
ACT now: Aggregate Comparison of Traces for Incident Localization

Kamala Ramasubramanian
University of California, Santa Cruz

Ashutosh Raina
eBay

Jonathan Mace
MPI-SWS

Peter Alvaro
University of California, Santa Cruz

Abstract
Incidents in production systems are common and downtime is
expensive. Applying an appropriate mitigating action quickly,
such as changing a specific firewall rule, reverting a change, or
diverting traffic to a different availability zone, saves money.
Incident localization is time-consuming since a single failure
can have many effects, extending far from the site of failure.
Knowing how different system events relate to each other
is necessary to quickly identify where to mitigate. Our ap-
proach, Aggregate Comparison of Traces (ACT), localizes
incidents by comparing sets of traces (which capture events
and their relationships for individual requests) sampled from
the most recent steady-state operation and during an incident.
In our quantitative experiments, we show that ACT is able to
effectively localize more than 99% of incidents.

1 Introduction
Users expect web services to be highly available. Outages
of even a few minutes can cost service providers hundreds
of thousands of dollars in revenue [1, 2]. Additionally, they
incur soft costs in terms of poor user experience. Site Reli-
ability Engineers (SREs) declare an incident when system
functionality becomes unavailable. Before they can act to
mitigate system unavailability, SREs must first localize the
incident. Localization is the process of identifying a location
- a component (hardware or software) - where a mitigating
action may be applied. For example, if SREs determine that
the behavior of service instances in a particular data center
is problematic, the action recommended by SREs might be
to divert traffic away from it. Other examples of mitigating
actions include re-configuring access control or firewall rules,
reverting a code or configuration change, restarting compo-
nents, etc. Mitigating system unavailability, when it occurs,
is the priority for SREs.

At first glance, it seems like debugging [3–6] and software
fault localization [7, 8] techniques may be applicable to inci-
dent localization. However, neither the proposed approaches
nor the time scales at which they operate are applicable. These
techniques focus on root cause analysis to help developers

identify a software or hardware fix to the underlying prob-
lem. As an example, assume that a recent change is causing
service instances to crash and restart repeatedly. In this case,
localization to the service in question is sufficient for SREs to
mitigate the incident by identifying and reverting the change,
even if they don’t understand what went wrong! Debugging
or software fault localization techniques, on the other hand,
focus on finding a line of code or a parameter to be adjusted
to fix system functionality. Incident localization is also much
more time constrained as compared with root cause analysis, a
task undertaken once the system is available again. Therefore,
debugging and software fault localization are complementary
to incident localization.

Incident localization is difficult in practice for two reasons.
First, since real-world distributed applications are complex
and highly connected, SREs need to consider large volumes
of data from varied sources (metrics, logs, events, and traces)
generated by executions before and during the incident to
reason about system behavior. Based on their observations,
SREs then attempt to determine a pattern in how executions
fail during an incident. Second, many events in the failing exe-
cutions may be different from the successful executions. SREs
have to infer the relationships between different events for
effective (correct and precise) localization; a time-consuming
process. SREs have access to a suite of tools but may need
to use multiple tools to obtain insights from different data
sources. Outputs from one tool may be modified and used as
inputs to a different tool. As the time to localize an incident
increases, so does the time taken to mitigate unavailability,
costing money.

For each user request, a trace captures events within a user
request and how they relate to each other. The relationships
captured in traces are precisely those which SREs currently
infer manually recommending the use of traces. Comparing
sets of traces helps determine the consistent structural changes
across traces (change pattern) during an incident. Thus, using
traces as a data source addresses both causes of slow incident
localization and automates the process.

The key idea of our approach, Aggregate Comparison of

1

ar
X

iv
:2

20
5.

06
93

3v
1

 [
cs

.D
C

]
 1

4
M

ay
 2

02
2

Traces (ACT), is to find events present in one set of traces but
not the other and then use the structure of individual traces
to reason about cause and effect. ACT leverages the relation-
ships captured between events within traces as opposed to
SREs manually connecting the dots. Thus, we are able to
focus SREs attention on a few (ideally one) events or relation-
ships that they need to investigate further to take an effective
mitigating action.

We evaluate ACT on datasets from HDFS [9], DeathStar-
Bench [10], and eBay. In our quantitative experiments, we
conduct hundreds of simulations for three different failure
modes and show that ACT is able to identify a mitigation site
that enables effective action in all but a handful of cases as
compared with our baselines that produce irrelevant results in
30-50% of the cases. For SREs mitigating incidents, the above
result implies that ACT identifies exactly where the mitigation
is to be applied. We have integrated ACT with Jaeger [11], an
open source tracing tool, for online trace comparison. ACT
opens a line of inquiry into using groups of traces for incident
localization, which, if adopted widely, can change the way
SREs approach incident response. We also contrast ACT with
approaches taken by commercial tools such as Lightstep [12].

The rest of the paper is organized as follows: In Section
2, we first present details of an incident study that justifies
our choice to focus on incidents which produce structural
changes in traces. With an example incident, we motivate
the use of traces to localize incidents by discussing relevant
approaches from the state of the art and highlighting their
shortcomings. Section 3 develops an approach that compares
sets of traces and analyzes their events and relationships to
localize incidents. In Section 4, we focus on evaluating ACT
vis-a-vis baselines that adapt approaches from prior work to
our setting and finally, we touch upon the details of integrating
ACT with Jaeger.

2 Background and Motivation
The principal goal of incident mitigation is to minimize im-
pact to users. Understanding the causes of the incident is
usually a secondary goal, often a more costly (in terms of
time and effort) exercise reserved for post-incident reviews.

SREs use aggregate alerts from metrics deviations, logs
from services, etc to build a mental model of the system.
These models are often based on tribal knowledge, typically
incomplete and usually outdated [13–15]. We first present
observations from a study of incidents at eBay.

2.1 Incident Study
To determine trends in incidents, we studied incident reports
of 75+ severe incidents that occurred over three years (June
2017 - May 2020) at eBay. Severe incidents correspond to
more than 85% of overall impact. Incident impact is measured
in terms of loss of availability. Impact to availability of an
incident is the duration of time that all or some fraction of
users were unable to use the system i.e. availability of service.

0 5 10 15 20

API not backward compatible

Misconfiguration

Load & Capacity

Networking

RPC failures

Impact to availability (%)

C
at

eg
or

ie
s

Fig. 1: Percentage of impact by category - we have repre-
sented the top five of over a dozen different categories that
emerged based on available data. Incidents arising due to
breakdown in communication between components at the
application level have the highest impact.

We make the following observations:
Highest impact is from RPC failures between components
at the application-level: Fig. 1 shows the top five incident
categories in order of decreasing impact. We have not rep-
resented incidents arising from vendor issues since reading
incident reports only gives us a partial view of these incidents.
RPC failures between components includes:

Component down: Components can fail for various rea-
sons - a recent change made to the component, a dormant bug
in a code path not used often - triggered by an increase in load
or a change in user options. Component failure by itself is not
an incident but the lack of a fallback mechanism or the critical
nature of a component failure not being common knowledge
can lead to an incident. Incidents corresponding to this cate-
gory may arise due to component failures or decommissioning
components that are in use.

