values with different injections, just like in λdFG.

Function and thunk closures are related by rules [F-Closure] and

[T-Closure], respectively. In the rules the function and the monadic

computations are α-equivalent and their environments are related, i.e.,

θ1 ≈L θ2 iff dom(θ1) ≡ dom(θ2) and ∀x.θ1(x) ≈L θ2(x). Labeled ref-

erences, memories and stores are related by L-equivalence analogously

to λdFG. Lastly, L-equivalence relates initial configurations with re-

lated stores, equal program counters and α-equivalent expressions (resp.

thunks), i.e., c1 ≈L c2 iff c1 = 〈Σ1, pc1, e1〉, c2 = 〈Σ2, pc2, e2〉, Σ1 ≈L Σ2,

pc1 ≡ pc2, and e1 ≡α e2 (resp. t1 ≡α t2 for thunks t1 and t2), and final

configurations with related stores and (i) equal public program counter

label, i.e., pc ⊑ L, and related values through rule [PcL], or (ii) arbi-

trary secret program counter labels, i.e., pc1 6⊑ L and pc2 6⊑ L, and

arbitrary values through rule [PcH].

L-equivalence for λdCG is reflexive, symmetric, and transitive, simi-

larly to λdFG (Property 2), and so these properties can be combine to

derive a Square Commutative Diagram for λdCG Stores as well, analo-

gous to Figure 2.6.

3.2.2 Termination-Insensitive Non-Interference

We now formally prove that also the security monitor of λdCG is se-

cure, i.e., it enforces termination-insensitive non-interference (TINI).

The proof technique is the same used for λdFG and similarly based on

store confinement and L-equivalence preservation. However, since the

semantics of the security monitor of λdCG is defined by two mutually re-

cursive relations, i.e., the forcing and the thunk semantics, each lemma

is stated as a pair of lemmas (one for each semantics relation), which

3.2. Security 53

are then proved by mutual induction.

Store Confinement. Store confinement ensures that programs run-

ning in a secret context cannot leak data implicitly through the labeled

store. To prevent these leaks, the security monitor of λdCG aborts pro-

grams that attempt to write public memories in secret contexts, as

these changes may depend on secret data and would be observable by

the attacker. Rules [New] and [Write] enforce exactly this security

policy by allowing programs to write memories only if they are labeled

above the program counter label.

Lemma 3.1 (Store Confinement). For all program counter labels pc 6⊑

L, initial configurations c, and final configurations c′ = 〈Σ′, pc′, v〉:

• If c = 〈Σ, pc, e〉 and c ⇓θ c′, then Σ ≈L Σ′.

• If c = 〈Σ, pc, t〉 and c ⇓θ c′, then Σ ≈L Σ′.

Proof. By mutual induction, using reflexivity in most base cases and

transitivity in case [Bind], where the program counter label remains

above the attacker’s level in the intermediate configuration by Prop-

erty 6. In the base cases [New] and [Write], the programs run with

program counter label secret, i.e., pc 6⊑ L, and write a secret memory

labeled ℓ above pc, i.e., pc ⊑ ℓ, and thus also not observable by the

attacker, i.e., ℓ 6⊑ L.

L-Equivalence Preservation. Next, we prove L-equivalence preserva-

tion in secret contexts, i.e., programs running with program counter

label secret (pc 6⊑ L) cannot leak secret data implicitly through their

final value or observable changes to the store. In λdCG, values are not in-

trinsically labeled like λdFG values, therefore the final values computed

by these programs may not be explicitly labeled. If these values are un-

labeled, how can we establish if they depend on secret data, or if they

are L-equivalent? Luckily, we can safely approximate the sensitivity of

these values with the program counter label.

The program counter label always represents an upper bound over

the sensitivity of all data not explicitly labeled in a program, including

54 Coarse-Grained IFC Calculus

its final value. This is precisely why λdCG stores it in the program con-

figuration, so that the LIO monad can control it through the floating-

label mechanism explained above. Therefore, the fact that the program

counter label is secret in a final configuration indicates that the pro-

gram has unlabeled secret data and thus the final value may depend

on secrets. This approximation is sound, but also very conservative—

in a secret context, the result of a program must always be considered

secret even if the program has not actually used any secret data to com-

pute it—and central to the design of the coarse-grained IFC approach

embodied by λdCG.8

The L-equivalence relation for final configurations reflects this read-

ing of the program counter label for unlabeled values. Specifically, if

both program counter labels are secret, then rule [PcH] (Fig. 3.5) sim-

ply ignores the values in the configurations (because they may depend

on secret data) and only requires the stores to be L-equivalent.9 Then,

to prove L-equivalence preservation in secret contexts, we simply ob-

serve that the program counter label can only increase during program

execution (Property 6), thus programs that start in secret contexts

must also necessarily terminate in secret contexts. Therefore, we can

apply rule [PcH] provided that the final stores are L-equivalent, i.e., if

we can show that programs cannot leak implicitly through the public

memories of the store. To do that, we follow the same proof technique

used for λdFG, i.e., we first prove that the final stores are L-equivalent

to the initial stores by applying store confinement (Lemma 3.1) to each

execution and then derive L-equivalence of the final stores by construct-

ing a square commutative diagram (Fig. 2.6).

Lemma 3.2 (L-Equivalence Preservation in Secret Contexts). For all pro-

gram counter labels pc1 6⊑ L and pc2 6⊑ L, and stores Σ1 ≈L Σ2:

• If 〈Σ1, pc1, e1〉 ⇓
θ1 c1 and 〈Σ2, pc2, e2〉 ⇓

θ2 c2, then c1 ≈L c2.

8Due to this conservative behavior, coarse-grained IFC languages like λdCG may
seem inherently limited, compared to fine-grained languages like λdFG, which track
data-dependencies more precisely, i.e., the result gets labeled secret only if secret
data has been used to compute its value. In Section 5, we prove that λdCG can track
data-dependencies as precisely as λdFG.

9In particular, rule [PcH] accepts arbitrary final values just like rule [LabeledH]
for explicitly labeled values.

3.2. Security 55

• If 〈Σ1, pc1, t1〉 ⇓
θ1 c1 and 〈Σ2, pc2, t2〉 ⇓

θ2 c2, then c1 ≈L c2.

Proof. Assume pc1 6⊑ L, pc2 6⊑ L, Σ1 ≈L Σ2, and let c1 =

〈Σ′
1, pc′

1, v1〉 and c2 = 〈Σ′
2, pc′

2, v2〉. First, we apply store confinement

(Lemma 3.1) to each big-step reduction and obtain Σ1 ≈L Σ′
1 and

Σ2 ≈L Σ′
2. These are then combined with the assumption Σ1 ≈L Σ2 to

form the commutative square diagram for λdCG stores (Fig. 2.6), which

gives Σ′
1 ≈L Σ′

2. Then, we observe that the program counter labels in

the final configurations are secret, i.e., pc′
1 6⊑ L and pc′

2 6⊑ L by

Property 6, and therefore we have c1 ≈L c2 by rule [PcH].

Now, we consider L-equivalence preservation in public contexts.

Since λdCG separates pure computations from monadic computations in

different semantics judgments, we first need to prove that L-equivalence

is preserved also by the pure semantics. Notice that this separation

is not only beneficial for security, as explained above, but simplifies

the security analysis as well. For example, pure computations cannot

inspect secret data in a public context, as this operation requires per-

forming a side-effect. This is because, in public contexts, secret data

is explicitly protected through the Labeled type, which prevents pro-

grams from inspecting secrets directly as they must first extract them

via unlabel(·) : Labeled τ → LIO τ . The monadic type of this thunk

indicates that this computation may perform side-effects (i.e., tainting

the program counter label), which crucially, can be performed only by

the security monitor, in the thunk semantics.10 As a result, the ex-

ecution of pure programs in public contexts cannot depend on secret

data—they simply cannot access secrets in the first place—and so their

(unlabeled) results are always indistinguishable by the attacker.

Lemma 3.3 (Pure L-Equivalence Preservation). For all expressions e1 ≡α e2

and environments θ1 ≈L θ2, if e1 ⇓
θ1 v1 and e2 ⇓

θ2 v2, then v1 ≈L v2.

Proof. By induction on the big-step reductions, which must always step

according to the same rule. In the spurious cases, e.g., when expression

case(e, x.e1, x.e2) steps through rules [Case1] and [Case2], we show a

10The pure semantics simply suspends the evaluation of thunks via rule [Thunk].

56 Coarse-Grained IFC Calculus

contradiction. In particular, assume that the executions follow differ-

ent paths, e.g., we have reductions e ⇓θ1 inl(v1) and e ⇓θ2 inr(v2)

for the scrutinee e. Then, we apply the induction hypothesis to these

reductions and obtain a proof for inl(v1) ≈L inr(v2). But this is impos-

sible: L-equivalence relates values of sum types only if they have the

same injection, i.e., rules [Inl] and [Inr] in Figure 3.5. Therefore, the

two executions must evaluate the scrutinee to the same injection and

follow the same path.

Similarly, the fact that λdCG requires programs to explicitly unla-

bel secret data simplifies also the analysis of implicit flows in monadic

computations. This is because the control flow of λdCG programs can

only depend on unlabeled data, whose sensitivity is coarsely approxi-

mated by the program counter label, as explained above. Since the pro-

gram counter label only gets tainted in response to specific monadic ac-

tions (e.g., unlabel(e)), and not by regular control-flow construct (e.g.,

case(e, x.e1, x.e2)), the evaluation of pure expressions cannot cause im-

plicit information flows. In particular, by encapsulating secret data

in the Labeled data type, λdCG makes all data dependencies—even

those implicit in the program control flow—explicit through the pro-

gram counter label.

Lemma 3.4 (L-Equivalence Preservation in Public Contexts). For all pub-

lic program counter labels pc ⊑ L, environments θ1 ≈L θ2, and stores

Σ1 ≈L Σ2:

• If e1 ≡α e2, 〈Σ1, pc, e1〉 ⇓
θ1 c1, 〈Σ2, pc, e2〉 ⇓

θ2 c2, then c1 ≈L c2;

• If t1 ≡α t2, 〈Σ1, pc, t1〉 ⇓
θ1 c1, 〈Σ2, pc, t2〉 ⇓

θ2 c2, then c1 ≈L c2.

Proof. The two lemmas are proved mutually, by simultaneous induction

on the big-step reductions. The forcing semantics has only a single rule,

i.e., [Force] in Figure 3.3a. Therefore, for the first lemma, we simply

apply Pure L-Equivalence Preservation (Lemma 3.3) to the pure reduc-

tions e1 ⇓
θ1 (t1, θ′

1) and e2 ⇓
θ2 (t2, θ′

2), which gives (t1, θ′
1) ≈L (t2, θ′

2),

i.e., t1 ≡α t2 and θ′
1 ≈L θ′

2, so we complete the proof by mutual induc-

tion with the lemma for thunks. For the second lemma, we observe

3.3. Flow-Sensitive References 57

that the thunks are α-equivalent, i.e., t1 ≡α t2, therefore their reduc-

tions always step according to the same rule. For example, in case

[Unlabel], the labeled values that get unlabeled are L-equivalent, i.e.,

Labeled ℓ1 v1 ≈L Labeled ℓ2 v2, by Lemma 3.3 applied to the pure re-

ductions, and then we proceed by cases on the L-equivalence judgment.

(Notice that the store does not change in rule [Unlabel], so the final

stores are L-equivalent by assumption). In case [LabeledL], the two

values are labeled public, i.e., ℓ1 = ℓ2 ⊑ L, and the values are related,

i.e., v1 ≈L v2. Therefore, the program counter label in the final config-

urations remain observable by the attacker, i.e., pc ⊔ ℓ1 ⊑ L since

pc ⊑ L and ℓ1 ⊑ L, and the final configurations are L-equivalent

by rule [PcL]. In case [LabeledH], the two values are labeled secret,

i.e., ℓ1 6⊑ L and ℓ2 6⊑ L, and the program counter label in the final

configurations are secret, i.e., pc ⊔ ℓ1 6⊑ L and pc ⊔ ℓ2 6⊑ L, and so

the configurations are L-equivalent by rule [PcH].

Finally, we prove termination-insensitive non-interference for λdCG

by combining the L-equivalence preservation lemmas above.

Theorem 3 (λdCG-TINI). If c1 ⇓θ1 c′
1, c2 ⇓θ2 c′

2, θ1 ≈L θ2 and

c1 ≈L c2 then c′
1 ≈L c′

2.

3.3 Flow-Sensitive References

We now continue our exploration of coarse-grained IFC by adding flow-

sensitive references to λdCG and then showing that the extended lan-

guage is secure. This extension is in many ways analogous to the ex-

tension presented in Section 2.3 for λdFG. Therefore, we focus mainly

on the (apparently different) security checks performed by the security

monitor of λdCG and how they relate to those performed by the monitor

of λdFG. In Section 3.3.3, we formally establish the security guarantees

of λdCG extended with flow-sensitive references. Though the security

analysis of λdCG is also complicated by bijections like λdFG, we find

that the separation between pure and monadic computations in λdCG

limits the extra complexity of the analysis only to the monadic frag-

ment of the semantics. In particular, this extension does not affect the

pure fragment of the semantics and so adapting this part of the analysis

58 Coarse-Grained IFC Calculus

is straightforward. Finally, we leverage our mechanized proof scripts to

compare and analyze the security proofs of λdFG and λdCG and discuss

our findings in Section 4.

3.3.1 Syntax

Figure 3.6 introduces the new syntactic constructs and semantics rules

for flow-sensitive references. First, we annotate the reference type con-

structor with a tag s ∈ {I , S }, which indicates the sensitivity of a

reference term. A plain address n : Ref S τ represents a flow-sensitive

reference pointing to a value of type τ , stored in the n-th cell of the

heap. Notice that these references are not annotated with a label repre-

senting the sensitivity of their content, like flow-insensitive references.

This is because flow-sensitive references are, by design, allowed to store

data at different security levels, i.e., the label of these references can

change throughout program execution. Thus, the references themselves

are unlabeled and, instead, the security monitor explicitly labels their

content in the heap when they are created and updated (see below).11

To ensure that values in the heap are always labeled, heaps µ are syntac-

tically defined as lists of explicitly labeled values Labeled ℓ v, whose

label ℓ represents the sensitivity of value v and, at the same time, the

label of any reference pointing to it. The heap is stored in program

configurations 〈Σ, µ, pc, e〉, where programs can access it through the

same thunk constructs used for flow-insensitive references, i.e., new(e),

e1 := e2, !e, and labelOfRef(e). As we explain next, these operations

must be regulated by the security monitor of λdCG to enforce security.

3.3.2 Dynamics

Figure 3.6 extends the thunk semantics with new rules that allow pro-

grams to access the heap through flow-sensitive references without leak-

ing data. Rule [New-FS] creates a new reference by allocating a new

cell in the heap at fresh address n = |µ|, which is initialized with the

11In contrast, flow-insensitive references are annotated with a fixed label, e.g., ℓ

for nℓ :Ref I τ , which represents (an upper bound over) the sensitivity of its content.
Since this label does not change, the content of the reference can be stored directly
in the memory labeled ℓ, without being explicitly labeled.

3.3. Flow-Sensitive References 59

Types: τ ::= · · · | Ref s τ

Values: v ::= · · · | n

Heap: µ ::= [] | Labeled ℓ v : µ

Configuration: c ::= 〈Σ, µ, pc, e〉

(a) Syntax.

(New-FS)

e ⇓θ Labeled ℓ v

pc ⊑ ℓ n = |µ| µ′ = µ[n 7→ Labeled ℓ v]

〈Σ, µ, pc, new(e)〉 ⇓θ 〈Σ, µ′, pc, n〉

(Read-FS)

e ⇓θ n µ[n] = Labeled ℓ v

〈Σ, µ, pc, !e〉 ⇓θ 〈Σ, µ, pc ⊔ ℓ, v〉

(LabelOfRef-FS)

e ⇓θ n µ[n] = Labeled ℓ

〈Σ, µ, pc, labelOfRef(e)〉 ⇓θ 〈Σ, µ, pc ⊔ ℓ, ℓ〉

(Write-FS)

e1 ⇓
θ n e2 ⇓

θ Labeled ℓ′ v µ[n] = Labeled ℓ

pc ⊑ ℓ µ′ = µ[n 7→ Labeled (pc ⊔ ℓ′) v]

〈Σ, µ, pc, e1 := e2〉 ⇓
θ 〈Σ, µ′, pc, ()〉

(b) Dynamics. The shaded constraint corresponds to the no-sensitive upgrade secu-

rity check in λdFG.

Figure 3.6: λdCG extended with flow-sensitive references.

given labeled value argument, i.e., µ[n 7→ Labeled ℓ v]. Importantly,

the rule requires the label of the value to be above the program counter

60 Coarse-Grained IFC Calculus

label, i.e., pc ⊑ ℓ, to avoid leaks.12 Without this constraint, a program

could create a public reference in a secret context, which constitutes a

leak. Compare this rule with the corresponding rule for λdFG, i.e., rule

[New-FS] in Figure 2.7b. The security monitor of λdFG does not check

that the label of the value is above the program counter label—in fact

the rule does not contain any security check at all! Why must λdCG

include that check and instead λdFG can skip it? This is because that

check is redundant in λdFG: the constraint pc ⊑ ℓ performed by the

security monitor of λdCG is an invariant (Property 1) of the semantics

of λdFG. Intuitively, λdFG programs cannot create public references in

secret contexts because the result of a computation is always labeled

above the current program counter label. Since λdCG does not enjoy this

invariant, i.e., computations can return values labeled public even in se-

cret contexts, that check must be included in all the rules that perform

write side-effects (i.e., also in rules [New], [Write] for flow-insensitive

references in Figure 3.4) to avoid leaks.

