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ABSTRACT
One key prediction of General Relativity is that gravitational waves are emitted with a
pure spin-2 polarisation. Any extra polarisation mode, spin-1 or spin-0, is consequently
considered a smoking gun for deviations from General Relativity. In this paper, we
show that the velocity of merging binaries with respect to the observer gives rise to
spin-1 polarisation in the observer frame even in the context of General Relativity.
These are pure projection effects, proportional to the plus and cross polarisations
in the source frame, hence they do not correspond to new degrees of freedom. We
demonstrate that the spin-1 modes can always be rewritten as pure spin-2 modes
coming from an aberrated direction. Since gravitational waves are not isotropically
emitted around binary systems, this aberration modifies the apparent orientation of
the binary system with respect to the observer: the system appears slightly rotated due
to the source velocity. Fortunately, this bias does not propagate to other parameters of
the system (and therefore does not spoil tests of General Relativity), since the impact
of the velocity can be fully reabsorbed into new orientation angles.
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1 INTRODUCTION

Binary systems of compact objects, like neutron stars or
black holes, are predicted by General Relativity to emit
gravitational waves (GW) with spin-2 polarisations. These
spin-2 modes have been observed for the first time by the
interferometer LIGO and Virgo in 2015 (Abbott et al. 2016)
and from subsequent GW events (Abbott et al. 2019a, 2021a;
The LIGO Scientific Collaboration et al. 2021a,c). From a
theoretical point of view it is of crucial importance to model
the expected signal as precisely as possible, in order to use
these GW events to probe, on one hand, the physics of
binary systems (Chen 2021), and, on the other hand, the
validity of General Relativity (Abbott et al. 2019b, 2021b;
The LIGO Scientific Collaboration et al. 2021d). A lot of ef-
fort has been devoted to calculate GW waveforms account-
ing for the relative velocity of the two objects in the bi-
nary, up to high order in the post-Newtonian expansion, see
e.g. Blanchet (2014); Isoyama et al. (2021); Sturani (2021);
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Zhao et al. (2021) for a more recent review. However, these
frameworks usually neglect the fact that the centre of mass
of the binary is itself moving with respect to the observer,
due to the gravitational interaction with the host galaxy,
host cluster, and the large-scale structure of the Universe.

Recently several studies have started exploring the ef-
fect of the binary peculiar velocity on the waveform of a GW
signal. In particular, it has been found that the variation
of the velocity during the time of observation modifies the
waveform in a non-negligible way, an effect that is relevant
for an interferometer like LISA, that will follow GW signals
during months and even years, see e.g. Bonvin et al. (2017);
Tamanini et al. (2020); Toubiana et al. (2021); Sberna et al.
(2022). Other authors have addressed the impact of the bi-
nary peculiar motion for cosmological studies (Mukherjee
et al. 2021). However, all these works focus on kinematic dis-
tortions of the amplitude and phase of the wave, assuming
that the two emitted polarisations are affected in the same
way by kinematic effects, i.e. effectively neglecting the spin-
2 (tensorial) nature of the wave and treating the two wave
polarisations as scalar waves. This is of course an approxi-
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2 Bonvin et al.

mation, as we know that a GW is in fact a spin-2 quantity,
which consequently transforms as a rank-2 tensor under a
Lorentz boost.

In this paper, we study the effect of the binary peculiar
velocity on the observed signal, accounting for the full polar-
isation structure of the GW. We show that the component of
the binary velocity orthogonal to the line of sight (hereafter
transverse velocity) changes the antenna pattern of an inter-
ferometer, generating spin-1 modes. Moreover, for a network
of detectors, the transverse velocity changes also the time
delay between interferometers (or similarly the phase shift).
In Fig. 1 we plot the effect of various wave polarisations on
a ring of test particles. Spin-1 polarisations give a vectorial
deformation of the ring along the direction of propagation
of the wave.

