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We consider close-packed tiling models of geometric objects—a mixture of hardcore dimers and
plaquettes—as a generalisation of the familiar dimer models. Specifically, on an anisotropic cubic
lattice, we demand that each site be covered by either a dimer on a z-link or a plaquette in the x−y
plane. The space of such fully packed tilings has an extensive degeneracy. This maps onto a fracton-
type ‘higher-rank electrostatics’, which can exhibit a plaquette-dimer liquid and an ordered phase.
We analyse this theory in detail, using height representations and T-duality to demonstrate that the
concomitant phase transition occurs due to the proliferation of dipoles formed by defect pairs. The
resultant critical theory can be considered as a fracton version of the Kosterlitz–Thouless transition.
A significant new element is its UV-IR mixing, where the low energy behavior of the liquid phase
and the transition out of it is dominated by local (short-wavelength) fluctuations, rendering the
critical phenomenon beyond the renormalization group paradigm.

I. INTRODUCTION

Close-packed tiling problems provide a fertile platform
to demonstrate how many-body systems with constraints
give rise to a rich set of phenomena. A prototypical ex-
ample of this class is the close-packed dimer model[1–7]
on a wide variety of lattices, whose low-energy configura-
tion space contains one dimer attached to each site. This
constraint engenders an extensive number of configura-
tions with the same internal energy, so the equilibrium
behavior is controlled by entropic contributions to the
free energy, rather than energetic competition. Notwith-
standing the simplicity of the classical dimer model, these
constrained models provide illuminating insight into a
wide range of physical situations, including resonating
valence bond liquids[8], classical spin ice[9], order by dis-
order and unconventional phase transitions[10] etc.

The close-packed dimer models play a central role in
statistical physics due to their relationship to 2D height
models[11, 12] and 3D gauge theories[13]. In particu-
lar, a step towards the understanding of classical dimers
on a 2D bipartite lattice lies in the fact that the close-
packed constraint of the dimer can be represented by a
fluctuating scalar field so the entropy fluctuation can be
mapped to a statistical height models[1, 3, 14]. Follow-
ing the same spirit, the close-packed dimers on the 3D
cubic lattice can be expressed in terms of a magnetic
field with monopole-free conditions, and the entropy of
its fluctuations is captured by a 3D classical gauge the-
ory. If we further take quantum effects into consideration,
the quantum resonance of dimers can generate a richer
class of quantum phases. Depending on lattice structure
and dimensionality, at long wave-lengths the gauge field
dynamics can either exhibit confinement or else can be
described by a discrete or continuous gauge structure,
respectively, characterized by the framework of Z2 and
U(1) spin liquids[4, 8, 15–17].

Close-packed tiling models provide an exquisite frame-

work within which to study such emergent phenomena.
This line of research has been extended into several direc-
tions, including close-packed dimers on quasi-crystals[18],
close-packed plaquette and cube (and also mixed[19])
models[20–22] on the square and cubic lattices[23]. While
most close-packed tiling problems share similar behav-
ior, including extensive(or subextensive) ground state
degeneracy and zero-temperature entropy, the plaquette
tiling system contains additional peculiar features as the
monomer defects (unpaired sites) display restricted mo-
tion. In particular, a single monomer in the close-packed
plaquette system cannot move alone, while a pair of
monopoles between links can only move along the trans-
verse direction. Such restricted motion is reminiscent
of fracton phenomenon– a quasiparticle with restricted
motion[24–30]. In Ref. [20, 23], it was demonstrated that
the plaquette tiling constraint could be interpreted as
a higher-rank gauge theory[31–35] whose charge is con-
served on a subdimensional manifold.

In this paper, we try to extend the close-packed
tiling models into a broader class of geometric configura-
tions. To begin with, we consider a close-packed dimer-
plaquette tiling problem on a cubic lattice. The configu-
ration (‘Hilbert’ space) consists of all the plaquette and
dimer patterns obeying the following constraint: every
site in the cubic lattice is connected to either a dimer
on the z-link or a plaquette on the xy plane. Around
each site, there are thus six possible configurations, four
with plaquettes living at the four adjacent squares on the
xy plane, or two with dimers living on the z-link above
or beneath the site as Fig. 1. The space of such fully-
packed tiling patterns has an extensive degeneracy with
large entropy.

The free energy landscape is generated by the fluctu-
ations between distinct close-packed configurations. We
analyse this close-packed dimer-plaquette model by map-
ping it into a ‘higher-rank electrostatics’ whose charge is
conserved on each xz and yz plane[36, 37]. We in turn
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solve this ‘higher-rank electrostatics’ by mapping it to a
height model with subsystem U(1) symmetry[31, 38–42]
and demonstrate that such theories can support a liquid
phase with power-law decaying correlation functions. By
tuning a stiffness, we observe an ordering transition, for
which we provide a complete discussion from the perspec-
tive of T-dualiy, where a low-temperature height model
can be mapped into a high-temperature classical rotor
model in 3D with subsystem U(1) symmetry. The phase
transition is driven by the proliferation of a set of dipoles
formed by defect pairs.

The most striking feature of these close-packed dimer-
plaquette models is their UV-IR mixing, where the low
energy effective theory is controlled and dominated by
discontinuity field patterns[39]. As a result, the liquid
phase and the ordering transition is beyond the renor-
malization group paradigm as the low-energy behavior
at criticality is manipulated by local fluctuation at short
wave-lengths. Such UV-IR mixing[23, 31, 40, 42–44]
yields a new class of critical phenomenon beyond the
renormalization perspective. Finally, we also generalize
our discussion to a broader class of close-packed problems
with trimer-dimer mixture patterns and fractal dynam-
ics.

II. PLAQUETTE-DIMER COVERINGS OF THE
CUBIC LATTICE

To set the stage, we begin with the close-packed tilings
of the cubic lattice as Fig. 1. Each site is either connected
to a dimer on an adjacent z-link or to a plaquette on an
adjacent x-y square. The resulting configuration space of
close-packed dimer-plaquette patterns has an extensive
degeneracy and non-vanishing entropy at zero tempera-
ture.