Rule [Read-FS] reads a flow-sensitive reference by retrieving its

content from the heap, i.e., µ[n] = Labeled ℓ v, and returning its

value v. Importantly, the rule taints the program counter label, i.e.,

pc ⊔ ℓ, to indicate that data at security level ℓ is now in scope. Rule

[LabelOfRef-FS] is similar, but returns the label of the reference,

i.e., the same label ℓ that also annotates its content, and so it taints

the program counter label with the label itself, i.e., pc ⊔ ℓ.

Lastly, rule [Write-FS] updates the content of a flow-sensitive ref-

erence n with a new value Labeled ℓ′ v, which replaces the current

value stored in the heap, i.e., µ[n] = Labeled ℓ . Notice that the new

value can be less or even more sensitive than the old value, i.e., labels

ℓ and ℓ′ can be in any relation. This is exactly why flow-sensitive refer-

ences are, in general, more permissive than flow-insensitive references

also in λdCG.13

12This restriction, known as no write-down (Bell and La Padula, 1976), is a core
design principles of several static IFC libraries (Russo, 2015; Vassena et al., 2017),
which was not identified as such in dynamic IFC libraries (Stefan et al., 2011; Stefan
et al., 2017).

13In particular, Example 2.1 can be adapted to λdCG as well, i.e., program r ←
new(p); r := s; !r is aborted with flow-insensitive references, but accepted with flow-
sensitive references.

3.3. Flow-Sensitive References 61

In the rule, the constraint pc ⊑ ℓ is analogous to the NSU check for

λdFG. (For convenience, these equivalent checks are shaded in Figure

2.7b and 3.6b). Intuitively, this check allows a reference update only if

the decision to update that reference depends on data less sensitive than

the reference itself.14 Though the NSU checks in λdFG and λdCG pro-

tect against the same type of implicit data leaks, they involve different

labels, i.e., the intrinsic label of the reference in λdFG and the program

counter label in λdCG. In λdFG, the sensitivity of the reference is repre-

sented by its intrinsic label, which can then be used directly in the NSU

check. In contrast, λdCG does not feature intrinsic labels, therefore, we

use the program counter label as a coarse, but sound, approximation of

the sensitivity of the reference, hence the NSU check pc ⊑ ℓ. Notice

that when the new value is written in the heap, the rule taints its label

with the program counter label, i.e., µ[n 7→ Labeled (pc ⊔ ℓ′) v], for

the same reason. Intuitively, the sensitivity of the content is determined

by the new value, which is explicitly labeled ℓ′, and by the sensitivity of

the (unlabeled) reference, approximated by the program counter label

pc, i.e., the new content has sensitivity at most pc ⊔ ℓ′.15

3.3.3 Security

The security analysis of λdCG extended with flow-sensitive references is

very much similar to the analysis presented in Section 2.3.3 for λdFG.

In particular, the security monitor of λdCG allocates both public and

secret data in the same linear heap and so secret-dependent allocations

can influence the addresses of subsequent public references, just like in

λdFG. Although this can create a dependency between concrete heap

addresses and secret data, security is not at stake because references

are opaque in λdCG as well. To formally show that, we need to adapt

the L-equivalence relation, and consequently the security analysis, to

use a bijection to reason about corresponding references with secret-

dependent, yet indistinguishable, heap addresses.

14λdCG would be insecure without this constraint. In particular, programs could
leak data through secret-dependent reference updates, similarly to Example 2.2.

15In addition, by tainting the label ℓ′ with the program counter label pc, the rule
automatically respects the no write-down restriction, i.e., pc ⊑ pc ⊔ ℓ′, hence no
explicit security check is needed like in rules [New], [Write], and [New-FS].

62 Coarse-Grained IFC Calculus

(Valid-Inputs)

c = 〈Σ, µ, pc e〉

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(θ)

⊢ Valid(c, θ)

(Valid-Outputs)

c = 〈Σ, µ, pc, v〉

n = |µ| n ⊢ Valid(Σ) n ⊢ Valid(µ) n ⊢ Valid(v)

⊢ Valid(c)

Figure 3.7: Judgments for valid program inputs and outputs in λdCG.

L-Equivalence up to Bijection. Formally, we redefine L-equivalence

as a relation ≈β
L ⊆ Value × Value and add the bijection β to ≈L in

all the rules previously defined for λdCG. These rules do not use the

bijection, which is needed instead only in the rules for flow-sensitive

references and heaps. In particular, two flow-sensitive references are

indistinguishable only if their heap addresses are matched by the bijec-

tion, i.e., we add the following new rule:

(Ref-FS)

(n1, n2) ∈ β

n1 ≈
β
L n2

Similarly, in the definition of L-equivalence for heaps, the addresses

related by the bijection identify corresponding heap cells, which must

be recursively related, as they can be read through related references.16

Definition 3 (Heap L-equivalence). Two heaps µ1 and µ2 are L-equivalent

up to bijection β, written µ1 ≈
β
L µ2, if and only if:

1. dom(β) ⊆ {0, . . . , |µ1| − 1},

2. rng(β) ⊆ {0, . . . , |µ2| − 1}, and

16Notice that these addresses are valid in the heap thanks to the first two side-
conditions, which ensure that the domain and range of the bijection are compatible
with the address space of the heaps. See also the explanation of Definition 2.

3.3. Flow-Sensitive References 63

3. For all addresses n1 and n2, if (n1, n2) ∈ β, then µ1[n1] ≈β
L

µ2[n2].

In the definition above, only the rules for labeled values can re-

late heap cells µ1[n1] ≈β
L µ2[n2]. This is because heaps are syntacti-

cally defined as a list of explicitly labeled values in Figure 3.6a, i.e.,

µ1[n1] = Labeled ℓ1 v1 for some label ℓ1 and value v1 and similarly

µ2[n2] = Labeled ℓ2 v2, and the only rules that give Labeled ℓ1 v1 ≈
β
L

Labeled ℓ2 v2 are [LabeledL] and [LabeledH] in Figure 3.5.

Similarly to λdFG, the L-equivalence relation up to bijection for

λdCG satisfies restricted reflexivity, symmetricity, transitivity, and weak-

ening (i.e., Property 5), and so we can construct square commutative

diagrams for stores and heaps (i.e., Lemma 2.7) in λdCG as well. No-

tice that reflexivity is restricted only to valid program constructs, i.e.,

values, environments, memories, stores, heaps, and configurations that

are free of dangling flow-sensitive references, just like it is in λdFG and

for the same technical reasons. These side conditions are formalized by

straightforward judgments, e.g., n ⊢ Valid(θ) and n ⊢ Valid(v) indi-

cating that the references contained in value v and environment θ are

valid in a heap of size n, which are mutually and recursively defined

like in Figure 2.8. In these judgments, the size parameter n is instan-

tiated by the top-level judgment for program inputs and outputs with

the size of the current heap µ, i.e., n = |µ| as shown in Figure 3.7.

The fact that the security lemmas of λdCG assume valid configurations

does not actually weaken the security guarantees of the language: these

judgments are naturally preserved by the pure and monadic semantics

of λdCG.

Property 7 (Valid Invariant).

1. If e ⇓θ v and n ⊢ Valid(θ), then n ⊢ Valid(v).

2. If c ⇓θ c′ and ⊢ Valid(c, θ), then ⊢ Valid(c′).

Termination-Insensitive Non-Interference. We now prove that λdCG

extended with flow-sensitive references enforces termination-insensitive

non-interference. This result is also based on two lemmas, i.e., store

64 Coarse-Grained IFC Calculus

and heap confinement and L-equivalence preservation, which are com-

plicated by the fact that L-equivalence is defined up to a bijection, sim-

ilarly to λdFG. These lemmas rely on bijections to relate flow-sensitive

references allocated in public contexts: these references are observable

by the attacker, but their heap addresses may differ due to previous,

secret-dependent allocations. In contrast, references allocated in secret

contexts cannot be observed by the attacker and must be ignored by

the bijection. For example, in the store and heap confinement lemma,

we show that initial and final stores and heaps are L-equivalent, for

programs executed in secret contexts. Which bijection should we use

to relate the addresses of flow-sensitive references in this lemma? Intu-

itively, the addresses of references already allocated in the initial config-

uration remain unchanged in the final configuration (because references

cannot be tempered in λdCG), so they can be related by the identity

bijection. Furthermore, since references allocated in a secret context are

not observable by the attacker, the lemma shows L-equivalence up to

a identity bijection that ignores any new heap allocation performed by

the program, i.e., up to the identity bijection restricted to the domain

of the initial heap.

Lemma 3.5 (Store and Heap Confinement). For all program counter la-

bels pc 6⊑ L, valid initial configurations and environments ⊢ Valid(c, θ),

and final configurations c′ = 〈Σ′, µ′, pc′, v〉:

• If c = 〈Σ, µ, pc, e〉 and c ⇓θ c′, then Σ ≈
ι|µ|

L Σ′ and µ ≈
ι|µ|

L µ′.

• If c = 〈Σ, µ, pc, t〉 and c ⇓θ c′, then Σ ≈
ι|µ|

L Σ′ and µ ≈
ι|µ|

L µ′.

Proof. Analogous to Lemma 2.8. Since λdCG encapsulates side-effects

in a monad, we need to explicitly propagate the valid judgment only

in very few cases compared to λdFG. In particular, we only apply Prop-

erty 7.1 in rule [Force] and Property 7.2 in rule [Bind].

Next, we prove L-equivalence preservation in secret contexts. Since

the programs considered in this lemma run in a secret context, the

addresses of the flow-sensitive references allocated during these execu-

tions must be ignored by the bijection, i.e., the final configurations must

3.3. Flow-Sensitive References 65

be L-equivalent up to the same bijection used for the initial configura-

tions. We prove that by constructing a square commutative diagram

for heaps and stores, similar to Figure 2.9. (We explain the construc-

tion for heaps, stores are treated analogously).17 In the figure, heaps

µ1 and µ2 are from the initial configurations of the lemma, while µ′
1

and µ′
2 are the heaps from the final configurations. Since the initial con-

figurations are L-equivalent, we have the vertical edge on the left, i.e.,

µ1 ≈
β
L µ2, by assumption. Instead, the horizontal edges of the square

are obtained by applying store and heap confinement to each individ-

ual program execution. In particular, the lemma shows that the initial

and final heaps in these executions are L-equivalent up to appropriate

identity bijections, i.e., µ1 ≈
ι|µ1|

L µ′
1 and µ2 ≈

ι|µ2|

L µ′
2, which ignore

new heap allocations, as explained above. Therefore, the bijection that

relates the final heaps from the vertical edge on the right of the square

can be simplified. Specifically, the identity bijections cancel out in the

composition with the bijection from the initial L-equivalence relation,

i.e., ι|µ2| ◦ β ◦ ι−1
|µ1| = β, and so the final heaps remain related up to

the same bijection β used for the initial heaps, i.e., µ′
1 ≈

β
L µ′

2. In the

following, we use dot-notation to access individual elements of a con-

figuration, e.g., we write c.pc to extract the program counter pc from

the configuration c = 〈 , , pc, 〉.

Lemma 3.6 (L-Equivalence Preservation in Secret Contexts). For all

valid inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections β, such

that c1.pc 6⊑ L, c2.pc 6⊑ L, and c1 ≈
β
L c2, if c1 ⇓

θ1 c′
1 and c2 ⇓

θ2 c′
2,

then c′
1 ≈

β
L c′

2.

We now adapt the proof of L-equivalence in public contexts. The

references allocated by the program considered in this lemma are ob-

servable by the attacker and so we have to construct an appropriate

bijection to relate their addresses in the final configurations. However,

since these allocations occur at run time and may depend on the pro-

gram inputs, we cannot, in general, predict the exact bijection needed

to relate them. Therefore, the final bijection is existentially quantified

17Heaps and stores are very often treated homogeneously in proofs, therefore our
mechanized proof scripts pairs them up in a program state helper data structure to
shorten some proofs.

66 Coarse-Grained IFC Calculus

in the lemma, so that the right bijection can be precisely constructed,

depending on the program execution, in each case of the proof itself. Un-

fortunately, existential quantification also complicates the proof, which

now involves reasoning about terms that are L-equivalent, but up to ar-

bitrary bijections, and so may not be combined together. To solve this

issue, the lemma additionally requires to prove an ordering invariant

about these bijections, i.e., that the final bijection extends the initial bi-

jection. Intuitively, this extra property solves the issue described above

because L-equivalent relations up to “smaller” bijections can be lifted

to “larger” bijections via weakening (Property 5.4), and so combined

together.

It is worth pointing out that this issue is not specific to λdCG: the

security analysis of λdFG presents the same issue, which we solve in the

same way in Section 2.4. However, only the analysis of the monadic

fragment of the semantics of λdCG is affected by the issue described

above: the final bijection does not need to be quantified when reason-

ing about the pure fragment of the semantics. This is because pure

reductions cannot allocate new references (they do not even have ac-

cess to a heap) and so the same bijection that relates their input values

can also relate their output values. This simplifies our formal analy-

sis, as previous lemmas and their proofs are largely unaffected by the

addition of bijections. For example, to adapt Lemma 3.3, i.e., Pure L-

Equivalence Preservation, for flow-sensitive references, we only need to

add the bijection β to the L-equivalent relations in the statement of

lemma: the proof requires no changes.

Lemma 3.7 (Pure L-Equivalence Preservation). For all expressions e1 ≡α e2,

bijections β, and environments θ1 ≈
β
L θ2, if e1 ⇓

θ1 v1 and e2 ⇓
θ2 v2,

then v1 ≈
β
L v2.

The separation between pure and monadic semantics fragments of

λdCG simplifies the L-equivalence preservation of monadic computa-

tions as well. This is because most of the rules of this fragment of the se-

mantics only include pure reductions and so intermediate L-equivalent

results can be combined directly, i.e., no weakening is required in most

cases.

3.3. Flow-Sensitive References 67

Lemma 3.8 (L-Equivalence Preservation in Public Contexts). For all

valid initial inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections

β, such that c1.pc = c2.pc ⊑ L, c1 ≈
β
L c2, and θ1 ≈

β
L θ2, if c1 ⇓

θ1 c′
1

and c2 ⇓
θ2 c′

2, then there exists an extended bijection β′ ⊇ β such

that c′
1 ≈

β′

L c′
2.

Finally, we combine L-equivalence preservation in public and secret

contexts and prove termination-insensitive non-interference for λdCG

extended with flow-sensitive references.

Theorem 4 (λdCG-TINI with Bijections). For all valid inputs ⊢ Valid(c1, θ1)

and ⊢ Valid(c2, θ2) and bijections β, such that c1 ≈
β
L c2, θ1 ≈

β
L θ2,

if c1 ⇓
θ1 c′

1, and c2 ⇓
θ2 c′

2, then there exists an extended bijection

β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Conclusion. At this point, we have formalized two calculi—λdFG and

λdCG—that perform dynamic IFC at fine and coarse granularity, re-

spectively. While they have some similarities, i.e., they are both func-

tional languages that feature labeled annotated data, references and

label introspection primitives, and ensure a termination-insensitive se-

curity condition, they also have striking differences. First and foremost,

they differ in the number of label annotations—pervasive in λdFG and

optional in λdCG—with significant implications for the programming

model and usability. Second, they differ in the nature of the program

counter, flow-insensitive in λdFG and flow-sensitive in λdCG. Third, they

differ in the way they deal with side-effects—λdCG allows side-effectful

computations exclusively inside the monad, while λdFG is impure, i.e.,

any λdFG expression can modify the state. This difference affects the

effort required to implement a system that performs language-based

fine- and coarse-grained dynamic IFC. In fact, several coarse-grained

IFC languages (Schmitz et al., 2018; Buiras et al., 2015; Jaskelioff and

Russo, 2011; Tsai et al., 2007; Russo et al., 2009; Russo, 2015) have

been implemented as an embedded domain specific language (EDSL) in

a Haskell library with little effort, exploiting the strict control that the

host language provides on side-effects. Adapting an existing language

to perform fine-grained IFC requires major engineering effort, because

68 Coarse-Grained IFC Calculus

several components (all the way from the parser to the runtime system)

must be adapted to be label-aware.

In the next section we discuss our verified artifacts of λdFG and

λdCG and compare their mechanized proofs of non-interference. Then,

in Section 5 and 6 we show that—despite their differences—these two

calculi are, in fact, equally expressive.

4

Verified Artifacts

We now discuss our verified artifacts, in which we model λdFG and

λdCG and provide machine-checked proofs of their security guarantees.

We have formalized these languages using Agda (Norell, 2009; Bove

et al., 2009), a dependently typed functional language and an interac-

tive proof assistant based on intuitionistic type theory. In our proof

scripts, we embed the syntax, the type system, and the semantics of

λdFG and λdCG into Agda data types, where we leverage dependent

types to maintain additional assumptions about terms and judgments.

For example, we use well-typed syntax and typed DeBrujin indexes to

ensure that expressions, values, and environments are intrinsically well-

scoped and well-typed (Abel et al., 2019), which in turn let us define

type-preserving big-step semantics judgments. In the following, we an-

alyze our artifact and find that the security proofs for λdFG are longer

(between 43% and 74%) than those for λdCG. These empirical results

confirm the general sense that coarse-grained IFC languages are easier

to analyze and prove secure than fine-grained IFC languages.

69

70 Verified Artifacts

Table 4.1: The table reports the size (Agda LOC excluding blank lines and com-
ments) of the proof scripts that formalize λdFG and λdCG and their security proofs
with flow-insensitive references (FI) and with also flow-sensitive references (FI +
FS).