We then show that since the spin-1 modes have the same
time dependence as the spin-2 modes, they can always be
rewritten as spin-2 modes coming from an aberrated direc-
tion, and with a mixing of the two polarisations. Moreover,
we show that the time delay between different interferom-
eters can be rewritten in terms of the same aberrated di-
rection. This means that only the aberrated direction and
the aberrated polarisations can be measured. Importantly,
the aberrated direction which allows us to re-absorb spin-1
modes into spin-2 modes is the same as the aberrated direc-
tion inferred from the propagation of electromagnetic signals
emitted by moving sources. As a consequence, detecting a
luminous counterpart would not help in reconstructing the
spin-1 modes, nor measuring the binary transverse velocity.

Since GW emission is not isotropic, aberration and the
mixing of polarisations have a direct impact on the ampli-
tude of the detected signal. When reconstructing the pa-
rameters of the binary system from the detected signal, we
find that the angles describing the orientation of the binary
system are biased by the transverse peculiar velocity: the
system appears rotated with respect to the observer. Fortu-
nately, this effect has no impact on the other parameters of
the system, like the luminosity distance or the chirp mass,1

since the transverse velocity can be fully reabsorbed into
an aberrated direction and mixed polarisations. As a conse-
quence transverse velocities do not invalidate reconstruction
of cosmological and astrophysical parameters with GWs.

The rest of the paper is structured as follows: after an
overview of general concepts in Section 2, we present a de-
tailed derivation of velocity-induced effects on the polarisa-
tion structure of the wave in Section 3. In Section 4 we show
how spin-1 components can be re-written as spin-2 compo-
nents coming from an aberrated direction and in Section 5
we demonstrate that the time-delay is proportional to this
same aberrated direction. In Section 6 we discuss the obser-
vational impact of aberration and we conclude in Section 7.
Technical derivations are presented in a series of appendices.

Notation: we work with units where the speed of light
is set to one, c = 1. With v1 and v2 we denote projections of
the source peculiar velocity orthogonal to the line of sight,
and with v3 the component along the line of sight. We de-

1 These quantities are of course affected by the longitudinal com-
ponent of the velocity through Doppler effects, but there are not
affected by the transverse velocity which aberrates the signal and

mixes the polarisations.

Tensor mode

Tensor mode

Vector modes (1,2)

Scalar 
conformal mode

Scalar longitudinal 
mode

⇥
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Figure 1. Effect of different wave polarisations on a sphere of

test-particles.

note with a tilde quantities in the source frame, and without
tilde quantities in the observer frame (that we will also refer
to as aberrated frame). Moreover, since typically we expect
peculiar velocities to be non-relativistic, in our computation
we keep only linear order terms in v/c. This leads to simpler
formulas whose physical interpretation is more transparent.

2 GENERAL CONCEPTS

We start by reviewing the standard result of detector arm-
length variation induced by an incoming GW emitted by a
source which is at rest with respect to the interferometer.
This will serve as a basis for Section 3 where we show how
this derivation is modified if the source is moving. We con-
sider two test particles in free fall, i.e. moving on nearby
geodesics. The vector connecting these two geodesics, ξµ,
obeys the geodesic deviation equation

D2ξµ

Dτ2
= −Rµνρσξρuνuσ , (1)

where τ is the proper time of the particles and uµ is their
four-velocity. In the frame of the particles, which we call
“observer frame”, we have by construction uµ = (−1, 0, 0, 0),
and the geodesic deviation equation becomes

d2ξi

dt2
= −Sijξj . (2)

Here t is the coordinate time, which is related to the proper
time by u0 = −dt/dτ = −1, and S is the driving force
matrix, defined as

Sij ≡ R0i0j , (3)

where i, j span the spatial coordinates x, y, z.
The passage of a GW affects the Riemann tensor

and consequently the driving force matrix. We perturb the
Minkowski metric as gµν = ηµν +hµν . At linear order in the
perturbation hµν , the Riemann tensor is given by Rµνρσ =

−2∂[µ∂[ρh
ν]

σ] which is manifestly invariant under an in-
finitesimal gauge transformation gµν → gµν − ∂µξν − ∂νξµ.

