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We study whether neural quantum states based on multilayer feed-forward networks can find ground
states which exhibit volume-law entanglement entropy. As a testbed, we employ the paradigmatic Sachdev-
Ye-Kitaev model. We find that both shallow and deep feed-forward networks require an exponential
number of parameters in order to represent the ground state of this model. This demonstrates that
sufficiently complicated quantum states, although being physical solutions to relevant models and not
pathological cases, can still be difficult to learn to the point of intractability at larger system sizes. Hence,
the variational neural network approach offers no benefits over exact diagonalization methods in this case.
This highlights the importance of further investigations into the physical properties of quantum states
amenable to an efficient neural representation.
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Introduction.—The exponential complexity of represent-
ing general quantum many-body states is a key challenge in
computational quantum physics. To simulate systems
beyond small sizes tractable by exact diagonalization
methods, it is necessary to find an efficient representation
of quantum states of interest. This is made possible by the
fact that physically relevant states usually possess a high
degree of structure, compared with an arbitrary Hilbert
space vector. As a prominent example, ground states of
local, gapped Hamiltonians exhibit an area law of the
entanglement entropy, i.e., an entanglement entropy that
scales like the boundary of the subregion instead of its
volume. For systems with a low dimensionality, typically
1D, the area law allows for an efficient representation of
the wave function as a matrix product state, which can be
simulated by algorithms such as the density matrix
renormalization group [1–5].
However, many quantum states of physical interest dis-

play a volume law scaling of the entanglement entropy [6],
for which generally applicable efficient representations are
not known to this date. One class of variational approx-
imations that has been studied to overcome this challenge is
neural quantum states (NQS) [7], which are based on an

artificial-neural-network representation of the wave func-
tion’s probability amplitudes [8–10] and have shown prom-
ising results for the study of discrete lattice models even
beyond one dimension [11–19]. Notably, it has been shown
that a shallow NQS Ansatz is able to efficiently represent
quantum states featuring volume-law entanglement [20,21],
suggesting that this method could complement tensor net-
work techniques for the purpose of uncovering the physics
of highly entangled states. Nevertheless, while for matrix
product states and more general tensor-network-based
approaches it is known how the entanglement scaling limits
the representation capabilities of the ansatz [3], there is so far
no analogous physical property that directly relates to the
ability of an NQS to learn a given quantum state. Universal
approximation theorems, which have been proven for
several broad classes of neural networks, guarantee that,
in the limit of infinite network size, a neural network ansatz
can theoretically represent any continuous function to
arbitrary precision [22–25]. Still, these results do not
provide bounds on the scaling of the required number of
parameterswith the system size. For practical applications of
NQS, it is thus a central question to determinewhich classes
of quantum many-body states can be efficiently represented
that are impossible to tackle with other established varia-
tional Ansätze.
In this Letter, we investigate the capabilities of

NQS based on shallow and deep feed-forward neural
networks (FFNNs) to represent ground states of the
Sachdev-Ye-Kitaev (SYK) model [26–28], which is a
paradigmatic model for quantum chaos and non-Fermi
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liquid behavior [29] and which features a volume-law
entanglement in the ground state [30]. Because of these
nontrivial properties of the ground state, the SYK model is
emerging as a canonical benchmark for variational quan-
tum eigensolvers [31,32]. We present a systematic study of
the representation accuracy achieved by the FFNN in
dependence of the network hyperparameters. We find an
exponential dependence on the system size for the number
of network parameters required to learn the SYK ground
state. This demonstrates limitations of fully general NQS to
learn challenging volume-law ground states of physical
interest, paving the way for future studies on scaling
properties and boundaries of NQS approaches.
Model.—The SYK model, depicted in Fig. 1, describes

strongly correlated fermions on L sites and is defined by the
Hamiltonian [26–28]

ĤSYKðJÞ ¼
1

ð2LÞ3=2
X

ijkl

Jij;klĉ
†
i ĉ

†
j ĉkĉl; ð1Þ

where ĉð†Þi , i ∈ f1;…; Lg, are fermionic ladder operators.
The vertices Jij;kl have the symmetry J�ij;kl ¼ Jlk;ji and
Jij;kl ¼ −Jji;kl and are random, uncorrelated, all-to-all cou-
plings that are drawn from a Gaussian unitary ensemble
(GUE) [33] with mean E½Jij;kl� ¼ 0 and variance
E½jJij;klj2� ¼ 1 [29]. Consequently, quantities of physical
interest are expectation values over the ensemble of
couplings J, which is evaluated after the quantum-
expectation value. The ground state of the SYK model
describes a strongly correlated non-Fermi liquid without
quasiparticle excitations [29], that exhibits volume-law