FIG. 1. Close-packed tilings of the cubic lattice. Each site
is either part of a plaquettes(red) in the x-y plane or a z-
dimer(green).

To analyse the close-packed patterns, we account for
the local dimer-plaquette constraint by encoding the
plaquette and dimer coverage as a higher-rank electric
field[23, 36, 45],

Exy = ηPxy, Ez = ηDz . (1)

Exy lives on the center of each x-y plaquette while Ez
lives on each z-link. Pxy, Dz refers to the number of pla-

quettes and dimers living on the x-y plaquettes and z-
links, respectively. The η is the bipartite lattice factor
with an alternating sign structure. As we can uniquely
associate each x-y plaquette(and z-dimer) with a site
at (x, y, z), we can define the bipartite lattice factor as
η = (−1)x+y+z. Based on this notation, the dimer-
plaquette constraint can be interpreted as the Gauss-law,

∆x∆yExy + ∆zEz = η(1−Q) (2)

Here ∆i is the lattice difference and we set the lattice
constant a = 1. Q denotes the monomer number on the
site. When considering the close-packed configurations
we choose Q = 0, with the staggering background charge
η indicating each site is either connected with a dimer
or plaquette. To satisfy this local constraint, one can
parameterize the electric field as,

Exy = −∆zh+ Ēxy, Ez = ∆x∆yh+ Ēz, (3)

Here h is a discrete integer-valued field living on the dual
lattice at the center of each cube which characterizes the
local fluctuation of the dimer-plaquette pattern. Ēz, Ēxy
are background patterns satisfying the constraint in Eq. 2
due to the staggered background charge. We can simply
take the configuration Ēz = η, Ēxy = 0 for the dimer
columnar phase or Ēz = 0, Ēxy = η for the plaquette
columnar phase. It is worth mentioning that a large num-
ber of distinct plaquette-dimer configurations can be con-
nected by changing the value of h locally. In the mean-
time, the background patterns Ēz, Ēxy are responsible for
the global topological sectors that cannot be connected
by local h fluctuations. We will return to this issue in
Sec. III A.

For the close packing problem, the partition func-
tion contains a summation of all the allowed plaque-
tte/dimer configurations with equal Boltzmann weights.
Since there are no energetic terms in the partition func-
tion, the free energy consists only of the entropy. If we
coarse-grained the Exy, Ez field, the flippable configura-
tions with Ēxy, Ēz = 0 corresponds to a larger number of
microscopic states, and hence a larger coarse-grained en-
tropy, than the non-flippable configuration Ēxy, Ēz 6= 0.
Indeed, a flippable cube that can resonate between two x-
y plaquettes and four z-dimers has zero average Exy, Ez,
so the coarse-grained energy should effectively favors such
flippable patterns. This motivates the following ansatz
for the height field:

Z =

∫
DEz DExy e−β(E2

z+E2
xy)

=

∫
Dh e−β[(∂zh)2+(∂x∂yh)2]+α cos(2πh)+... . (4)

Here we replace the lattice difference with differentials in
coarse-graining. The term α cos(2πh) imposes the con-
straint that h takes discrete integer values. Depending on
the relevance of this term, this constraint can be released
and the resultant height field becomes a continuous vari-
able.
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Bear in mind that the ground state manifold comprises
the extensively degenerate patterns with close-packed

configurations so the e−β((∂zh)2+(∂x∂yh)2) describes the
entropy of each of the coarse-grained fields, with β the
resulting stiffness. When β is large, the entropic fluctu-
ations strongly order. This kind of effect, where fluctu-
ations around ordered state dominate over an ensemble
of disordered configurations with lesser fluctuations, is
known as order by disorder.

Long-wavelength quantities such as β can in princi-
ple be tuned by adding microscopic interactions between
dimers and plaquettes. This can thus drive the sys-
tem across a phase transition, see e.g. [12] in the case
of a dimer model on the square lattice. If we add at-
tractive or repulsive interactions between adjacent pla-
quettes/dimers, the locally flippable configurations with
columnar dimer/plaquette patterns are microscopically
favored/suppressed. Whether or not a liquid phase exists
in a given model such as ours cannot in general be read
off from its microscopic formulation directly; rather, one
needs to determine the value of the prefactors/relevance
of the various terms in the effective action independently.
The effective description does allow an analysis of the
novel phases, and the transitions between them, where
they arise.

Thus, as we shall see below, when β < π/2, the
system is in the liquid phase, with dimer-dimer (and
plaquette-plaquette) correlations displaying a power-law
decay as Eq. 10. The phase transition between the liquid
and ordered phase can be characterized by a fractonic
Kosterlitz-Thouless transition which we address in detail
in Sec. III B.

FIG. 2. The electric fields Exy, Ez(red dot) live at the center
of the x-y plaquette or at the center of the z-link. The height
field h (green) lives at the center of each cube on the dual
lattice.

This theory has a special feature as the ‘effective
Hamiltonian’ of the height field (which encodes the en-
tropy) contains a higher-order derivative ∂x∂y so the
kx, ky axes are dispersionless, hosting a ‘sub-extensive
number’ of zero modes, i.e. the zero modes reside on
a lower-dimensional manifold. This also implies that
the system has an additional subsystem symmetry as
h→ h+ g(x, z) + f(y, z).