FI FI + FS

λdFG λdCG λdFG λdCG

Types 15 16 16 17

Syntax 82 85 86 93

Semantics 137 134 164 162

Valid - - 230 198

L-Equivalence 143 138 212 217

Security 222 155 409 235

Lattice 148 148

Store
152

112

Memory 153

Heap - 337

Bijection - 478

Other 66 485

Total 965 894 2,830 2,635

4.1 Artifact Analysis

Table 4.1 summarizes the size of our proof scripts. In the table, we

report the number of lines of Agda code needed to formalize different

parts of the fine- and coarse-grained languages (λdFG and λdCG) featur-

ing only flow-insensitive references (FI) and also with the addition of

flow-sensitive references (FI + FS).1

The bottom part of the table lists parts of the formalization that

are shared and reused for both languages, where categories Store,

Memory and Heap include also definitions and proofs relative to their

1FI is the companion artifact of the conference version of this article (Vassena
et al., 2019), available at https://hub.docker.com/r/marcovassena/granularity.
We developed artifact FI + FS by adding flow-sensitive ref-
erences to artifact FI. The extended artifact is available at
https://hub.docker.com/r/marcovassena/granularity-ftpl.

https://hub.docker.com/r/marcovassena/granularity
https://hub.docker.com/r/marcovassena/granularity-ftpl

4.1. Artifact Analysis 71

Table 4.2: The table reports the size of the main parts of the formal security
analysis (Security) of λdFG and λdCG with and without flow-sensitive references.
Confinement refers to the store and heap confinement lemma, Secret Context
and Public Context to L-equivalence preservation in secret and public contexts,
respectively, and Pure Preservation to L-equivalence preservation for the pure
semantics fragment of λdCG.

FI FI + FS

λdFG λdCG λdFG λdCG

Confinement 51 24 89 44

Secret Context 13 23 16 29

Pure Preservation - 35 - 35

Public Context 138 46 273 85

Tini 9 17 10 21

Other 11 10 21 21

Total 222 155 409 235

L-equivalence relations and valid judgments.2 The line counts for basic

definitions (i.e., Types, Syntax, Semantics, and L-equivalence)

are roughly the same for the two languages, in both artifacts. The only

significant difference is in Security, which represents the size of the

scripts that state and prove the main security lemmas and theorems of

the languages. In particular, we find that the security proofs in λdFG are

about 43% longer than in λdCG in the artifact with only flow-insensitive

references (FI) and 74% longer for the languages extended with flow-

sensitive references (FI + FS). To understand better the reason behind

this gap, we compare Security in more detail in Table 4.2, which

reports the size of the following lemmas and theorems:

⊲ Store and Heap Confinement

⊲ L-Equivalence Preservation in Secret Context

⊲ Pure L-Equivalence Preservation

⊲ L-Equivalence Preservation in Public Context

2We report only one number for Store and Memory because they are defined
together in the same module in FI, but in separate modules in FI + FS. In the sec-
ond artifact, Memory and Heap are also defined by instantiating a generic container
data structure for labeled data, which is counted in Other.

72 Verified Artifacts

⊲ Termination-Insensitive Non-Interference

First of all, we observe that in λdFG the Confinement lemma is

about twice as long as in λdCG. This is because side-effects can occur

in every reduction rule in λdFG, while most constructs in λdCG are side-

effect free and so we simply have to consider fewer cases in the second

proof. For the languages extended with flow-sensitive reference (FI +

FS), these proofs roughly double in size, as they additionally need to

consider the validity of program configurations in order to reason about

L-equivalence up to bijection. The size of Secret Context and Tini

is modest in both variants of each languages. Compared to λdFG, λdCG

requires twice as many lines of code for these results simply because

for this language each result has to be stated and proved twice, once

for the forcing semantics and once for the thunk semantics.

Public Context is the lemma where we observe the greatest gap

in the number of lines needed in λdFG and λdCG. In artifact FI, we find

that Public Context for λdFG is 70% longer than Public Context

and Pure Preservation for λdCG combined, and 128% longer when

considering also flow-sensitive references (FI + FS). Since all values

are intrinsically labeled in λdFG, those proofs have to explicitly (i) rea-

son about the sensitivity of program inputs and intermediate values in

most cases of the proof, and (ii) rule out implicit flows for control-flow

constructs. In contrast, most constructs in λdCG are security unaware

and so evaluated by the pure fragment of the semantics, where the se-

curity analysis is straightforward. In particular, since pure reductions

cannot perform side-effects or inspect labeled data, no implicit flows

can arise in the proof of Pure Preservation, which follows by simple

induction (35 LOC). Only in the proof of Public Context for λdCG

we need to reason about data flows explicitly using security labels, but

even there implicit flows are less problematic, thanks to the monadic

structure of computations. The line counts for Public Context in FI

+ FS show that the extra complexity of dealing with valid assumptions

increases the size of the proofs in both languages, which grows by 85%

for λdCG and 98% for λdFG.3 Not only the proofs of λdFG are longer

3Importantly though, the addition of flow-sensitive references did not require
any change in the proof of Pure Preservation.

4.1. Artifact Analysis 73

than λdCG, but they are also more complicated because they often must

(i) combine data related up to different bijections, and (ii) propagate

the assumption that program configurations are valid in inductive cases.

This results in an increased number of calls to helper lemmas and prop-

erties in λdFG, compared to λdCG. For example, the proof for Public

Context in λdFG requires 22 calls to weakening (Property 5.4) and

52 calls to valid invariant (Property 4), while the same proof in λdCG

requires only 4 calls in total.

5

Fine- to Coarse-Grained Program Translation

This section presents a provably semantics-preserving program trans-

lation from the fine-grained dynamic IFC calculus λdFG to the coarse-

grained calculus λdCG. At a high level, the translation performs two

tasks (i) it embeds the intrinsic label annotation of λdFG values into

an explicitly labeled λdCG value via the Labeled type constructor and

(ii) it restructures λdFG side-effectful expressions into monadic opera-

tions inside the LIO monad.

5.1 Types and Values

Our type-driven approach starts by formalizing this intuition in the

function 〈〈 · 〉〉, which maps the λdFG type τ to the corresponding λdCG

type 〈〈τ〉〉 (see Figure 5.1a). The function is defined by induction on

types and recursively adds the Labeled type constructor to each ex-

isting λdFG type constructor. For the function type τ1 → τ2, the result

is additionally monadic, i.e., 〈〈τ1〉〉 → LIO 〈〈τ2〉〉. This is because the

function’s body in λdFG may have side-effects. Furthermore, the trans-

lation for references types Ref s τ preserves the sensitivity tag of the

reference, i.e., Ref s 〈〈τ〉〉.

The translation for values (Figure 5.1b) is straightforward. Each

74

5.2. Expressions 75

〈〈unit〉〉 = Labeled unit

〈〈L 〉〉 = Labeled L

〈〈τ1 × τ2〉〉 = Labeled (〈〈τ1〉〉 × 〈〈τ2〉〉)

〈〈τ1 + τ2〉〉 = Labeled (〈〈τ1〉〉+ 〈〈τ2〉〉)

〈〈τ1 → τ2〉〉 = Labeled (〈〈τ1〉〉 → LIO 〈〈τ2〉〉)

〈〈Ref s τ〉〉 = Labeled (Ref s 〈〈τ〉〉)

(a) Types.

〈〈rℓ〉〉 = Labeled ℓ 〈〈r〉〉

〈〈()〉〉 = ()

〈〈ℓ〉〉 = ℓ

〈〈(v1, v2)〉〉 = (〈〈v1〉〉, 〈〈v2〉〉)

〈〈inl(v)〉〉 = inl(〈〈v〉〉)

〈〈inr(v)〉〉 = inr(〈〈v〉〉)

〈〈(x.e, θ)〉〉 = (x.〈〈e〉〉, 〈〈θ〉〉)

〈〈nℓ〉〉 = nℓ

〈〈n〉〉 = n

(b) Values.

Figure 5.1: Translation from λdFG to λdCG.

λdFG label tag becomes the label annotation in a λdCG labeled value.

The translation is homomorphic in the constructors on raw values. The

translation converts a λdFG function closure into a λdCG thunk closure

by translating the body of the function to a thunk, i.e., 〈〈e〉〉 (see be-

low), and translating the environment pointwise, i.e., 〈〈θ〉〉 = λx.〈〈θ(x)〉〉.

Finally, the translation preserves the memory address and the label

for flow-insensitive references, i.e., 〈〈nℓ〉〉 = nℓ, and the heap address for

flow-sensitive references, i.e., 〈〈n〉〉 = n.

5.2 Expressions

We show the translation of λdFG expressions to λdCG monadic thunks in

Figure 5.2. We use the standard do notation for readability.1 First, no-

tice that the translation of all constructs occurs inside a toLabeled(·)

block. This achieves two goals, (i) it ensures that the value that re-

sults from a translated expression is explicitly labeled and (ii) it cre-

ates an isolated nested context where the translated thunk can execute

without raising the program counter label at the top level. Inside the

toLabeled(·) block, the program counter label may rise, e.g., when

some intermediate result is unlabeled, and the translation relies on

1Syntax do x ← e1; e2 desugars to bind(e1, x.e2) and syntax e1; e2 to
bind(e1, .e2).

76 Fine- to Coarse-Grained Program Translation

〈〈()〉〉 = toLabeled(return(()))

〈〈ℓ〉〉 = toLabeled(return(ℓ))

〈〈(λx.e)〉〉 =

toLabeled(return(λx.〈〈e〉〉))

〈〈inl(e)〉〉 = toLabeled(do

lv ← 〈〈e〉〉

return(inl(lv)))

〈〈inr(e)〉〉 = toLabeled(do

lv ← 〈〈e〉〉

return(inr(lv)))

〈〈(e1, e2)〉〉 = toLabeled(do

lv1 ← 〈〈e1〉〉

lv2 ← 〈〈e2〉〉

return(lv1, lv2))

〈〈x〉〉 = toLabeled(unlabel(x))

〈〈e1 e2〉〉 = toLabeled(do

lv1 ← 〈〈e1〉〉

lv2 ← 〈〈e2〉〉

v1 ← unlabel(lv1)

lv ← v1 lv2

unlabel(lv))

〈〈case(e, x.e1, x.e2)〉〉 =

toLabeled(do

lv ← 〈〈e〉〉

v ← unlabel(lv)

lv′ ← case(v, x.〈〈e1〉〉, x.〈〈e2〉〉)

unlabel(lv′))

〈〈fst(e)〉〉 = toLabeled(do

lv ← 〈〈e〉〉

v ← unlabel(lv)

unlabel(fst(v)))

〈〈snd(e)〉〉 = toLabeled(do

lv ← 〈〈e〉〉

v ← unlabel(lv)

unlabel(snd(v)))

〈〈e1 ⊑
? e2〉〉 = toLabeled(do

lv1 ← 〈〈e1〉〉

lv2 ← 〈〈e2〉〉

lu ← toLabeled(return(()))

v1 ← unlabel(lv1)

v2 ← unlabel(lv2)

return(if

v1 ⊑
? v2

then inl(lu)

else inr(lu))

〈〈taint(e1, e2)〉〉 =

toLabeled(do

lv1 ← 〈〈e1〉〉

v1 ← unlabel(lv1)

taint(v1)

lv2 ← 〈〈e2〉〉

unlabel(lv2))

〈〈labelOf(e)〉〉 =

toLabeled(do

lv ← 〈〈e〉〉

labelOf(lv))

〈〈getLabel〉〉 =

toLabeled(getLabel))

Figure 5.2: Translation from λdFG to λdCG (expressions).

5.2. Expressions 77

LIO’s floating-label mechanism to track dependencies between data of

different security levels. In particular, we will show later that the value

of the program counter label at the end of each nested block coincides

with the label annotation of the λdFG value that the original expression

evaluates to. For example, introduction forms of ground values (unit,

labels, and functions) are simply returned inside the toLabeled(·)

block so that they get tagged with the current value of the program

counter label just as in the corresponding λdFG introduction rules

([Label,Unit,Fun]). Introduction forms of compounds values such as

inl(e), inr(e) and (e1, e2) follow the same principle. The translation

simply nests the translations of the nested expressions inside the same

constructor, without raising the program counter label. This matches

the behavior of the corresponding λdFG rules [Inl,Inr,Pair].2 For ex-

ample, the λdFG reduction ((), ()) ⇓∅L (()L
, ()L)

L
maps to a λdCG

term that reduces to Labeled L (Labeled L (), Labeled L ()) when

started with program counter label L.

The translation of variables gives some insight into how the λdCG

floating-label mechanism can simulate λdFG’s tainting approach. First,

the type-driven approach set out in Figure 5.1a demands that functions

take only labeled values as arguments, so the variables in the source

program are always associated to a labeled value in the translated pro-

gram. The values that correspond to these variables are stored in the

environment θ and translated separately, e.g., if θ(x) = rℓ in λdFG, then

x gets bound to 〈〈rℓ〉〉 = Labeled ℓ 〈〈r〉〉 when translated to λdCG. Thus,

the translation converts a variable, say x, to toLabeled(unlabel(x)),

so that its label gets tainted with the current program counter label.

More precisely, unlabel(x) retrieves the labeled value associated with

the variable, i.e., Labeled ℓ 〈〈r〉〉, taints the program counter with its

label to make it pc ⊔ ℓ, and returns the content, i.e., 〈〈r〉〉. Since

unlabel(x) occurs inside a toLabeled(·) block, the code above re-

sults in Labeled (pc ⊔ ℓ) 〈〈r〉〉 when evaluated, matching precisely the

tainting behavior of λdFG rule [Var], i.e., x ⇓
θ[x 7→rℓ]
pc rpc ⊔ ℓ.

The elimination forms for other types (function application, pair

2We name a variable lv if it gets bound to a labeled value, i.e., to indicate that
the variable has type Labeled τ .

78 Fine- to Coarse-Grained Program Translation

projections and case analysis) follow the same approach. For example,

the code that translates a function application e1 e2 first executes the

code that computes the translated function, i.e., lv1 ← 〈〈e1〉〉, then the

code that computes the argument, i.e., lv2 ← 〈〈e2〉〉 and then retrieves

the function from the first labeled value, i.e., v1 ← unlabel(lv1).3

The function v1 applied to the labeled argument lv2 gives a compu-

tation that gets executed and returns a labeled value lv that gets

unlabeled to expose the final result (the surrounding toLabeled(·)

wraps it again right away). The translation of case analysis is analo-

gous. The translation of pair projections first converts the λdFG pair

into a computation that gives a λdCG labeled pair of labeled values, say

Labeled ℓ (Labeled ℓ1 〈〈r1〉〉, Labeled ℓ2 〈〈r2〉〉) and removes the label

tag on the pair via unlabel, thus raising the program counter label to

pc ⊔ ℓ. Then, it projects the appropriate component and unlabels it,

thus tainting the program counter label even further with the label of

either the first or the second component. This coincides with the taint-

ing mechanism of λdFG for projection rules, e.g., in rule [Fst] where

fst(e) ⇓θ
pc r1

pc ⊔ ℓ ⊔ ℓ1 if e ⇓θ
pc (r1

ℓ1, r2
ℓ2)

ℓ
.

Lastly, translating taint(e1, e2) requires (i) translating the expres-

sion e1 that gives the label, (ii) using taint(·) from λdCG to explic-

itly taint the program counter label with the label that e1 gives, and

(iii) translating the second argument e2 to execute in the tainted con-

text and unlabeling the result. The construct labelOf(e) of λdFG

uses the corresponding λdCG primitive applied on the corresponding

labeled value, say Labeled ℓ 〈〈r〉〉, obtained from the translated ex-

pression. Notice that labelOf(·) taints the program counter label in

λdCG, which rises to pc ⊔ ℓ, so the code just described results in

Labeled (pc ⊔ ℓ) ℓ, which corresponds to the translation of the result

in λdFG, i.e., 〈〈ℓℓ〉〉 = Labeled ℓ ℓ because pc ⊔ ℓ ≡ ℓ, since pc ⊑ ℓ from

Property 1. The translation of getLabel follows naturally by simply

wrapping λdCG’s getLabel inside a toLabeled(·), which correctly re-

3Notice that it is incorrect to unlabel the function before translating the argu-
ment, because that would taint the program counter label, which would raise at
level, say pc ⊔ ℓ, and affect the code that translates the argument, which was to
be evaluated with program counter label equal to pc by the original flow-insensitive

λdFG rule [App] for function application.

5.2. Expressions 79

(WkenType)

Γ \ x ⊢ e : τ

Γ ⊢ wken(x, e) : τ

(Wken)

e ⇓θ \ x v

wken(x, e) ⇓θ v

Figure 5.3: Typing and semantics rules of wken for λdCG.

turns the program counter label labeled with itself, i.e., Labeled pc pc.

5.2.1 Note on Environments and Weakening

The semantics rules of λdFG and λdCG feature an environment θ for in-

put values that gets extended with intermediate values during program

evaluation and that may be captured inside a closure. Unfortunately,

this capturing behavior is undesirable for our program translation. The

program translation defined above introduces temporary auxiliary vari-

ables that carry the value of intermediate results, e.g., the labeled value

obtained from running a computation that translates some λdFG ex-

pression. When the translated program is executed, these values end

up in the environment, e.g., by means of rules [App] and [Bind], and

mix with the input values of the source program and output values

as well, thus complicating the correctness statement of the translation,

which now has to account for those extra variables as well. In order to

avoid this nuisance, we employ a special form of weakening that allows

shrinking the environment at run-time and removing spurious values

that are not needed in the rest of the program. In particular, expres-

sion wken(x, e) has the same type as e if variables x are not free in

e, see the formal typing rule [WkenType] in Figure 5.3. At run-time,

the expression wken(x, e) evaluates e in an environment from which

variables x have been dropped, so that they do not get captured in any

closure created during the execution of e. Rule [Wken] is part of the

pure semantics of λdCG—the semantics of λdFG includes an analogous

rule.

