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I. NETWORK ARCHITECTURE

A fully-connected feed-forward network (FFNN) is a composition of µ ∈ N>0 layers where the lth network layer,
1 ≤ l ≤ µ, applies the transformation (writing [n] := {1, . . . , n} for any n ∈ N>0)
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from input y(l) to output signal y(l+1). This is an affine transformation with weight matrix (or kernel) W (l), bias
b(l), and a nonlinear activation function ϕ. The full set of network parameters, consisting of all weights and biases, is
denoted by θ ∈ CNpar . For the results presented in the main text, we have used the SELU activation function

SELU(x) = λ

{
x, x > 0,

(a− 1)ex, x ≤ 0
(S2)

(where λ ≈ 1.0507 and a ≈ 1.6733), as implemented in jax [1], which helps circumvent the vanishing gradient problem
of training deep networks [2]. Since in our case the network acts on complex-valued signals, we apply SELU separately
to real and imaginary part of the input (reim selu in netket [3]), giving the complex activation

ϕ(z) = SELU(Re z) + i SELU(Im z). (S3)

Using the hyperbolic tangent as activation provides equivalent or (for deep networks) worse results, as we discuss
below (Section IIID). The log-probability amplitudes of the variational state are then obtained by performing the
logsumexp operation on the output of the final layer, i.e.,
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with {|x⟩ | x ∈ {0, 1}L} denoting the computational basis.

II. TRAINING PROTOCOL

A. Supervised learning

In this work we considered only system sizes up to L = 18, which are solvable via exact diagonalization (ED). We

solve the ED problem for a given realization of the model Ĥsyk(J), finding the corresponding ground state |ψGS(J)⟩.
The key result of this work, the exponential scaling of the required network size to reach a specific error bound, is
independent from the specific J realization for the couplings of the SYK model. This has been checked by performing
the full analysis as described in the following paragraphs for two independent realizations of the random coupling
matrix J .
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FIG. S1. Relative energy error δE as function of [(a), (b), (c)] the network width α and of [(d), (e), (f)] the number of layer µ
for several system sizes and random initializations after [(a), (d)] 5× 104, [(b), (e)] 105, and [(c), (f)] 2× 105 simulation steps,
respectively. Here we report the full dataset from which the average value plotted in the main text has been derived. The color
of each set of data points corresponds to the system size L as indicated in the legend while different shades of the same color
belong to independent realizations of the initial network weights.

Given the ED solution |ψGS⟩, it is possible to train the network to reproduce the correct probability amplitudes
(up to norm and phase gauge freedoms) via supervised learning [4]. In practice, we have done so by optimizing the
loss function

δO(θ, J) = 1−
∣∣∣∣ ⟨ψθ|ψGS(J)⟩

⟨ψθ|ψθ⟩

∣∣∣∣ (S5)

using the Adam optimizer [5]. Another training scheme can be implemented by directly minimizing the expected

energy E(θ, J) = ⟨Ĥsyk(J)⟩|ψθ⟩ of the system as the loss function. For this loss function, it is possible to extend the

training to system sizes beyond the reach of ED studies through variational Monte Carlo (VMC) sampling [6], which
is not possible in the SL scheme employed here due to its reliance on the knowledge of the full solution vector. Since
all our system sizes could be treated via full summation, we have not relied on VMC sampling in this work.

As our goal is to find the network size required to represent the SYK ground states at a given system size, we
have compared training runs for both SL and energy minimization routines, finding the SL to be the best performing
choice in the regime under consideration (compare Section III B). Therefore, we have selected the SL results for
presentation in the main text. Our observations regarding the exponential scaling of required network size hold also
for the variational energy optimization runs.

The optimization problem for a neural network is challenging on its own and there is unfortunately no general way
to systematically identify the best choice of hyperparameters. Here, we have chosen to study the scaling with regard
to width α and depth µ of the network by performing two sets of runs: Varying the width for a two-layer network
and varying the depth of a network of fixed width α = 4. Considering the trajectory of weights {θ(t)}t∈[tmax] (where
[tmax] := {1, . . . , tmax} ⊆ N) over the sequence of optimization steps, we can the define the optimal energy relative
error as δEmin(θ, J) = mint∈[tmax]E(θ(t), J). In Fig. S1 we report δEmin for SL protocols for three different number
of total iterations tmax as function of α. All the data reported in this plot have been obtained with µ = 2, keeping
the learning rate of the Adam optimizer constant throughout all the simulation. From this analysis we can make
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FIG. S2. (a) Relative energy error δE as function of the iteration step for shallow networks with µ = 2 layers and width α
as reported in the respective panels. The system size is L = 16. In light blue we report the raw data, in dark blue the result

of a window smoothing filter applied to the raw data. (b) Absolute value of the numerical derivative | ∂(δE)
∂t

|. (c) Estimated
minimum number of steps required to convergence t∗min as defined by Eq. (S6).

