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SUMMARY
Visual categorization is a human core cognitive capacity1,2 that depends on the development of visual cate-
gory representations in the infant brain.3–7 However, the exact nature of infant visual category representa-
tions and their relationship to the corresponding adult form remains unknown.8 Our results clarify the nature
of visual category representations from electroencephalography (EEG) data in 6- to 8-month-old infants and
their developmental trajectory toward adult maturity in the key characteristics of temporal dynamics,2,9

representational format,10–12 and spectral properties.13,14 Temporal dynamics change from slowly emerging,
developing representations in infants to quickly emerging, complex representations in adults. Despite those
differences, infants and adults already partly share visual category representations. The format of infants’
representations is visual features of low to intermediate complexity, whereas adults’ representations also
encode high-complexity features. Theta band activity contributes to visual category representations in in-
fants, and these representations are shifted to the alpha/beta band in adults. Together, we reveal the devel-
opmental neural basis of visual categorization in humans, show how information transmission channels
change in development, and demonstrate the power of advanced multivariate analysis techniques in infant
EEG research for theory building in developmental cognitive science.
RESULTS AND DISCUSSION

The ability to recognize and categorize visual objects effortlessly

and within the blink of an eye is a core human cognitive capac-

ity1,2 that develops through learning and interaction with the

environment. Behavioral research in infants using looking

times6,7,15 and neural markers of attention provides evidence

for visual category processing16 and learning5,17 already within

the first year of life.

In adults, fundamental research in human and non-human pri-

mates has described the nature of the neural representations un-

derlying mature visual categorization abilities, revealing their

temporal dynamics,2,9 what features they encode,10–12 their

cortical locus,11,18 and how they relate to neural oscillations.13,14

In contrast, these key characteristics of visual category repre-

sentations19–23 are less well understood in infants due to strong

methodological challenges in human and non-human infant neu-

roimaging research.8,24,25 In particular, research using EEG—the

workhorse of infant neuroimaging for decades—has yielded in-

sights that are principally limited in two ways. One research
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approach focused on assessing the successful outcome of vi-

sual categorization rather than the underlying representations

themselves.26 Thus, the insights gained about representations

are indirect. Another research approach did assess underlying

representations directly but was limited to the category of

faces3,27 for which known neural markers exist. Thus, the gener-

alizability from the unique and small stimulus subset to the broad

set of visual categories of the visual world remains unclear.

Here, we overcome this double impasse to reveal the nature of

general visual category representations for various object cate-

gories in 6- to 8-month-old infants using EEG data. We do so

by leveraging an integrated multivariate analysis framework of

multivariate classification9 and direct quantitative comparison28

of the infant to the adult EEG data and deep learning models of

vision.12

The temporal dynamics of visual category
representations
Infant participants (n = 40) viewed 128 images of real-world ob-

jects from four categories (i.e., toys, bodies, houses, and faces,
cember 19, 2022 ª 2022 The Authors. Published by Elsevier Inc. 1
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Figure 1. Experimental design and results of time-resolved multivariate analysis

(A) The stimulus set comprised 32 cut-out images from four categories each: toys, headless bodies, houses, and faces (full set see OSF Repository at https://osf.

io/ruxfg/).

(B) Time-resolved multivariate analysis on EEG data. First, we extracted condition-specific EEG sensor activation values for every time point in the epoch and

formed them into response vectors. Then, using a leave-one-out cross-validation scheme, we trained and tested a support vector machine to classify visual

object categories from the response vectors. The results (pairwise decoding accuracy, 50% chance level) were aggregated in a decoding accuracy matrix of size

43 4, indexed in rows and columns by the conditions classified. The matrix is symmetric along the diagonal, and the diagonal is undefined. Averaging the lower

triangular part of the matrix resulted in grand average decoding accuracy as a measure of how well visual representations discriminate categories at a particular

time point.

(C and D) The grand average time course of visual category decoding in infants (C) and adults (D). The gray vertical line indicates onset of image presentation.

Shadedmargins indicate 95% confidence intervals (CIs) of decoding accuracy. Horizontal error bars indicate 95%CIs of peak latency. Rows of asterisks indicate

time points with significantly above-chance decoding accuracy (infant n = 40 or adult n = 20, right-tailed sign permutation tests, cluster-defining threshold

p < .005, corrected significance level p < .05). Detailed statistical information is listed in Table S1A. For visualization of single participant infant data see https://

github.com/siyingxie/VCR_infant.

(E and F) Results of category classification in EEG channel-space searchlight analysis for infants (E) and adults (F). Bold dots indicate the EEG channels with

significantly above-chance decoding accuracy (right-tailed sign-permutation tests, p < .05, FDR-corrected).

(legend continued on next page)
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see Figure 1A; for rationale of category choice see Method de-

tails) while we acquired EEG data. The age group was chosen

based on extensive work showing that by this age infants reliably

discriminate between basic level categories .26,29–31 Images

were presented for 2 s every 2.7–2.9 s. For direct comparison

we acquired EEG data in adult participants (n = 20) viewing the

same stimulus set with an adapted experimental design

(Figures S1A and S1B). We consider the epoch of �100 ms

to +1,000 ms with respect to stimulus onset in our analyses.

To reveal the time course with which visual category is

discriminated by visual representations, we used time-resolved

multivariate pattern analysis9 (Figure 1B).We report peak latency

(95% confidence intervals [CIs] in brackets) as the time point

during neural processing when category information was most

explicit, as well as onset and offset of significance for each

group.

In infants (Figure 1C), the classification curve rose gradually

from 100 ms onwards, reaching significance at 252 ms (250–

254 ms), followed by a broad peak at 416 ms (268–462 ms)

and a gradual decline. This pattern of result did not depend on

any particular object or category (Figures S1E and S1F), held

equally for classifications within and across the animacy division

(Figures S1G and S1H), and emerged equivalently for alternative

common analysis schemes (Figures S1I–S1K). In contrast, in

adults, the classification curve had a different shape (Figure 1D).

It emerged earlier (significant at 72 ms [72–74 ms]) and faster,

peaking at 154 ms (144–176 ms), compared to infants

(p < .001, bootstrap test, Table S1A). The observed delay is

not only due to longer latencies already at the early cortical pro-

cessing stages: the P100 component peak in infants was de-

layed by 22–68ms (Figures S1C and S1D, Table S1F), consistent

with previous studies.6,32–34 Instead, the grand average ERP

peak was much stronger, delayed by 98–242 ms. This suggests

that the observed peak latency differences with which category

representations emerge reflect a mixture of processing delays at

early and late processing stages.