© 2019 RAS, MNRAS 000, 1–13
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From (3) the linear order driving force matrix reads

Sij =
1

2
(−∂i∂jh00 + ∂0∂jh0i − ∂0∂0hij + ∂i∂0h0j) . (4)

Usually, one assumes that the source emitting a GW is at
rest with respect to the observer. The metric in the wave
zone can then be written in the transverse traceless (TT)
gauge and the driving force matrix reduces to

Sij = −1

2
ḧTT
ij , (5)

leading to

d2ξi

dt2
=

1

2
ḧTT
ij ξ

j , (6)

with dots denoting differentiation with respect to t. For ex-
ample, for a given Fourier mode with energy E in the ob-
server frame, propagating along the z-direction, the driving
force matrix reads

Sij =
E2

2

 h+ h× 0
h× −h+ 0
0 0 0

 , (7)

where h+ and h× denote the two polarisations of the GW.
The signal observed in an interferometer (called the

strain and denoted by h) is directly proportional to the dif-
ference in length between its two arms. This is obtained by
integrating twice Eq. (6) to find the change in length in-
duced by the passing of the GW. For an interferometer with
arms pointing in direction l̂ and m̂, in the long-wavelength
regime,2 one finds that the strain is given by

h =
1

2
(l̂i l̂j − m̂im̂i)Pij , (8)

where

Pij ≡
2

E2
Sij . (9)

The E2 factor comes from the double integration over time
when solving for ξi. We see that the dimensionless driv-
ing force matrix, Pij , is the quantity that directly drives
the amplitude of the detected GW signal. Note that for a
monochromatic wave, the dimensionless driving force matrix
is directly given by the metric in TT gauge: Pij = hTT

ij .

3 MOVING SOURCES

Let us now generalise these results to the case in which the
source has a non-vanishing peculiar velocity with respect to
the observer frame. In this case, we need to distinguish be-
tween quantities calculated in the observer frame, and quan-
tities calculated in a frame comoving with the source (here-
after “source frame”). Quantities in the source frame are
denoted with a tilde. We denote by v the velocity of the
source with respect to the observer.

2 For simplicity we assume that the long-wavelength approxima-

tion is valid, i.e. we ignore the effect of finite travel time of the
photon. We note that this will not be acceptable for LISA and

therefore one would need to properly account for the time de-

lays in the response function. It is worth noting that an extra
complication would be the much longer observation time at the
mHz frequencies where the impact of the source’s velocity and
acceleration would be even more important.

3.1 The dimensionless driving force matrix

We start by calculating the dimensionless driving force ma-
trix. In the source frame, we write the metric in the TT
gauge, i.e. we have h̃00 = h̃0i = 0. The metric in the ob-
server frame is related to the one in the source frame by a
boost transformation Λ with velocity −v:

hµν = Λ α
µ Λ β

ν h̃αβ . (10)

Keeping only terms that are linear in the velocity, we obtain
(see Appendix A for details)

h00 = 0 , (11a)

h0i = vmh̃mi , (11b)

hij = h̃ij . (11c)

The geodesic deviation equation in the observer frame
is still given by Eq. (2), but the driving force matrix (5)
has now a different form, due to the velocity of the source.
Inserting Eqs. (11) into Eq. (4) we obtain

Sij =
1

2

(
−∂2

0 h̃ij + vm∂i∂0h̃mj + vm∂j∂0h̃mi
)
, (12)

where ∂µ denotes a derivative with respect to the spatial
coordinate xµ. Let us assume that h̃ is a plane wave in the
source frame. For a monochromatic wave we have:

h̃ij = Aij(k̃) exp
(
ik̃µx̃

µ)+A∗ij(k̃) exp
(
− ik̃µx̃µ

)
, (13)

where k̃µ = (−Ẽ, k̃i) and x̃µ = (−τ̃ , x̃i). Since k̃µx̃
µ = kµx

µ,
the partial derivatives are handled using that ∂µ∂ν brings a
factor−kµkν . With E ≡ k0 the energy in the observer frame,
we get