two relevant observations. The first is that up to the network sizes simulated there is a monotonic improvement of
the error with increasing width α. The second observation is that at each fixed number of simulation steps there is
an exponential scaling of the αmin required to bring δEmin below an arbitrary threshold (10−3 in our example) as a
function of the system size. With the data reported in this paragraph, it cannot be ruled out that this exponential
cost in network size is due to an exponential scaling of the number of steps required to bring the small α values to
convergence. However, through an analysis of the training curves it is possible to make a strong argument to identify
the αmin discussed in the main text as a quantity independent from the number of training steps. This analysis is
explained in the following section.

B. Truncation scheme

In the first row of Fig. S2, we report δE(θ(t), J) for four different alpha values distributed around what we are going
to define as the critical αmin. The light blue line corresponds to the raw data obtained from the training process. In
order to remove the fluctuations around the moving average, we apply a flat window filter over the raw error, obtaining
the profile corresponding to the dark blue line. This running average error is smooth and monotonically decreasing.
Furthermore, the slope of these curves is also decreasing (in absolute value), implying a slowing rate of convergence of
the optimization. In order to conserve computational resources, we truncate the runs that are expected to converge
to a δE(θ, J) above the energy threshold of 10−3 based on the following criterion: Assuming that the absolute value
of the slope is monotonically decreasing throughout all the training iterations, it is possible to estimate, at any step
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FIG. S3. (a) Overlap ⟨Ψθ|Ψexact(J)⟩ and (b) relative energy error δE for a training protocol in the interval t ∈ [4×105, 5×105]
steps. The same pre-trained network here it has been updated with the three different learning ratios reported in the legend.

t, a lower bound for the number of steps required to reach the error threshold as

t∗min(t) =
δE(θ(t), J)− δEthreshold

|∂tδE(θ(t), J)|
. (S6)

Within the assumption of constant slope, the equality δE(θ(t + t∗min(t)), J) = δEthreshold holds. If now we define a
control interval ∆t big enough to average out the noise around training curve, one can check if a candidate run is
trending towards convergence below the error threshold based on the slope of t∗min(t),

δt∗min(t) =
t∗min(t+∆t)− t∗min(t)

∆t
. (S7)

The runs that are expected to reach convergence are those that satisfy

δt∗min(t+∆t) < δt∗min(t). (S8)

We simulated all runs for at least tmax = 2 × 105, for those runs that where still above the threshold for that step
we used the criterion (S8) (with ∆t = 105) in order to assess whether they can still be expected to reach the error
threshold, based on their current rate of convergence. The runs for which converge below the threshold was ruled out
by our criterion were stopped in order to conserve computational resources, while we did perform additional blocks
of 105 steps for the remaining simulations, until the truncation criterion (S8) did apply or the error threshold was
reached. The resulting αmin values reported in Fig. 4 of the main text are the smallest simulated value of α for which
convergence below the threshold was reached. The µ scaling analysis was performed in an equivalent way.

III. OVERVIEW OF ALTERNATIVE TRAINING METHODS INVESTIGATED

In the previous paragraphs we have described the protocol and data analysis necessary to reproduce the results
that we discussed in the main text. Here we are showing alternatives to the training scheme and hyperparameters.
The alternatives which we have tested achieved either worse accuracy or no significant improvement compared to the
results we selected for the main text.

A. Different learning rate

We have used the Adam optimizer using a constant learning rate throughout the simulations reported in the main
text. One advantage of Adam with respect to SGD is that it automatically adapts the step size based on the history
of loss gradients. Still, Adam has to be initialized with a specific learning rate and this can potentially influence
the effectiveness of the training. While determining the optimal learning rate for our simulations, we have also tried
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FIG. S4. Minimum relative energy error δEmin obtained using the SL (green) and a VOE (red) loss functions using tmax = 5×104

steps as function of the number of network width α. For the data reported in this plot, we considered system size L = 18 and
a fixed µ = 2

FIG. S5. Minimum relative energy error δEmin obtained during a SL training protocol of a deep FFNN (green) and of a
Network with Skipped connections (red) with a number of steps set to tmax = 5 × 104 as function of the number of network
laters µ. For the data reported in this plot we considered system size L = 18 and a fixed α = 4

schemes involving an update of the learning rate during the simulation. We report an example of an unconverged
training curve in Fig. S3 for which, after 4 · 105 steps at a fixed learning rate, we performed further 105 steps with
three different adjusted learning rates. These changes of learning rate did not result in an improvement of training
performance.