Component A unable to call component B: A compo-
nent (A) which was previously able to make RPC calls to a
different component (B) that it depends on may no longer be
able to do so due to link failures, changes in access control
lists, firewall rules, and security fixes. This may further result
in additional, unexpected component interactions.

Buggy failure recovery: When a component fails to re-
spond within the configured timeout or crashes, the calling
component may call a different component or perform a se-
ries of actions to recover. Since the recovery path is generally
not exercised often, it may not work as expected resulting
in overall request failure. In such a case, the fallback is in-
appropriate or incorrectly set up to recover from the failure.
This is an important failure mode as failures in the recovery
path continue to be reported [16–18] despite various efforts
to address them.
About half the incidents were localized incorrectly at least
once: Fig. 2 shows a simplified timeline from incident de-
tection to resolution. Localization time and mitigation time
are the times taken to effectively localize an incident and
apply the mitigating actions that effect recovery respectively.

2

MitigationLocalization

Incident
detected

Hypothesis
#1

Hypothesis
#2

Hypothesis
#3

Metrics
Recovery

Incident
Resolved

Fig. 2: This figure represents a typical incident timeline

Incorrect localizations (Hypothesis#1 and Hypothesis#2) for
an incident indicate that there were one or more mitigation
steps that were pursued before the incident was effectively
localized. A mitigating action that does not result in metrics
recovery prolongs poor user experience and increases revenue
impact. Prior works [19–21] indicate that most incidents are
reassigned at least once during triage and that triage time
dominates response time [21]. Reassigning incidents results
in a longer time to apply a mitigating action and therefore,
slower incident response.

From these observations, effective localization of incidents
that arise from RPC failures between application-level com-
ponents would produce the most significant reduction in user
impact and therefore, we focus on these.

2.2 Motivating Example
We describe a real incident that occurred at eBay which serves
as our running example for the remainder of the section. Fig. 3
depicts the actions taken by SREs. The mitigation steps took
SREs close to 3 hours and was dominated by time taken to
arrive at the correct mitigating action (2.5 hours).

SREs first observed an increase in errors (a metric) for
the Payments Service in one data center and immediately
declared an incident. Metrics are used to monitor the overall
health of the system. Business metrics such as number of
transactions completed, number of canceled transactions and
rate of incoming traffic are tracked in real-time since they are
related to revenue. SREs attempted to mitigate the incident
by restarting the service, but errors increased in all the data
centers instead. In this instance, SREs could surmise from the
metrics that something was wrong, but not what or why.

To understand what caused the increase in errors, SREs
looked at the application logs and noticed that the local cache
used for storing access tokens was empty and the service used
for minting the tokens (Token Service) was unreachable. SREs
found that Payments Service started calling Token Fallback
Service instead of Token Service. However, all calls to To-
ken Fallback Service were also failing. Further investigation
using the logs revealed that the Token Fallback Service was
inaccessible due to incorrect firewall rules. Once the firewall
rules were corrected, the error rate returned to normal and
Payments Service fully recovered.

The breakthrough in our running example came when one
of the SREs observed from the logs that during the incident,
requests were attempting to make a call to a service (Token
Fallback Service). No such call was present in pre-incident

execution traces. SREs had to trawl through logs to find the
specific events and event interactions in the unsuccessful exe-
cutions that contributed to its failure. These events indicated
the presence of additional calls that were not present in ex-
ecutions before the incident. In this case, SREs needed to
not only understand the absence of calls from the logs but
also the presence of additional calls. This illustrates that ef-
fectively localizing incidents usually requires both aggregate
(the presence of errors) and causal information (Payments Ser-
vice trying to call Token Fallback Service) - in this instance
provided by metrics and logs. SREs had to first determine
which executions to consider based on the failure of requests
and then compare the events and their relationships between
successful and unsuccessful executions. The request path and
system model were reconstructed from system logs for this
incident. The crucial step in localizing the incident was dif-
ferencing the request paths before and during the incident to
see what was different about the request paths.

2.3 Limitations of existing approaches
Although prior work localizing incidents in data centers [22,
23] is extensive, these are orthogonal to localizing application-
level incidents since applications are designed to tolerate
network failures such as link failures and packet drops. For
example, a service usually has instances in multiple data cen-
ters such that if a network link in one data center goes out,
requests will be sent to a different instance.

We will briefly describe each of the observability signals -
metrics, logs, and traces - and the most relevant approaches
that use them as inputs. With our running example as context,
we discuss why they don’t effectively localize incidents. We
also discuss the constraints of differential reasoning when
using traces and how our approach addresses them.

Fa [24] detects and localizes incidents by vectorizing met-
rics to learn incident signatures. The localization points to the
set of metrics (and underlying components) most relevant to
the failure. During an incident, multiple metrics are affected
and SREs would need to understand relationships amongst
different components. Marianil et al. [25] use metrics to learn
a baseline model and build out an undirected graph by cor-
relating pairs of metrics. They further use graph centrality
measures to identify the most severely affected metrics and
thereby, a faulty service. For our example incident, the Pay-
ments Service has the most errors, and will most likely be
identified as the faulty service. This does not give SREs any
actionable insights and is therefore, not useful.

More recent approaches such as Grano [26] and Groot [27]
assume that relationships amongst components are available
either in the form of system architecture diagrams or global
dependency graphs. They build machine learning models to
identify the metrics correlated with a given incident which
are then overlaid on the dependency graph for incident lo-
calization. Such follow-the-errors approaches do not work
when multiple incidents co-occur, one or more metrics are not

3

Increase in errors
in one data center

Increase in errors
in all data centers

Token fallback service
unreachable, firewall rules

configured incorrectly

Cache empty, token
minting services

unreachable

Metrics Logs

Restart service Reconstruct events in
successful and

unsuccessful executions

After more time

Configure
firewall rules for

access, traffic
starts flowing

through fallback

2.5 hours

3 hours

Fig. 3: This figure represents how SREs responded to an incident and the data sources they used (logs and metrics). The mitigation
steps took SREs close to three hours, two and half of which was arriving at the correct mitigating action.

Token
service

Redeem
coupon

Payments

Token
DB

Token
Fallback
Service

Redeem
coupon

Payments

Token
Fallback
Service

Token
service

Payments

Event (Call to Token service)
missing in unsuccessful executions

Event (Call to Token service
fallback) present only in
unsuccessful executions

Event (Call to Payments) present in
successful and unsuccessful

executions

Fig. 4: This figure represents an idealized picture of graph
differencing and contains only the relevant services. On the
left is a partial view of a successful request where the token
service was working as expected. On the right, we have the
trace, after the restart of the payments service which continued
to see errors due to incorrect firewall rules.

captured or incident localization involves identifying when
a call between two components did not occur. Our example
incident falls into this last category.