∂2
0 h̃ij = −E2h̃ij , (14a)

vm∂0∂ih̃mj = −vmkiE h̃ij , (14b)

leading to

Sij =
1

2

(
E2h̃ij − Evmkih̃mj − Evmkj h̃mi

)
. (15)

The geodesic deviation equation in the observer frame is
therefore directly affected by the peculiar velocity of the
source. Note that in Eq. (15), E is shifted with respect to
the energy in the source frame, Ẽ, by the velocity along the
direction of propagation

E = Ẽ
(
1 + v · ñ

)
, (16)

where ñ is a unit vector along the direction of propagation:
ñ ≡ k̃/k̃.

As before, the geodesic deviation equation must be
solved to find the length difference between the two arms
of an interferometer. Since h̃µν in Eq. (15) depends on the
proper time of the source, τ̃ , we first rewrite Eq. (2) in terms
of τ̃ using that dt = dτ and that dτ = Ẽ/E dτ̃ (see Ap-
pendix C for a derivation of this equality). We obtain

d2ξi

dτ̃2
= −

(
Ẽ

E

)2

Sijξ
j . (17)

Using Eqs. (15) and (13), and integrating twice over proper
time, we find that the dimensionless driving force matrix is
given by

Pij =
2

Ẽ2

(
Ẽ

E

)2

Sij =
2

E2
Sij . (18)

© 2019 RAS, MNRAS 000, 1–13
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We see that the 1/Ẽ2 factor coming from the integration of
h̃µν in Eq. (13) over proper time τ̃ cancels the Ẽ2 factor in
Eq. (17). Note that the same result can be found by rewriting
h̃µν in terms of quantities in the observer frame, using that
k̃µx̃

µ = kµx
µ, and then integrating Eq. (2) directly over the

proper time of the observer.
As an example, let us compute Pij for a wave prop-

agating along the z-direction (in the source frame), i.e.
ñ = (0, 0, 1). Using that at zeroth order in the velocity
ki = Eni = Eñi, leading to Evmki = E2vmñi, and inserting
Eq. (15) into (18) we obtain

Pij =

 h̃+ h̃× −vxh̃+ − vyh̃×
h̃× −h̃+ −vxh̃× + vyh̃+

−vxh̃+ − vyh̃× −vxh̃× + vyh̃+ 0


(19)

where h̃+ and h̃× are the plus and cross polarisations in the
source frame. Comparing Eq. (19) with Eq. (7), we see that
the relative motion of the source with respect to the observer
generates contributions to the dimensionless driving force
matrix that are not transverse to the GW direction ñ. Pij
in Eq. (19) has indeed non-zero contributions in direction
zx and zy. In the next section we determine the observable
impact of these non-transverse contributions.

In general, for a wave propagating in arbitrary direc-
tion, we define a set of orthonormal vectors, adapted to the
incoming direction of the wave in the source frame

ñ = (sin θ̃ cos φ̃, sin θ̃ sin φ̃, cos θ̃) , (20a)

ẽ1(ñ) = (sin φ̃,− cos φ̃, 0) , (20b)

ẽ2(ñ) = (cos θ̃ cos φ̃, cos θ̃ sin φ̃,− sin θ̃) . (20c)

With respect to these vectors, the metric in the TT gauge
can be decomposed as

h̃TT
ij = h̃+

(
ẽ1iẽ1j − ẽ2iẽ2j

)
+ h̃×

(
ẽ1iẽ2j + ẽ2iẽ1j

)
, (21)

where it is implied that h̃+,× = h̃+,×(ñ). Inserting this into
Eqs. (15) and (18), and using as before that at linear order
in the velocity Evmki = E2vmñi, we obtain

Pij =h+

(
ẽ1iẽ1j − ẽ2iẽ2j

)
+ h×

(
ẽ1iẽ2j + ẽ2iẽ1j

)
+ h1

(
ñiẽ1j + ẽ1iñj

)
+ h2

(
ñiẽ2j + ẽ2iñj

)
, (22)

where

h+ = h̃+ , (23)

h× = h̃× ,

h1 = −v1h̃+ − v2h̃× ,

h2 = −v1h̃× + v2h̃+ ,

and we have defined the velocity component along the or-
thonormal set

v1 ≡ v · ẽ1 , v2 ≡ v · ẽ2 , v3 ≡ v · ñ . (24)

As before, we see that the source velocity generates contri-
butions to Pij that are longitudinal: h1 and h2 are indeed
along the direction of propagation ñ.