We first consider a Gaussian fixed point theory,

Z =

∫
Dh e−β[(∂zh)2+(∂x∂yh)2] (5)

At this point, we ignore the discreteness of h, the validity
of which will be scrutinized later. We calculate the Green
function of the free height field,

〈h(q)h(q)〉 =
1

β(q2
z + q2

yq
2
x)

. (6)

As the Green function contains a set of nodes on the
kx, ky axis, the asymptotic behavior of the height corre-
lator at large z exhibits double logarithmic scaling as,

〈e−h(0)h(z)〉 = e−
1

4πβ [ln(z)]2 (7)

The double linear divergence of the energy spectrum at
kx → 0, ky → 0 leads to the special double logarithmic
scaling in the correlator, yielding a decay faster than any
power-law. Thus, the height operator is short-ranged
correlated along the z-direction. In addition, the two-
point correlator outside of the z-direction is short-ranged,

〈e−h(0,x,y)h(0,0,0)〉 → 0 (8)

This is manifested by the additional subsystem symmetry
h → h + g(x, z) + f(y, z). Thus, we can conclude that
the two-point height correlator is always short-ranged, so
the cos 2πh operator is irrelevant for any β.

An intuitive argument to elucidate the absence of long-
range correlation goes as follows. Due to the subsystem
symmetry of the classical height field, it can only fluc-
tuate along the z direction so we regard it as a 1D sub-
dimensional classical field. For a 1D classical system,
there is no long-range order due to its strong fluctua-
tions. However, this does not imply we can ignore the
discreteness of the height field as higher-order operators
like cos 2πh, albeit with more derivatives, could be more
relevant at large β.

We also calculate the dimer and plaquette correlation
functions,

〈Ez(0)Ez(r)〉 = 〈∂x∂yh(0)∂x∂yh(r)〉

=
1

β

(
1

z2 + x2y2
− 2z2

(z2 + x2y2)2

)
(9)

〈Exy(0)Exy(r)〉 = 〈∂zh(0)∂zh(r)〉

=
1

β

(
1

z2 + x2y2
− 2x2y2

(z2 + x2y2)2

)
(10)

Both display power-law decay with strong anisotropy.
Based on this observation, the extensive entropy of such
close-packed patterns engenders a liquid phase where the
dimer and plaquette patterns strongly fluctuate. Such
anisotropic power-law correlation also result in the pinch
point singularity in momentum space [33, 35, 46] which
reflects the Gauss-law constraint in Eq. 2.
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Now we return to the relevance of the cos(2πh) term.

As the correlation function 〈e−h(0)h(z)〉 = e−a[ln(z)]2 with
double logarithmic decay vanihes faster than any power
law (but slower than exponentially), and is short-ranged
otherwise due to subsystem symmetry, the cos(2πh) term
is always irrelevant. However, there exist higher-order
operators cos (2π∇xh), cos (2π∇yh) that are also allowed
by the integer constraint. These operators correspond to
a pair of height fields separated along the x(y)-link on
the dual lattice.

〈e−4π2(h(0)h(ex)h(0,y,z)h(ex,y,z))〉

= 〈e−(2π∇xh(0) 2π∇xh(0,y,z))〉 =
1

(z2 + y2)
π
β
,

〈e−4π2(h(0)h(ey)h(x,0,z)h(x,ey,z))〉

= 〈e−(2π∇yh(0) 2π∇yh(x,0,z))〉 =
1

(z2 + x2)
π
β

(11)

Taking the lattice spacing a to be fixed at unity, the
four-point correlator on the thin stripe becomes the cor-
relation between ‘dipoles’. Notice that the dipole cor-
relation function e−[2π∇yh(0)2π∇yh(x,0,z)] is only nonzero
when they are at the same xz plane transverse to the
dipole orientation. The dipoles effectively behave like
a 2D classical field with restricted motion and alge-
braic correlations within each slab. When β > π/2,
the cos(2π∇xh), cos(2π∇yh) term becomes relevant and
hence drives the liquid phase toward an ordered phase
with crystalline patterns (dimer or plaquette ordered)[23,
31, 40, 44]. Our current scaling argument only implies
the existence of a phase transition between the liquid and
the ordered phase. The microscopic pattern of the crys-
talline phase will be determined by the concrete Hamil-
tonian, which can vary if we tune the interactions be-
tween favouring plaquettes or dimers. In addition, there
are other symmetry allowed terms including the parallel-
jump operator[31] cos(2π∇2

ih) with higher-order deriva-
tives. Due to the subextensive number of low energy
modes at high momentum, these operators represent-
ing ’rough patterns with local fluctuations’ cannot be ig-
nored. In Ref. [31], it was shown that the parallel-jump
operator are less relevant for integer fillings.

In conventional critical phenomena within the RG
scheme, an operator’s correlation function either decays
as a power-law function or exponentially. Such scaling
implies that a higher-order derivative of the operator has
a faster decay with a smaller scaling dimension and hence
is less relevant. However, the double logarithmic scaling
in the two-point correlation function in Eq. 7 contains a
peculiar feature that its higher-order derivative operator
turns out to be more relevant and longer-ranged. Thus,
the critical point is driven by dipole proliferation. Actu-
ally, the double logarithmic scaling in Eq. 7 is a necessary
feature of UV-IR mixing where the critical point is con-
trolled by short wave-length physics. We will return to
this point in Sec. III.

It is noteworthy that determining the relevance and
the scaling dimension of the dipole operator is consid-

ered based on the subsystem slab instead of the entire
space-time dimension. General renormalization group
reasoning implies that classical operators are irrelevant
when the associated scaling dimension exceeds the space
dimension. However, due to the constrained form of the
dipole correlators, which only exhibit a power-law de-
cay on a reduced spatial region, i.e., on the 2D slab, one
expects that the condition for irrelevance should be mod-
ified, and the instability should appear only provided the
associated scaling dimension exceeds that of the subsys-
tem, the 2D plane. Thus, when evaluating the scaling
dimension of the vertex operator cos(2π∇xh), we only
consider its scaling within the y-z plane. Renormaliza-
tion on the subsystem is a significant new element in our
critical theory, and it implies that the IR theory allows
discontinuous field configurations due to the subsystem
symmetry. Such discontinuous field configurations in the
effective field theory are manifested by the lines of nodes
on the kx, ky axis in the height field Green function in
Eq. 6.