Searchlight analysis in EEG channel space revealed that infor-

mation about visual category representations was highest in

EEG channels overlying occipitoparietal cortex in both infants

(Figure 1E) and adults (Figure 1F), tentatively suggesting partly

similar cortical sources in the posterior cortex.

This multivariate approach constitutes a novel analytical ac-

cess point to visual category representations in infants from

EEG data. Noteworthy, there is no simple mapping function of

our results to the results of classical univariate results, as the ap-

proaches differ in many aspects. Univariate analyses focus on

single electrodes or averages, while multivariate analyses focus

on patterns across electrodes, potentially increasing sensi-

tivity.35,36 In adults, univariate and multivariate analyses also

do not directly agree.9,37 However, the multivariate results carry

meaning, as they can be meaningfully related to behavior.9,38

Further research combining multivariate analyses with behav-

ioral measures7,15 in infants is needed.
(G and H) Results of time-generalization analysis for infants (G) and adults (H). D

participant infant data see https://github.com/siyingxie/VCR_infant. The gray v

outlines indicate time point combinations with significantly above-chance deco

p < .005, corrected significance level p < .05).

See also Figure S1 and Table S1.
The rise and fall of the classification curves in a few hundred

milliseconds might indicate rapid changes in the underlying

visual representations,2,9 slow ramping up of persistent repre-

sentations, or a combination of both. To investigate this, we as-

sessed the temporal stability of visual representations using

time-generalization analysis.39 We determined how well classi-

fiers trained on predicting visual category from EEG at one

time point perform when tested at other time points. Lack of

generalization across time indicates transience of the underlying

visual representation, whereas generalization across time indi-

cates persistence.

In both infants (Figure 1G) and adults (Figure 1H), classification

accuracy was highest along the diagonal (i.e., similar time points

for training and testing) with a broadening over time (white dotted

ellipse). This result suggests common neural mechanisms of a

rapid sequence of processing steps that result in an outcome

held online for further use, indicated by rapidly changing tran-

sient representations at earlier time points and more slowly

changing persistent representations at later time points,

respectively.

In addition to this general similarity between infants and

adults, two notable differences were indicative of incomplete

development of feedforward and feedback information pro-

cessing in infants. For one, early after stimulus onset, when

neural processing is dominantly feedforward, in adults we

observed high classification accuracy trailing the diagonal

narrowly (Figures 1H, 50–200 ms, dotted square), indicating

rapidly changing representations. Infants did not exhibit such

signals. This pattern suggests incomplete development of feed-

forward visual information processing mechanisms in infants.

Second, in adults, the classifier generalized well for the time

point combination of 100–200 ms and 200–1,000 ms (Figure 1H,

white striped rectangle). This suggests highly persistent repre-

sentations, likely emerging in the early visual cortex.9 There

were no such signals in infants. This indicates incomplete neu-

ral structures for recurrent processing that maintain visual infor-

mation online for long stretches of time.

While the overall pattern of results did not depend on any

particular category (Figures S1L and S1M), we cannot exclude

that differences between age groups could also be due to differ-

ences in experimental task or signal-to-noise ratio (SNR). By

design, we boosted SNR in adults compared to infants to in-

crease the chance of identifying similarities at the cost of inter-

pretative difficulties for differences. These difficulties are, how-

ever, alleviated by focusing on peaks as core measures for

interpretation whose size, but not latency, depends on SNR.

Shared visual category representations between infants
and adults
The results so far show that we identified visual category repre-

sentations in both infants and adults and that their time courses

have both similar and different aspects. However, we have not

tested whether infants and adults have similar category
etailed statistical information is listed in Table S1E. For visualization of single

ertical and horizontal lines indicate the onsets of image presentation. Black

ding accuracy (right-tailed sign permutation tests, cluster-defining threshold
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Figure 2. Category representations shared between infants and adults

(A) We used RSA to relate category representations in infants and adults. We interpret decoding accuracy as a dissimilarity measure on the assumption that the

more dissimilar two representations are, the better the classifier performs. This allowed us to use time-resolved decoding accuracy matrices as representational

dissimilarity matrices (RDMs) that summarize representational similarities between category representations. We compared RDMs (Spearman’s R) in infants

(average across participants) and adults (for each participant separately) for all time point combinations (tx, ty), assigning the values to a time-generalization matrix

indexed in rows and columns by the time in adults (tx) and infants (ty).

(B) Average time-generalization matrix relating category representations in infants and adults over time. Detailed statistical information is listed in Table S2A. For

visualization of single participant data see https://github.com/siyingxie/VCR_infant. The gray lines indicate image onset. Black outlines indicate time point

combinations with significant correlation (n = 20, right-tailed sign permutation tests, cluster-defining threshold p < .005, corrected significance level p < .05).

See also Figure S2 and Table S2.

ll
OPEN ACCESS

Please cite this article in press as: Xie et al., Visual category representations in the infant brain, Current Biology (2022), https://doi.org/10.1016/
j.cub.2022.11.016

Report
representations. An alternative hypothesis is that we observe

time courses of category classification for infants and adults,

but those are unrelated rather than shared representations.

Direct identification of shared representations between infants

and adults is challenging due to differences in the time course

over which the representations emerge and the EEG channel

spaces differ. We used a time-generalization variant of represen-

tational similarity analysis (RSA)28 (Figure 2A) to overcome these

hurdles. In short, we abstracted multivariate signals from the

incommensurate infant and adult EEG channel spaces to a com-

mon representational dissimilarity space, and we compared the

signals across all time point combinations.

We observed similarity in visual category representations be-

tween infants and adults at the time point combinations of

160–540 ms in infants, and 100–1,000 ms in adults (Figure 2B,

peak latency in infants: 200 ms [200–360 ms]; in adults:

120 ms [120–1,000 ms]). This result was similarly achieved for

alternative processing and data aggregation choices

(Figures S2A and S2B), and did not depend on any particular

category except on toys (Figure S2C). Our findings establish

quantitatively and directly that infants and adults share visual

category representations.

In sum, the emerging picture is one of not yet fully developed

dynamics of adult-like visual category representations in infants.

Representations in infants emerged later, slower, and lacked

particular components of feedforward and recurrent processing,

possibly related to immaturemyelination40 and synaptic connec-

tivity.41 Nevertheless, representations in infants and adults

shared large-scale temporal dynamics that encoded visual cate-

gory information similarly, consistent with previous studies

showing partly adult-like behavioral3,5,7,15 and neural19,20 cate-

gory sensitivity in the first year of age.