entanglement entropy [34,35]. In the thermodynamic limit
the model becomes self-averaging and exactly solvable, but
despite this exact solvability, the ground state is not a
Gaussian state, i.e., not a product of single particle wave
functions [32]. At finite sizes, particularly studied in the
context of quantum chaos [36–38] and experimental real-
izations [39], no exact solutions are known. Different
variational Ansätze to represent the ground state have been
proposed recently [32,40].Here themodel canbe analyzedby
employing approximations, or numerically, by drawing a set
of couplings fJðnÞgNn¼1 from the GUE, constructing the
corresponding Hamiltonians ĤSYKðJðnÞÞ, and solving for
the ground states jΨGSðJðnÞÞi. Finally, the properties of
interest, such as expectation values, are averaged over this
ground state ensemble. Because of the self-averaging prop-
erty of the SYK model, it suffices to evaluate expectation
values for a single realization of J in the thermodynamic
limit [29]. The self-averaging behavior of the finite sizes
simulated together with a comparison with the thermody-
namic limit for the ground state energy are discussed in detail
in Secs. IV and V of the Supplemental Material [41].
Network architecture.—We use a fully connected FFNN

[Figs. 2(a) and 3(a)],

FIG. 1. Cartoon representation of the SYK model. Gray circles
represent lattice sites, and every different color shown has two
corresponding lines in total connecting four sites. Each color
represents one element of the coupling matrix Jij;kl of the SYK
model defined by Eq. (1).

FIG. 2. (a) Shallow fully connected feed-forward neural net-
work, where α denotes the hidden unit density of each layer and
thus parametrizes the network width. (b),(c) Relative ground state
energy error δE as function of α for several system sizes and
random initializations after (b) t ¼ 105 and (c) t ¼ 2 × 105

simulation steps, respectively. The color of each set of data
points corresponds to the average over four independent realiza-
tions of the network initial weights, for the system size L as
indicated in the legend. Black bars indicate δEthreshold ¼ 10−3.
(d) Same data as in panel (c) as a function of rescaled α=ecL. The
constant c ≈ 0.33 was optimized to achieve an approximate
collapse of the displayed curves for different system sizes.
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FðxÞ ¼ fðμÞ∘ � � � ∘fð1ÞðxÞ;
fðlÞðyÞ ¼ ϕðWðlÞyþ bðlÞÞ; ð2Þ

which is a composition of μ layers fðlÞ, each applying an
affine transformation and a scaled exponential linear unit
activation function ϕ [43] as pointwise nonlinearity. Each
layer has αL neurons, where α is the fixed hidden unit
density. The output of the final layer is reduced to a (scalar)
log-probability amplitude with respect to the computational
basis fjxig by an exponential sum,

loghxjψθi ¼ log
XαL

i¼1

exp½FiðxÞ�: ð3Þ

Here, θ denotes the vector of all variational parameters,
which contains all entries of the weight matrices WðlÞ and
bias vectors bðlÞ. The variational parameters and therefore
network outputs are complex numbers, with the activation
function being applied separately to real and imaginary
parts. The total number of network parameters scales as
Npar ¼ Oðμα2L2Þ. We choose the occupation number

basis, as has been done in previous NQS studies of
fermionic molecular Hamiltonians [51–53] and target the
ground state at half filling (L=2 fermions), which corre-
sponds to the global SYK ground state in the N → ∞ limit.
Therefore, the input to the neural network [Eq. (2)]
is a vector of occupation numbers x ∈ f0; 1gL such
that

P
i xi ¼ L=2.

We have verified our results for several variations of this
network architecture. In particular, we have evaluated using
tanh as a nonlinear activation function as well as the
addition of skip connections, which can be used to
counteract the increased training complexity of networks
beyond a certain depth [47,48]. These variations did not
achieve better results compared with those presented in
the main text. Details can be found in Sec. III of the
Supplemental Material [41].
Optimization.—The ground state of the network is

obtained by numerically minimizing the overlap difference

δOðθ; JÞ ¼ 1−
����
hψθjψGSðJÞi
hψθjψθi

���� ð4Þ

between the variational state jψθi and the ground state
jψGSðJÞi with respect to the variational parameters θ using
Adam [46]. We work with system sizes up to L ¼ 18 sites,
which are accessible via exact diagonalization (ED)
and thus enable training using a supervised learning
protocol targeting the overlap with the ED ground state
jψGSðJÞi [45]. The system size allows us to evaluate the
loss function [Eq. (4)] by summation over the full Hilbert
space (preventing any potential errors arising from Monte
Carlo sampling) and to assess the quality of our results
using the relative energy error