When β < π/2, the dimer-plaquette liquid phase re-
sembles a classical dimer ‘liquid’ on a 2D bipartite lat-
tice where the fluctuations produce power-law decaying
dimer correlations. However, the plaquette-dimer liquid
we study here is intrinsically distinct from the classical
dimer liquid in the following sense. While the constraint
of the plaquette-dimer liquid is engendered by the gen-
eralized Guass law in Eq. 2, the monomers (Q charges)
obey a special subsystem charge conservation law,

∫
dxdz (∆x∆yExy + ∆zEz) =

∫
dxdz Q = 0,∫

dydz (∆x∆yExy + ∆zEz) =

∫
dydz Q = 0, (12)

If we impose periodic boundary conditions, the monomer
charges along each x-z and y-z plane are conserved. Thus,
a single monomer excitation that corresponds to an un-
paired site with no dimer and plaquette adjacent to it can
only move along the z-direction by exchanging its posi-
tion with the z-dimers along the path. In the meantime,
the monomer alone cannot move on the x-y plane. In-
stead, only a pair of monomers (i.e. a dipole) separated
along an x(y) link can move together along the transverse
direction by exchanging its position with the plaquette in
the x-y plane.

Such monomer excitations with restricted motions are
known as fractons. A fracton is a type of quasiparticle
with restricted mobility that was first introduced in the
context of exactly solvable spin liquid models [24, 26, 29].
Theoretically, the characterization of fractons is framed
by the language of higher-rank gauge theories, which en-
code the immobility of fractons in a set of subsystem
charge conservation conservation laws[27, 45].
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III. UV-IR MIXING: WHAT IT IS AND HOW IT
APPEARS?

Up to this stage, we have demonstrated the possibility
of a close-packed plaquette-dimer liquid with power-law
decaying correlation functions. By tuning the stiffness
β, there exists a phase transition between the plaquette-
dimer liquid and an ordered phase. While such an or-
dering is known from classical dimers on various crys-
talline structures, our plaquette-dimer liquid transition
has a unique feature denoted ”UV-IR mixing”, where the
short wavelength physics plays a crucial rule. As we eluci-
dated in our previous discussion Sec. II, the transition to-
ward an ordered phase is triggered by the dipole operator
cos(2π∂xh), cos(2π∂yh) while the operator cos(2πh) itself
remains irrelevant. This anomalous scaling is peculiar
and counter-intuitive as a renormalization group analysis
or dimension counting generally implies that higher-order
operators should be less relevant.

The divergence of the correlation length in the criti-
cal region implies the effective interaction at IR becomes
long-ranged and hence requires us to visualize the sys-
tem at larger scales. A complete understanding of critical
phenomena has famously been accomplished via the de-
velopment of the renormalization group[47–50]. In par-
ticular, the universal properties of a wide class of ran-
dom or statistical systems can be understood by coarse-
graining: integrating out the short wave-length modes
and focusing on the resulting (renormalisation flow of
the) long wave-length behavior. Based on this observa-
tion, the critical phenomenon exhibits many universal
properties that are independent of the UV Hamiltonian
but only reflect symmetry and dimensionality. For in-
stance, the correlation function at the critical point has a
universal power-law exponent 〈C(r)C(0)〉 = 1

rD−2+η with
D being the space dimension and η the anomalous dimen-
sion correction. The field pattern at low energy, which
controls the IR behavior, is thus determined merely by
the spatial dimension and an exponent that are insensi-
tive to UV cut-offs[31, 39, 44].

However, the plaquette-dimer liquid phase we discuss
here is a peculiar example that escapes this renormal-
ization group picture. The power-law correlation of the
dimer/plaquette liquid is spatially anisotropic with only
a C4 symmetry, and its exponent does not match any
known universality. In addition, the operator cosh al-
ways remains irrelevant and short-range correlated while
the the dipole operator cos(2π∇xh)(cos(2π∇yh)) ex-
hibits algebraic correlation if and only if evaluated within
the same y-z (x-z) plane. Such a dipole correlator can
also be understood as the correlation between four height
fields at the corners of a think stripe. It becomes rele-
vant when β grows and hence drives the liquid towards
the ordering transition.

In this spirit, we can measure the asymptotic behavior
of the four-point height correlator defined at the corners
of a large rectangle that respects subsystem U(1) sym-

metry,

〈e−[h(0)h(x)h(0,0,y)h(0,x,y)]〉 = e−a[ln(rx) ln(ry)] (13)

The double linear divergence of the energy spectrum as
kx → 0, ky → 0 leads to the special double-logarithmic
scaling in real space, so that the correlator shows a faster
decay than any power-law when rx, ry →∞.

If we place the four points on the corners of a thin and
long stripe by taking rx = ma (a being the lattice spac-
ing), this four-point correlation becomes the dipole cor-
relation function in Eq. 11, with a power-law decay along
the y-direction. However, by changing the length of the
dipole, the exponent of the correlation changes rapidly,
indicating that the scaling dimension of the dipole op-
erator depends on the UV cut-off. This phenomenon,
known as UV-IR mixing, is a new feature for critical liq-
uids: the low energy behavior is sensitive to the UV ‘de-
tails’. In particular, the special double logarithmic scal-
ing arises from the subsystem symmetries where the low
energy spectrum contains a set of zero-modes at kx, ky
axes[23, 31, 39, 40, 44]. This excessive number of low
energy states at high momentum generates a set of field
configurations with strong local fluctuations. As a result,
we cannot simply integrate out (coarse grain) the local
fluctuations nor change the UV cut-off, as the high mo-
mentum modes would bring additional singularities and
hence qualitatively change the universal behavior.