Our approach goes beyond previous EEG work in develop-

mental visual neuroscience in three ways. First, rather

than relying on indirect inference from attentional markers indi-

cating successful categorization,26 our approach assessed
4 Current Biology 32, 1–11, December 19, 2022
representations directly as they emerge with millisecond resolu-

tion. Second, our approach is not limited to the face category

and face-specific EEG components,3,27 but allows the study of

potentially any visual category. Third, our approach enabled a

new quantitative comparison28 of infant and adult visual cate-

gory representations.

Our results make direct predictions for the detailed develop-

mental trajectory of visual category representations.42 We expect

category representations to emerge increasingly earlier and with

faster temporal dynamics with increasing age, with additional

feedforward and feedback components appearing at critical

stages until a mature adult-like system emerges. Our approach

makes these predictions immediately testable in future studies us-

ing other age groups between early infancy and adulthood.

More broadly, our multivariate EEG analysis approach demon-

strates a novel access point to largely unmapped neural repre-

sentations in the infant brain, with strong potential to inform

theories of cognitive development for cognitive capacities that

emerge in the first year of life, such as object learning,5,6,17

speech processing,43 and core knowledge systems.44 Com-

bined with human infant fMRI19,20,25 and behavioral assess-

ment15 in a common framework,45 this promises to reveal the un-

known spatiotemporal neural dynamics underlying cognitive

functions in infants in the future.

The format of visual category representations
The time-resolved multivariate pattern analysis revealed the

presence and dynamics of visual category representations in

the infant and adult brain. However, by itself, it is unable to

specify their format, i.e., what type of visual features they

encode. We hypothesized that adults would encode visual fea-

tures represented at all levels of the visual processing hierarchy

from low- to high-complexity.46 Instead, infants would encode

visual features rather of low- and mid-complexity, as predicted

from visual behavior7,26 and anatomical development patterns42

of the infant visual brain.

https://github.com/siyingxie/VCR_infant


Figure 3. The format of category representations in infants and adults

(A) We characterized what type of visual features are encoded in category representations in infants and adults by relating them to computational models using

RSA.We ran the stimulus images through a Gabor filter model and the VGG-19 deep neural network trained on object categorization. We constructed RDMs from

their unit activation patterns (visualized in https://github.com/siyingxie/VCR_infant). We then compared model RDMs to infant and adult neural RDMs (con-

structed as the average of RDMs over time from 95% CIs around peak latency of time-resolved category classification, see Figures 1C and 1D).

(B) Results for infants (left) and adults (right) at the whole-model level. Error bars represent standard errors of the mean. Asterisks indicate significant correlation

(infant n = 40, adult n = 20, two-tailed sign-permutation tests, p < .05, FDR-corrected).

(C) Results for infants (left) and adults (right) at the deep convolutional neural network (DNN) layer level. Error bars represent standard errors of themean. Asterisks

indicate significant correlation (infant n = 40, adult n = 20, two-tailed sign-permutation tests, p < .05, FDR-corrected).

For (B) and (C), statistical details (i.e., correlations and p values) are in Table S3A.

(D) Results for infants (left) and adults (right) at the DNN layer level after removing the effect of the other age group respectively by partialling out the average RDM.

Error bars represent standard errors of the mean. Asterisks indicate significant correlation.

(E) Example of Butterworth-filtered images in different spatial frequencies.

(F) We characterized visual features encoded in visual representations in terms of spatial frequency content. We ran the frequency-filtered images through the

VGG-19 DNN.We constructed spatial-frequency-specific RDMs from the DNN unit activation patterns.We then comparedmodel RDMs to infant and adult neural

RDMs as described in (A).

(G) Relating frequency-specific image content to neural representations. The results indicate a significant correlation across all frequencies (except one bin at

0.18 cycle per degree [cpd]) in both infants and adults, with higher correlations for adults than infants above 1 cpd.

(H) Spatial-frequency-specific results for infants (blue curve) and adults (red curve) at the whole-model level.

For (G) and (H), asterisks are color-coded as result curves indicate statistical significance (infant n = 40, adult n = 20, two-tailed sign-permutation tests, p < .05,

FDR-corrected); black asterisks indicate significant difference between age groups (two-tailed Mann-Whitney U tests, p < .05, FDR-corrected). See also Fig-

ure S3 and Table S3.
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To determine the format of category representations, we

related them to computational models of vision (Figure 3A). We

probed two types of models: a Gabor filter model as a model

of simple visual features,47 and the deep neural network VGG-

19 model48 trained on object categorization, which exhibits a hi-

erarchy of low-to-high complexity features along with its layers,

and predicts activity along the visual processing hierarchy of the

adult human brain well.12,49

Assessing first the Gabor model and an aggregated summary

of the VGG model across layers, we found similar representa-

tions between both models and infant and adult visual
representations (Figure 3B). This suggested that features

ranging from low to high complexity might contribute and invited

further in-depth analysis.

Turning to the VGG model first, we conducted a finer investi-

gation of VGG at the level of layers. Considering each layer sepa-

rately, we found that in infants, middle layers predicted brain

activity best, with layer groups 3 and 4 being significant (Fig-

ure 3C, left). In contrast, layers at all stages were significantly

predictive in adults (Figure 3C, right). This pattern of results

was also achieved for other types of deep neural network archi-

tectures (Figures S3A and S3B) and independent of data
Current Biology 32, 1–11, December 19, 2022 5
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selection choices (Figures S3C and S3D), demonstrating the

robustness of the result. This pattern of results suggests that in-

fants and adults share similar visual features with the VGGmodel

at intermediate complexity. We ascertained this in two ways.

First, using partial correlation, we related the VGG model to

each age group while partialling out the effect of the other age

group. This abolished all effects in infants (Figure 3D, left) while

leaving the resulting pattern in adults unchanged (Figure 3D,

right), suggesting that the features underlying visual category

representation in infants are a subset of the features in adults.

Second, we conducted a variance partitioning analysis between

the VGG model and infant and adult visual representations at

layers 3 and 4, revealing shared variance (both R2 = 0.16;

p < .05, FDR-corrected). This reveals that in infants, category

representations are in the format of low- to intermediate-

complexity features and form a subset of the representations

seen in adults, whereas in adults category is discriminated by

features at all levels of complexity.