Before moving to the calculation of the strain, let us
comment on the relation between the dimensionless driving
force matrix and the metric in the TT gauge. In the case of
non-moving sources we saw that the dimensionless driving
force matrix is equal to the metric in the TT gauge. For a

moving source we note that the symmetry between source
and observer reference frames is broken. Hence fixing the TT
gauge in one frame is no longer preserved under transforma-
tion on to the other frame. The dimensionless driving force
matrix Pij is therefore no longer equal to the metric in TT
gauge in the source frame. However, we can apply another
gauge transformation to the metric hµν , to bring it in the
TT gauge in the observer frame. In that case, we show in
Appendix B that the resulting metric (B6) becomes equal
to the dimensionless driving form matrix (19).

3.2 The strain

We now project the dimensionless driving force matrix Pij
onto the arms of an interferometer l̂ and m̂ to obtain the
strain

h =
1

2
(l̂i l̂j − m̂im̂j)Pij (25)

= F+(ñ)h+ + F×(ñ)h× + F1(ñ)h1 + F2(ñ)h2 ,

where the antenna patterns are given by

F+(ñ) =
1

2

(
l̂i l̂j − m̂im̂j

)(
ẽ1iẽ1j − ẽ2iẽ2j

)
,

F×(ñ) =
1

2

(
l̂i l̂j − m̂im̂j

)(
ẽ1iẽ2j + ẽ2iẽ1j

)
,

F1(ñ) =
1

2

(
l̂i l̂j − m̂im̂j

)(
ñiẽ1j + ẽ1iñj

)
,

F2(ñ) =
1

2

(
l̂i l̂j − m̂im̂j

)(
ñiẽ2j + ẽ2iñj

)
. (26)

As an example let us consider the strain response of an
interferometer with arms pointing in the x and y directions:
l̂ = (1, 0, 0) and m̂ = (0, 1, 0). We obtain

h =
1

2
(l̂i l̂j − m̂im̂j)Pij = − h̃+

2

(
cos2 θ̃ + 1

)
cos 2φ̃

+ h̃× cos θ̃ sin 2φ̃−
(
v1h̃+ + v2h̃×

)
sin θ̃ sin 2φ̃

−
(
v1h̃× − v2h̃+

)
sin θ̃ cos θ̃ cos 2φ̃ . (27)

From Eq. (27) we see that the transverse velocity of the
source, namely the components v1 and v2, generates con-
tributions to the signal which are not proportional to the
spin-2 antenna patterns

F+(ñ) = −1

2
(cos2 θ̃ + 1) cos 2φ̃ , (28a)

F×(ñ) = cos θ̃ sin 2φ̃ . (28b)

These new contributions are proportional instead to spin-1
antenna patterns F1 and F2.

In Eqs. (26) and (27) we have identified spin-2 modes
as the contributions that are transverse to the direction of
propagation of the GW, ñ, in the source frame. This def-
inition is somewhat arbitrary, since we do not observe ñ
directly: we reconstruct it from the antenna patterns F+(ñ)
and F×(ñ). We can therefore wonder if there exists a direc-
tion n such that the strain would contain only spin-2 polar-
isations with respect to that direction. In the next section we
show that this is indeed the case, and that this new direc-
tion n is nothing else than the aberrated direction obtained
by applying the boost transformation on k̃µ (and extracting
the spatial part of the resulting vector).