Logs capture a machine centric view of the system and
provide additional context, but require sifting through large
volumes of data to extract it. Aggarwal et al. [28] model logs
from different components as multiple time series and corre-
late errors emitted by various services to localize the incident
given a dependency graph (static topology or architecture dia-
gram). Approaches that reconstruct individual user requests
from logs involve control and data flow analysis [29, 30]. Yet
others use unique identifiers to identify events corresponding
to different requests [31] and custom log parsing to recog-
nize identifiers [32]. Network communication and tempo-
ral order are used as heuristics to infer relationship amongst
events. Causality inference using log analysis is brittle since
it depends on the quality of user logging and is inapplicable
either due to practical concerns (running control and data
flow analysis for constantly evolving systems like microser-

vices with continuously changing topologies is impractical)
or because the timescales for incident localization are very
stringent (as systems scale, application logs grow, increasing
analysis time).

Distributed tracing provides a request-level view of the sys-
tem and is used for debugging [33–35], profiling, and monitor-
ing production applications. It has also been used to address
correctness concerns [36], for capacity planning, and work-
load modeling [37]. Tracing is increasingly being adopted by
industry and there is a push for standardization [38–40] as
well. A trace captures events that occur in a given request as
well as how they relate to each other i.e causality. The most
general representation of a trace is a directed acyclic graph
(DAG) where nodes and edges correspond to events and their
interactions respectively.

Had traces been available, SREs would been able to com-
pare the trace of a successful execution and that of an un-
successful execution - which we call pairwise comparison -
to determine the events that differentiate the two. Doing so
would have highlighted the missing and additional events in
executions during the incident and thereby enabled them to
take effective action. Fig. 4 demonstrates an idealized result
of pairwise comparison for our running example. In the un-
successful execution, the call from Payments Service to Token
Service service is missing, but an attempted call from Pay-
ments Service to Token Fallback Service is additional. Since
the structure of a trace represents causality of event inter-
actions, we use it to establish cause-and-effect relationships
between events in the result - retaining only the causes.

Prior works that uses trace analysis employ a similar dif-
ferential approach between pairs of traces with appropriate
user inputs. For eg., ShiViz [33] and Jaeger [11] both support
pairwise comparison of user selected traces. Such tools allow
SREs to interactively validate hypotheses but are not suited
to automated localization.

2.3.1 Pairwise Comparison: A deep dive

The most important requirement for automated localization
using pairwise comparison is graph selection - selecting a suc-
cessful and an unsuccessful execution that exercise the same
code path. In large, distributed systems, requests with identi-
cal inputs can often take different paths due to cache effects,

4

Successful execution
(different execution path)

A

N P Q

YX

A

ED

CB

Unsuccessful execution

A

B N

Successful execution
(Missing data)

Result: {B, N, P, Q}

Result: {N}

Legend

Service to be investigated

Dependencies of service to
be investigated

Missing calls

Note: Service to be investigated and its dependencies are missing
from the graph of the unsuccessful execution. Represented for illustration.

Fig. 5: Limitations of pairwise comparison - the two examples demonstrate the circumstances when pairwise comparison
produces false alarms and can occur either separately or in combination.

dynamic request routing, traffic shifting across data centers,
experimentation, etc. Traces generated from such requests
may have different structures wholly or partially. Further, the
structure of traces can also change with configuration changes
in the application and deployment environment, ongoing code
deployments, new feature deployment and code deprecation.
At any given time, several such changes to request paths exist
in production. Comparing pairs of graphs corresponding to
different executions paths will produce incorrect localizations.

Further exacerbating the problem of graph selection is the
fact that tracing is best-effort. That is, for some executions,
the trace corresponding to the execution may be missing some
data. Fig. 5 demonstrates incorrect localizations produced by
comparing executions that exercise different execution paths
and when comparing incomplete traces of similar executions.
Therefore, choosing a pair of graphs to compare based only
on their structure is not viable.

Prior work makes simplifying assumptions about the sys-
tem under consideration to make graph selection viable. Mag-
pie [41] assumes that a static system model and learns a proba-
bilistic model of the system. An unsuccessful execution would
deviate from the model and the difference between two such
traces represents the localization. Large distributed systems
(open source systems eg., HDFS, HBase and commercial sys-
tems eg., Netflix, AWS) are complex and constantly evolving,
invalidating this assumption. Spectroscope [34] assumes that
a small number of unique execution paths exist in the system
compared with the large number of underlying system traces,
an assumption that does not hold for any but the smallest sys-
tems. GMTA [42] makes two assumptions. First, it assumes
that the model is known and traces can be accurately labelled
based on the functionality they exercise. Second, it assumes
that for each label, there exists a single canonical graph. The
first assumption requires that the labelling be kept up-to-date
with changing models but the second assumption only holds
if there exists only a single execution path for given function-
ality, a premise that is untrue for large systems, as discussed
at the beginning of the section. In summary, the simplifying
assumptions made do not hold for large distributed systems.

In our work, we sidestep the problem of graph selection
by considering sets of traces rather than selecting a single
pair of traces. From these, we derive aggregate insights while
preserving useful information for difference based diagnosis.
Lightstep [12] represents the closest industry tool to ACT
and addresses some of the same failure modes. Lightstep also
compares traces in aggregate, but focuses on finding tags or
markers in the traces containing errors. However, for failures
in the recovery path, being able to identify that a call was not
successful does not help with determining a mitigating action.
In our example, Lightstep would follow the errors to the failed
call from Payments service to Token service. This only repre-
sents one half of the localization and the incident could only
be effectively mitigated by SREs understanding that the call
to Token Fallback service also failed in an attempt to recover
from the failed call to Token service - i.e. knowledge of both
the missing call and the additional call. Furthermore, success
or failure is an end to end property of a request and typically
cannot be derived from a trace. For eg., a service returning
an error in a user request does not necessarily imply a failed
request; rather, it may be an indication to re-try the same.

In section 3, we describe our approach that compares sets of
traces from steady-state operation and during the incident and
analyzes their events and interactions to localize incidents.

3 Design & Methodology
In our work, we use traces to localize incidents and thereby,
speed up incident response. Localizing an incident highlights
the absence (or presence) of event interactions during an inci-
dent that helps identify a location to apply a mitigation. Pair-
wise comparison is usually ineffective for localizing incidents
since it produces false alarms, as described in Section 2. As
we now show, we can precisely localize incidents by compar-
ing sets of traces and using the structure of traces to separate
effects from their potential causes, retaining only the causes.

We first describe View of a Trace which enables trace com-
parison. It is not possible to directly compare traces since
individual traces include details such as timestamps that are
different for every trace and IP addresses that are not necessar-
ily consistent between any two traces. By dropping attributes

5

(Time:10:11:05)
(Component: A)

(Time:10:11:26)
(Component: C)

(Time:10:11:21)
(Component:B)

Attribute dropped: Time

View(T)
{(Component:A,Component:B),
(Component:A,Component:C)}

Fig. 6: Simple trace and an example of a view

that are not consistent across traces, views of traces make
traces comparable. For example, to debug issues when a ser-
vice is unable to talk to another, retaining service names is
sufficient. If, instead, we would like to debug issues that im-
pact a subset of service instances, retaining service instance
names when generating a view of a given trace can be helpful.
In this work, we only retain component names when generat-
ing views. We denote views by View(T) and refer to elements
of a view as ordered pairs. In Fig. 6, for example, the ordered
pair (Component:A, Component:B) in View(T) corresponds
to the edge ((Time:10:11:05, Component:A), (Time:10:11:21,
Component:B)) in the trace, T.