The prediction by the Gabor filter model as well as early

layers of VGG in adults suggests that in both age groups cate-

gory is discriminated by representations encoding features of

intermediate and low complexity, albeit to a different degree

or in different ways. This is consistent with observations that

low-level visual features are represented in high-level ventral vi-

sual cortex alongside features of higher complexity,50–52 and

that categories are systematically related to category through

differences in spatial frequency content, thus supporting

classification.53

We thus investigated the role of low-level features at different

spatial frequencies in visual category representations in infants

and adults. We filtered the stimulus material in spatial frequency

in 100 bins spaced logarithmically between 0.1 and 30 cycles per

degree (cpd) visual angle (for an example see Figure 3E). As ex-

pected, visual object categories were associated with different

spatial frequency content in the images (Figure S3E) that allows

category to be determined directly from the images (Figure S3F).

Using RSA, we assessed the similarity between category repre-

sentations and the spatially filtered images. We observed a sig-

nificant relationship across all spatial frequencies (except at 0.18

cpd) in both infants and adults (Figure 3G), with stronger relation-

ships for adults than infants above 1 cpd. This shows that cate-

gory representations in infants and adults are differentiated by

features across the spatial frequency spectrum, with a stronger

role of higher spatial frequencies in adults.

Based on this result, we refined the deep neural network

model-based analysis with respect to spatial frequency. We

compared the VGGmodel’s representation of the filtered images

with infant and adult category representations (Figure 3H). For

adults, the result revealed similar representations across all

spatial frequencies as expected, with a peak at 3.06–5.42 cpd.

In contrast, for infants, the similarity was restricted to spatial fre-

quencies from 0.31 to 1.73 cpd, with a peak at 0.55–0.98 cpd.

This is consistent with the shift in peaks in spatial sensitivity

from low spatial frequency up to 1 cpd54,55 to higher spatial fre-

quency at 2–6 cpd.56 As expected from the previous analysis, we

find significantly stronger correlations for higher spatial fre-

quencies in adults than in infants.

Taken together, this reveals that in infants, category repre-

sentations are in the format of low- to intermediate-complexity
6 Current Biology 32, 1–11, December 19, 2022
features at low spatial frequency and form a subset of the rep-

resentations seen in adults. In contrast, in adults, category is

discriminated by features at all levels of complexity and all

spatial frequencies, with a higher reliance on high spatial

frequencies.

Which processes may contribute to the emergence of high-

complexity features in the developmental trajectory from in-

fancy to adulthood? At this moment, we can only speculate.

The results of the time-generalization analysis in conjunction

suggest that local and far-reaching feedback processes

from the frontal cortex might be involved.57–59 In more cogni-

tive terms, linguistic and semantic processing is known to

modulate visual processing in adults and might modulate vi-

sual representations.60

Previous research investigating the format of infant visual

category representations tested hypotheses one by one through

experimental manipulation; for example, determiningwhether in-

fants are sensitive to stimulus inversion27 or tolerant to changes

in viewing conditions.61 Instead, our approach allows the com-

parison of any number of hypotheses as captured in explicit, im-

age-computable computational models to predict infant visual

category representations increasingly well. To speed up this pro-

cess, we make the data publicly available.

Our findings further suggest constraints for artificial intelli-

gence research. The biological brain inspired the engineering

of deep learning models, but the models’ learning has remained

biologically unrealistic12,49,62 and is perceived as a major imped-

iment to building better models. We suggest that models of

human visual categorization striving for increased biological real-

ism should follow a similar developmental trajectory of represen-

tations as described here.

Spectral properties of visual category representations
Neural oscillations underlie the formation and communication

of visual representations.14,63–65 Here, we determined the spec-

tral signature of visual category representations in infants as a

first step toward describing their relationship to neural oscilla-

tions. For this, we resolved EEG data in distinct frequency

bins from 2 to 30 Hz and performed time-resolved visual cate-

gory classification on each bin separately (Figure 4A). In infants

(Figure 4B), we observed significant category classification ac-

curacy in a specific cluster in the theta band with a peak at

4.63 Hz (2.91–6.73 Hz) and 400 ms (160–580 ms). This result re-

veals activity in the theta band as the spectral signature of vi-

sual category representations in infants. In contrast, in adults

(Figure 4C), the cluster extended across the whole frequency

range and time course investigated. It shows that the spectral

signature of visual category representations in adults is broad-

band. The patterns of results did not depend on any particular

category except for faces in infants (Figures S4E and S4F).

Note that the observed differences in infants and adults are

not a trivial consequence of differences in EEG power spectra

pattern or category, as those were similarly broadband in both

infants and adults and for all categories (Figures S4A and S4B).

Further, the classification peaks do not map onto the power

spectra peaks in terms of frequency and latency (Figures S4C

and S4D). They are thus not a function of SNR in the power

spectrum. Finally, the difference between infants and adults is

not due to higher inter-subject variability in spectral power



Figure 4. Spectral characterization of infant and adult category representations

(A) Category classification based on frequency-resolved EEG data. We first decomposed EEG data in time and frequency usingMorletwavelets for each trial and

each channel, yielding a trial-wise representation of induced oscillatory power. We then conducted the time-resolved multivariate classification of category

separately on each frequency bin. This yielded a 4 3 4 matrix of decoding accuracies at each time point and frequency bin, which we either averaged to obtain

grand average category classification, (B) and (C), or used as an RDM in RSA, (D) and (E).

(B and C) Results of time- and frequency-resolved multivariate analysis for infants (B) and adults (C). Detailed statistical information is listed in Table S4A.

(D) RSA procedure linking oscillation-based visual category representations in infants and adults. We first created a single aggregate infant oscillatory RDM by

averaging decoding accuracy matrices based on the extent of the cluster in the infant data. We compared (Spearman’sR) this aggregate infant RDM to time- and

frequency-resolved RDMs for each participant in the adult sample. This yielded a two-dimensional matrix indicating in which frequency range and when category

representations are similar between infants and adults.

(E) Similarity between infant theta-based category representations and adult category representations resolved in time and frequency. Detailed statistical in-

formation is listed in Table S4B.

For (B), (C), and (E), for the single participant data see https://github.com/siyingxie/VCR_infant; the gray vertical lines indicate the onset of image presentation; line

profiles of classification accuracy or correlation at the peak latency (gray vertical dashed lines) were shown on the left of the plots, respectively; black outlines

indicate time point combinations with significant results (infants n = 40, adults n = 20, right-tailed permutation test, cluster-defining threshold p < .005, corrected

significance level p < .05).

See also Figure S4 and Table S4.
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patterns in adults, as different measures of variability were

lower in adults than in infants (Table S4D).

The observed pattern of results is consistent with two alterna-

tive hypotheses about the relationship between the oscillatory

basis of visual category representations in infants and adults.