A. UV-IR mixing from the perspective of global
topological sectors

Another way to visualize the UV-IR mixing is to scru-
tinize the topological sector of the close-packed configu-
rations. Our theory in Eq.5 contains zero energy branch
cuts on the kx, ky axes that imply a subextensive (scaling
as Lx+Ly−1) number of patterns with the same entropy.
These patterns inhabit distinct topological sectors, which
are connected via large gauge transformations[20, 36].

Writing the height representation of the electric field,

Exy = −∇zh+ Ēxy, Ez = ∇x∇yh+ Ēz, (14)

where Ēz, Ēxy are the background fields encoding the
topological sector, while the height field h encodes the
local fluctuations of the plaquette-dimer pattern within
a sector.

We can define a topological winding number on a
closed manifold with periodic boundary conditions for
h,

mz(z, x) =

∫
dy Ez, mz(z, y) =

∫
dx Ez,

mxy(x, y) =

∫
dz Exy (15)

Based on the sign structure defined in Eq. 2, mz encodes
the number of dimers (with a sign modulation) on the x-
row(or y-row) while mxy encodes the plaquette number
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FIG. 3. a) The topological sector mz(z, y) =
∫
dx Ez counts

the winding number of dimers along a specific x-row. b)The
view of the 3D lattice from the top onto an x-y plane. If the
quantity mxy is fixed on all the shaded squares on a row and
column, all mxy are determined on the whole lattice. c) The
topological sector mxy(x, y) =

∫
dz Exy counts the winding

number of plaquettes along a specific z-row.

along each z-row. These ‘winding numbers’ character-
ize the topological sectors, which cannot be changed by
flipping any configurations locally (Fig. 4). From the de-
composition in Eq. 14, the height field representing local
fluctuations does not affect the topological sector so the
winding number is fixed by Ēz, Ēxy.

From the Gauss-law constraint in Eq. 2, it follows that,

∇zmz(z, x) = 0, ∇zmz(z, y) = 0,

∇x∇ymxy(x, y) = 0 (16)

This identity implies that the winding numbers of the
electric field along each row are not independent. In par-
ticular, if we fix the value of mxy(x, y) on a row and a
column on the x-y plane, all other topological sectors are
fixed as Fig. 3. Likewise, the choices of mz(z, x),mz(z, y)
have to be independent of coordinate z. In addition, the
choice mz(x),mz(y) is restricted by

∑
x

mz(x) =
∑
y

mz(y) = W =

∫
dydx Ez. (17)

Hence, there are Lx + Ly − 1 independent values of mz,
each representing an independent Ez winding number
along the x or y column. Thus, there exists subextensive
number of independent topological sectors that grows
linearly with the system size. These independent sec-
tors can be traced back to the holonomies of higher-rank
gauge theories[36] which result in the size-dependent de-
generacy of fracton topological order[24, 25, 36].

While the winding number we discuss here is reminis-
cent of the winding number of dimers in the 2D close-
packed classical dimer liquid, the underlying physics is
qualitatively different. For 2D dimers, there only ex-
ist two independent numbers, one along each orthogonal
direction. This implies if the dimer’s winding number
along a specific row is fixed, all the other rows should
display the same winding number. However, for our
plaquette-dimer liquid, the numbers mxy,mz can vary
on the x-y plane so the winding numbers of mxy(x0, y0)
and mxy(x0 + 1, y0 + 1) are independent.

This underpins the expression of Ēz, Ēxy in terms of
the winding numbers, and attribute all remaining local
fluctuations to the height field.

Ēxy(xi, yi) =
mxy(xi, yi)

Lz
, Ēz(xi, yi) =

∑
x

mz(x)δ(x− xi)
Ly

+
∑
y

mz(y)δ(y − yi)
Lx

− W

LxLy
(18)

Here mz(x),mz(y),mxy(x, y) are the topological winding
numbers along a row that are all independent of the co-
ordinate z. W is the total dimer winding number on the

x-y plane defined as Eq. 17. Including summing over the
different topological sectors, we can write the partition
function as,

Z =

∫
DEz DExy e−β(E2

z+E2
xy) =

∫
Dh e−β[(∂zh−Ēxy)2+(∂x∂yh−Ēz)2]+α cos(2πh)+... (19)

The fluctuations of the close-packed plaquette-dimer sys-
tem is thus divided into two parts: the local fluctu-
ation and the distinct topological sectors that require

a non-local deformation along with non-contractible
loops. Physically, the maximal value of mz,mxy corre-
spond to the staggered patterns with minimal entropy
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as all dimers/plaquettes are non-flippable. Likewise,
mz,mxy = 0 denotes the columnar patterns with a max-
imal amount of local flippability. Since the choice of
mz,mxy can vary in space with Lx +Ly − 1 independent
choices, we can expect configurations where the plaque-
ttes have staggered configurations on a specific x-z slab
with maximal mxy while at the next nearest x-z slabs, the
plaquettes are in the columnar state with mxy = 0. In
other words, a staggered plaquette pattern on the y = 1
slab versus a staggered plaquette on the y = Ny slab(with
all other slabs exhibiting the columnar patterns) share
the same flippablility and entropy. However, these two
states lie in distinct topological sectors, i.e. cannot be
connected via local fluctuations.

This is the crucial distinction to the dimer liquid,
whose winding is unique along each non-contractible
loop: our plaquette-dimer liquid allows ’rough configura-
tions’ where the winding number can strongly fluctuate
in space so the short-wavelength physics plays an impor-
tant role. For each mz,mxy, if we change its global flux
by one unit, the entropy of the new pattern would not
change up to some 1/L correction. Thus, the number of
independent mz,mxy determines the density of state en-
gendered by the global pattern change. The branch cut at
the kx, ky axes in the Green function of the height field in
Eq. 6 corresponds to the fact that there exist Lx+Ly−1
topological sectors whose Hilbert space cannot be con-
nected by local fluctuations. As the ‘energy’ in the par-
tition function reflects the entropy of local flippable(non-
flippable) patterns, if we have a zero energy line alone
the momentum axes, that implies there being subexten-
sive number of minimal energy(maximal entropy) state.
While the energy in the partition function is engendered
by the entropy density due to local flips, the subexten-
sive number of minimal energy configurations is a con-
sequence of entropy density due to the globally distinct
topological sectors.