3.1 Inputs and Outputs
Inputs to ACT consist of two sets of traces - traces drawn
during the most recent steady-state operation of the system
(tbe f ore) and traces drawn during the incident (tincident). These
are sampled based on the incident start time specified by SREs.
We expect the sampled traces to satisfy two constraints. First,
the number of traces sampled in each of the two sets must be
large enough that a majority of events or event interactions,
if captured in underlying traces, are present in the sampled
traces. Many large-scale systems generate millions [43] of
traces per day, but a much smaller sample size turns out to be
sufficient for localization, as we will see in Section 4.1.

Second, traces are labeled as successful or unsuccessful
based on an external success criterion. Examples of external
criteria could include credit card charged in case of buying
an item, the item displayed correctly when it is added to the
product catalog, a HTTP status code of 200, an acknowledge-
ment of data writes, etc. If a trace cannot be assigned a label,
it is discarded (based on our data, less than 0.2% of traces).

Outputs from our system should localize the incident under
consideration rather than return the entire difference between
the set of traces before and during the incident. SREs can
investigate along two axes - a) Why are specific calls missing
during the incident? and/or b) Why are other calls present
only during the incident? Based on what the investigation
reveals, an appropriate mitigating action can be applied.

3.2 System Overview
In ACT, we use aggregate information from witnessing a large
set of traces and the causality of event interactions within
individual requests to localize incidents. Fig. 7 shows the
three techniques we use to localize an incident given sets of
traces from before and during the incident.

The symmetric difference of tbe f ore and tincident is the set of

ordered pairs that are in one of
⋃|tbe f ore|

i=1 View(Tracei) or⋃|tincident |
j=1 View(Trace j) but not both. If the changes produced

by an incident are represented in tincident and at least one
example of the correct interaction is in tbe f ore, the symmetric
difference will contain the site where the mitigation is to be
applied. To obtain a precise result, we employ thresholding
and reachability.

We use thresholding to answer the question: Which ordered
pairs in the symmetric difference are statistically significant
and must be retained? Since tbe f ore and tincident are randomly
sampled, one or more of the sampled traces may correspond to
a code path that is rarely exercised. If such traces occur in one
or the other set of traces, some ordered pairs will be part of
the symmetric difference as a result of sampling randomness.
The use of thresholding allows us to discard these. Using
a threshold also addresses trace quality issues in individual
traces that arise due to the best-effort nature of tracing.

After computing symmetric difference and applying the
threshold, the result may still contain some superfluous or-
dered pairs. To understand how this may occur, assume two
ordered pairs (a, b) and (b, c) are in the result. The edges in a
trace represent event interactions. For a given trace, let’s fur-
ther assume that (a, b) and (b, c) correspond to edges (e1,e2)
and (e2,e3) respectively. Reachability is the transitive clo-
sure of the edge relation of a graph. If we find that (e2,e3) is
reachable from (e1,e2), we can discard the ordered pair (b, c)
since its potential cause (a, b) is in the result. By establishing
cause-and-effect relationships between edges corresponding
to ordered pairs and eliminating the ordered pairs correspond-
ing to effects, we use reachability to whittle down the result
set for effective localization. Failure of a database call or third
party vendor issues into which SREs have no visibility can be
localized to a single leaf node or edge. For these, we expect to
see effective localization even without the use of reachability.

The three techniques build on each other - symmetric dif-
ference produces the initial result set while thresholding and
reachability prune the result set such that the incident is effec-
tively localized.

3.2.1 Techniques:

We describe in detail each of the techniques introduced in
the previous section. Symmetric Difference: To compute
the symmetric difference, we only consider the successful
executions in steady-state operation (unsuccessful requests
in steady state could result from invalid credit card entry,
insufficient stock, etc). ts represents successful executions in
tbe f ore and we shorten tincident to tinc here. The result is the
entire set of changes between the two sets of traces. If calls
made in traces of successful executions during the incident
are in the symmetric difference, these could not possibly have
been caused by the incident. Therefore, we remove them
from our symmetric difference. Let tincs represent successful

6

Inputs
Compute

symmetric
difference

Compute
and apply
threshold

Is the result
set empty?

Determine
reachability

Outputs:
1. Missing

calls
2. Additional

calls

Y: Sample more traces

Y: Settle for lower guarantee

N

Tbefore

Tincident

Fig. 7: ACT consists of applying three techniques: Symmetric difference, thresholding and reachability - in that order.

executions in tinc. We obtain the symmetric difference as
follows:

Missing Calls (M) =

|ts|⋃
i=1

View(ts(i))−
|tinc|⋃
j=1

View(tinc(j))

Additional Calls (A) =
|tinc|⋃
j=1

View(tinc(j))−
|ts|⋃
i=1

View(ts(i))

−
|tincs |⋃
k=1

View(tincs(k))

D = M
⋃

A

Thresholding: We cannot use a flat threshold to determine
the statistically significant ordered pairs because our threshold
value can change not only as a result of system evolution but
also based on the number of traces sampled. We derive our
threshold as a function of frequency of calls in traces and the
number of traces sampled. Frequency statistics can be com-
puted in real time as traces are generated. Computed statistics
can be stored in-memory since their memory footprint is small
(order of a few hundred keys in a hash map).

Threshold, t = N ∗ (1− elog(0.01)/n)

We obtain t by solving for (1− p)n < 0.01, where p is the
probability that an ordered pair, c, occurs in a randomly sam-
pled trace and is given by t

N . We assume that c appears in t
traces, the size of the corpus from which frequency statistics
are computed is N and the number of sampled traces is n. The
threshold, t, is such that if a call appears in more than t of
N traces, there is a 99% probability that at least one trace
containing the call will be present in a sample of n traces.

Given a threshold, if a call appears in more traces than the
threshold and is unrelated to the incident, it will appear in
both sets of traces with high probability and therefore not
appear in the result. On the other hand, if the call is missing
as a result of changes produced by an incident, evidence of
the change will be seen in the sampled traces. Conversely,
if the number of traces that a call occurs in is less than the
threshold, it is discarded. SREs can choose a lower probability
and re-compute the threshold for a less stringent guarantee.
Reachability: As discussed in Section 3.2, we exploit reach-
ability to achieve the minimal result set. To do so, we use
the structure of individual traces. Given two ordered pairs

and a trace, T, we first determine the possible edges that each
ordered pair can correspond to. An ordered pair o1 can cor-
respond to many possible edges in a given trace since a view
is generated by a lossy transform. Assume that ordered pairs
o1 and o2 correspond to sets of edges represented by s1 and
s2 respectively. For example, given the ordered pair (Compo-
nent:A, Component:B) and the trace from Fig. 6, it would be
mapped to a set containing the single edge - {(Time:10:11:05,
Component:A), (Time:10:11:21, Component:B)}.