One hypothesis is that there is a direct match in frequency, sug-

gesting that peak classification in infants and adults is at similar

frequencies (i.e., at 4.63 Hz and 5.59 Hz, respectively). Another

hypothesis is an upward shift across age, made plausible by

the observations that brain rhythms increase in frequency during

infant development.66

To arbitrate between those hypotheses, we determined which

frequency band and time points category representations in
adults were similar to infant category representations identified

in the theta band (Figure 4D). We extracted representational

dissimilarity matrices (RDMs) from the infant data at the cluster

in the theta range. We used their average as a search template,

comparing it to RDMs from the adult data for all time point and

frequency combinations. We found a cluster of significant corre-

lations with a peak at 17.13 Hz (9.78–20.65 Hz) at 120 ms (120–

360 ms) (Figure 4E). This pattern of results was partly indepen-

dent of category (except faces, Figure S4G), held across

different data aggregation schemes and ways to assess the

theta cluster (Figure S4H). Further, there was no relationship be-

tween signals at the (non-significant) peak in infant alpha/beta at

100 ms and adult signals at any time-frequency combination
Current Biology 32, 1–11, December 19, 2022 7
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(Figures S4I and S4J). It directly demonstrates, both specifically

and quantitatively, an upward shift in the spectral signature of

neural activity supporting visual category representations from

the theta range in infants to the alpha/beta range in adults. As ex-

pected from the investigation of the representational format

above, the shared representations which shifted relied on low

spatial frequency features (Figures S3G and S3H).

The shift observed is not a trivial consequence of differences in

the peak latency and frequency of the power spectrum, which

are similar in infants and adults (Figures S4A–S4D). Closer in-

spection of the classification results (Figures 4B and 4C) at

peak latency reveals a similar peak around 4.63–5.59 Hz

(Figures 4B and 4C, line profiles), leaving open the possibility

that to some degree the profile observed in infants might be a

down-scaled and noisier version of the situation in adults, and

predicting shared representations across age group in the theta

band. Instead, the shared representations are present only in the

alpha/beta band (Figure 4E, line profile), demonstrating a clear

dissociation from overall signal strength.

One interpretation of these findings is that in infants, neural net-

works for learning and memory associated with the theta rhythm

contribute to the formation of category representations,67,68

whereas in adults, equivalent category representations are pro-

cessed quickly in fully developed semantic networks associated

with the alpha/beta rhythms.69,70 Alternatively, the frequency shift

might be due to more efficient axonal transmission as a result of

improvedmyelination40 that may enable higher neural oscillations

to emerge in the same neural circuits, consistent with increases in

the prevalent frequency in the EEG across development.66 On this

account, our finding suggests a novel general developmental tra-

jectory for neural communication channels in the human brain:

specific information-processing mechanisms working at low fre-

quency in infants are shifted up in frequency gradually across

development, and the size of this shift depends on the differences

in neural circuit myelination. However, we note that power in a fre-

quency does by itself indicate oscillations in that frequency, and

further research is needed to establish this firmly, e.g., by distin-

guishing aperiodic from periodic components.71,72 Similarly, we

do not observe a one-to-one mapping between shared represen-

tations revealed by time-resolved analysis (Figure 2B) and time-

frequency resolved analysis (Figure 4E). Instead, we expect the

relationship to be akin to the complex relationship between neural

oscillations and evoked responses.73,74 Further research is

needed to resolve to which degree they depend on distinct or

shared neural phenomena.

The nature and developmental trajectory of infant to
adult visual category representations
In sum, our results reveal the nature and developmental trajec-

tory of the infant to adult visual category representations, from

infancy to adulthood. Temporal dynamics change from slowly

to quickly emerging in time, the format from visual features of

low and intermediate complexity to features of high complexity,

and the oscillatory signature from the theta to the alpha/beta fre-

quency. These results provide insight into visual category repre-

sentations that underlie the development of fast and efficient

visual categorization skills in humans. They also further reveal

how cortical information transmission channels change in human

development and demonstrate the power of advanced
8 Current Biology 32, 1–11, December 19, 2022
multivariate analysis techniques in infant EEG research for devel-

opmental cognitive science.
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(rmcichy@zedat.fu-berlin.de).

Materials availability
This study did not generate new unique reagents.

Data and code availability

d Raw and processed data have been deposited atOSF and are publicly available as of the date of publication. DOI is listed in the

key resources table.

d All customized codes have been deposited atGitHub and are publicly available as of the date of publication. DOI is listed in the

key resources table.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Two independent pools of participants took part in this study: 6–8months old infants and young adults.We chose this infant age group

based on extensive evidence from behavioral and electrophysiological work showing that infants discriminate between various basic

level visual categories by this age, whereas in younger infants, category discrimination is less stable and relies more on the chosen

paradigm and the specific categories assessed.26,29–31 The infant samplewas assessed at theMaxPlanck Institute for HumanCogni-

tive andBrain Sciences in Leipzig, Germany. It comprised 48 participants, of which 8were excluded due to insufficient data, yielding a

final sample analyzed of 40 infant participants (gender: 19 female, age: mean ± SD: 214.9 ± 14.76 days). The adult sample was as-

sessed at the Freie Universit€at Berlin, Germany. It comprised 20 participants of which none was excluded (gender: 11 female, age:

mean ± SD: 26.1 ± 3.81 years). Caregivers of all infants and all adult participants gave written informed consent. The study was con-

ducted according to the Declaration of Helsinki and the infant and adult protocols were approved by the respective local ethic

committees.
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METHOD DETAILS

Stimuli
The stimulus set consisted of 32 object images in each of the four categories included: houses, toys, faces, and bodies. We chose

those categories for four reasons: (1) they are highly familiar to infants, and infants encounter them in everyday life; (2) faces,75–78

toys,3 bodies,79,80 and houses81,82 (as large objects that define scenes) have been used in previous infant researchmaking our results

in principle comparable; (3) they have well-described and distinct neural signatures in adults83; and (4) a recent fMRI study showed

distinct neural signatures for faces, objects, and scenes in infants, too.20 This yielded a total set of 4 3 32 = 128 object images. All

object images were cut-out from color photographs. All images are available in the OSF repository at https://osf.io/ruxfg/. We

analyzed the data at the level of category.

Experimental procedure in the infant sample
In the infant experiment, participants were presented with 272 trials divided into four blocks. Each block had the same basic struc-

ture. At the beginning of each block four stimuli (one stimulus per object category) were separately presented three times in random-

ized order. Thereafter participants were presented with a random sequence of images comprising the same four stimuli seven more

times, intermixed with 28 other images (seven images per category) presented only once. This experimental design was chosen

because it allows assessing the effect of object image repetition of infant brain responses, but this question is orthogonal to the

ones pursued here and will be reported separately.