B. Variational energy optimization

Beside the SL protocol described above, we have also considered directly optimizing the variational energy

E(θ, J) =
⟨ψθ|Ĥsyk(J)|ψθ⟩

⟨ψθ|ψθ⟩
. (S9)

For disambiguation, we refer to this loss function as the variationally optimized energy (VOE). Note that this loss
does not involve the ED solution of the model and can be applied to system sizes beyond those limits, if it is used
together with MC sampling of the quantum states [6]. However, as we are interested in comparing the performance of
the SL and VOE protocols in the ED regime, we only use the loss (S9) obtained by full summation in the following.
Within the parameter range tested, the SL protocol achieved systematically lower errors than the VOE loss. As an
example of this, we show in Fig. S4 the resulting δEmin for a given system size (L = 18) and a fixed number of
iteration steps. Although the trend is similar between the two curves, the SL reaches the convergence threshold at
lower α values.
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FIG. S6. Relative energy error δE as function of the iteration step t using the SL training protocol with SELU (light blue) and
tanh (light green) activation functions. The figure shows the data for (a) L = 14, µ = 2; (b) L = 16, µ = 6; and (c) L = 18,
µ = 10.

C. Deep networks with skip connections

In the main part of this work, we presented an extensive discussion of the results obtained when training a FFNN
with the architecture defined in Section I. Among the two different hyperparameter dependencies discussed there, the
number of layers µ scaling requires some extra attention. It is known that while adding more layers enhances the
networks expressive capability, at the same time it can make the training more difficult [7]. One common remedy to
this is the addition of skip connections between the layers of the neural network [8]. We report in Fig. S5 a comparison
between the training at a fixed number of iteration steps tmax = 5 · 104 between the FFNN discussed in the main
text and a fully-connected network with skip connections. Specifically, our network is divided into nB blocks, each
containing ℓ layers. The total number of layers is thus µ = nBℓ. After the application of each block (i.e., after
applying ℓ fully-connected layers), the content of the original input layer (with the first affine transformation applied)
is added to the output before it is passed to the following block. For the SL simulation runs considered (Fig. S5),
this architecture does not give an improvement in energy error when compared to a simple FFNN. We have found
improved convergence (compared to the simple FFNN) of the skip connection networks in some runs using the VOE
loss. However, in those cases the number of layers already exceeded the critical µ (around which the network with
skip connections still performed worse), so no improvement with regard to compression was obtained this way.

D. Hyperbolic tangent activation function

As already stated, for all the data discussed in the main part, the FFNN implemented where following the definition
presented in Eq. (S1) using SELU as activation function ϕ. While in principle there are many viable choices with
regard to which specific activation function utilizing, we opted to restrict our studies to a particular activation in order
to investigate extensively the dependence of the representability power as function of the network hyperparameters,
keeping a manageable number of simulations to perform. Thus the need to choose an activation function able to
achieve reliable performance when dealing with both deep and shallow networks. We present here a comparison of the
performances achieved by the same training protocol and network architecture while using another common activation
function, the hyperbolic tangent. In Fig. S6, we present training profiles for the relative energy error δE as function
of the iteration step t. We show this for both a network with SELU and a network with tanh activation function for
several numbers of layers µ. As one could expect from the vanishing gradient problem that effects tanh, we observe
that also for the network sizes relevant to our problem, above a certain number of layers the tanh activated networks
are not able to improve the energy error anymore. At the same time SELU displayed a monotonic improvement of
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FIG. S7. Bipartite entanglement entropy averaged over 4 independent realizations of the SYK model (error bar shows the
standard deviation) compared to bipartite entanglement of a random state given by the Page value (red).

the energy error with the number of layers (up to scales relevant for our specific problem) and thus is an effective
choice (compare Fig. S1).