δEðθ; JÞ ¼ Eðθ; JÞ − EGSðJÞ
EGSðJÞ

ð5Þ

compared with the target ground state energy
EGSðJÞ ¼ hψGSðJÞjĤSYKðJÞjψGSðJÞi. Details on the opti-
mization scheme are reported in Sec. II of the Supplemental
Material [41].
Results.—To start, we discuss the minimum energy error

δEmin ¼ min jt∈½0;tmax�δEðθ; JÞ reached within a maximum
number of iterations tmax of the optimization protocol.
Figures 2(b) and 2(c) show the dependence of δEmin on the
network width α for a network with a fixed number of
μ ¼ 2 layers, while Figs. 3(b) and 3(c) show the results as a
function of network depth μ for deep networks with
constant width α ¼ 4. We select δEthreshold ¼ 10−3 as a
threshold error to assess successful convergence to the
desired ground state. With this threshold, one can see in
Figs. 2(b) and 3(b) that at any fixed number of training
iterations tmax there is a systematic improvement of the
accuracy with respect to increasing both α and μ, as one

FIG. 3. (a) Deep fully connected feed-forward neural network,
where μ denotes the number of layers and thus parametrizes the
network depth. (b),(c) Relative energy error δE as a function of
μ for several system sizes and random initializations after
(b) t ¼ 105 and (c) t ¼ 2 × 105 simulation steps, respectively.
The color of each set of data points corresponds to the average
over four independent realizations of the network’s initial
weights, for the system size L as indicated in the legend. Black
bars indicate δEthreshold ¼ 10−3. (d) Same data as in panel (c) as a
function of rescaled μ=ecL. The constant c ≈ 0.41 was optimized
to achieve an approximate collapse of the displayed curves for
different system sizes.
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would expect given the increased representation capabil-
ities of the network at larger sizes.
See Sec. II A of the Supplemental Material [41] for

additional details on this data. Figures 2(d) and 3(d) show
the same data for t ¼ 2 × 105 as a function of an exponen-
tially rescaled system size. This approximate curve collapse
hints at an exponential scaling of the required network size
to represent the ground state.
Next, we determine the minimum number of variational

parameters at which the network is able to learn the ground
state with the desired energy of δEthreshold. Especially for the
smallest system sizes, there is a clear transition between
regimes where the network is able or unable to learn the
state (in particular as a function of α in the shallow
network). For larger system sizes, it is somewhat more
difficult to assess convergence. While both very small and
very large networks converge to energies above or below
the desired threshold within a reasonable optimization time,
there is an intermediate regime where the energy gets close
to the threshold but only converges at very long timescales.
In order to systematically identify a value of α or μ at that
boundary, we have developed a criterion used to truncate
optimization runs after a reasonable optimization time
when those runs are predicted to ultimately converge to
a δEðθ; JÞ higher than δEthreshold. See Sec. II B of the
Supplemental Material [41] for details. In Fig. 4 we show
the number of network parameters at the critical αmin or
μmin at which the network is able to reach the target energy
accuracy threshold. This allows for a comparison of net-
work expressiveness for both varying width and depth on
equal footing. We find that for both the shallow and deep
network, an exponentially growing number of parameters is
needed to achieve the target energy error. A comparison
with the Hilbert space dimension reveals that the network

only reaches this threshold once the number of variational
parameters exceeds the number of probability amplitudes
contained in the respective state vector. Hence, we find that
our deep feed-forward NQS Ansatz as trained here does not
learn a more efficient representation of the SYK ground
state than the full state vector representation. It is conceiv-
able, in particular given the fully connected nature of our
Ansatz, that there is some redundancy in the learned
variational parameters, which could be used to achieve a
degree of compression after training. In order to investigate
this possibility, we have performed a low-rank approxima-
tion based on singular value decomposition of the weight
matrices [50], the details of which are reported in Sec. VI of
the Supplemental Material [41]. This analysis, however,
has not revealed such a redundancy.
Our scaling results cannot be interpreted as an immediate