Next, we check if a cause-and-effect relationship exists
between an edge in s1 and one in s2. If such a relationship is
established, we discard the ordered pair corresponding to the
effect while retaining its potential cause. We have reduced
both the result set and the number of pairs to consider. We
repeat this process for every pair of edges (that correspond to
ordered pairs in the result set) in every trace until either we
arrive at a single result or have explored all sampled traces.

Computing reachability is an expensive operation responsi-
ble for almost all of the time taken by ACT and is therefore
applied after thresholding to reduce the number of ordered
pairs to be considered. The time taken to establish reachability
is O(|r|2 ∗n), where |r| is the number of ordered pairs in the
result set and n is the number of traces sampled. In the worst
case, it will be necessary to consider edges in all sampled
traces if none of the calls in the result set are related to oth-
ers. In practice, many calls are related and time to establish
reachability is much lower than the worst case bound.

3.3 Application of ACT: An example
We now walk through an example of a simulated incident
from the eBay dataset which demonstrates how techniques in
ACT apply end to end and highlights trade-offs SREs often
need to make when an incident produces changes in a small
number of traces. We simulate interruption in communica-
tion between PaymentService and OrderMgmtService. For
users purchasing items, this call is required to validate the
purchase. Interruption results in users being unable to place
orders. Therefore, we want to highlight the missing call from
PaymentService to OrderMgmtService. Assume that the prob-
abilistic guarantee is 0.99 (if a call appears in more traces than
the threshold, it is in the sampled traces with 99% probability)
and tbe f ore and tincident each contain 2K traces.

ACT computes a set of results, the elements of which are
ordered pairs. The symmetric difference produces a result
set of size 21 but after applying thresholding, the result set

7

is empty. This implies that the sampled traces do not contain
evidence of the correct execution, the changes produced by
the incident, or both. SREs can now take two actions:
Reduce the threshold: An SRE may decide to trade-off
number of results for time i.e. it is acceptable if the computed
result has some irrelevant elements. The SRE will now choose
a lower probability and re-compute the threshold. In our ex-
ample, the SRE chooses to drop the probability to 0.75. The
result from symmetric difference contains 21 ordered pairs.
The size of the result is now 11 after applying the new thresh-
old. On applying reachability, we obtain a result of size 2 -
the expected result and an additional, irrelevant suggestion.
Sample more traces: An SRE can also decide to trade-off
time for number of results i.e. additional time is acceptable for
fewer (ideally zero) irrelevant results. Since this is a simulated
incident, we know that we can obtain the expected result with
high probability by sampling 4K traces in each set. With
the resampled traces, we compute the symmetric difference
(result size is 41) and apply thresholding (result size reduced
to 3). Applying reachability yields exactly the expected result.

The choice to trade-off time or number of results is situa-
tional - for example, if trading off number of results for time
produces many false positives, SREs may pivot and sample
more traces instead.

4 Evaluation
In Section 4.1, we discuss how the initial sample size is de-
termined and used. To evaluate ACT, we simulate incidents
based on how we expect traces to change for each incident
category. Section 4.2 makes the case for simulating incidents
and we discuss how we mutate traces. Section 4.3 describes
the baselines we compare against. Finally, we compare the
results of ACT with baseline techniques employed in prior
work. We answer the following questions:

1. How is the initial sample size determined? (Section 4.1)

2. How do the results produced by ACT compare with
baseline techniques? How do the individual techniques
in ACT impact the result produced? (Section 4.4)

3. How does the time to result compare with baseline tech-
niques? (Section 4.4)

Finally, in Section 4.5, we present some highlights of integrat-
ing ACT with Jaeger [11] for online comparison of traces.

4.1 Determining the initial sample size
We discuss how we use ACT’s probabilistic guarantees to
determine the initial sample size from underlying traces and
frequency statistics. This serves as an input when sampling
tbe f ore and tincident for localization.

A structural change to a trace consists of ordered pairs
that are missing during an incident which would normally be
present in traces during steady state operation or additional
calls only occur during an incident. From our discussion of

thresholding in Section 3.2.1, we provide a probabilistic guar-
antee that evidence of the correct interaction as well as struc-
tural changes to traces are represented in tbe f ore and tincident
respectively if they appear in more traces than the threshold.

We can plot a Cumulative Distribution Function (CDF) of
the percentage of ordered pairs probabilistically guaranteed
to be represented for a given number of sampled traces. Fig. 8
depicts these for our three datasets. From the CDFs, we ob-
serve that although a very large number of traces would need
to be sampled to identify every possible call (if it were miss-
ing), we find that a majority of calls can be identified with a
sample that is orders of magnitude smaller. Accordingly, we
sample 4K (of 20K) traces for DSB, 8K (of 60K) for HDFS
and 20K (of 250K+) for eBay in our experiments.

4.2 Experimental Methodology
To conduct a quantitative evaluation of ACT using data from
real incidents, we would have needed to collect traces during
steady-state operation and then again when incidents occur.
Although a large number of incidents occur (anecdotally, three
or four every day), we are only interested in those in one of the
categories described. Identifying these and capturing traces
while they are still retained remains a challenge.

From our incident study and observations of traces gen-
erated when we inject faults, we have a good grasp on how
we expect the structure of traces to change for each incident
category. Therefore, simulating incidents can serve as a good
proxy. Simulation not only allows us to apply ACT to a wide
range of scenarios but is also useful in testing its limits.

To simulate an incident, we randomly sample two sets of
traces which we designate as tbe f ore and tincident respectively.
For each incident category, Table 1 describes inputs, how
traces are mutated and expected output. Some fraction of
traces in tincident that satisfy the condition for mutation are
mutated to represent traces that would have been generated
during the incident being simulated, while traces in tbe f ore
remain unmodified. All mutated traces represent unsuccessful
executions. An unsuccessful execution is one for which we
evaluate some external criteria and determine that the user
request corresponding to the execution did not succeed. We
choose simulations uniformly at random. tbe f ore and tincident
serve as inputs to the different techniques.

We use three trace datasets in our evaluation. These con-
sist of a production dataset from eBay and two open-source
datasets - DeathStar Benchmark (DSB) [10], a micro-services
benchmark and Hadoop Distributed File System (HDFS) [9]
traces. eBay has about 4500-5000 services, the dataset cap-
tures user requests as they purchase items during a week in
November 2019. User requests to start a session and com-
plete a purchase account for nearly two thirds of the requests;
the remaining third is distributed across twenty other request
types that span different system functions. Examples include
changing user address and payment modes as well as updat-
ing items or item quantities. The captured requests record

8

(a) DSB (22K traces) (b) HDFS (60K traces) (c) eBay(250000+ traces)

Fig. 8: CDF of the number of traces to be sampled to identify any possible missing edge. The inlaid snippet of the CDF shows
that a majority of calls can be identified with a sample that is orders of magnitude smaller.

Table 1: This table explains how we simulate the three failure modes we consider. For each, we describe the input, how traces are
mutated and the expected output. We also specify the conditions that need to be satisfied in each case for a trace to be mutated.
All mutated traces represent unsuccessful executions.