1. UV-IR mixing from vison conservation

In addition to the height field, which is desigined to in-
corporate the close-packeding constraint, we next provide
an alternative way to comprehend the subsystem sym-
metry in Eq. 5. The higher-order derivative (∇x∇yh)2

implies that creating a rough configuration by shifting
the value of h within a specific x-z(y-z) plane does not
change the system entropy.

This fact can be readily elucidated in the vison picture.
In this work, we are mainly focus on the classical version
of plaquette-dimer liquid. However, we here introduce
quantum fluctuations so as to define the vison operator,
but otherwise ignore quantum effects in this section. To
consider quantum fluctuations of the higher-rank electric
field in Eq.2, we introduce the conjugate partner of the
Exy, Ez, denoted as gauge potential Axy, Az,

Az → Az −∇zf,Axy → Axy +∇x∇yf (20)

The gauge potential allows a gauge transformation with
f being any smooth function. The vison flux can be
defined at the center of each cube as,

B = ∇x∇yAz +∇zAxy (21)

The vison operator generates a quantum resonance be-
tween distinct close packed configurations: it flips four z-
dimers on the cube into two xy-plaquettes and vice versa
as Fig. 4. Intriguingly, the vison numbers on each x-z
and y-z plane are conserved,∫

dxdzB(r) = 0,

∫
dzdyB(r) = 0, (22)

Consequently, a single vison can only move along the z-
row while a pair of visons separated by an x-link can hop
along the y-direction or vice versa.

In the quantum theory, the vison flux and the height
field are conjugate pairs [B(r), h(r′)] = iδ(r − r′) so the
flux operator eiB(r) shifts h(r) by an integer. The sub-
system symmetry in Eq. 4 implies shifting the value of
h within a specific x-z(y-z) plane does not change the
system entropy. We can create such a shift by apply-
ing eiq

∑
x,z B(x,y,z), eiq

∑
y,z B(x,y,z). Physically, each flux

operator will induce a resonance between locally distinct
dimer/plaquette patterns. However, as demonstrated in
Eq. 22, the vison number is conserved on each x-z(y-z)
plane so

∑
y,z B(x, y, z) =

∑
x,z B(x, y, z) = 0. Thus,

such a subsystem shift of the height operator does not
change the physical degrees of freedom and the partition
function is invariant under the planar symmetry. Alter-
natively, the constrained motion of the vison also sug-
gests that the h field only contains spatial fluctuation
like (∇zh)2, (∇y∇xh)2. The term (∇xh)2 is not allowed
as it violates flux conservation on the y-z plane.

FIG. 4. The vison operator B living at the center of each
cube flips four dimers into two plaquettes.

Returning to our discussion on the topological sector
in Sec. III A, it is not hard to conclude that the vison op-
erators B commute with the winding numbers mz,mxy.
Meanwhile, there exist a set of global vison flux operators
that connect between distinct topological sectors,∫

dxAxy,

∫
dyAxy,

∫
dz dAz (23)

In the quantum higher-rank gauge theory [27, 29, 36, 51],
these are the Wilson-stripe operators that uniquely define
the holonomies.
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B. Fractonic Berezinskii-Kosterlitz-Thouless
transition beyond renormalization

In this section, we investigate the phase transition be-
tween the plaquette-dimer liquid and an ordered phase
from a dual perspective. To set the stage, we consider a
classical U(1) rotor model in 3D. The classical compact
rotor field θ lives on the site of the cubic lattice in Fig. 5.

FIG. 5. The rotor field θ is defined on the sites of the cube
lattice, while the dual height field h lives on the dual lattice
at the center of each cube. Red dots: mxy(mz) live at the
center of an x-y plaquette (at the midpoint of a z-link).

We consider a special case where the U(1) rotor con-
tains a ring-exchange interaction between the four rotors
at the corners of each plaquette on the x-y plane in ad-
dition to the anti-ferromagnetic interaction between the
two rotors along the z-link.

Z =

∫
Dθ e−β(cos(∂zθ)+cos(∂x∂yθ))+...

=

∫
Dθ

∑
mz,mp

e−β((∂zθ−2πmz)2+(∂x∂yθ−2πmp)2)+...

(24)

The resulting theory contains a subsystem U(1) symme-
try θ → θ + g(x, z) + f(y, z) so that charges on all x-z
and y-z planes are conserved. The compactness of the
rotor field θ can be replaced by introducing two integer-
valued fields mz,mp that live on each z-link and on each
x-y plaquette as Fig. 5. In terms of the Villain formula-
tion, we remove the quadratic term of θ via a Hubbard-
Stratonovich (HS) transformation[42],

Z =

∫
Dθ DkpDkz∑

mz,mp

e−ikz(∂zθ−2πmz)−ikp(∂x∂yθ−2πmp)+ 1
4β (k2p+k2z)...

(25)

Integrating out the smooth part of the θ field, the kz, kp
fields are subject to the constraint

∂zkz − ∂x∂ykp = 0 → kp = ∂zh, kz = ∂x∂yh. (26)

Such a constraint is identical to the close-packed con-
straint we derived in Eq. 2, so that we can rewrite the
integer fields kz, kp in terms of the height representation.