consequence of the entanglement scaling of the SYK
model, as NQS are known to be able to efficiently represent
some volume-law quantum states [20], while they seem
to fail for others (as shown here). While a particular
realization of the SYK Hamiltonian is of significantly
higher complexity than a low-dimensional local lattice
Hamiltonian (both because of its fully connected structure
and the ∝ L4 randomly drawn interaction matrix elements),
its ground state still exhibits more structure than a random
Hilbert space vector. Since it is well known that deep (and,
in fact, already two-layer) networks are able to memorize
even completely random data once the number of network
parameters exceeds the number of data points [54], these
results provide evidence that our FFNN Ansatz does not
learn to utilize any of this structure but only manages to
learn it as unstructured random data. This is in stark
contrast to more structured lattice Hamiltonians, where it
is clear from previous works that neural quantum states can
approximate ground state energies with subexponential
scaling and thus do manage to make use of structure
present in the quantum ground state [55,56], although
exponential scaling results as a function of real time have
been previously found for time-evolved states in a one-
dimensional lattice spin model [57]. We have found
comparable subexponential behavior when evaluating
our training procedure on the ground state of the

Heisenberg spin model ĤHeisb ¼
P

N
i¼1

P
3
q¼1 σ̂

ðqÞ
i σ̂ðqÞiþ1 on

a one-dimensional chain with periodic boundary conditions
diagonalized in the same zero-magnetization subspace used
for the SYK computations. The scaling of the required
number of parameters to reach δEthreshold in this model is
also reported in Fig. 4. In this case, a relatively small
and fixed α ¼ 1 and μ ¼ 2 independent of the system size
are sufficient to reach this threshold, implying a poly-
nomial scaling of the required number of parameters
Npar ¼ OðL2Þ. This corresponds to an effective compres-
sion of the information contained in the exact state vector
and allows one to study sizes beyond those tractable by full

FIG. 4. Minimum number of parameters Npar required for the
FFNN to learn the ground state of the SYKmodel as a function of
the system size L. Results are shown for the scaling with network
width in a shallow (μ ¼ 2) network (blue lines) and for the
scaling with network depth for fixed α ¼ 4 (red line). In both
cases, an exponential scaling in the system size is observed,
which matches the scaling of the full Hilbert space dimension
dimH (dashed line). The Npar scaling for the ground state of the
Heisenberg model (blue) and the associated quadratic polynomial
law are reported for comparison.
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state simulation [7,55]. However, the same approach fails to
be useful in the more complex SYK model case.
Discussion.—We have tackled the prototypical SYK

model using an NQS variational Ansatz, presenting a
systematic study of the ability of deep FFNNs to learn
the volume-law entangled ground states of this model.
Focusing on the scaling of the required number of param-
eters to describe the ground state to a desired and fixed
accuracy, we find that the size of the FFNNAnsatz needs to
grow exponentially in the system size. For practical studies,
the neural-network Ansatz is hence outperformed by exact
diagonalization with Krylov space methods, which have
been applied to systems with up to 30 lattice sites in the
context of the SYK model [38,58,59]. With this we show
explicitly that the neural network Ansatz is unable to
efficiently represent SYK ground states in larger systems
in spite of general results raising such hopes. We have
performed this analysis using a variety of training tech-
niques (as detailed in the Supplemental Material [41]),
showing that the observed scaling is robust to such
implementation choices. Investigating whether these train-
ing protocols are able to exploit the particle number
symmetry, without the need to restrict to a fixed number
of particles Hilbert subspace, represents an interesting
avenue for future studies.
While the proven capability of random restricted

Boltzmann machines to represent volume-law quantum
states [20,21] indicates that NQS methods have the
potential to tackle problems out of the reach of established
tensor-network-based methods, our results demonstrate
that the entanglement entropy is not the property that
determines whether or not a physical quantum state can be
efficiently represented by an NQS. There is still an
intriguing open question regarding which additional prop-
erties of a physical quantum state determine the efficient
applicability of NQS-based methods. NQS Ansätze more
specifically tailored to fermionic systems could potentially
achieve better scaling [53,60]. Studies in this direction
would help elucidate to what extent the nonlocal parity
structure inherent to fermionic models [61] affects the
learnability of the SYK ground state. Separating this
influence from other sources of complexity, such as the
lack of spatial structure and the disorder induced by random
couplings, and thereby exploring the intermediate region
between states that can be learned with compression (such
as in the Heisenberg and similar spin models) and states
that cannot (such as the SYK results presented here) can
provide an improved understanding of the complexity of
physical quantum states.
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