We remark that this expedient is not essential—we can avoid it by

slightly complicating the correctness statement to explicitly account for

those extra variables. Nor is this expedient particularly interesting. In

80 Fine- to Coarse-Grained Program Translation

〈〈new(e)〉〉 =

toLabeled(do

lv ← 〈〈e〉〉

new(lv))

〈〈 ! e〉〉 =

toLabeled(do

lr ← 〈〈e〉〉

r ← unlabel(lr)

! r)

〈〈e1 := e2〉〉 =

toLabeled(do

lr ← 〈〈e1〉〉

lv ← 〈〈e2〉〉

r ← unlabel(lr)

r := lv)

toLabeled(return())

〈〈labelOfRef(e)〉〉 =

toLabeled(do

lr ← 〈〈e〉〉

r ← unlabel(lr)

labelOfRef(r))

Figure 5.4: Translation λdFG to λdCG (references).

fact, we omit wken from the code of the program translations to avoid

clutter (our mechanization includes wken in the appropriate places).

5.3 References

Figure 5.4 shows the program translation of λdFG primitives that ac-

cess the store and the heap via references. Notice that these translations

are the same for flow-insensitive and flow-sensitive references: they repli-

cate the behavior of λdFG primitives for each kind of reference using the

corresponding primitives of λdCG. Below we explain the translation for

flow-insensitive references, the discussion for flow-sensitive references is

analogous.

The translation of λdFG values wraps references in λdCG labeled

values (Figure 5.1b), so the translations of Figure 5.4 take care of box-

ing and unboxing references. The translation of new(e) has a top-level

toLabeled(·) block that simply translates the content (lv ← 〈〈e〉〉) and

puts it in a new reference (new(lv)). The λdCG rule [New] (Figure 3.4)

assigns the label of the translated content to the new reference, which

5.4. Correctness 81

also gets labeled with the original program counter label4, just as in

the λdFG rule [New] (Figure 2.4). In λdFG, rule [Read] reads from a

reference nℓ
ℓ′

at security level ℓ′ that points to the ℓ-labeled memory,

and returns the content Σ(ℓ)[n]ℓ ⊔ ℓ′

at level ℓ ⊔ ℓ′. Similarly, the trans-

lation creates a toLabeled(·) block that executes to get a labeled ref-

erence lr = Labeled ℓ′ nℓ, extracts the reference nℓ (r ← unlabel(lr))

tainting the program counter label with ℓ′, and then reads the refer-

ence’s content further tainting the program counter label with ℓ as

well. The code that translates and updates a reference consists of two

toLabeled(·) blocks. The first block is responsible for the update: it

extracts the labeled reference and the labeled new content (lr and lv

resp.), extracts the reference from the labeled value (r ← unlabel(lr))

and updates it (r := lv). The second block, toLabeled(return()), re-

turns unit at security level pc, i.e., Labeled pc (), similar to the λdFG

rule [Write]. The translation of labelOfRef(e) extracts the reference

and projects its label via the λdCG primitive labelOfRef(·), which ad-

ditionally taints the program counter with the label itself, similar to

the λdFG rule [LabelOfRef].

5.4 Correctness

In this section, we establish some desirable properties of the λdFG-to-

λdCG translation defined above. These properties include type and se-

mantics preservation as well as recovery of non-interference—a meta

criterion that rules out a class of semantically correct (semantics pre-

serving), yet elusive translations that do not preserve the meaning of

security labels (Rajani and Garg, 2018; Barthe et al., 2007).

We start by showing that the program translation preserves typing.

The type translation for typing contexts Γ is pointwise, i.e., 〈〈Γ〉〉 =

λx.〈〈Γ(x)〉〉.

Lemma 5.1 (Type Preservation). Given a well-typed λdFG expression,

i.e., Γ ⊢ e : τ , the translated λdCG expression is also well-typed, i.e.,

〈〈Γ〉〉 ⊢ 〈〈e〉〉 : LIO 〈〈τ〉〉.

Proof. By induction on the given typing derivation.

4The nested block does not execute any unlabel(·) nor taint(·).

82 Fine- to Coarse-Grained Program Translation

The main correctness criterion for the translation is semantics preser-

vation. Intuitively, proving this theorem ensures that the program trans-

lation preserves the meaning of secure λdFG programs when translated

and executed with λdCG semantics (under a translated environment).

In the theorem below, the translation of stores, memories, and heaps is

pointwise, i.e., 〈〈Σ〉〉 = λℓ.〈〈Σ(ℓ)〉〉, and 〈〈[]〉〉 = [] and 〈〈r : M 〉〉 = 〈〈r〉〉 : 〈〈M 〉〉

for each ℓ-labeled memory M , and 〈〈[]〉〉 = [] and 〈〈rℓ : µ〉〉 = 〈〈rℓ〉〉 : 〈〈µ〉〉

for heaps µ. Furthermore, notice that in the translation, the initial and

final program counter labels are the same. This establishes that the pro-

gram translation preserves the flow-insensitive program counter label

of λdFG (by means of primitive toLabeled(·)).

Theorem 5 (Semantics Preservation of 〈〈 · 〉〉 : λdFG → λdCG).

For all well-typed λdFG programs e, if 〈Σ, µ, e〉 ⇓θ
pc 〈Σ

′, µ′, v〉, then

〈〈〈Σ〉〉, 〈〈µ〉〉, pc, 〈〈e〉〉〉 ⇓〈〈θ〉〉 〈〈〈Σ′〉〉, 〈〈µ′〉〉, pc, 〈〈v〉〉〉.

Proof. By induction on the given evaluation derivation using basic

properties of the security lattice and of the translation function.5

5.5 Recovery of Non-Interference

We conclude this section by constructing a proof of termination-insensitive

non-interference for λdFG (Theorem 2) from the corresponding theo-

rem for λdCG (Theorem 4), using the semantics preserving translation

(Theorem 5), together with a property that the translation preserves L-

equivalence (Lemma 5.2), the validity of references (Lemma 5.4), as well

as a property to recover source L-equivalence from target L-equivalence

(Lemma 5.3). This result ensures that the meaning of labels is preserved

by the translation (Rajani and Garg, 2018; Barthe et al., 2007). In the

absence of such an artifact, one could devise a semantics-preserving

translation that simply does not use the security features of the tar-

get language. While technically correct (i.e., semantics preserving), the

translation would not be meaningful from the perspective of security.6

5In our mechanized proofs, this proof also requires the (often used) axiom of
functional extensionality.

6Note that such bogus translations are also ruled out due to the need to preserve
the outcome of any label introspection. Nonetheless, building this proof artifact

5.5. Recovery of Non-Interference 83

The following lemma shows that the translation of λdFG initial configu-

rations, defined as 〈〈c〉〉pc = 〈〈〈Σ〉〉, 〈〈µ〉〉, pc, 〈〈e〉〉〉 if c = 〈Σ, µ, e〉, preserves

L-equivalence by lifting L-equivalence from source to target and back.

Since the translation preserves the address of references and the size of

the heap, the lemma relates the target configurations using the same

bijection that relates the source configurations.

Lemma 5.2 (〈〈 · 〉〉 preserves ≈β
L). For all program counter labels pc and

bijections β, c1 ≈
β
L c2 if and only if 〈〈c1〉〉

pc ≈β
L 〈〈c2〉〉

pc.

Proof. By definition of L-equivalence for initial configurations in both

directions (Sections 2.2 and 3.2), using injectivity of the translation

function, i.e., if 〈〈e1〉〉 ≡α 〈〈e2〉〉 then e1 ≡α e2, in the if direction, and by

mutually proving similar lemmas for all categories.

The following lemma recovers L-equivalence of source final configu-

rations by back-translating L-equivalence of target final configurations.

We define the translation for λdFG final configurations as 〈〈c〉〉pc =

〈〈〈Σ〉〉, 〈〈µ〉〉, pc, 〈〈v〉〉〉 if c = 〈Σ, µ, v〉.

Lemma 5.3 (≈β
L recovery via 〈〈·〉〉). Let c1 = 〈Σ1, µ1, r1

ℓ1〉, c2 = 〈Σ2, µ2, r2
ℓ2〉

be λdFG final configurations. For all bijections β and program counter

label pc, such that pc ⊑ ℓ1 and pc ⊑ ℓ2, if 〈〈c1〉〉
pc ≈β

L 〈〈c2〉〉
pc then

c1 ≈
β
L c2.

Proof. By case analysis on the L-equivalence relation of the target final

configurations, two cases follow. First, through 〈〈c1〉〉 ≈
β
L 〈〈c2〉〉 we recover

L-equivalence of the source stores, i.e., Σ1 ≈
β
L Σ2, from that of the

target stores, i.e., 〈〈Σ1〉〉 ≈
β
L 〈〈Σ2〉〉, and of the source heaps, i.e., µ1 ≈

β
L µ2,

from the target heaps 〈〈µ1〉〉 ≈
β
L 〈〈µ2〉〉. Then, the program counter in the

target configurations is either (i) above the attacker’s level [PcH], i.e.,

pc 6⊑ L, and the source values are L-equivalent, i.e., r1
ℓ1 ≈β

L r2
ℓ2 by

rule [ValueH] applied to ℓ1 6⊑ L and ℓ2 6⊑ L (from pc 6⊑ L and,

respectively, pc ⊑ ℓ1 and pc ⊑ ℓ2), or (ii) below the attacker’s level

increases our confidence in the robustness of our translation. In contrast, if the
enforcement of IFC is static, then there is no label introspection, and this proof
artifact is extremely important, as argued in prior work (Rajani and Garg, 2018;
Barthe et al., 2007).

84 Fine- to Coarse-Grained Program Translation

[PcL], i.e., pc ⊑ L, then 〈〈r1
ℓ1〉〉 ≈β

L 〈〈r2
ℓ2〉〉 and the source values are

L-equivalent, i.e., r1
ℓ1 ≈β

L r2
ℓ2 , by Lemma 5.2 for values.

Recall that non-interference for λdCG extended with flow-sensitive

(Theorem 4) requires side conditions about the validity of program in-

puts, which must contain only valid heap addresses (see the ⊢ Valid(c, θ)

judgment in Figure 3.7). Thus, to recover non-interference for λdFG

through non-interference for λdCG, we need to instantiate these judg-

ments in the proof. Luckily, non-interference for λdFG also requires

similar side conditions (Fig. 2.8), so we can fulfill these assumptions by

lifting the valid judgment for the source inputs into a valid judgment

for the translated inputs.

Lemma 5.4 (〈〈 · 〉〉 preserves ⊢ Valid(·)). For all program counters pc,

initial configurations c and environments θ, if ⊢ Valid(c, θ), then ⊢

Valid(〈〈c〉〉pc
, 〈〈θ〉〉).

Finally, we recover termination insensitive non-interference for λdFG

through our semantics preserving translation to λdCG. Notice that the

theorem statement below is identical to Theorem 2, what is new is the

proof of the theorem, which relies on non-interference for λdCG and our

verified translation.

Theorem 6 (λdFG-TINI with Bijections via 〈〈·〉〉). For all program counter

labels pc and valid inputs ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), such that

c1 ≈
β
L c2, θ1 ≈

β
L θ2, if c1 ⇓

θ1

pc c′
1, and c2 ⇓

θ2

pc c′
2, then there exists

an extended bijection β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Proof. We start by applying the fine to coarse grained program trans-

lation to the initial configurations and environments. By Theorem 5

(semantics preservation), we derive the corresponding λdCG reductions,

i.e., 〈〈c1〉〉
pc ⇓〈〈θ1〉〉 〈〈c′

1〉〉
pc and 〈〈c2〉〉

pc ⇓〈〈θ2〉〉 〈〈c′
2〉〉

pc. Then, we lift L-

equivalence of the initial configurations and environments from source

to target, i.e., from c1 ≈
β
L c2 to 〈〈c1〉〉

pc ≈β
L 〈〈c2〉〉

pc and from θ1 ≈
β
L θ2

to 〈〈θ1〉〉 ≈
β
L 〈〈θ2〉〉 (Lemma 5.2), and similarly we lift the validity judg-

ments (Lemma 5.4), i.e., ⊢ Valid(〈〈c1〉〉, 〈〈θ1〉〉) and ⊢ Valid(〈〈c2〉〉, 〈〈θ2〉〉)

from ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), respectively. Then, we apply

λdCG-TINI with Bijections (Theorem 4) and obtain L-equivalence of the

5.5. Recovery of Non-Interference 85

target final configurations, i.e., 〈〈c′
1〉〉

pc ≈β′

L 〈〈c′
2〉〉

pc for some bijection

β′ ⊇ β. Finally, we recover L-equivalence of the final configurations

from target to source, i.e., from 〈〈c′
1〉〉

pc ≈β′

L 〈〈c′
2〉〉

pc to c′
1 ≈

β′

L c′
2, via

Lemma 5.3, applied to c′
1 = 〈 , , r1

ℓ1〉 and c′
2 = 〈 , , r2

ℓ2〉, and where

pc ⊑ ℓ1 and pc ⊑ ℓ2 by Property 1 applied to the source reductions,

i.e., c1 ⇓
θ1

pc c′
1 and c2 ⇓

θ2

pc c′
2.

6

Coarse- to Fine-Grained Program Translation

We now show a verified program translation in the opposite direction—

from the coarse grained calculus λdCG to the fine grained calculus λdFG.

The translation in this direction is more involved—a program in λdFG

contains strictly more information than its counterpart in λdCG, namely

the extra intrinsic label annotations that tag every value. The challenge

in constructing this translation is two-fold. On one hand, the transla-

tion must come up with labels for all values. However, it is not always

possible to do this statically during the translation: Often, the labels

depend on input values and arise at run-time with intermediate re-

sults since the λdFG calculus is designed to compute and attach labels

at run-time. On the other hand, the translation cannot conservatively

under-approximate the values of labels1—λdCG and λdFG have label

introspection so, in order to get semantics preservation, labels must

be preserved precisely. Intuitively, we solve this impasse by crafting a

program translation that (i) preserves the labels that can be inspected

by λdCG and (ii) lets the λdFG semantics compute the remaining label

1In contrast, previous work on static type-based fine-to-coarse grained trans-
lation safely under-approximates the label annotations in types with the bottom
label of the lattice (Rajani and Garg, 2018). The proof of type preservation of the
translation recovers the actual labels via subtyping.

86

6.1. Types and Values 87

annotations automatically—we account for those labels with a cross-

language relation that represents semantic equivalence between λdFG

and λdCG modulo extra annotations (Section 6.4). The fact that the

source program in λdCG cannot inspect those labels—they have no value

counterpart in the source λdCG program—facilitates this aspect of the

translation. We elaborate more on the technical details later.

At a high level, an interesting aspect of the translation (that infor-

mally attests that it is indeed semantics-preserving) is that it encodes

the flow-sensitive program counter of the source λdCG program into

the label annotation of the λdFG value that results from executing the

translated program. For example, if a λdCG monadic expression starts

with program counter label pc and results in some value, say true, and

final program counter pc′, then the translated λdFG expression, start-

ing with the same program counter label pc, computes the same value

(modulo extra label annotations) at the same security level pc′, i.e., the

value truepc′
. This encoding requires keeping the value of the program

counter label in the source program synchronized with the program

counter label in the target program, by loosening the fine-grained pre-

cision of λdFG at run-time in a controlled way.

6.1 Types and Values

Types. The λdCG-to-λdFG translation follows the same type-driven

approach used in the other direction, starting from the function J·K in

Figure 6.1a, that translates a λdFG type τ into the corresponding λdCG

type Jτ K. The translation is defined by induction on τ and preserves all

the type constructors standard types. Only the cases corresponding to

λdCG-specific types are interesting. In particular, it converts explicitly

labeled types, i.e., Labeled τ , to a standard pair type in λdFG, i.e., L ×

Jτ K, where the first component is the label and the second component

the content of type τ . Type LIO τ becomes a suspension in λdFG, i.e.,

the function type unit→ Jτ K that delays a computation and that can

be forced by simply applying it to the unit value ().

Values. The translation of values follows the type translation, as

shown in Figure 6.1b. Notice that the translation is indexed by the

88 Coarse- to Fine-Grained Program Translation

JL K = L

JunitK = unit

Jτ1 → τ2 K = Jτ1 K→ Jτ2 K

Jτ1 + τ2 K = Jτ1 K + Jτ2 K

Jτ1 × τ2 K = Jτ1 K× Jτ2 K

JRef s τ K = Ref s Jτ K

JLabeled τ K = L × Jτ K

JLIO τ K = unit→ Jτ K

(a) Types.

J()Kpc = ()pc

JℓKpc = ℓpc

Jinl(v)Kpc = inl(JvKpc)pc

Jinr(v)Kpc = inr(JvKpc)pc

J(v1, v2)Kpc = (Jv1Kpc, Jv2Kpc)pc

J(x.e, θ)Kpc = (x.Je K, JθKpc)pc

J(t, θ)Kpc = (.Jt K, JθKpc)pc

JLabeled ℓ vKpc = (ℓℓ, JvKℓ)
pc

JnℓK
pc = (nℓ)

pc

JnKpc = npc

(b) Values.

Figure 6.1: Translation from λdCG to λdFG (part I).

program counter label (the translation is written JvKpc), which con-

verts the λdCG value v in scope of a computation protected by security

level pc to the corresponding fully label-annotated λdFG value. The

translation is pretty straightforward and uses the program counter la-

bel to tag each value, following the λdCG principle that the program

counter label protects every value in scope that is not explicitly labeled.