Incident Category Input Condition for
mutation

How are traces mutated? Expected Result

Component down Randomly chosen
component

Vertex
corresponding to
component is
present in trace

Delete all edges to vertices
corresponding to chosen
component as well as the
subgraph beneath each edge

Component chosen as
input

Component Unreachable Randomly chosen
ordered pair

At least one edge
corresponding to
ordered pair is
present in trace

Delete all edges corresponding
to the chosen ordered pair as
well as the subgraph beneath
each edge

Ordered pair chosen as
input

Buggy failure recovery Randomly chosen
ordered pair

At least one edge
corresponding to
ordered pair is
present in trace

Delete all edges corresponding
to the chosen ordered pair as
well as the subgraph beneath
each edge, then add an edge at
each call site representing an
attempt to recover from failure

Ordered pair chosen as
input and additional
ordered pair attempting
recovery

Table 2: ACT computes exactly the expected result for all but a few cases. In contrast, NodeCount and EdgeCount produce wrong
answers for 30-50% of simulations. Answer = Set of localizations returned, Exact Answer = Answer is minimal, Superfluous
Answer = Answer subsumes expected result, Wrong Answer = Answer does not contain expected result, No Answer = Answer is
the null set.

Number of
simulations

Exact
Answer(%)

Superfluous
Answer(%)

Wrong
Answer(%)

No
Answer(%)

ACT
DSB 602 99.83 (601) 0.17 (1) 0 0
HDFS 401 98.50 (395) 0.25 (1) 1.25 (5) 0
eBay 418 99.76 (417) 0.24 (1) 0 0

NodeCount
DSB 602 52.82 (318) 7.8 (47) 37.21 (224) 2.16 (13)
HDFS 401 21.95 (88) 29.68 (119) 47.63 (191) 0.75 (3)
eBay 418 25.11 (105) 21.77 (91) 48.80 (204) 4.41 (18)

EdgeCount
DSB 602 58.47 (352) 2.66 (16) 36.38 (219) 2.49 (15)
HDFS 401 63.59 (255) 4.49 (18) 31.17 (125) 0.75 (3)
eBay 418 31.81 (133) 16.27 (68) 44.50 (186) 7.42 (31)

250+ unique services and databases and 850+ unique calls.
Vertices and edges represent services and calls between ser-
vices respectively. DSB traces were generated by deploying

the benchmark on a single machine and capturing traces of
different API types. HDFS traces were generated by deploy-
ing HDFS on a 9-node cluster and consists of traces obtained

9

0 2 4 6

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results

C
D

F

(a) DSB

0 2 4 6

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results

C
D

F

(b) HDFS

0 5 10

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount

Number of results

C
D

F

(c) eBay

Fig. 9: For the cases when NodeCount and EdgeCount produce results, we plotted a CDF of number of results. ACT, meanwhile,
produces exactly the expected answer for all of these cases.

0 200 400

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(a) DSB

0 50 100 150

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(b) HDFS

0 50 100 150

0.2

0.4

0.6

0.8

1.0

Symm Diff
Symm Diff and
 Thresholding
Symm Diff and
 Reachability

Number of results

C
D

F

(c) eBay

Fig. 10: CDFs of the number of results returned when we apply one or two techniques. Since the eBay dataset is noisy, symmetric
difference and thresholding performs best, while symmetric difference and reachability generate the best results for DSB and
HDFS. When all three techniques of ACT are applied, the result is obtained is exactly the mitigation site.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(a) DSB

0 50 100 150

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(b) HDFS

0 200 400 600 800

0.2

0.4

0.6

0.8

1.0

NodeCount
EdgeCount
ACT

Time to result(seconds)

C
D

F

(c) eBay

Fig. 11: CDFs of time taken to obtain a result. Reachability accounts for most of the time taken by ACT . Nodecount and
Edgecount have highly variable time to result since trace of every unsuccessful execution needs to be compared with that of
every successful execution and the number of unsuccessful executions can vary widely.

by reading and writing files of various sizes. The DSB and
HDFS traces are in X-Trace [44] format and are captured at a
lower level of abstraction where vertices represent execution
of lines of code and edges represent the execution flow.

4.3 Baseline techniques
In prior work, graph analysis approaches [34, 45] transform
graphs into vectors (by counting nodes or edges or converting
them into strings) and compare pairs of graphs. The result
returned is a pair of 〈Success f ul,Unsuccess f ul〉 traces such

that they exercise the same execution path and are separated
by the shortest distance. "Shortest" is precisely defined based
on the distance metric and the representation used. Node-
Count and EdgeCount represent traces as vectors containing
the counts of components and calls between components
respectively and use L2 distance as the distance metric. Spec-
troscope [34] linearizes traces to produce an event string and
uses string edit distance as its distance metric.

Since graph selection is not viable, we have adapted the
different techniques to return the best result after comparing

10

all pairs of traces. The inputs are vectors or string represen-
tations of traces in tbe f ore and tincident . For the resultant pair
of traces, we compute the symmetric difference of the view
of traces and apply reachability. This final step focusses at-
tention on only the relevant results and is not employed in
prior work. We take this step to be able to compare the results
from the baselines with ACT. A single experiment comparing
linearized traces took multiple hours as compared to the few
seconds taken by other techniques. Hence, we ran simulations
comparing ACT with NodeCount and EdgeCount only.

4.4 Results

Result Quality Table 2 summarizes the results for the sim-
ulations for which the change produced by the simulation is
reflected in the sampled traces. We conducted hundreds of
simulations for each dataset with the number of simulations
for each incident category being roughly equivalent. As can
be observed, ACT computes exactly the expected result for all
but a few cases. In contrast, NodeCount and EdgeCount com-
pute irrelevant results for 30-50% of simulations for which
the changes are in the sampled traces.

Additionally, when NodeCount and EdgeCount produce the
expected result (in 2.5% to 30% of the scenarios) depending
on the technique and dataset, results include false positives.
From our experiments, EdgeCount produces false positives in
fewer scenarios than NodeCount. Fig. 9 shows the CDF of the
number of results produced by NodeCount and EdgeCount.

Impact of individual techniques To measure the impact of
thresholding and reachability, we consider simulations for
which ACT returns exactly the expected result, since the ef-
fects can be most clearly seen for these simulations. For the
selected simulations, we employ combinations of one or two
techniques and re-run them. Fig. 10 visualizes the results we
obtain. It is immediately apparent that computing symmetric
difference with thresholding produces the best results for the
eBay dataset indicating a noisier dataset than HDFS or DSB.
Reachability plays a bigger role for DSB and HDFS datasets
since these have more depth as compared with eBay dataset,
in which graphs are wide and shallow. Across the board, the
three techniques taken together are more powerful than any
pair of techniques.