Z =

∫
Dh

∑
n

e−i2πnh+ 1
4β ((∂x∂yh)2+(∂zh)2)...

n = ∂x∂y∂zθ − ∂z∂x∂yθ

→
∫
Dh eα cos(2πh)+ 1

4β ((∂x∂yh)2+(∂zh)2)... (27)

This is identical to the height representation of the close-
packed models we explored in Eq. 5 with an ‘inverted
stiffness 1

4β ’. The compactification of θ restricts the

dual height field h to be discrete and only takes inte-
ger values. n is the singular point defect of the θ field
with ∂x∂y∂zθ − ∂z∂x∂yθ 6= 0 whose proliferation can
bring about a disordered ’high-temperature phase’ of the
rotor[52]. However, the height field has an additional
subsystem symmetry h → h + g(x, z) + f(y, z), so that
the total defect number

∑
n on each xz and yz plane

should be zero. Thus, the defect anti-defect pair can
only be separated along the z-direction, or one can cre-
ate a four-defect quadrupole at the corners of a rectangle
on the x-y plane.

Following the spirit of Villain duality[53] in the 2D
XY model, we can calculate the effective interaction be-
tween the defects by integrating out the height field at
the Gaussian level,

Z =
∑
n

eβV (r)n(0)n(r),

V (0, 0, z) = [ln(z)]2, V (x, y, 0) =∞ (28)

The subsystem symmetry enforces that the defects must
appear in pairs along the z-direction or as quadrupoles
on the x-y plane. Thus, the interaction strength between
two defect-pairs separated in the x-y plane diverges, and
the interaction strength between two defect pairs along
z-direction displays ‘double logarithmic’ scaling. When
the defects proliferate, the entropy of the defects grows
logarithmically S ∼ ln(z) in the thermodynamic limit.
Meanwhile, the energy cost for separating a defect pair
is double logarithmic E ∼ β[ln(z)]2 so the energy always
dominates the entropy. Consequently, the defects do not
proliferate at any finite β.

Nevertheless, a higher-order defect, e.g., a dipole defect
consisting of defect and anti-defect pair, could proliferate.
Here we define two types of dipole densities,

px(r) = xn(r) = ∂y∂zθ(r)− ∂z∂yθ(r),
py(r) = yn(r) = ∂x∂zθ(r)− ∂z∂xθ(r), (29)

The dipole defect px(py) creates a 2D vortex winding
of the rotor field θ in a specific yz(xz) plane. Notably,
as the rotor field exhibits a subsystem U(1) symmetry
on all y-z, x-z planes, the vortices on each 2D plane are
independent. In contrast to the 3D classical rotor model
with a global symmetry, whose vortices are lines defects
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forming closed loops, the vortex defect in our model as
Eq. 24 with subsystem symmetry can be discontinuous
in space since px(py) are conserved on all y-z(x-z) planes.

The interaction between the dipole defects needs to be
calculated only in the planes transverse to their orienta-
tion:

Vx(r)px(0)px(r), Vx(0, y, z) ∼ β/2 ln(y2 + z2)

Vy(r)py(0)py(r), Vx(x, 0, z) ∼ β/2 ln(x2 + z2) (30)

If we separate two dipole defect pairs px in the same y-
z plane, the energy cost grows logarithmically with dis-
tance. When these vortex dipoles proliferate, the entropy
of the vortex due to its possible locations in the plane also
scales as ln(y2 + z2). When we tune the dipole’s interac-
tion strength by decreasing the fugacity β, the competi-
tion between energy gain and entropy production leads to
a Berezinskii–Kosterlitz–Thouless (BKT) like transition
that occurs at critical βc accompanied by the prolifera-
tion of dipole defects. This is exactly the critical point we
demonstrated in Sec. II where cos(2π∇xh) becomes rel-
evant. At low temperature, β > βc, the rotor θ is in the
liquid phase with quasi-long range order. Its correlators
are

〈e−θ(0)θ(z)〉 = e−
1

4πβ (ln(z))2

〈e−(θ(0)θ(ex)θ(0,y,z)θ(ex,y,z))〉

= 〈e−(∇xθ(0)∇xθ(0,y,z))〉 =
1

(z2 + y2)
1

4πβ

,

〈e−(θ(0)θ(ey)θ(x,0,z)θ(x,ey,z))〉

= 〈e−(∇yθ(0)∇yθ(x,0,z))〉 =
1

(z2 + x2)
1

4πβ

(31)

Due to subsystem symmetry, the two-point function of
the rotor fluid is short-range correlated while the four-
point function on a thin stripe has power-law decay.
In the dual language, the dual height field’s correlation
function has a similar form with an inverse temperature

‘ 1
4β ’ so that the plaquette-dimer model is in the liquid

phase. In particular, in the liquid phase, the system con-
tains both subsystem U(1) symmetry for the rotor and
an emergent subsystem U(1) symmetry for the height
field due to the irrelevance of the defect operator [54].
As the liquid phase is self-dual, the monomer excita-
tion(unpaired site in the plaquette-dimer) has the same
interaction potential as the defect n(r) in Eq. 28. Like-
wise, the interaction potential between monomer dipoles
grows logarithmically with distance in the same way as
dipole defects in Eq. 30.

When β < βc, the dipole defects of the rotor fluid pro-
liferate and the discreteness of h from the dual theory
becomes important. The proliferation of cos(2π∇xh) en-
genders dipole defect px, py proliferation so that the rotor
is in the disordered phase. In the dual picture, the rel-
evance of cos(2π∇xh), cos(2π∇yh) enforces the discrete-
ness of height field so that the close-packed plaquette-
dimer model is spontaneously ordered.

The 3D phase transition discussed here is thus reminis-
cent of the 2D BKT transition for classical rotor models.
However, it is distinct in the following senses. 1) The
BKT transition is driven by vortex proliferation while our
phase transition is driven by the proliferation of higher-
order defects, denoted as dipoles. 2) The BKT transi-
tion can be characterized by the renormalization group
paradigm as the critical point, controlled by long wave-
length modes. The critical point we discuss here carries
UV-IR mixing and the critical phenomenon is controlled
by short-wavelength fluctuations. This is evidenced by
the fact that the height operator cos(2πh) at the crit-
ical point is irrelevant but its higher-order derivative
cos(2π∇xh) is relevant. As a result, the critical exponent
of our phase transition does not fall into any universality
and is in this sense beyond the RG paradigm. 3) Due
to the subsystem symmetry, the charge of the U(1) rotor
and its defect are conserved on each y-z and x-z plane
so that the defects display restricted dynamics on subdi-
mensional manifolds.