The translation converts a λdCG function closure into a corresponding

λdFG function closure by translating the body of the function to a λdFG

expression (see below) and translating the environment pointwise, i.e.,

JθKpc = λx.Jθ(x)Kpc . A thunk value or a thunk closure, which denotes

a suspended side-effecful computation, is also converted into a λdFG

function closure. Technically, the translation would need to introduce

a fresh variable that would get bound to unit when the suspension

gets forced. However, the argument to the suspension does not have

any purpose, so we do not bother with giving a name to it and write

.Jt K instead. (In our mechanized proofs we employ unnamed De Bruijn

indexes and this issue does not arise.) The translation converts an ex-

plicitly labeled value Labeled ℓ v, into a labeled pair at security level

pc, i.e., (ℓℓ, JvKℓ)
pc

. The pair consists of the label ℓ tagged with itself,

and the value translated at a security level equal to the label annota-

6.2. Expressions and Thunks 89

J()K = ()

JℓK = ℓ

Jx K = x

Jλx.e K = λx.Je K

Je1 e2 K = Je1 KJe2 K

J(e1, e2)K = (Je1 K, Je2 K)

Jfst(e)K = fst(Je K)

Jsnd(e)K = snd(Je K)

Jinl(e)K = inl(Je K)

Jinr(e)K = inr(Je K)

Jcase (e, x.e1, x.e2)K

= case (Je K, x.Je1 K, x.Je2 K)

Je1 ⊑
? e2 K = Je1 K ⊑? Je2 K

Jt K = λ .Jt K

(a) Expressions.

Jreturn(e)K = Je K

Jbind(e1, x.e2)K =

let x = Je1 K () in

taint(labelOf(x), Je2 K())

Junlabel(e)K =

let x = Je K in

taint(fst(x), snd(x))

JtoLabeled(e)K =

let x = Je K () in

(labelOf(x), x)

JlabelOf(e)K = fst(Je K)

JgetLabelK = getLabel

Jtaint(e)K = taint(Je K, ())

(b) Thunks.

Figure 6.2: Translation from λdCG to λdFG (part II).

tion, i.e., JvKℓ. Notice that tagging the label with itself allows us to

translate the λdCG (label introspection) primitive labelOf(·) by sim-

ply projecting the first component, thus preserving the label and its

security level across the translation.

6.2 Expressions and Thunks

The translation of pure expressions (Figure 6.2a) is trivial: it is homo-

morphic in all constructs, mirroring the type translation. The trans-

lation of a thunk expression t builds a suspension explicitly with a

λ-abstraction, i.e., λ .Jt K, (the name of the variable is again irrelevant,

thus we omit it as explained above), and translates the thunk itself ac-

cording to the definition in Figure 6.2b. The thunk return(e) becomes

Je K, since return(·) does not have any side-effect. When two monadic

computations are combined via bind(e1, x.e2), the translation (i) con-

verts the first computation to a suspension and forces it by applying

unit (Je1 K ()), (ii) binds the result to x and passes it to the second

90 Coarse- to Fine-Grained Program Translation

computation2, which is also converted, forced, and, importantly, iii) ex-

ecuted with a program counter label tainted with the security level of

the result of the first computation (taint(labelOf(x), Je2 K ())). No-

tice that taint(·) is essential to ensure that the second computation

executes with the program counter label set to the correct value—the

precision of the fine-grained system would otherwise retain the initial

lower program counter label according to rule [App] (Fig. 2.2) and the

value of the program counter labels in the source and target programs

would differ in the remaining execution.

Similarly, the translation of unlabel(e) first translates the labeled

expression e (the translated expression does not need to be forced be-

cause it is not of a monadic type), binds its result to x and then projects

the content in a context tainted with its label, as in taint(fst(x), snd(x)).

This closely follows λdCG’s [Unlabel] rule in Figure 3.3b. The transla-

tion of toLabeled(e) forces the nested computation with Je K (), binds

its result to x and creates the pair (labelOf(x), x), which corresponds

to the labeled value obtained in λdCG via rule [ToLabeled]. Intuitively,

the translation guarantees that the value of the final program counter

label in the nested computation coincides with the security level of

the translated result (bound to x). Therefore, the first component con-

tains the correct label and it is furthermore at the right security level,

because labelOf(·) protects the projected label with the label itself

in λdFG. Primitive labelOf(e) simply projects the first component of

the pair that encodes the labeled value in λdFG as explained above.

Lastly, getLabel in λdCG maps directly to getLabel in λdFG—rule

[GetLabel] in λdCG simply returns the program counter label and

does not raise its value, so it corresponds exactly to rule [GetLabel]

in λdFG, which returns label pc at security level pc. Similarly, taint(e)

translates to taint(Je K, ()), since rule [Taint] in λdCG taints the pro-

gram counter with the label that e evaluates to, say ℓ and returns unit

with program counter label equal to pc ⊔ ℓ, which corresponds to the

result of the translated program, i.e., ()pc ⊔ ℓ.

2Syntax let x = e1 in e2 where x is free in e2 is a shorthand for (λx.e2) e1.

6.3. References 91

Jnew(e)K =

let x = Je K in

new(taint(fst(x), snd(x)))

Je1 := e2 K =

Je1 K := (let x = Je2 K in taint(fst(x), snd(x)))

J ! e K = !Je K

JlabelOfRef(e)K = labelOfRef(Je K)

Figure 6.3: Translation from λdCG to λdFG (references).

6.3 References

Figure 6.3 shows the translation of primitives that access the store and

the heap via references. Like the translation in the opposite direction,

these translations work homogeneously for flow-insensitive and flow-

sensitive references, therefore we focus our discussion on flow-insensitive

references. Since λdCG’s rule [New] in Figure 3.4 creates a new refer-

ence labeled with the label of the argument (which must be a labeled

value), the translation converts new(e) to an expression that first binds

Je K to x and then creates a new reference with the same content as the

source, i.e., snd(x), but tainted with the label in x, i.e., fst(x). Notice

that the use of taint(·) is essential to ensure that λdFG’s rule [New]

in Figure 2.4 assigns the correct label to the new reference. Due to

its fine-grained precision, λdFG might have labeled the content with a

different label that is less sensitive than the explicit label that coarsely

approximates the security level in λdCG. Similarly, when updating a ref-

erence we translate the new labeled value into a pair, i.e., let x = Je2 K,

and taint the content with the label of the labeled value projected from

the pair, i.e., taint(fst(x), snd(x)).3 The translation of the primitives

3Technically, tainting is redundant for flow-insensitive references, i.e., the trans-
lation Je1 K := snd(Je2 K) from the conference version of this article would preserve
the semantics for references Γ ⊢ e1 : Ref I τ . Since flow-insensitive references have
a fixed label, rule [Write] in both λdFG and λdCG accepts values less sensitive than
the reference and stores them in the memory labeled like the reference. In contrast,
the label of flow-sensitive references is not fixed and tainting is necessary to set the

92 Coarse- to Fine-Grained Program Translation

that read and query the label of a reference is trivial.

6.4 Cross-Language Equivalence Relation

When a λdCG program is translated to λdFG via the program transla-

tion described above, the λdFG result contains strictly more information

than the original λdCG result. This happens because the semantics of

λdFG tracks flows of information at fine granularity, in contrast with

λdCG, which instead coarsely approximates the security level of all val-

ues in scope of a computation with the program counter label. When

translating a λdCG program, we can capture this condition precisely for

input values θ by homogeneously tagging all standard (unlabeled) val-

ues with the initial program counter label, i.e., JθKpc. However, a λdCG

program handles, creates and mixes unlabeled data that originated at

different security levels at run-time, e.g., when a secret is unlabeled and

combined with previously public (unlabeled) data. Crucially, when the

translated program executes, the fine-grained semantics of λdFG tracks

those flows of information precisely and thus new labels appear (these

labels do not correspond to the label of any labeled value in the source

value nor to the program counter label). Intuitively, this implies that

the λdFG result will not be homogeneously labeled with the final pro-

gram counter label of the λdCG computation, i.e., if a λdCG program

terminates with value v and program counter label pc′, the translated

λdFG program does not necessarily result in JvKpc′
. The following ex-

ample illustrates this issue, which we then address via a cross-language

equivalence relation that correctly approximates the additional labels

computed by λdFG.

Example 6.1. Consider the execution of λdCG program e = taint(H);

return(x), i.e., 〈Σ, L, taint(H); return(x)〉 ⇓[x 7→ true] 〈Σ, H , true〉,

which taints the program counter label with H , and then returns true =

inl(()) and the store Σ unchanged.

Let Je K be the expression obtained by applying the program trans-

lation from Figure 6.2 to the example program:

correct label for the value written in the heap.

6.4. Cross-Language Equivalence Relation 93

Je K = λ .

let y = taint(H , ()) in

taint(labelOf(y), x)

When we force the program Je K and execute it starting from program

counter label equal to L, and an input environment translated ac-

cording to the initial program counter label, i.e., x 7→ JtrueKL =

inl(()L)
L

= trueL, we do not obtain the translated result homoge-

neously labeled with H :

〈JΣK, Je K ()〉 ⇓
x 7→ [true

L]
L 〈JΣK, trueH 〉

= 〈JΣK, inl(()L)
H
〉

6= 〈JΣK, inl(()H)
H
〉

= 〈JΣK, JtrueKH 〉

In particular, λdFG preserves the public label tag on data nested inside

the left injection, i.e., ()L in inl(()L)
H

above. This happens because

λdFG’s rule [Var] taints only the outer label of the value trueL when

it looks up variable x in program counter label H .

Solution. In order to recover a notion of semantics preservation, we

introduce a key contribution of this work, a cross-language binary re-

lation that associates values of the two calculi that, in the scope of a

computation at a given security level, are semantically equivalent up to

the extra annotations present in the λdFG value.4 Technically, we use

this equivalence in the semantics preservation theorem in Section 6.5,

which existentially quantifies over the result of the translated λdFG

program, but guarantees that it is semantically equivalent to the result

obtained in the source program.

Concretely, for a λdFG value v1 and a λdCG value v2, we write

v1 �≈pc v2 if the label annotations (including those nested inside com-

pound values) of v1 are no more sensitive than label pc and its raw

value corresponds to v2. Figure 6.4 formalizes this intuition by means

4This relation is conceptually similar to the logical relation developed by Rajani
and Garg (2018) for their translations with static IFC enforcement, but technically
different in the treatment of labeled values.

94 Coarse- to Fine-Grained Program Translation

(Value)

ℓ1 ⊑ pc r1 �≈pc v2

r1
ℓ1 �≈pc v2

(Unit)

() �≈pc ()

(Label)

ℓ �≈pc ℓ

(Ref)

nℓ �≈pc nℓ

(Ref-FS)

n �≈pc n

(Inl)

v1 �≈pc v′
1

inl(v1) �≈pc inl(v′
1)

(Inr)

v2 �≈pc v′
2

inr(v2) �≈pc inr(v′
2)

(Pair)

v1 �≈pc v′
1 v2 �≈pc v′

2

(v1, v2) �≈pc (v′
1, v′

2)

(Fun)

θ1 �≈pc θ2

(x.Je K, θ1) �≈pc (x.e, θ2)

(Thunk)

θ1 �≈pc θ2

(.Jt K, θ1) �≈pc (t, θ2)

(Labeled)

v1 �≈ℓ v2

(ℓℓ, v1) �≈pc (Labeled ℓ v2)

Figure 6.4: Cross-language value equivalence modulo label annotations.

of two mutually inductive relations, one for λdFG values and one for

λdFG raw values. In particular, rule [Value] relates λdFG value r1
ℓ1

and λdCG value v2 at security level pc if the label annotation on the

raw value r1 flows to the program counter label, i.e., ℓ1 ⊑ pc, and if the

raw value is in relation with the standard value, i.e., r1 �≈pc v2. The

relation between raw values and standard values relates only seman-

tically equivalent values, i.e., it is syntactic equality for ground types

([Unit,Label,Ref,Ref-FS]), requires the same injection for values of

the sum type ([Inl,Inr]) and requires related components for pairs

([Pair]).

Rules [Fun] (resp. [Thunk]) relates function (resp. thunk) closures

only when environments are related pointwise, i.e., θ1 �≈pc θ2 iff dom(θ1) ≡

dom(θ2) and ∀x.θ1(x) �≈pc θ2(x), and the λdFG function body x.Je K

(resp. thunk body .Jt K) is obtained from the λdCG function body e

(resp. thunk t) via the program translation defined above. Lastly, rule

[Labeled] relates a λdCG labeled value Labeled ℓ v1 to a pair (ℓℓ, v2),

6.4. Cross-Language Equivalence Relation 95

consisting of the label ℓ protected by itself in the first component and

value v2 related with the content v1 at security level ℓ (v1 �≈ℓ v2)

in the second component. This rule follows the principle of LIO that

for explicitly labeled values, the label annotation represents an upper

bound on the sensitivity of the content. Stores are related pointwise,

i.e., Σ1 �≈ Σ2 iff Σ1(ℓ) �≈ Σ2(ℓ) for ℓ ∈ L , and ℓ-labeled memories

relate their contents respectively at security level ℓ, i.e., [] �≈ [] and

(r : M1) �≈ (v : M2) iff r �≈ℓ v and M1 �≈ M2 for λdFG and λdCG mem-

ories M1, M2 : Memory ℓ. Heaps are also related pointwise, i.e., [] �≈ []

and (rℓ : µ1) �≈ (Labeled ℓ v : µ2) iff r �≈ℓ v and µ1 �≈ µ2, where val-

ues at corresponding positions must additionally have the same label.

Lastly, we lift the relation to initial and final configurations.

Definition 4 (Cross-Language Equivalence of Configurations). For all ini-

tial and final configurations:

⊲ 〈Σ1, µ1, Je K ()〉 �≈ 〈Σ2, µ2, pc, e〉 iff Σ1 �≈ Σ2 and µ1 �≈ µ2,

⊲ 〈Σ1, µ1, Jt K〉 �≈ 〈Σ2, µ2, pc, t〉 iff Σ1 �≈ Σ2 and µ1 �≈ µ2.

⊲ 〈Σ1, µ1, rpc〉 �≈ 〈Σ2, µ2, pc, v〉 iff Σ1 �≈ Σ2, µ1 �≈ µ2, and r �≈pc v.

First, the relation requires the stores and heaps of initial and final

configurations to be related. Additionally, for initial configurations, the

relation requires the λdFG code to be obtained from the λdCG expression

(resp. thunk) via the program translation function J·K defined above

(similar to rules [Fun] and [Thunk] in Figure 6.4). Furthermore, in the

first case (expressions), the relation additionally forces the translated

suspension Je K by applying it to (), so that when the λdFG security

monitor executes the translated program, it obtains the result that

corresponds to the λdCG monadic program e. Finally, in the definition

for final configurations, the security level of the final λdFG result must

match the program counter label pc of the final λdCG configuration, and

the final λdCG result must correspond to the λdFG result up to extra

annotations at security level pc, i.e., r �≈pc v.

Before showing semantics preservation, we prove some basic proper-

ties of the cross-language equivalence relation that will be useful later.

The following property allows instantiating the semantics preservation

96 Coarse- to Fine-Grained Program Translation

theorem with the λdCG initial configuration. The translation for initial

configurations is per-component, i.e., J〈Σ, µ, pc, t〉K = 〈JΣK, JµK, Jt K〉

and forcing for suspensions, i.e., J〈Σ, µ, pc, e〉K = 〈JΣK, JµK, Je K ()〉,

pointwise for stores, i.e., JΣK = λℓ.JΣ(ℓ)K, memories, i.e., J[]K = []

and Jv : M K = JvKℓ : JM K for ℓ-labeled memory M , and heaps, i.e.,

J[]K = J[]K and JLabeled ℓ v : µK = JvKℓ : JµK.

Property 8 (Reflexivity of �≈). For all λdCG initial configurations c,

Jc K �≈ c.

Proof. The proof is by induction and relies on analogous properties for

all syntactic categories: for stores, JΣK �≈ Σ, for memories, JM K �≈

M , for heaps JµK �≈ µ, for environments JθKpc �≈pc θ, for values

JvKpc �≈pc v, for any label pc.

The next property guarantees that values and environments remain

in the relation when the program counter label rises.

Property 9 (Weakening). For all labels pc and pc′ such that pc ⊑ pc′,

and for all λdFG raw values r1, values v1 and environments θ1, and λdCG

values v2 and environments θ2:

⊲ If r1 �≈pc v2 then r1 �≈pc′ v2

⊲ If v1 �≈pc v2 then v1 �≈pc′ v2

⊲ If θ1 �≈pc θ2 then θ1 �≈pc′ θ2

Proof. By mutual induction on the cross-language equivalence relation.

6.5 Correctness

With the help of the cross-language relation defined above, we can

now state and prove that the λdCG-to-λdFG translation is correct, i.e.,

it satisfies a semantics-preservation theorem analogous to that proved

for the translation in the opposite direction. At a high level, the the-

orem ensures that the translation preserves the meaning of a secure

terminating λdCG program when executed under λdFG semantics, with

the same program counter label and translated input values. Since the

translated λdFG program computes strictly more information than the

6.5. Correctness 97

original λdCG program, the theorem existentially quantify over the λdFG

result, but insists that it is semantically equivalent to the original λdCG

result at a security level equal to the final value of the program counter

label, using the cross-language relation just defined.

We start by proving that the program translation preserves typing.

Lemma 6.1 (Type Preservation). If Γ ⊢ e : τ then JΓK ⊢ Je K : Jτ K.

Proof. By induction on the typing judgment.