Each trial consisted of a fixation dot presented for a variable duration of 700–900ms, followed by a stimulus presented for 2,000ms

at the center of the screen (Figure S1A). To capture the attention of the infants and direct their gaze to the screenwe implemented two

measures. First, we presented a yellow duck image and duck sound for 1,000 ms at the beginning of each block and thereafter every

10 trials. Second, each stimulus was presented together with one of ten arbitrary sounds that were assigned randomly at each trial.

During the assessment, infants sat on their care giver’s lap at a viewing distance of about 80 cm from a 17-inch. CRT screen. The

object images were presented at the center of the screen, subtending a visual angle of approximately 5.0�. To monitor infants’ gaze,

we recorded videos of infants’ faces throughout the experiment.

Experimental procedure in the adult sample
We adapted the experimental design for the adult sample. In short, all images were shown equally often, with higher number of rep-

etitions, at shorter presentation times and higher presentation rates that in the infant study (Figure S1B).

The first 3 participants were presentedwith 1,280 trials divided into 5 runs. In each run each object imagewas presented twice. The

other 17 participants were presented with 3,840 trials divided into 10 runs. In each run each object image was presented three times.

In each run, images were presented in random order, and runs were separated by breaks that were self-paced by the participants.

Each trial consisted of the presentation of a fixation cross with a variable duration of 600–800 ms, followed by a stimulus presen-

tation for 500 ms. Stimuli were presented at the center of the screen at a visual angle of approximately 7.0�.
Participants were instructed to keep fixation on the center of the screen throughout the experiment. To ensure that participants

attended to the stimuli and to avoid contamination of the relevant recording times with blink artefacts, participants were instructed

to press a button and blink their eyes in response to a paper clip image that was shown randomly every 4 to 6 trials (average 5 trials).

Paper clip trials were excluded from all further analysis.

EEG acquisition and preprocessing
Infant sample

EEG data for the infant sample were recorded in a shielded room using 30 Ag/AgCl ring electrodes and a TMSi 32-channel REFA

amplifier at a sampling rate of 500 Hz. Electrodes were placed according to the standard 10-20 system. Electrodes V+Fp2 and V-

recorded the vertical electrooculogram (VEOG), and electrodes H-F9 and HF+10 recorded the horizontal electrooculogram

(HEOG), Cz served as the online reference. We conducted preprocessing using the Fieldtrip toolbox.84 The continuous EEG

data was segmented for each trial into epochs. For subsequent time-resolved multivariate analysis we extracted the epoch

from �200 ms to +1,000 ms with respect to image onset. For analysis that was additionally resolved in frequency we used longer

epochs to allow better estimation at lower frequencies from �500 ms to +1,000 ms.

We removed all trials during which participants did not gaze at the screen for 1,000 ms after stimulus onset as assessed by visual

inspection of the video recordings. In this reduced trial set (mean ± SD: 139.6 ± 47.76 trials) we removed noisy channels (mean ± SD:

1.25 ± 1.32) and replaced them by interpolated data from adjacent electrodes. We further conducted independent component anal-

ysis (ICA) and removed components related to eye-movement and muscle artifacts as identified by visual inspection.

Adult sample

EEGdata for the adult sample were recorded using an EASYCAP 64-channel systemand aBrainvision actiCHamp amplifier at a sam-

pling rate of 1,000 Hz. Data were filtered online between 0.03 and 100 Hz. Electrodes were placed according to the standard 10-10

system. Electrode Fz served as the online reference. We conducted preprocessing using the Brainstorm 3 toolbox.85 Up to two noisy

channels were removed for each participant as identified by visual inspection. We conducted ICA to identify and remove eye-
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movement and muscle artifact components by visual inspection of independent components. The continuous EEG data were then

segmented for each trial into epochs from �200 ms to +1,000 ms (for time-resolved analysis) and from �500 ms to +1,000 ms (for

time- and frequency-resolved analysis).

EEG time-frequency decomposition
We decomposed the EEG time series into frequency-specific components by convolving the data with complex Morlet wavelets

separately for each trial and sensor. We performed decomposition based on single trials so that the decomposed activity reflects

stimulus-locked evoked responses and induced responses.73 The wavelets had a constant length of 2,600 ms and were logarithmi-

cally spaced in 30 frequency bins between 2 Hz and 30 Hz.We obtained the absolute power values for each time point and frequency

bin by taking the square root of the resulting time-frequency coefficients. We normalized these power values to reflect relative

changes (expressed in dB) with respect to the pre-stimulus baseline (–300 ms to�100 ms with respect to stimulus onset). We down-

sampled the time-frequency representations to a temporal resolution of 50Hz (by averaging data in 20ms-bins) to increase the signal-

to-noise ratio of subsequent analyses. This yielded for each trial a power value for each time point and frequency bin.

Multivariate classification of visual category from EEG data
To characterize the temporal dynamics with which visual category representations emerge in infant and adult brains we conducted

multivariate EEG classification using linear support vector machines (SVMs). We analyzed the infant and the adult data set separately

and equivalently.

We conducted two common variants of multivariate EEG classification: time-resolved EEG analysis9,37 and time-generalization

analysis.39 We conducted the analysis separately on the adult and infant sample, and separately for each participant. All analyses

employed binary c-support vector classification (C-SVC) with a linear kernel as implemented in the LIBSVM toolbox.86 The details

of the time-resolved and the time-generalization analysis are as follows.

Time-resolved classification
We used time-resolvedmultivariate pattern analysis on EEG data (Figure 1B) to determine the time course with which visual category

representations emerge in infant and adult brains. For each time point of the EEG epoch (from�200 ms to +1,000 ms), we extracted

trial-specific EEG channel activations (i.e., 25 in infants and 63 in adults) and arranged them into pattern vectors for each of the four

category conditions (i.e., face, house, body, and toy) of the stimulus set. To increase the signal-to-noise ratio (SNR), we randomly

assigned raw trials into four bins of approximately equal size each and averaged them into four pseudo-trials. We used a leave-

one-pseudo-trial-out cross validated classification approach. We trained the SVM classifier to pairwise decode any two conditions

using three of the four pseudo-trials for training. We used the fourth left-out pseudo-trial for testing, yielding classification accuracy

(chance level 50%) as a result. The procedure was repeated 100 times, each time with a new random assignment of trials to pseudo-

trials. The resulting decoding accuracy was averaged across repetitions and assigned to a decoding accuracy matrix of size 4 3 4,

with rows and columns indexed by the conditions classified. The matrix is symmetric across the diagonal, with the diagonal unde-

fined. This procedure yielded one decoding matrix for every time point.