FIG. 6. T-Duality table of the classical rotor model

IV. QUANTUM FLUCTUATIONS AND
CONFINEMENT

We briefly touch on the quantum version of the
plaquette-dimer model. To quantize the theory, we in-

troduce the conjugate partners of the Exy, Ez, denoted
as gauge potentials Axy, Az with the vison flux defined
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at the center of each cube,

B = ∇x∇yAz +∇zAxy (32)

The vison operator generates a quantum resonance be-
tween distinct close packed configurations, flipping four
z-dimers on a cube into two xy-plaquettes and vice versa.
In the quantized version of the theory, the vison and
the height field are canoncically conjugate [B(r), h(r′)] =
iδ(r − r′) so that the instanton operator ei2πh creates a
2π shift of the vison. As the emergent gauge field B is
compact, such an instanton event, once proliferated, can
potentially lead to a confined phase. The low energy ef-
fective theory of the height field reads

Lh = (∂th)2 + k1(∂zh)2 + k2(∂x∂yh)2. (33)

The quantum theory of h is defined in 3 + 1D space-
time. The higher-order instanton operator always has
long-range correlations regardless of k1, k2,

e−(∂xh(0)∂xh(r)) → Const δ(x)y,z→∞

e−(∂yh(0)∂yh(r)) → Const δ(y)x,z→∞ (34)

The delta function here again arises from the subsystem
symmetry and the resulting vison number conserved in
the x − z, y − z planes. As the instantons are always
relevant, the system does not yield a deconfined phase
and a quantum dimer-plaquette liquid phase does not
exist in this framework.

V. SUMMARY AND OUTLOOK

We hope that our work has established a new class of
mixed hardcore plaquette-dimer models as an interesting
object of study. The perhaps simplest model in this class,
for the anisotropic cubic lattice, the main subject of this
work, has already turned out to harbour rich promise of
‘fractonic’ and post-RG critical phenomenology.

Our analysis has been primarily field-theoretic in na-
ture. As a next step, it is clearly desirable to undertake
a detailed numerical study of the microscopic model sys-
tem. This could determine the correlations present in
the ensemble of hardcore plaquette-dimer coverings, in
particular, which phase it actually realises. The addi-
tion of appropriate interactions could then drive it across
the phase transition we have analysed, in analogy to the
study in Ref. 12 on the square lattice dimer model.

More braodly, it is clearly desirable to undertake a sys-
tematic study of variants of the model analysed here. We
close this account by venturing the first few steps in this
direction.

A. Close-packed trimer-dimer state: Classical
type-II fractons

This takes us to a discussion of a possible type-II frac-
ton liquid in an analogous close-packed trimer-dimer sys-
tem. We will not study this model in detail but introduce

the basic setup and leave a detailed study for future ex-
ploration.

We consider a layered triangular lattice with each site
part of two bonds along the z-direction and three down-
ward triangles in the x-y plane. The system only allows
configurations that have each site either connected to a
trimer on one of the three downward triangles, or to a
dimer on one of the two z-bonds, as illustrated as Fig. 7.
Such a constrained space of close-packed dimer-trimer
configurations has extensive degeneracy (non-vanishing
entropy). Fig. 7-b illustrates a fluctuation that resonates
two trimers into three dimers within a unit prism.

FIG. 7. a) The layered triangular lattice. b) A local resonance
between two distinct patterns. c) Five possible trimer-dimer
closed-pack patterns adjacent to a site.

To analyse the properties of the ensemble of these
close-packed patterns, we resolve the local dimer-trimer
constraint by representing trimer and dimer coverage via
a higher-rank electric field[45, 55],

Et = ηtTxy, Ez = ηzDz. (35)

Et is defined on the center of the downward triangles of
the x-y plane while Ez lives on each z-link. Txy, Dz refer
to the number of trimers and dimers in the x-y plane and
on z-link, respectively. The ηt, ηz are the lattice stagger-
ing factors with a sign structure defined in Fig. 7. Based
on this notation, the dimer-trimer constraint can be in-
terpreted as a Gauss-law

(a∆x∆y + ∆y + 1/a)Et + ∆zEz = ηq(1−Q) , (36)

where Q denotes the monomer number on a site. The
close-packed configurations have Q = 0 and the stag-
gering background charge ηq (illustrated in Fig. 7), thus
obeying the hardcore constraint of each site being ei-
ther connected to a dimer or a trimer. The close-
packed dimer-trimer constraint in Eq. 36 is reminiscent
of the quantum Newmann-Moore[56–58] model and type-
II fracton gauge theory in Ref.[45, 55] whose the charge
exhibits additional conservation law on a 2D fractal.

To satisfy this local constraint, one can parameterize
the electric field as

Et = −∆zh+ Ēt, Ez = (a∆x∆y + ∆y + 1/a)h+ Ēz,
(37)
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FIG. 8. a) Sign factors ηt, ηq on even layers. Red denotes
positive while blue denotes negative. Odd layers have ex-
actly opposite sign factors. b) Illustration of the sign factor
ηt, ηq, ηz near each site.

Here h lives at the center of each prism and Ēz, Ēt are
the background patterns. If we consider the close-packing
problem as a hardcore constraint, the partition function
contains a summation over all the trimer/dimer configu-
rations with equal Boltzmann weights. We anticipate the
possibility of a similar high-entropy trimer-dimer liquid
phase. In particular, UV-IR mixing is again expected as
the low energy fluctuations in this theory are controlled
by short wave-length physics and the liquid-to-ordered
transition should again lie outside the renormalization
group scheme.
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