Next, we prove semantics preservation of λdCG pure reductions.

Since these reductions do not perform any security-relevant operation

(they do not read or write state), they can be executed with any pro-

gram counter label in λdFG and do not change the state in λdFG.

Lemma 6.2 (J·K : λdCG → λdFG preserves Pure Semantics). If e ⇓θ v

then for any program counter label pc, λdFG store Σ, heap µ, and

environment θ′ such that θ′ �≈pc θ, there exists a raw value r, such

that 〈Σ, µ, Je K〉 ⇓θ′

pc 〈Σ, µ, rpc〉 and r �≈pc v.

Proof. By induction on the given evaluation derivation and using basic

properties of the lattice.

Notice that the lemma holds for any input target environment θ′

in relation with the source environment θ at security level pc rather

than just for the translated environment JθKpc. Intuitively, we needed

to generalize the lemma so that the induction principle is strong enough

to discharge cases where (i) we need to prove reductions that use an

existentially quantified environment, e.g., [App], and (ii) when some

intermediate result at a security level other than pc gets added to the

environment, so the environment is no longer homogenously labeled

with pc. While the second condition does not arise in pure reductions,

it does occur in the reduction of monadic expressions considered in the

following theorem.

Theorem 7 (Thunk and Forcing Semantics Preservation via �≈). For all

λdFG environments θ1, initial configurations c1 and λdCG environments

θ2 and initial configuration c2, such that θ1 �≈c2.pc θ2 and c1 �≈ c2,

if c2 ⇓θ2 c′
2, then there exists a final configuration c′

1, such that

c1 ⇓
θ1

c2.pc c′
1 and c′

1 �≈ c′
2.

98 Coarse- to Fine-Grained Program Translation

Proof. By mutual induction on the given derivation for expressions and

thunks, using Lemma 6.2 for pure reductions, Weakening (Property 9),

and basic properties for operations on related stores and heaps.

We finally instantiate the semantics-preservation theorem (Theo-

rem 7) with the translated input environment at security level pc, via

reflexivity of the cross-language relation (Property 8).

Corollary 1 (Semantics Preservation of J·K : λdCG → λdFG). For all λdCG

well-typed initial configurations c2 and environments θ, if c2 ⇓
θ c′

2,

then there exists a final λdFG configuration c′
1 such that c′

1 �≈ c′
2 and

Jc2 K ⇓
JθKpc

pc c′
1, where pc = c2.pc.

In the corollary above, the flow-sensitive program counter of the

source λdCG program gets encoded in the security level of the result of

the λdFG translated program. For example, if 〈Σ2, µ2, pc, e〉 ⇓θ 〈Σ′
2, µ′

2, pc′, v〉

then, by Corollary 1 and unrolling Definition 4, there exists a raw

value r at security level pc′, a store Σ′
1, and a heap µ′

1 such that

〈JΣ2 K, Jµ2 K, Je K ()〉 ⇓
JθKpc

pc 〈Σ′
1, µ′

1, rpc′
〉, r �≈pc′ v, Σ′

1 �≈ Σ′
2, and

µ′
1 �≈ µ′

2.

6.6 Recovery of Non-Interference

Similarly to our presentation of Theorem 6 for the translation in the op-

posite direction, we conclude this section with a sanity check—recovering

a proof of termination-insensitive non-interference (TINI) for λdCG

through the program translation defined above, semantics preservation

(Corollary 1), and λdFG non-interference (Theorem 2). By reproving

non-interference of the source language from the target language, we

show that our program translation is authentic.

To prove this result, we first need to prove that the translation

preserves L-equivalence (Lemma 6.3) and the validity of references

(Lemma 6.7), as well as a property for recovering source L-equivalence

from target L-equivalence through the cross-language relation (Lemma 6.6).

The following lemma ensures that the translation of initial configura-

tions preserves L-equivalence.

6.6. Recovery of Non-Interference 99

Lemma 6.3 (J·K preserves ≈β
L). For all bijections β and initial configu-

rations c1 and c2, if c1 ≈
β
L c2, then Jc1 K ≈β

L Jc2 K.

Proof. By induction on the L-equivalence judgment and proving similar

lemmas for all syntactic categories.

The following lemmas recovers λdCG L-equivalence from λdFG L-

equivalence using the cross-language equivalence relation for values and

environments in public contexts.

Lemma 6.4 (≈β
L recovery from �≈L for values and envs). For all bijec-

tions β and public program counter labels pc ⊑ L, for all λdFG values

v1, v2, raw values r1, r2, environments θ1, θ2, and corresponding λdCG

values v′
1, v′

2, and environments θ′
1, θ′

2:

⊲ If v1 ≈
β
L v2, v1 �≈pc v′

1 and v2 �≈pc v′
2, then v′

1 ≈
β
L v′

2,

⊲ If r1 ≈
β
L r2, r1 �≈pc v′

1 and r2 �≈pc v′
2, then v′

1 ≈
β
L v′

2,

⊲ If θ1 ≈
β
L θ2, θ1 �≈pc θ′

1 and θ2 �≈pc θ′
2, then θ′

1 ≈
β
L θ′

2.

Proof. The lemmas are proved mutually, by induction on the L-equivalence

relation and the cross-language equivalence relations and using injec-

tivity of the translation function J·K for closure values.5

Next, we extend this result to program state, i.e., stores, memories,

and heaps.

Lemma 6.5 (≈β
L recovery from �≈ for state). For all bijections β, λdFG

memories M1, M2, stores Σ1, Σ2, heaps µ1, µ2, and corresponding λdCG

memories M ′
1, M ′

2, stores Σ′
1, Σ′

2, heaps µ′
1 and µ′

2:

⊲ If M1 ≈
β
L M2, M1 �≈ M ′

1 and M2 �≈ M ′
2, then M ′

1 ≈
β
L M ′

2,

5Technically, the function J·K presented in Section 6 is not injective. For example,
consider the type translation function from Figure 6.1a: JLabeled unitK = L ×
unit = JL × unitK but Labeled unit 6= L × unit, and JLIO unitK =
unit → unit = Junit → unitK but LIO unit 6= unit → unit. We make the
translation injective by (i) adding a wrapper type Id τ to λdFG, together with
constructor Id(e), a deconstructor unId(e) and raw value Id(v), and (ii) tagging
security-relevant types and terms with the wrapper, i.e., JLabeled τ K = Id (L ×
Jτ K) and LIO τ = Id unit → Jτ K. Adapting the translations in both directions is
tedious but straightforward; we refer the interested reader to our mechanized proofs
for details.

100 Coarse- to Fine-Grained Program Translation

⊲ If Σ1 ≈
β
L Σ2, Σ1 �≈ Σ′

1 and Σ2 �≈ Σ′
2, then Σ′

1 ≈
β
L Σ′

2,

⊲ If µ1 ≈
β
L µ2, µ1 �≈ µ′

1 and µ2 �≈ µ′
2, then µ′

1 ≈
β
L µ′

2.

Proof. By induction on the L-equivalence relation and the cross-language

equivalence relations and using Lemma 6.4.

The next lemma lifts the previous lemmas to final configurations.

Lemma 6.6 (≈β
L recovery from �≈). Let c1 and c2 be λdFG final configu-

rations, let c′
1 and c′

2 be λdCG final configurations. If c1 ≈
β
L c2, c1 �≈ c′

1

and c2 �≈ c′
2, then c′

1 ≈
β
L c′

2.

Proof. Let c1 = 〈Σ1, µ1, v1〉, c2 = 〈Σ2, µ2, v2〉, c′
1 = 〈Σ′

1, µ′
1, pc1, v′

1〉,

c′
2 = 〈Σ′

2, µ′
2, pc2, v′

2〉. From L-equivalence of the λdFG final configura-

tions, we have L-equivalence for the stores and the values, i.e., Σ1 ≈
β
L Σ2

and v1 ≈
β
L v2 from c1 ≈

β
L c2 (Section 2.2). Similarly, we derive cross-

language equivalence relations for the components of the final config-

urations, i.e., respectively Σ1 �≈ Σ′
1, µ1 �≈ µ′

1, and v1 �≈pc1
v′

1 from

c1 �≈ c2, and Σ2 �≈ Σ′
2, µ2 �≈ µ′

2, and v2 �≈pc2
v′

2 from c2 �≈ c′
2

(Definition 4). First, the λdCG stores and heaps are L-equivalent, i.e.,

Σ′
1 ≈

β
L Σ′

2 and µ′
1 ≈

β
L µ′

2 by Lemma 6.5 for stores and heaps, respec-

tively. Then, two cases follow by case split on v1 ≈
β
L v2. Either (i) both

label annotations on the values are not observable ([ValueH]), then

the program counter labels are also not observable (pc1 6⊑ L and

pc2 6⊑ L from v1 �≈pc1
v′

1 and v2 �≈pc2
v′

2) and c′
1 ≈

β
L c′

2 by rule

[PcH] or (ii) the label annotations are equal and observable by the

attacker ([ValueL]), i.e., pc1 ≡ pc2 ⊑ L, then v′
1 ≈

β
L v′

2 by Lemma

6.4 for values and c′
1 ≈

β
L c′

2 by rule [PcL].

Before recovering non-interference, we show that the translation pre-

serves validity of references, i.e., the assumption of the TINI theorem

for λdFG extended with flow-sensitive references.

Lemma 6.7 (J·K preserves ⊢ Valid(·)). For all initial configurations c

and environments θ, if ⊢ Valid(c, θ), then ⊢ Valid(Jc K, JθKc.pc).

Finally, we combine these lemmas and prove TINI for λdCG through

our verified translation.

6.6. Recovery of Non-Interference 101

Theorem 8 (λdCG-TINI with Bijections via J·K). For all valid inputs ⊢

Valid(c1, θ1) and ⊢ Valid(c2, θ2) and bijections β, such that c1 ≈
β
L c2,

θ1 ≈
β
L θ2, if c1 ⇓

θ1 c′
1, and c2 ⇓

θ2 c′
2, then there exists an extended

bijection β′ ⊇ β, such that c′
1 ≈

β′

L c′
2.

Proof. First, we apply the translation J·K : λdCG → λdFG to the ini-

tial configurations c1 and c2 and the respective environments θ1 and

θ2. Let pc be the initial program counter label common to configura-

tions c1 and c2 (it is the same because c1 ≈L c2). Then, Semantics

Preservation of J·K (Corollary 1) ensures that there exist two λdFG

configurations c′′
1 and c′′

2 , such that Jc1 K ⇓
Jθ1Kpc

pc c′′
1 and c′′

1 �≈ c′
1,

and Jc2 K ⇓
Jθ2 Kpc

pc c′′
2 and c′′

2 �≈ c′
2. We then lift L-equivalence of

source configurations and environments to L-equivalence in the tar-

get language via Lemma 6.3, i.e., Jθ1Kpc ≈β
L Jθ2Kpc from θ1 ≈

β
L θ2 and

Jc1 K ≈β
L Jc2 K from c1 ≈

β
L c2. Similarly, we lift the valid judgments

for λdCG inputs to λdFG via Lemma 6.7, i.e., ⊢ Valid(Jc1 K, Jθ1 K) and

⊢ Valid(Jc2 K, Jθ2 K) from ⊢ Valid(c1, θ1) and ⊢ Valid(c2, θ2), respec-

tively. Then, we apply λdFG-TINI with Bijections (Theorem 2) to the

reductions i.e., Jc1 K ⇓
Jθ1Kpc

pc c′′
1 and Jc2 K ⇓

Jθ2 Kpc

pc c′′
2 , which gives L-

equivalence of the resulting configurations, i.e., c′′
1 ≈

β′

L c′′
2 , up to some

bijection β′ ⊇ β. Then, we apply Lemma 6.6 to c′′
1 ≈

β′

L c′′
2 , c′′

1 �≈ c′
1,

and c′′
2 �≈ c′

2, and recover L-equivalence for the source configurations,

i.e., c′
1 ≈

β′

L c′
2, up to the same bijection β′ ⊇ β.

7

Related work

7.1 Relative Expressiveness of IFC Systems

Fine- and Coarse-Grained IFC. Systematic study of the relative ex-

pressiveness of fine- and coarse-grained information flow control (IFC)

systems has started only recently. Rajani et al. (2017) initiated this

study in the context of static coarse- and fine-grained IFC, enforced via

type systems. In more recent work, Rajani and Garg (2018) show that

a fine-grained IFC type system, which they call FG, and two variants of

a coarse-grained IFC type system, which they call CG, are equally ex-

pressive. Their approach is based on type-directed translations, which

are type- and semantics-preserving. For proofs, they develop logical

relations models of FG and the two variants of CG, as well as cross-

language logical relations. Our work and some of our techniques are

directly inspired by their work, but we examine dynamic IFC systems

based on runtime monitors. As a result, our technical development is

completely different. In particular, in our work we handle label intro-

spection, which has no counterpart in the earlier work on static IFC

systems, and which also requires significant care in translations. Our

dynamic setting also necessitated the use of tainting operators in both

the fine-grained and the coarse-grained systems. Furthermore, our lan-

102

7.1. Relative Expressiveness of IFC Systems 103

guages and translations support flow-sensitive references, which are not

considered by Rajani et al. (2017), as the type-system of FG and CG

is only flow-insensitive.

Our coarse-grained system λdCG is the dynamic analogue of the sec-

ond variant of Rajani and Garg (2018)’s CG type system. This variant

is described only briefly in their paper (in Section 4, paragraph “Origi-

nal HLIO”) but covered extensively in Part-II of the paper’s appendix.

Rajani and Garg (2018) argue that translating their fine-grained system

FG to this variant of CG is very difficult and requires significant use of

parametric label polymorphism. The astute reader may wonder why we

do not encounter the same difficulty in translating our fine-grained sys-

tem λdFG to λdCG. The reason for this is that our fine-grained system

λdFG is not a direct dynamic analogue of Rajani and Garg (2018)’s FG.

In λdFG, a value constructed in a context with program counter label

pc automatically receives the security label pc. In contrast, in Rajani

and Garg (2018)’s FG, all introduction rules create values (statically)

labeled ⊥. Hence, leaving aside the static-vs-dynamic difference, FG’s

labels are more precise than λdFG’s, and this makes Rajani and Garg

(2018)’s FG to CG translation more difficult than our λdFG to λdCG

translation. In fact, in earlier work, Rajani et al. (2017) introduced a

different type system called FG−, a static analogue of λdFG that labels

all constructed values with pc (statically), and noted that translating

it to the second variant of CG is much easier (in the static setting).

Flow-Insensitive and Flow-Sensitive IFC. Researchers have explored

the relative permissiveness of static and dynamic IFC systems with

respect to the flow-sensitivity of the analysis. Hunt and Sands (2006)

show that flow-sensitive static analysis are a natural generalization of

flow-insensitive analysis. In the dynamic settings, Buiras et al. (2014)

provide a semantics-preserving translation that embeds flow-sensitive

references into flow-insensitive references in LIO (Stefan et al., 2012).

Their embedding tracks the mutable label of references through an

extra level of indirection, i.e., they translate each flow-sensitive refer-

ences into a flow-insensitive reference, which points to another flow-

insensitive reference that stores the content. Interestingly, this result

seems to suggest that flow-sensitive references do not fundamentally in-

104 Related work

crease the expressiveness and permissiveness of dynamic coarse-grained

IFC systems. In contrast to our translations, however, their embedding

is not local (or macro-expressible using the terminology of Felleisen

(1991)): it relies on the flow-sensitive heap to assign a fixed label to

flow-insensitive references.

Some works also study the relative permissiveness of static and dy-

namic IFC systems. As one would expected, dynamic flow-insensitive

analysis are more permissive than their static counterpart (Sabelfeld

and Russo, 2009). Russo and Sabelfeld (2010) show that, perhaps sur-

prisingly, this is not the case for flow-sensitive analysis, i.e., purely

dynamic and static flow-sensitive analysis are incomparable in terms

of permissiveness, and propose a more permissive class of hybrid IFC

monitors.

Other IFC Techniques. Balliu et al. (2017) develop a formal frame-

work to study the soundness and permissiveness trade-offs of dynamic

information-flow trackers, but their analysis is only with respect to ex-

plicit and implicit flows. Bielova and Rezk (2016a) compare dynamic

and hybrid information-flow monitors for imperative languages with re-

spect to soundness and transparency. Secure multi-execution (SME) is

a dynamic IFC mechanisms that enforces security precisely, at the cost

of executing a program multiple times (Devriese and Piessens, 2010).

Multiple facets (MF) simulates SME through a single execution that

maintains multiple views on data, but provides weaker security guaran-

tees than SME (Austin and Flanagan, 2012). Bielova and Rezk (2016b)

show that MF is not equivalent to SME (even when SME is relaxed to

enforce the same security condition as MF) and adapt MF to provide

the same guarantees of SME. Schmitz et al. (2018) unify MF and SME

in a single framework that combines their best features by allowing

programs to switch between the two mechanisms at run-time.

7.2 Coarse-Grained Dynamic IFC

Coarse-grained dynamic IFC systems are prevalent in security research

in operating systems (Efstathopoulos et al., 2005; Krohn et al., 2007;

Zeldovich et al., 2006). These ideas have also been successfully applied

7.3. Fine-Grained Dynamic IFC 105

to other domains, e.g., the web (Giffin et al., 2012; Stefan et al., 2014;

Yip et al., 2009; Bauer et al., 2015), mobile applications (Jia et al., 2013;

Nadkarni et al., 2016), IoT (Fernandes et al., 2016), and distributed

systems (Zeldovich et al., 2008; Pedersen and Chong, 2019; Cheng et

al., 2012). Our λdCG calculus is based on LIO, a domain-specific lan-

guage embedded in Haskell that rephrases OS-like IFC enforcement

into a language-based setting (Stefan et al., 2011; Stefan et al., 2012).