Time-frequency resolved classification
In addition to classifying visual category from broadband responses (i.e., single trial raw unfiltered waveforms), we classified object

categories from oscillatory responses. This analysis followed the same rationale as the classification analysis described above, with

the only difference that classification was conducted on power value patterns instead of raw activation value patterns. The analysis

was conducted separately for each frequency bin separately. This resulted in a decoding accuracy matrix of size 4 3 4 as defined

above for every time point and every frequency bin.

Time generalization analysis
We used time-generalization classification analysis39 to determine how visual representations emerging at different time points dur-

ing the dynamics of visual perception relate to each other. For time and memory efficiency, we down-sampled the EEG data to a

sampling rate of 50 Hz by averaging the raw EEG data in 20ms bins. The procedure was equivalent to the time-resolved classification

analysis with the only difference that classifiers trained on data from a particular time point were not only tested on left out data from

the same time point, but iteratively on data from the same and all other time points. The idea is that successful classifier generalization

across time points indicates similarity of visual representations over time. This analysis yielded thus a size 43 4 decoding accuracy

matrix indexed in rows and columns by the conditions compared for all time point combinations from �200 to +1,000 ms. We aver-

aged the entries of the decoding accuracy matrix at each time point, yielding a temporal generalization matrix indexed in rows and

columns by training and testing time.

Sensor-space searchlight analysis
We performed a sensor-space searchlight analysis87,88 to localize in EEG channel space which channels contributed to the classi-

fication of category. For each EEG channel we defined a neighborhood as a sphere of the 10 (for adults) or 5 (for infants) closest EEG

channels. For each EEG channel we then performed time-resolved category classification analysis, limiting data entering the analysis

to its neighboring channels. Averaging across all pairwise category classifications yielded one decoding accuracy for each time point
e3 Current Biology 32, 1–11.e1–e6, December 19, 2022
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and for each EEG channel. We further averaged the results in 200 ms bins, yielding a single EEG channel searchlight map of grand

average decoding accuracy for each time bin.

Computing spatial-frequency specific versions of the stimulus set
To assess the role of spatial frequency on visual object categorizations, we decomposed the stimulus set in terms of spatial fre-

quency. For this, we first used the Fourier transform to transform each image into the frequency domain. We then defined a set of

100 Butterworth band-pass filters (complex higher order filters with a roll-off response rate of 5) logarithmically spaced between

0.1 and 30 cycles per degree (cpd) visual angle. We applied each band-pass filter to the frequency representation of each image,

yielding 100 band-pass filtered versions of each image in the frequency domain. We combined the resulting power values of each

image in the frequency domain together with the image’s original phase information to compute the corresponding frequency-filtered

images using the inverse Fourier transform. This procedure resulted in 100 sets of the stimulus set, band-pass filtered between 0.1

and 30 cpd.

Comparing visual representations in infants and adults
We determine whether infants and adults have similar visual category representations using representational similarity analysis

(RSA).89,90 The idea is that infants and adults share representations of category if they treat the same categories as similar or dissim-

ilar.We determined this in a two-step process. In a first step, for each age group independently condition-specificmultivariate activity

patterns (adults: 63 electrodes; infants: 25 electrodes) were compared for dissimilarity. Dissimilarity was determined for all pairwise

combinations of conditions, and dissimilarity values were aggregated in so-called representational dissimilarity matrices (RDMs) in-

dexed in rows and columns by the conditions compared (here: 43 4 RDMs indexed by the 4 object categories). RDMs thus provide a

statistical summary of the similarity and thus representational relations between visual category representations. The RDMs gained

from the infant and adult sensor space separately have the same definition and dimensionality and are thus directly comparable.

Thus, in a second step, the infant RDM and the adult RDMs are related to each other by determining their similarity.

We applied RSA to two different types of data: evoked responses (i.e., recorded voltage signals) and oscillatory responses

(i.e., spectral power). In both cases we re-used the results of the classification analysis described above for the definition of

RDMs. Classification accuracy can be interpreted as a dissimilarity measure on the assumption that the more dissimilar activation

patterns are for two conditions, the easier they are to classify.9,91 We detail the different RSA procedures below. To reduce visual

complexity of the analysis we subsampled the results of the classification analysis by binning them in 10 ms bins.

Relating visual category representations in infants and adults based on raw broadband time courses
We investigated whether infants and adults share common visual representations based on broadband responses. As visual repre-

sentations in adults and infants likely emerge with different time courses, we related their visual representations in a representational

similarity time-generalization analysis. As RDMs we used time point specific decoding accuracy matrices (Figure 2A). We first aver-

aged infant RDMs across all participants to increase SNR, resulting in one average infant RDM per time point. We then correlated

(Spearman’s R) the average infant RDM to each adult (n = 20) RDM across all time point combinations. This yielded 20 correlation

matrices, indexed in rows and columns by the time points compared (rows: infant time; columns: adult time), indicating when infants

and adults share category representations.

Relating visual category representations in infants and adults based on frequency-specific power time courses
We investigated whether infants and adults share visual representations in particular frequency bands. As RDMs we used decoding

accuracy matrices from the classification analysis based on time-frequency resolved power values. As in this analysis we could

neither assume similar time courses, nor similar roles for particular frequencies across infants and adults, we related infant and adult

representations in a time-and-frequency-generalization analysis. To do this, we first defined a single aggregate infant RDM by aver-

aging decoding accuracy matrices based on the extent (time and frequency) of the significant cluster in the infant data (Figure 4B)

alone. To increase signal-to-noise we only included RDMs whose average across entries in single participants was greater than

or equal to 50% decoding accuracy. Note that this criterion is orthogonal to the hypotheses tested and thus does not bias the anal-

ysis. We compared (Spearman’s R) this single aggregate infant RDM to time- and frequency- resolved RDMs for each participant of

the adult sample (n = 20), separately for each frequency and time point. This yielded 20 correlation matrices, with rows representing

time points and columns representing frequency bins, indicating when and at which frequency infants and adults share category

representations.