Time taken to obtain result Fig. 11 represents CDFs of time
taken when the most number of traces are sampled for each
dataset. Reachability computations account for almost all of
the time taken by ACT. Symmetric difference and threshold-
ing reduce the number of pairs for which reachability compu-
tations need to be performed - the time for which is negligible
in comparison to reachability computation. ACT has a time
bound of O(|r|2 ∗ n), which is linear in the number of sam-
pled traces, as discussed previously. The baseline techniques,
however, have a time bound of O(s*u), where s is the num-
ber of successful executions in tbe f ore and u is the number of
unsuccessful executions in tincident . Since the trace of every

unsuccessful execution is compared with the trace of every
successful execution, the time taken is quadratic.

4.5 Integration with Jaeger: Implementation
details

We have integrated our approach with Jaeger [11] to enable
online comparison of sets of traces. Jaeger is an open source,
end-to-end distributed tracing tool that enables monitoring
and troubleshooting complex distributed systems. It currently
provides a feature that allows users to select and compare
a pair of traces. The obvious drawback is that users need to
know which traces to compare. We have extended the UI to
compare sets of traces instead. Rather than requiring users to
select traces as input, we accept as input the time since the
incident started. This enables us to split the traces into before
and after sets. For the purposes of our integration, we use
HTTP status codes in the traces to mark them as successful
or unsuccessful - a trace with any span returning a non-zero
status code is considered unsuccessful. In general, SREs can
use any criteria to label traces as successful or unsuccessful.
With the two sets of traces and their labels as inputs, we
extended Jaeger-UI to implement and visualize ACT.

5 Related Work
Section 2 contrasts ACT with much of the relevant prior work.
We reiterate how ACT differs from closest related work here.

Approaches based on trace analysis Prior works ([33, 34,
41, 42, 45]) employ pairwise comparison techniques. Since
graph selection based only on the structure of the traces is
not viable for large distributed systems, as argued in Section
2, these are better suited for interactive debugging. For auto-
mated incident localization, ACT avoids the problem of graph
selection by comparing sets of traces.

Tools in industry Various tools have been built to derive
value from trace data in industry [12, 46–49]. Lightstep [12]
in particular takes a similar approach to ours in that it ana-
lyzes traces in aggregate by comparing traces from different
time periods, but differs in that it attempts to find tags that
characterize traces which contain erroneous spans. By identi-
fying missing as well as additional calls via comparing sets
of traces, ACT addresses the limitations of Lightstep’s follow-
the-errors approach, discussed at the end of Section 2.

6 Conclusion
ACT combines the use of aggregate and causal information in
traces to effectively localize incidents. ACT identifies exactly
the mitigation site in all but a few cases. While witnessing
a large number of traces is necessary to derive aggregate in-
sights from traces, for a majority of incidents that produce
structural changes in traces, the number of traces to be sam-
pled is orders of magnitude smaller than the underlying traces
captured by the system, making it viable for use in reducing
the time to localize and thereby, resolve incidents.

11

References
[1] Google. 3 minute outage costs Google $545000 in

revenue. https://venturebeat.com/2013/08/16
/3-minute-outage-costs-google-545000-in-re
venue/, 2013. [Online; accessed August 2021].

[2] Amazon. Amazon goes down, loses $66240 per minute.
https://www.forbes.com/sites/kellyclay/201
3/08/19/amazon-com-goes-down-loses-66240
-per-minute/?sh=298ad330495c, 2013. [Online;
accessed August 2021].

[3] Yongle Zhang, Kirk Rodrigues, Yu Luo, Michael Stumm,
and Ding Yuan. The inflection point hypothesis: A prin-
cipled debugging approach for locating the root cause of
a failure. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, page 131–146, 2019.

[4] Michael Whittaker, Cristina Teodoropol, Peter Alvaro,
and Joseph M. Hellerstein. Debugging distributed sys-
tems with why-across-time provenance. In Proceed-
ings of the ACM Symposium on Cloud Computing, page
333–346, 2018.

[5] Yongle Zhang, Serguei Makarov, Xiang Ren, David
Lion, and Ding Yuan. Pensieve: Non-intrusive failure re-
production for distributed systems using the event chain-
ing approach. In Proceedings of the 26th Symposium on
Operating Systems Principles, page 19–33, 2017.

[6] Colin Scott, Vjekoslav Brajkovic, George Necula,
Arvind Krishnamurthy, and Scott Shenker. Minimiz-
ing faulty executions of distributed systems. In 13th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), page 291–309, 2016.

[7] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and
Vikram Adve. Using likely invariants for automated soft-
ware fault localization. In Proceedings of the Eighteenth
International Conference on Architectural Support for
Programming Languages and Operating Systems, page
139–152, 2013.

[8] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars
Grunske. A learning-to-rank based fault localization
approach using likely invariants. In Proceedings of the
25th International Symposium on Software Testing and
Analysis, page 177–188, 2016.

[9] Konstantin Shvachko, Hairong Kuang, Sanjay Radia,
and Robert Chansler. The hadoop distributed file system.
In Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), page
1–10, 2010.

[10] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty,
Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu,

Brian Ritchken, Brendon Jackson, Kelvin Hu, Meghna
Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang
Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla,
and Christina Delimitrou. An open-source benchmark
suite for microservices and their hardware-software im-
plications for cloud & edge systems. In Proceedings
of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, page 3–18, 2019.

[11] Jaeger. Jaeger Tracing. https://www.jaegertracin
g.io/. [Online; accessed August 2021].

[12] Lightstep. https://www.lightstep.com/. [Online;
accessed August 2021].

[13] Marisa R. Grayson. Cognitive work of hypothesis explo-
ration during anomaly response. Queue, 17(6):52–70,
2020.

[14] J. Paul Reed. Beyond the fix-it treadmill. Queue,
17(6):94–112, 2020.

[15] Richard I. Cook. Above the line, below the line. Queue,
17(6):41–51, 2020.

[16] Haopeng Liu, Shan Lu, Madan Musuvathi, and Suman
Nath. What bugs cause production cloud incidents? In
Proceedings of the Workshop on Hot Topics in Operating
Systems, page 155–162, 2019.

[17] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto,
Agung Laksono, Anang D. Satria, Jeffry Adityatama,
and Kurnia J. Eliazar. Why does the cloud stop com-
puting? lessons from hundreds of service outages. In
Proceedings of the Seventh ACM Symposium on Cloud
Computing, page 1–16, 2016.

[18] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesat-
apornwongsa, Tiratat Patana-anake, Thanh Do, Jeffry
Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.
Lukman, Vincentius Martin, and Anang D. Satria. What
bugs live in the cloud? a study of 3000+ issues in cloud
systems. In Proceedings of the ACM Symposium on
Cloud Computing, page 1–14, 2014.

[19] Yaohui Wang, Guozheng Li, Zijian Wang, Yu Kang,
Yangfan Zhou, Hongyu Zhang, Feng Gao, Jeffrey Sun,
Li Yang, Pochian Lee, Zhangwei Xu, Pu Zhao, Bo Qiao,
Liqun Li, Xu Zhang, and Qingwei Lin. Fast outage
analysis of large-scale production clouds with service
correlation mining. In ICSE 2021, 2021.