Heule et al. (2015) introduce a general framework for retrofitting coarse-

grained IFC in any programming language in which external effects can

be controlled. Co-Inflow (Xiang and Chong, 2021) extends Java with

coarse-grained dynamic IFC, which is implemented via compilation,

similar to our λdFG-to-λdCG translation. Laminar (Roy et al., 2009)

unifies mechanisms for IFC in programming languages and operating

systems, resulting in a mix of dynamic fine- and coarse-grained enforce-

ment.

7.3 Fine-Grained Dynamic IFC

The dangerous combination of highly dynamic scripting languages and

third-party code in web pages (Nikiforakis et al., 2012) and IoT plat-

forms (Surbatovich et al., 2017; Ahmadpanah et al., 2021) has stirred a

line of work on dynamic fine-grained IFC systems for JavaScript inter-

preters (Hedin et al., 2014), engines (Bichhawat et al., 2014b; Rajani

et al., 2015), and IoT apps (Bastys et al., 2018). Our λdFG calculus is

inspired by the calculus of Austin and Flanagan (2009), which we have

extended with flow-insensitive references and label introspection. In a

follow up work, Austin and Flanagan (2010) replace the no-sensitive

upgrade check with a permissive upgrade strategy, which tracks partially

leaked data to ensure it is not completely leaked. Breeze is conceptu-

ally similar to our λdFG, except for the taint(·) primitive (Hritcu et al.,

2013). Breeze (Hritcu et al., 2013), JSFlow (Hedin and Sabelfeld, 2012),

and other dynamic fine-grained IFC languages (Bichhawat et al., 2021;

Austin et al., 2017) feature exception handling primitives, which allow

programs to recover from IFC violations without leaking data. Since

LIO (Stefan et al., 2017) features similar primitives, we believe that

our results extend also to IFC languages with exceptions.

106 Related work

7.4 Label Introspection and Flow-Sensitive References

In general, dynamic fine-grained IFC systems often do not support label

introspection, with Breeze (Hritcu et al., 2013) as notable exception.

Stefan et al. (2017) show that careless label introspection can leak

data and discuss alternative flow-sensitive and flow-insensitive APIs

(see Footnote 7). Xiang and Chong (2021) argue that the flow-sensitive

API does not provide a usable programming model (because inspecting

a label can unpredictably taint the program counter label) and use

opaque labeled values instead. To support label introspection securely,

our calculi protect each label with the label itself. Kozyri et al. (2019)

generalizes this mechanism to chains of labels of arbitrary length (where

each label defines the sensitivity of its predecessor) and study the trade-

offs between permissiveness and storage.

Several dynamic fine-grained IFC systems support references with

flow-sensitive labels (Hedin et al., 2014; Austin and Flanagan, 2010;

Austin and Flanagan, 2009; Bichhawat et al., 2014b). This design choice,

however, allows label changes to be exploited as a covert channel for

information leaks (Russo and Sabelfeld, 2010; Austin and Flanagan,

2010; Austin and Flanagan, 2009). There are many approaches to pre-

venting such leaks—from using static analysis techniques (Sabelfeld

and Myers, 2006), to disallowing label upgrades depending on sensitive

data (i.e., no-sensitive-upgrades (Zdancewic, 2002; Austin and Flana-

gan, 2009)), to avoiding branching on data whose labels have been

upgraded (i.e., permissive-upgrades (Austin and Flanagan, 2010; Bich-

hawat et al., 2021; Bichhawat et al., 2014a)). Buiras et al. (2014) ex-

tend LIO with flow-sensitive references and explicitly protect the label

of these references with the program counter label at creation time.

The semantics of λdCG avoids keeping track of this extra label by using

the label of the value itself as a sound approximation (see rules [New-

FS] and [Write-FS] in Fig. 3.6b), which corresponds precisely to the

semantics of λdFG.

7.5. Proof Techniques for Termination-Insensitive Non-Interference 107

7.5 Proof Techniques for Termination-Insensitive Non-Interference

Since Goguen and Meseguer (1982) introduced the notion of non-interference,

different proof techniques for IFC languages have emerged. Our proof

technique based on L-equivalence preservation and confinement dates

back to the seminal work by Volpano et al. (1996) and is similar to

the proof by Austin and Flanagan (2009), although we do not make

any assumptions about the heap allocator. Instead, our treatment of

heap addresses is inspired by Banerjee and Naumann (2005): we extend

the L-equivalence relation with a bijection, which accounts precisely

for different, yet indistinguishable addresses. Although bijections can

complicate the formal analysis, Vassena et al. (2017) argue that they

can be avoided by partitioning data structures per security level (as we

do here for the store). Moreover, the separation between pure computa-

tions and side-effects further simplifies the security analysis of monadic

languages like λdCG and, as we explain in Section 4, it leads to shorter

proofs than in impure languages like λdFG. Hirsch and Cecchetti (2021)

generalize this insight to other effects (non-termination and exceptions)

through a new proof technique for pure languages that provide effects

through a monad. In their fine-grained static IFC λ-calculus, Pottier

and Simonet (2003) represent secret values and expressions explicitly,

through a syntactic bracketed pair construct. This representation sim-

plifies the non-interference proof (which is derived from subject reduc-

tion), but requires reasoning about a non-standard semantics.

Logical Relations. The first proofs of non interference that use log-

ical relations are for the pure fragment of the fine-grained static IFC

languages by Zdancewic (2002) and Heintze and Riecke (1998). Ra-

jani et al. (2017) extend this proof technique for FG and CG, but

their logical relation require step-indexed Kripke worlds (Birkedal et

al., 2011) to avoid circular arguments when reasoning about state. Re-

cently, Gregersen et al. (2021) develop a mechanized semantic model

based on logical relations on top of the Iris framework (Jung et al., 2018)

for an expressive fine-grained static IFC language. Proofs based on logi-

cal relations for stateful languages feature two types of logical relations:

a binary relation for observable values (similar to L-equivalence), and

108 Related work

a unary relation for secret values, which provides a semantics interpre-

tation of the confinement lemma.

PER and Parametricity. Abadi et al. (1999) suggests a connection be-

tween parametricty and non-interference, which is formalized through a

domain-theoretic semantics for the Dependency Core Calculus (DCC).

Sabelfeld and Sands (2001) develop this idea further with a general

semantics model of information flow based on partial equivalence re-

lations (PER). Bowman and Ahmed (2015) prove non-interference for

DCC from parametricity by proving that their translation from DCC

into System F is fully abstract. Algehed and Bernardy (2019) simplifies

this proof by embedding DCC into the Calculus of Construction and

applies the same technique to derive a shorter proof for the core of

LIO (Stefan et al., 2017).

8

Conclusion

This tutorial presents a detailed and homogeneous account of dynamic

fine- and coarse-grained IFC security and unifies these paradigms, which

were considered fundamentally at odds with respect to precision and

permissiveness. To this end, we formalized two representative IFC lan-

guages that track information flows with fine and coarse granularity,

established their security guarantees using standard proof techniques,

and devised verified semantics- and security-preserving translations be-

tween them. These results formally establish a connection between dy-

namic fine- and coarse-grained enforcement for IFC, showing that these

paradigms are equally expressive under reasonable assumptions. Indeed,

this work provides a systematic way to bridging the gap between a wide

range of dynamic IFC techniques often proposed by the programming

languages (fine-grained) and operating systems (coarse-grained) com-

munities. As consequence, this allows future designs of dynamic IFC

to choose a coarse-grained approach, which is easier to implement and

use, without giving up on the precision of fine-grained IFC.

109

References

Abadi, M., A. Banerjee, N. Heintze, and J. Riecke. 1999. “A Core Cal-

culus of Dependency”. In: Proc. ACM Symp. on Principles of Pro-

gramming Languages. 147–160.

Abel, a., G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schäfer,

and K. Stark. 2019. “POPLMark reloaded: Mechanizing proofs by

logical relations”. Journal of Functional Programming. 29: e19. doi:

10.1017/S0956796819000170.

Ahmadpanah, M. M., D. Hedin, M. Balliu, L. E. Olsson, and A. Sabelfeld.

2021. “SandTrap: Securing JavaScript-driven Trigger-Action Plat-

forms”. In: 30th USENIX Security Symposium (USENIX Security

21). USENIX Association. 2899–2916. isbn: 978-1-939133-24-3. url:

https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah.

Algehed, M. and J.-P. Bernardy. 2019. “Simple Noninterference from

Parametricity”. Proc. ACM Program. Lang. 3(ICFP). doi: 10.1145/3341693.

url: https://doi.org/10.1145/3341693.

Austin, T. H. and C. Flanagan. 2009. “Efficient Purely-Dynamic In-

formation Flow Analysis”. In: Proc. of the 9th ACM Workshop on

Programming Languages and Analysis for Security (PLAS ’09).

Austin, T. H. and C. Flanagan. 2010. “Permissive Dynamic Information

Flow Analysis”. In: Proc. of the 5th ACM SIGPLAN Workshop on

Programming Languages and Analysis for Security. PLAS ’10.

110

https://doi.org/10.1017/S0956796819000170
https://www.usenix.org/conference/usenixsecurity21/presentation/ahmadpanah
https://doi.org/10.1145/3341693
https://doi.org/10.1145/3341693

References 111

Austin, T. H. and C. Flanagan. 2012. “Multiple Facets for Dynamic In-

formation Flow”. In: Proceedings of the 39th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. POPL

’12. Philadelphia, PA, USA: Association for Computing Machinery.

165–178. isbn: 9781450310833. doi: 10.1145/2103656.2103677. url:

https://doi.org/10.1145/2103656.2103677.

Austin, T. H., T. Schmitz, and C. Flanagan. 2017. “Multiple Facets

for Dynamic Information Flow with Exceptions”. ACM Trans. Pro-

gram. Lang. Syst. 39(3). issn: 0164-0925. doi: 10.1145/3024086.

url: https://doi.org/10.1145/3024086.

Balliu, M., D. Schoepe, and A. Sabelfeld. 2017. “We Are Family: Re-

lating Information-Flow Trackers”. In: ESORICS.

Banerjee, A. and D. A. Naumann. 2005. “Stack-based access control

and secure information flow”. Journal Functional Programming. 15(2):

131–177.

Barthe, G., T. Rezk, and A. Basu. 2007. “Security Types Preserving

Compilation”. Computer Languages, Systems & Structures. 33(2):

35–59. doi: 10.1016/j.cl.2005.05.002. url: https://doi.org/10.1016/j.cl.2005.05.002.

Bastys, I., M. Balliu, and A. Sabelfeld. 2018. “If This Then What?

Controlling Flows in IoT Apps”. In: Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security.

CCS ’18. Toronto, Canada: Association for Computing Machinery.

1102–1119. isbn: 9781450356930. doi: 10.1145/3243734.3243841. url:

https://doi.org/10.1145/3243734.3243841.

Bauer, L., S. Cai, L. Jia, T. Passaro, M. Stroucken, and Y. Tian. 2015.

“Run-time Monitoring and Formal Analysis of Information Flows in

Chromium”. In: Proc. of the 22nd Annual Network & Distributed

System Security Symposium. Internet Society.

Bell, E. D. and J. L. La Padula. 1976. “Secure computer system: Unified

exposition and Multics interpretation”. Bedford, MA. url: http://csrc.nist.gov/publications/history/bell76.pdf .

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. 2014a. “Gener-

alizing Permissive-Upgrade in Dynamic Information Flow Analy-

sis”. In: Proceedings of the Ninth Workshop on Programming Lan-

guages and Analysis for Security. PLAS’14. Uppsala, Sweden: Asso-

ciation for Computing Machinery. 15–24. isbn: 9781450328623. doi:

10.1145/2637113.2637116. url: https://doi.org/10.1145/2637113.2637116.

https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/2103656.2103677
https://doi.org/10.1145/3024086
https://doi.org/10.1145/3024086
https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1016/j.cl.2005.05.002
https://doi.org/10.1145/3243734.3243841
https://doi.org/10.1145/3243734.3243841
http://csrc.nist.gov/publications/history/bell76.pdf
https://doi.org/10.1145/2637113.2637116
https://doi.org/10.1145/2637113.2637116

112 References

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. 2014b. “Infor-

mation Flow Control in WebKit’s JavaScript Bytecode”. In: Inter-

national Conference on Principles of Security and Trust (POST).

159–178.

Bichhawat, A., V. Rajani, D. Garg, and C. Hammer. 2021. “Permis-

sive runtime information flow control in the presence of exceptions”.

Journal of Computer Security. 29: 361–401. 4. issn: 1875-8924. doi:

10.3233/JCS-211385. url: https://doi.org/10.3233/JCS-211385.

Bielova, N. and T. Rezk. 2016a. “A Taxonomy of Information Flow

Monitors”. In: Principles of Security and Trust. Ed. by F. Piessens

and L. Viganò. Berlin, Heidelberg: Springer Berlin Heidelberg. 46–

67. isbn: 978-3-662-49635-0.

Bielova, N. and T. Rezk. 2016b. “Spot the Difference: Secure Multi-

execution and Multiple Facets”. In: Computer Security – ESORICS

2016. Cham: Springer International Publishing. 501–519. isbn: 978-

3-319-45744-4.

Birkedal, L., B. Reus, J. Schwinghammer, K. Støvring, J. Thamsborg,

and H. Yang. 2011. “Step-Indexed Kripke Models over Recursive

Worlds”. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. POPL ’11.

Austin, Texas, USA: Association for Computing Machinery. 119–

132. isbn: 9781450304900. doi: 10.1145/1926385.1926401. url: https://doi.org/10.1145/1926385.1926401.

Bove, A., P. Dybjer, and U. Norell. 2009. “A Brief Overview of Agda – A

Functional Language with Dependent Types”. In: Theorem Proving

in Higher Order Logics. Ed. by S. Berghofer, T. Nipkow, C. Urban,

and M. Wenzel. Berlin, Heidelberg: Springer Berlin Heidelberg. 73–

78. isbn: 978-3-642-03359-9.

Bowman, W. J. and A. Ahmed. 2015. “Noninterference for Free”. In:

Proceedings of the 20th ACM SIGPLAN International Conference

on Functional Programming. ICFP 2015. Vancouver, BC, Canada:

Association for Computing Machinery. 101–113. isbn: 9781450336697.

doi: 10.1145/2784731.2784733. url: https://doi.org/10.1145/2784731.2784733.

Broberg, N., B. van Delft, and D. Sands. 2013. “Paragon for Practi-

cal Programming with Information-Flow Control”. In: Proc. of the

11th Asian Symposium on Programming Languages and Systems.

APLAS ’13. 217–232.

https://doi.org/10.3233/JCS-211385
https://doi.org/10.3233/JCS-211385
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/1926385.1926401
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733

References 113

Buiras, P., D. Stefan, and A. Russo. 2014. “On Dynamic Flow-Sensitive

Floating-Label Systems”. In: Proc. of the 2014 IEEE 27th Com-

puter Security Foundations Symposium. CSF ’14. Washington, DC,

USA: IEEE Computer Society. 65–79. isbn: 978-1-4799-4290-9. doi:

10.1109/CSF.2014.13. url: https://doi.org/10.1109/CSF.2014.13.

Buiras, P., D. Vytiniotis, and A. Russo. 2015. “HLIO: Mixing Static and

Dynamic Typing for Information-Flow Control in Haskell”. In: Pro-

ceedings of the 20th ACM SIGPLAN International Conference on

Functional Programming. ICFP 2015. Vancouver, BC, Canada: As-

sociation for Computing Machinery. 289–301. isbn: 9781450336697.

doi: 10.1145/2784731.2784758. url: https://doi.org/10.1145/2784731.2784758.

Cheng, W., D. R. Ports, D. Schultz, V. Popic, A. Blankstein, J. Cowling,

D. Curtis, L. Shrira, and B. Liskov. 2012. “Abstractions for Usable

Information Flow Control in Aeolus”. In: 2012 USENIX Annual

Technical Conference (USENIX ATC 12). Boston, MA: USENIX

Association. 139–151. isbn: 978-931971-93-5. url: https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng.

Devriese, D. and F. Piessens. 2010. “Noninterference through Secure

Multi-execution”. In: Proc. of the 2010 IEEE Symposium on Secu-

rity and Privacy. SP ’10. IEEE Computer Society.

Efstathopoulos, P., M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler, E.

Kohler, D. Mazières, F. Kaashoek, and R. Morris. 2005. “Labels

and Event Processes in the Asbestos Operating System”. In: Proc.

of the 20th ACM symp. on Operating systems principles. SOSP ’05.

Felleisen, M. 1991. “On the Expressive Power of Programming Lan-

guages”. Sci. Comput. Program. 17(1-3): 35–75. issn: 0167-6423.

doi: 10.1016/0167-6423(91)90036-W. url: https://doi.org/10.1016/0167-6423(91)90036-W.

Fernandes, E., J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A.

Prakash. 2016. “FlowFence: Practical Data Protection for Emerging

IoT Application Frameworks”. In: USENIX Security Symposium.

531–548.

Giffin, D. B., A. Levy, D. Stefan, D. Terei, D. Mazières, J. C. Mitchell,

and A. Russo. 2012. “Hails: Protecting Data Privacy in Untrusted

Web Applications”. In: 10th USENIX Symposium on Operating Sys-

tems Design and Implementation, OSDI ’12.

https://doi.org/10.1109/CSF.2014.13
https://doi.org/10.1109/CSF.2014.13
https://doi.org/10.1145/2784731.2784758
https://doi.org/10.1145/2784731.2784758
https://www.usenix.org/conference/atc12/technical-sessions/presentation/cheng
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1016/0167-6423(91)90036-W

114 References

Goguen, J. and J. Meseguer. 1982. “Security Policies and Security Mod-

els”. In: Proc. of IEEE Symposium on Security and Privacy. IEEE

Computer Society.