Relating visual representations in infants and adults to computational models
To characterize the format of visual category we related neural representations in infants and results to different computational

models using RSA.We constructedmodel RDMs from computational models (Figure 3A) that represent visual information in different

formats. We considered two types of visual computational models: a Gabor wavelet pyramid as a model of low-level feature repre-

sentations,47,92 and the VGG-19 48 deep convolutional neural network (DNN) trained to categorize object images. Deep neural net-

works process visual information along a hierarchy of increasing complexity from low to high93,94 that has been shown to match the

processing hierarchy of the human brain46,95,96 and predict human and non-human primate brain activity better than other model

class.12,97–99
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To construct model RDMs we first ran all visual stimuli in the study (i.e., 128 object images) through the models and extracted their

activation values. More specifically, for the Gabor filter model we extracted a single set of model responses for Gabor wavelets

differing in size, position, orientation, spatial frequency and phase. For the DNNwe used theMatConvNet toolbox100 to extract model

neuron activation values from the rectified linear units (Relu) for each layer.We z-transformed activation values across stimuli for each

stage/layer separately and averaged the transformed values across the 32 stimuli belonging to each of the four categories (i.e., face,

body, house and toy), resulting in four category-specific activation values. We formed the patterns into vectors and computed the

dissimilarity (1 - Pearson’s R) between all pairwise combinations of the four category activation vectors, resulting in a 4 3 4 RDM

for each DNN layer of each DNN separately, and one model RDM for the Gabor filter model.

To construct spatial frequency-specific DNNmodel RDMs, we used an equivalent procedure with the difference that we ran band-

pass filtered images through the DNNmodel separately for each band-pass defined. This resulted in 43 4 RDM for each spatial fre-

quency band and DNN layer of the DNN separately.

To construct spatial-frequency specific image-based RDMs, we did not run the images through a model, but the procedure was

otherwise equivalent. We directly averaged the pixel values of the filtered images across the 32 stimuli belonging to each of the four

categories (i.e., face, body, house, and toy), resulting in four category-specific activation values. We formed the patterns into vectors

and computed the dissimilarity (1 - Pearson’s R) between all four category activation vectors pairwise combinations, resulting in a

4 3 4 RDM for each frequency band.

To construct neural RDMs that capture category representations well we averaged decoding accuracy matrices from time-

resolved category classification (Figures 1C and 1D) in the 95% confidence intervals around peak latency in time-resolved category

classification. Our rationale was that peak latency is the time point when categories were linearly best separable and thus their rep-

resentationsmost explicit.101 To increase signal-to-noise we only included RDMswhose average across entries in single participants

was greater than or equal to 50% decoding accuracy. Note that this criterion is orthogonal to the hypotheses tested and thus unbi-

ased. This yielded a single neural RDM for every infant and adult participant. We then related infant and adult neural RDMs to model

RDMs using Spearman’s R, yielding a single correlation value for each model RDM and participant.

To allow assessing the models’ predictivity with respect to the noise in the data we calculated an upper and lower bound for the

noise ceiling,102 that is the predictions a perfect model may reach given the noise in the data. This procedure was conducted sepa-

rately for the infant and the adult sample. To estimate the upper bound we correlated (Spearman’s R) each participant’s neural RDM

with themean neural RDM across all participants. To estimate the lower boundwe correlated (Spearman’sR) each participant’s neu-

ral RDM with the mean neural RDM excluding that participant iteratively for all participants. We averaged the results, yielding esti-

mates of the lower and upper noise ceiling for infants and adults.

To reveal whether infants, adults, and the DNN share common representations, we applied variance partitioning using a general

linear model (GLM). The procedure was as follows. We first computed two GLMs between the DNN model RDM (i.e., observation)

and the infant and adult RDMs (i.e., main regressor), respectively. This revealed the total variance that the model and each age

group shared. We then computed two additional GLMs, adding the other age group’s average RDM to the model (i.e., there are

two main regressors). From the additional RDMs, we obtained the unique variance of infant and adult RDMs, which was the dif-

ference in explained variance after infant and adult RDMs were reduced from the models. From the results of those two types of

GLMs, we computed the shared variance that resulted from subtracting the unique variance from the total variance. We applied

this analysis for network layers to which infants and adults showed a significant relationship in the correlation analysis, which are

layers 3 and 4.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used non-parametric statistical inference for random-effects inference to avoid assumptions about the distribution of the

data.103,104 We used permutation tests for cluster-size inference, and bootstrap tests for confidence intervals on maxima, cluster

onset/offset, and peak-to-peak latency differences. The sample size (n) for infants was 40 and for adults 20. Tests were either

two- or right-tailed and are indicated for each result separately.

Permutation tests
We tested the statistic of interest (i.e., mean decoding accuracy or correlation coefficient in RSA across participants) using sign per-

mutation tests. The null hypothesis was that the statistic of interest was equal to chance (i.e., 50%decoding accuracy, a Spearman’s

R of 0). Under the null hypothesis, we could permute the category labels of the EEG data, which effectively corresponds to a sign

permutation test that randomly multiplies participant-specific data with +1 or �1. For each permutation sample, we recomputed

the statistic of interest. Repeating this permutation procedure 10,000 times, we obtained an empirical distribution of the data. We

converted the original statistic (i.e., correlation coefficient, the decoding time courses, time-time matrices of correlation coefficients

or decoding accuracies, and time-frequency decodingmatrices) into p values (correlation coefficients), 1-dimensional (time courses),

or 2-dimensional (time-generalization or time-frequency) p value matrices.

We controlled the family-wise error rate using cluster-size inference. We first thresholded p value time courses or maps at p < .005

(cluster-definition threshold) to define supra-threshold clusters by contiguity. These supra-threshold clusters were reported signifi-

cant only if the size exceeded a threshold, estimated as follows: the previously computed permutation samples were also converted

to p value time courses/matrices and also thresholded to define resampled versions of supra-threshold clusters. These clusters were
e5 Current Biology 32, 1–11.e1–e6, December 19, 2022
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used to construct an empirical distribution of maximum cluster size and estimate a threshold of 5% of the right tail of this distribution

(i.e., the corrected p values is p < .05).

Bootstrap tests
We calculated 95% confidence intervals for the onsets and offsets of significant clusters and the peak latency of the observed ef-

fects. To achieve this, we created 1,000 bootstrapped samples by sampling the participants with replacement. For each bootstrap

sample, we determined the peak latency as well as onsets of the first significant cluster and the offset of the last significant cluster.

This resulted in empirical distributions of peak, onset and offset latencies on which we determined 95% confidence intervals.

To calculate confidence intervals onmean peak-to-peak latency differences, we created 1,000 bootstrapped samples by sampling

the participant-specific latencies with replacement. This yielded an empirical distribution of mean peak-to-peak latencies. If the 95%

confidence interval did not include 0, we rejected the null hypothesis of no peak-to-peak latency differences. The threshold p < .05

was corrected for multiple comparisons whenever appropriate using FDR correction.
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