[20] Junjie Chen, Xiaoting He, Qingwei Lin, Yong Xu,
Hongyu Zhang, Dan Hao, Feng Gao, Zhangwei Xu,
Yingnong Dang, and Dongmei Zhang. An empirical

12

investigation of incident triage for online service sys-
tems. In Proceedings of the 41st International Confer-
ence on Software Engineering: Software Engineering in
Practice, page 111–120, 2019.

[21] Junjie Chen, Xiaoting He, Qingwei Lin, Hongyu Zhang,
Dan Hao, Feng Gao, Zhangwei Xu, Yingnong Dang, and
Dongmei Zhang. Continuous Incident Triage for Large-
Scale Online Service Systems, page 364–375. 2019.

[22] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu,
Hongqiang Liu, Jitu Padhye, Boon Thau Loo, and Ge-
off Outhred. 007: Democratically finding the cause
of packet drops. In Proceedings of the 15th USENIX
Conference on Networked Systems Design and Imple-
mentation, pages 419–435, 2018.

[23] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C.
Snoeren. Passive realtime datacenter fault detection and
localization. In 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17), pages
595–612, 2017.

[24] Songyun Duan, Shivnath Babu, and Kamesh Munagala.
Fa: A system for automating failure diagnosis. In 2009
IEEE 25th International Conference on Data Engineer-
ing, pages 1012–1023, 2009.

[25] Leonardo Mariani, Cristina Monni, Mauro Pezzé,
Oliviero Riganelli, and Rui Xin. Localizing faults in
cloud systems. In 2018 IEEE 11th International Con-
ference on Software Testing, Verification and Validation
(ICST), pages 262–273, 2018.

[26] Hanzhang Wang, Phuong Nguyen, Jun Li, Selcuk Ko-
pru, Gene Zhang, Sanjeev Katariya, and Sami Ben-
Romdhane. Grano: Interactive graph-based root cause
analysis for cloud-native distributed data platform. Proc.
VLDB Endow., 12(12):1942–1945, 2019.

[27] Hanzhang Wang, Zhengkai Wu, Huai Jiang, Yichao
Huang, Jiamu Wang, Selcuk Kopru, and Tao Xie. Groot:
An event-graph-based approach for root cause analysis
in industrial settings. https://arxiv.org/abs/2108
.00344, 2021. [Online; accessed August 2021].

[28] IBM. Fault localization in cloud systems using golden
signals. https://www.ibm.com/cloud/blog/fault
-localization-in-cloud-systems-using-golde
n-signals, 2021. [Online; accessed August 2021].

[29] Xu Zhao, Yongle Zhang, David Lion, Muham-
mad Faizan Ullah, Yu Luo, Ding Yuan, and Michael
Stumm. lprof: A non-intrusive request flow profiler for
distributed systems. In 11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 629–644, 2014.

[30] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan,
Yuanyuan Zhou, and Shankar Pasupathy. Sherlog: Error
diagnosis by connecting clues from run-time logs. In
Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, page 143–154, 2010.

[31] Michael Chow, David Meisner, Jason Flinn, Daniel Peek,
and Thomas F. Wenisch. The mystery machine: End-to-
end performance analysis of large-scale internet services.
In Proceedings of the 11th USENIX Conference on Op-
erating Systems Design and Implementation, pages 217–
231, 2014.

[32] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev Gandhi,
and Priya Narasimhan. Mochi: Visual log-analysis
based tools for debugging hadoop. In Workshop on
Hot Topics in Cloud Computing (HotCloud 09), 2009.

[33] Ivan Beschastnikh, Patty Wang, Yuriy Brun, and
Michael D. Ernst. Debugging distributed systems. Com-
mun. ACM, 59(8):32–37, 2016.

[34] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa,
Elie Krevat, Spencer Whitman, Michael Stroucken,
William Wang, Lianghong Xu, and Gregory R. Ganger.
Diagnosing performance changes by comparing request
flows. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, page
43–56, 2011.

[35] Gideon Mann, Mark Sandler, Darja Krushevskaja,
Sudipto Guha, and Eyal Even-Dar. Modeling the par-
allel execution of black-box services. In Proceedings
of the 3rd USENIX Conference on Hot Topics in Clo
SambasivanNSDI2011 ud Computing, page 20, 2011.

[36] Benjamin H. Sigelman, Luiz André Barroso, Mike Bur-
rows, Pat Stephenson, Manoj Plakal, Donald Beaver,
Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc., 2010.

[37] Paul Barham, Austin Donnelly, Rebecca Isaacs, and
Richard Mortier. Using magpie for request extraction
and workload modelling. In Proceedings of the 6th Con-
ference on Symposium on Operating Systems Design
and Implementation - Volume 6, page 18, 2004.

[38] The OpenTelemetry Authors. Open Telemetry. https:
//opentelemetry.io//. [Online; accessed August
2021].

[39] OpenTracing. "https://opentracing.io/". [Online;
accessed August 2021].

[40] OpenCensus. "https://opencensus.io/". [Online;
accessed August 2021].

13

[41] Paul Barham, Rebecca Isaacs, Richard Mortier, and
Dushyanth Narayanan. Magpie: Online modelling and
performance-aware systems. In Proceedings of the 9th
Conference on Hot Topics in Operating Systems - Vol-
ume 9, page 15, 2003.

[42] Xiaofeng Guo, Xin Peng, Hanzhang Wang, Wanxue Li,
Huai Jiang, Dan Ding, Tao Xie, and Liangfei Su. Graph-
based trace analysis for microservice architecture under-
standing and problem diagnosis. In Proceedings of the
28th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations
of Software Engineering, page 1387–1397, 2020.

[43] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison
Gao, Wiktor Kuropatwa, Joe O’Neill, Kian Win Ong,
Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun
Song. Canopy: An end-to-end performance tracing and
analysis system. In Proceedings of the 26th Symposium
on Operating Systems Principles, page 34–50, 2017.

[44] Rodrigo Fonseca, George Porter, Randy H. Katz, and
Scott Shenker. X-trace: A pervasive network tracing
framework. In 4th USENIX Symposium on Networked
Systems Design & Implementation (NSDI 07), 2007.

[45] Mike Y. Chen, Emre Kiciman, Eugene Fratkin, Armando
Fox, and Eric Brewer. Pinpoint: Problem determination
in large, dynamic internet services. In Proceedings of the
2002 International Conference on Dependable Systems
and Networks, page 595–604, 2002.

[46] Dan Luu. Tracing at Twitter. https://danluu.com/t
racing-analytics/. [Online; accessed August 2021].

[47] Elizabeth Carretto. Edgar: The concierge of trou-
bleshooting at Netflx. https://netflixtechblo
g.com/edgar-solving-mysteries-faster-wit
h-observability-e1a76302c71f, 2020. [Online;
accessed August 2021].

[48] Suman Karumuri. Tracing at Slack. https://slac
k.engineering/tracing-at-slack-thinking-in
-causal-graphs/, 2020. [Online; accessed August
2021].

[49] Cindy Sridharan. Distributed Tracing: Deriving value
from traces. https://copyconstruct.medium.com
/distributed-tracing-weve-been-doing-it-wr
ong-39fc92a857df, 2019. [Online; accessed August
2021].

14