IV. SYK BIPARTITE ENTANGLEMENT

Following the standard definition, the bipartite entanglement of a density matrix ρ corresponds to

Sbipartite = −Tr [ρA log (ρA)] = −Tr [ρB log (ρB)] (S10)

where ρA(B) = TrB(A) [ρ] is the reduced density matrix obtained from the density matrix ρ and tracing over the
degrees of the subpartition B(A) of the total hilbert space, in the special case of dim(A) = dim(B). We compare
the Sbipartite scaling for four independent finite size SYK model realizations together with the Page value [9], that
quantifies the entanglement for a pure random state. In the special case case of bipartite entanglement, the page
value is

Spage = N log(2)− 1

2
. (S11)

As one can see in Fig. S7, the entanglement scaling of the SYK model follows a volume law scaling that does not
saturate the page value, showing that the SYK states exhibit structure beyond a pure random state.

V. ENERGY CONVERGENCE TOWARD THE THERMODYNAMIC LIMIT

Considering the complex SYK model defined by

Ĥsyk (J) =
1

(2L)3/2

∑
ijkl

Jij;kl ĉ
†
i ĉ

†
j ĉk ĉl, (S12)

it is possible to analytically evaluate the ground state energy density in the large L limit, this results to be e
(TD)
GS ≈

−0.0826. In Fig. S8 we show the ground state energy from the ED simulations for the system sizes considered in the
main part of the paper. There one can see that while the energy is slowly converging toward the thermodynamic
limit, at L = 18 the relative error in the energy between the thermodynamic limit and the finite size results to be

δE =
(
eGS|L=18 − e

(TD)
GS

)
/e

(TD)
GS ≈ 0.5. Despite the absolute value of the energy not yet being converged to the

thermodynamic limit, we can see that as for the entanglement entropy also this observable exhibits self-averaging
properties in the sizes simulated.

VI. NETWORK COMPRESSION

Trained neural networks can be amenable to compression in order to reduce the total number of parameters. This
is usually done for the purpose of reducing memory and computational requirements in order to run a network on
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FIG. S8. Groundstate energy density eGS evaluated from ED for different finite sizes. The errorbar corresponds to the standard
deviation. The number of independent realizations for the data shown depends on the system size and corresponds to: (L =
10, 40 realizations), (L = 12, 30 realizations), (L = 14, 20 realizations), (L = 16, 10 realizations), (L = 18, 4 realizations)

FIG. S9. Relative energy error as a function of the fraction of retained singular values q for four different choices of
hyperparameters indicated in the title of each panel. The color corresponds to different network initializations as in Fig. S1.

a lower powered device. Here, we have explored a compression scheme based on a lower-rank approximation of the
weight matrices in each layer [10] in order to gauge whether any potential redundancy in the learned variational
parameters can be identified this way. This is done by performing a singular value decomposition (SVD)

W (l) = U (l)S(l)V (l) (S13)

where U (l), V (l) are unitary matrices and S(l) = diag(σ
(l)
1 , . . . , σ

(l)
M ) is the matrix of singular values σ

(l)
1 ≥ . . . ≥ σ

(l)
M ≥

0. We truncate this spectrum by discarding all singular values below a threshold λ relative to the largest singular

value, i.e., based on the criterion σ
(l)
i /σ

(l)
1 < λ. For simplicity, we chose λ uniformly for each layer. As a measure of
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the approximation error, we report in Fig. S9 the relative energy error after truncation as a function of the fraction

q =
singular values retained

total singular values
(S14)

of singular values retained over all weight matrices of the network for different system sizes and choices of hyper-
parameters. This data shows that already a limited amount of truncation (0.95 ≤ q < 1.0) results in a significant
increase in energy error. We therefore conclude that at uniform SVD truncation of the weight matrices does not reveal
redundancy in our learned SYK ground states.
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December 3-8, 2018, Montréal, Canada, edited by S. Bengio, H. M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (2018) pp. 6391–6401.

[9] D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71, 1291 (1993).
[10] J. Xue, J. Li, and Y. Gong, Restructuring of deep neural network acoustic models with singular value decomposition, in

Interspeech 2013 (ISCA, 2013).

http://github.com/google/jax
https://arxiv.org/abs/1706.02515
https://arxiv.org/abs/arXiv:1706.02515
https://doi.org/10.21468/SciPostPhysCodeb.7
https://doi.org/10.48550/ARXIV.1808.05232
https://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.21437/interspeech.2013-552

	Supplementary Material for:Can neural quantum states learn volume-law ground states?
	Network architecture
	Training protocol
	Supervised learning
	Truncation scheme

	Overview of alternative training methods investigated
	Different learning rate
	Variational energy optimization
	Deep networks with skip connections
	Hyperbolic tangent activation function

	SYK bipartite entanglement
	Energy convergence toward the thermodynamic limit
	Network compression
	References