Gregersen, S. O., J. Bay, A. Timany, and L. Birkedal. 2021. “Mech-

anized Logical Relations for Termination-Insensitive Noninterfer-

ence”. Proc. ACM Program. Lang. 5(POPL). doi: 10.1145/3434291.

url: https://doi.org/10.1145/3434291.

Hedin, D., A. Birgisson, L. Bello, and A. Sabelfeld. 2014. “JSFlow:

Tracking Information Flow in JavaScript and its APIs”. In: Proc.

of the ACM Symposium on Applied Computing (SAC ’14).

Hedin, D. and D. Sands. 2006. “Noninterference in the presence of non-

opaque pointers”. In: Proc. of the 19th IEEE Computer Security

Foundations Workshop. IEEE Computer Society Press.

Hedin, D. and A. Sabelfeld. 2012. “Information-Flow Security for a

Core of JavaScript”. In: Proc. IEEE Computer Sec. Foundations

Symposium. IEEE Computer Society.

Heintze, N. and J. G. Riecke. 1998. “The SLam calculus: programming

with secrecy and integrity”. In: Proc. ACM Symp. on Principles of

Programming Languages. 365–377.

Heule, S., D. Stefan, E. Z. Yang, J. C. Mitchell, and A. Russo. 2015.

“IFC Inside: Retrofitting Languages with Dynamic Information Flow

Control”. In: Proc. of the Conference on Principles of Security and

Trust (POST ’15). Springer.

Hirsch, A. K. and E. Cecchetti. 2021. “Giving Semantics to Program-

Counter Labels via Secure Effects”. Proc. ACM Program. Lang.

5(POPL). doi: 10.1145/3434316. url: https://doi.org/10.1145/3434316.

Hritcu, C., M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett.

2013. “All Your IFCException Are Belong to Us”. In: Proc. of the

2013 IEEE Symposium on Security and Privacy. SP ’13. Washing-

ton, DC, USA: IEEE Computer Society. 3–17. isbn: 978-0-7695-

4977-4. doi: 10.1109/SP.2013.10. url: http://dx.doi.org/10.1109/SP.2013.10.

Hunt, S. and D. Sands. 2006. “On flow-sensitive security types”. In:

Conference record of the 33rd ACM SIGPLAN-SIGACT Symp. on

Principles of programming languages. POPL ’06. Charleston, South

Carolina, USA: ACM. 79–90.

https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434291
https://doi.org/10.1145/3434316
https://doi.org/10.1145/3434316
https://doi.org/10.1109/SP.2013.10
http://dx.doi.org/10.1109/SP.2013.10

References 115

Jaskelioff, M. and A. Russo. 2011. “Secure Multi-execution in Haskell”.

In: Proc. Andrei Ershov International Conference on Perspectives

of System Informatics. LNCS. Springer-Verlag.

Jia, L., J. Aljuraidan, E. Fragkaki, L. Bauer, M. Stroucken, K. Fukushima,

S. Kiyomoto, and Y. Miyake. 2013. “Run-Time Enforcement of

Information-Flow Properties on Android”. In: Proc. of the 18th Eu-

ropean Symposium on Research in Computer Security (ESORICS

’13). Springer.

Jung, R., R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and D.

Dreyer. 2018. “Iris from the ground up: A modular foundation for

higher-order concurrent separation logic”. Journal of Functional

Programming. 28: e20. doi: 10.1017/S0956796818000151.

Kozyri, E., F. B. Schneider, A. Bedford, J. Desharnais, and N. Tawbi.

2019. “Beyond Labels: Permissiveness for Dynamic Information Flow

Enforcement”. In: 2019 IEEE 32nd Computer Security Foundations

Symposium (CSF). 351–35115. doi: 10.1109/CSF.2019.00031.

Krohn, M., A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,

and R. Morris. 2007. Information Flow Control for Standard OS Ab-

stractions. Stevenson, Washington, USA. doi: 10.1145/1294261.1294293.

url: https://doi.org/10.1145/1294261.1294293.

Myers, A. C., L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. 2006.

Jif 3.0: Java information flow. url: http://www.cs.cornell.edu/jif.

Nadkarni, A., B. Andow, W. Enck, and S. Jha. 2016. “Practical DIFC

Enforcement on Android.” In: USENIX Security Symposium. 1119–

1136.

Nikiforakis, N., L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,

C. Kruegel, F. Piessens, and G. Vigna. 2012. “You Are What You In-

clude: Large-Scale Evaluation of Remote Javascript Inclusions”. In:

Proceedings of the 2012 ACM Conference on Computer and Com-

munications Security. CCS ’12. Raleigh, North Carolina, USA: As-

sociation for Computing Machinery. 736–747. isbn: 9781450316514.

doi: 10.1145/2382196.2382274. url: https://doi.org/10.1145/2382196.2382274.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/CSF.2019.00031
https://doi.org/10.1145/1294261.1294293
https://doi.org/10.1145/1294261.1294293
http://www.cs.cornell.edu/jif
https://doi.org/10.1145/2382196.2382274
https://doi.org/10.1145/2382196.2382274

116 References

Norell, U. 2009. “Dependently Typed Programming in Agda”. In: Ad-

vanced Functional Programming: 6th International School, AFP 2008,

Heijen, The Netherlands, May 2008, Revised Lectures. Ed. by P.

Koopman, R. Plasmeijer, and D. Swierstra. Berlin, Heidelberg: Springer

Berlin Heidelberg. 230–266. isbn: 978-3-642-04652-0. doi: 10.1007/978-3-642-04652-0_5.

url: https://doi.org/10.1007/978-3-642-04652-0_5.

Pedersen, M. V. and S. Chong. 2019. “Programming with Flow-Limited

Authorization: Coarser is Better”. In: 2019 IEEE European Sympo-

sium on Security and Privacy (EuroS&P). 63–78. doi: 10.1109/EuroSP.2019.00015.

Pottier, F. and V. Simonet. 2003. “Information Flow Inference for ML”.

ACM Trans. Program. Lang. Syst. 25(1): 117–158. issn: 0164-0925.

doi: 10.1145/596980.596983. url: http://doi.acm.org/10.1145/596980.596983.

Rajani, V., I. Bastys, W. Rafnsson, and D. Garg. 2017. “Type Systems

for Information Flow Control: The Question of Granularity”. ACM

SIGLOG News. 4(1): 6–21. issn: 2372-3491. doi: 10.1145/3051528.3051531.

url: http://doi.acm.org/10.1145/3051528.3051531.

Rajani, V., A. Bichhawat, D. Garg, and C. Hammer. 2015. “Information

Flow Control for Event Handling and the DOM in Web Browsers”.

In: 2015 IEEE 28th Computer Security Foundations Symposium.

366–379. doi: 10.1109/CSF.2015.32.

Rajani, V. and D. Garg. 2018. “Types for Information Flow Control:

Labeling Granularity and Semantic Models”. In: Proc. of the IEEE

Computer Security Foundations Symp. CSF ’18. IEEE Computer

Society.

Roy, I., D. E. Porter, M. D. Bond, K. S. McKinley, and E. Witchel. 2009.

“Laminar: Practical Fine-grained Decentralized Information Flow

Control”. In: Proc. of the 30th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation. PLDI ’09. Dublin,

Ireland: ACM. 63–74. isbn: 978-1-60558-392-1. doi: 10.1145/1542476.1542484.

url: http://doi.acm.org/10.1145/1542476.1542484.

Russo, A. 2015. “Functional Pearl: Two Can Keep a Secret, if One of

Them Uses Haskell”. In: Proc. of the 20th ACM SIGPLAN Interna-

tional Conference on Functional Programming. ICFP 2015. ACM.

Russo, A., K. Claessen, and J. Hughes. 2009. “A library for light-weight

Information-Flow Security in Haskell”. ACM SIGPLAN Notices

(HASKELL ’08). 44(Jan.): 13. doi: 10.1145/1543134.1411289.

https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1109/EuroSP.2019.00015
https://doi.org/10.1145/596980.596983
http://doi.acm.org/10.1145/596980.596983
https://doi.org/10.1145/3051528.3051531
http://doi.acm.org/10.1145/3051528.3051531
https://doi.org/10.1109/CSF.2015.32
https://doi.org/10.1145/1542476.1542484
http://doi.acm.org/10.1145/1542476.1542484
https://doi.org/10.1145/1543134.1411289

References 117

Russo, A. and A. Sabelfeld. 2010. “Dynamic vs. Static Flow-Sensitive

Security Analysis”. In: Proc. of the 2010 23rd IEEE Computer Se-

curity Foundations Symp. CSF ’10. IEEE Computer Society. 186–

199.

Sabelfeld, A. and A. Russo. 2009. “From dynamic to static and back:

Riding the roller coaster of information-flow control research”. In:

Proc. Andrei Ershov International Conference on Perspectives of

System Informatics (PSI ’09). LNCS. Springer-Verlag.

Sabelfeld, A. and A. C. Myers. 2006. “Language-based Information-flow

Security”. IEEE J.Sel. A. Commun. 21(1): 5–19. issn: 0733-8716.

doi: 10.1109/JSAC.2002.806121. url: https://doi.org/10.1109/JSAC.2002.806121.

Sabelfeld, A. and D. Sands. 2001. “A Per Model of Secure Informa-

tion Flow in Sequential Programs”. Higher Order Symbol. Comput.

14(1): 59–91. issn: 1388-3690. doi: 10.1023/A:1011553200337. url:

https://doi.org/10.1023/A:1011553200337.

Schmitz, T., M. Algehed, C. Flanagan, and A. Russo. 2018. “Faceted Se-

cure Multi Execution”. In: Proc. of the 2018 ACM SIGSAC Confer-

ence on Computer and Communications Security. CCS ’18. Toronto,

Canada: ACM. 1617–1634. isbn: 978-1-4503-5693-0. doi: 10.1145/3243734.3243806.

url: http://doi.acm.org/10.1145/3243734.3243806.

Stefan, D., A. Russo, P. Buiras, A. Levy, J. C. Mitchell, and D. Maz-

ières. 2012. “Addressing Covert Termination and Timing Channels

in Concurrent Information Flow Systems”. In: International Con-

ference on Functional Programming (ICFP). ACM SIGPLAN.

Stefan, D., A. Russo, D. Mazières, and J. C. Mitchell. 2017. “Flexible

Dynamic Information Flow Control in the Presence of Exceptions”.

Journal of Functional Programming. 27.

Stefan, D., A. Russo, J. C. Mitchell, and D. Mazières. 2011. “Flexible

Dynamic Information Flow Control in Haskell”. In: Proc. of the 4th

ACM Symposium on Haskell. Haskell ’11. Tokyo, Japan: ACM. 95–

106. isbn: 978-1-4503-0860-1. doi: 10.1145/2034675.2034688. url:

http://doi.acm.org/10.1145/2034675.2034688.

https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1023/A:1011553200337
https://doi.org/10.1145/3243734.3243806
http://doi.acm.org/10.1145/3243734.3243806
https://doi.org/10.1145/2034675.2034688
http://doi.acm.org/10.1145/2034675.2034688

118 References

Stefan, D., E. Z. Yang, P. Marchenko, A. Russo, D. Herman, B. Karp,

and D. Mazières. 2014. “Protecting Users by Confining JavaScript

with COWL”. In: Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation. OSDI’14. Broom-

field, CO: USENIX Association. 131–146. isbn: 978-1-931971-16-4.

url: http://dl.acm.org/citation.cfm?id=2685048.2685060.

Surbatovich, M., J. Aljuraidan, L. Bauer, A. Das, and L. Jia. 2017.

“Some Recipes Can Do More Than Spoil Your Appetite: Analyz-

ing the Security and Privacy Risks of IFTTT Recipes”. In: Pro-

ceedings of the 26th International Conference on World Wide Web.

WWW ’17. Perth, Australia: International World Wide Web Con-

ferences Steering Committee. 1501–1510. isbn: 9781450349130. doi:

10.1145/3038912.3052709. url: https://doi.org/10.1145/3038912.3052709.

Tsai, T.-C., A. Russo, and J. Hughes. 2007. “A Library for Secure

Multi-threaded Information Flow in Haskell”. In: Proc. of the 20th

IEEE Computer Security Foundations Symposium (CSF’07). 187–

202. doi: 10.1109/CSF.2007.6.

Vassena, M. and A. Russo. 2016. “On Formalizing Information-Flow

Control Libraries”. In: Proc. of the 2016 ACM Workshop on Pro-

gramming Languages and Analysis for Security. PLAS ’16. Vienna,

Austria: ACM. 15–28. isbn: 978-1-4503-4574-3. doi: 10.1145/2993600.2993608.

url: http://doi.acm.org/10.1145/2993600.2993608.

Vassena, M., A. Russo, P. Buiras, and L. Waye. 2017. “MAC A Ver-

ified Static Information-Flow Control Library”. Journal of Logi-

cal and Algebraic Methods in Programming. issn: 2352-2208. doi:

https://doi.org/10.1016/j.jlamp.2017.12.003. url: http://www.sciencedirect.com/science/article/pii/S235222081730069X.

Vassena, M., A. Russo, D. Garg, V. Rajani, and D. Stefan. 2019. “From

Fine- to Coarse-Grained Dynamic Information Flow Control and

Back”. Proc. ACM Program. Lang. 3(POPL). doi: 10.1145/3290389.

url: https://doi.org/10.1145/3290389.

Volpano, D., G. Smith, and C. Irvine. 1996. “A Sound Type System

for Secure Flow Analysis”. J. Computer Security. 4(3): 167–187.

Volpano, D. and G. Smith. 1997. “Eliminating Covert Flows with Min-

imum Typings”. In: Proc. of the 10th IEEE workshop on Computer

Security Foundations. CSFW ’97. IEEE Computer Society.

http://dl.acm.org/citation.cfm?id=2685048.2685060
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1109/CSF.2007.6
https://doi.org/10.1145/2993600.2993608
http://doi.acm.org/10.1145/2993600.2993608
https://doi.org/https://doi.org/10.1016/j.jlamp.2017.12.003
http://www.sciencedirect.com/science/article/pii/S235222081730069X
https://doi.org/10.1145/3290389
https://doi.org/10.1145/3290389

References 119

Xiang, J. and S. Chong. 2021. “Co-Inflow: Coarse-grained Information

Flow Control for Java-like Languages”. In: Proceedings of the 2021

IEEE Symposium on Security and Privacy. Piscataway, NJ, USA:

IEEE Press.

Yang, J., K. Yessenov, and A. Solar-Lezama. 2012. “A Language for

Automatically Enforcing Privacy Policies”. In: Proc. of the 39th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages. POPL ’12. Philadelphia, PA, USA: ACM. 85–

96. isbn: 978-1-4503-1083-3. doi: 10.1145/2103656.2103669. url:

http://doi.acm.org/10.1145/2103656.2103669.

Yip, A., N. Narula, M. Krohn, and R. Morris. 2009. “Privacy-preserving

Browser-side Scripting with BFlow”. In: Proc. of the 4th ACM Eu-

ropean Conference on Computer Systems. EuroSys ’09. ACM.

Zdancewic, S. A. 2002. “Programming Languages for Information Se-

curity”. AAI3063751. PhD thesis. Ithaca, NY, USA. isbn: 0-493-

83049-9.

Zeldovich, N., S. Boyd-Wickizer, E. Kohler, and D. Mazières. 2006.

“Making Information Flow Explicit in HiStar”. In: Proceedings of

the 7th USENIX Symposium on Operating Systems Design and Im-

plementation - Volume 7. OSDI ’06. Seattle, WA: USENIX Associa-

tion. 19–19. url: http://dl.acm.org/citation.cfm?id=1267308.1267327.

Zeldovich, N., S. Boyd-Wickizer, and D. Mazières. 2008. “Securing Dis-

tributed Systems with Information Flow Control”. In: Proceedings

of the 5th USENIX Symposium on Networked Systems Design and

Implementation. NSDI’08. San Francisco, California: USENIX Asso-

ciation. 293–308. isbn: 111-999-5555-22-1. url: http://dl.acm.org/citation.cfm?id=1387589.1387610.

https://doi.org/10.1145/2103656.2103669
http://doi.acm.org/10.1145/2103656.2103669
http://dl.acm.org/citation.cfm?id=1267308.1267327
http://dl.acm.org/citation.cfm?id=1387589.1387610

	1 Introduction
	2 Fine-Grained IFC Calculus
	2.1 Dynamics
	2.2 Security
	2.3 Flow-Sensitive References

	3 Coarse-Grained IFC Calculus
	3.1 Dynamics
	3.2 Security
	3.3 Flow-Sensitive References

	4 Verified Artifacts
	4.1 Artifact Analysis

	5 Fine- to Coarse-Grained Program Translation
	5.1 Types and Values
	5.2 Expressions
	5.3 References
	5.4 Correctness
	5.5 Recovery of Non-Interference

	6 Coarse- to Fine-Grained Program Translation
	6.1 Types and Values
	6.2 Expressions and Thunks
	6.3 References
	6.4 Cross-Language Equivalence Relation
	6.5 Correctness
	6.6 Recovery of Non-Interference

	7 Related work
	7.1 Relative Expressiveness of IFC Systems
	7.2 Coarse-Grained Dynamic IFC
	7.3 Fine-Grained Dynamic IFC
	7.4 Label Introspection and Flow-Sensitive References
	7.5 Proof Techniques for Termination-Insensitive Non-Interference

	8 Conclusion
	References