© 2019 RAS, MNRAS 000, 1–13
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4 ABERRATED REFERENCE FRAME

As for electromagnetic signals, we can define an aberrated
momentum kµ by applying the boost Λµν on k̃µ. The spatial
part of kµ is given by

ki = Λiµk̃
µ = Ẽ

(
ñi + vi

)
, (29)

leading to

n ≡ k

|k| = ñ + v − v3ñ = ñ + v⊥ , (30)

where the transverse velocity v⊥ is defined as

v⊥ = v − v3ñ . (31)

Note that this velocity is transverse to both n and ñ since
we neglect contributions quadratic in the velocity.

Let us start by calculating the strain for a detector with
arms along xy, given by Eq. (27). From Eq. (30) we find that
the aberrated angles are related to angles at the source by

θ = θ̃ + δθ = θ̃ + v2 , (32a)

φ = φ̃+ δφ = φ̃− v1
sin θ

. (32b)

The apparent divergence at θ = 0 is an artefact of the co-
ordinate singularity there. The right ascension φ is indeed
ambiguous at θ = 0. Inserting this into Eq. (27) we obtain
for the strain

h =
1

2
(l̂i l̂j − m̂im̂j)Pij = h̃+

[
F+(n) + 2v1

cos θ

sin θ
F×(n)

]
+h̃×

[
F×(n)− 2v1

cos θ

sin θ
F+(n)

]
. (33)

We see that the source velocity induces a mixing between
the two polarisations, proportional to F+ and F×. Defining
the polarisation angle

δψ = −v1
cos θ

sin θ
, (34)

we can rewrite Eq. (33) as

h =
1

2
(l̂i l̂j − m̂im̂j)Pij

= h̃+

[
F+(n) cos(2δψ)− F×(n) sin(2δψ)

]
+ h̃×

[
F×(n) cos(2δψ) + F+(n) sin(2δψ)

]
= ĥ+(n)F+(n) + ĥ×(n)F×(n) , (35)

where we have defined

ĥ+(n) ≡ h̃+(ñ) cos(2δψ) + h̃×(ñ) sin(2δψ) , (36a)

ĥ×(n) ≡ h̃×(ñ) cos(2δψ)− h̃+(ñ) sin(2δψ) . (36b)

With respect to the aberrated direction, the strain contains
therefore only spin-2 modes, proportional to the spin-2 an-
tenna patterns F+ and F×. Parameter estimations from the
GW signal will therefore infer: 1) the aberrated direction
n and 2) the two ”mixed” polarisations ĥ+ and ĥ×. Since
the transverse peculiar velocity of the source is unknown,
the mixing angle (34) is unknown, and we can therefore not
measure the two intrinsic polarisations h̃+ and h̃×.

We could wonder if having detectors with arms point-
ing in different directions could help us break the degener-
acy between the source velocity and the true polarisations.

Eq. (35) has indeed been derived in the specific case of a
detector with arms pointing in the xy directions. We can
show that the degeneracy exists for all cases. At linear order
in the velocity, we can indeed rewrite Eqs. (22) and (23) as

Pij = (37)[
(ẽ1i − v1ñi)(ẽ1j − v1ñj)− (ẽ2i − v2ñi)(ẽ2j − v2ñj)

]
h̃+

+
[
(ẽ1i − v1ñi)(ẽ2j − v2ñj) + (ẽ1j − v1ñj)(ẽ2i − v2ñi)

]
h̃× .

We see that, working to linear order in velocity, the boosted
dimensionless driving force matrix is equivalent to the one
of an unboosted gravitational wave with polarisation axes

e1 = ẽ1 − v1ñ , (38a)

e2 = ẽ2 − v2ñ . (38b)

It is clear that these two polarisation vectors are orthogonal,
and they correspond to the polarisation axes of a source
coming from direction

n = e1 ∧ e2 = ñ + v1ẽ1 + v2ẽ1 = ñ + v⊥ , (39)

which is nothing else than the aberrated direction defined in
Eq. (30). The polarisation axes e1 and e2 are not the natural
ones associated to the direction n, as defined in Eqs. (20).
We can easily see that the natural axes are related to e1 and
e2 by

ê1 = e1 − v1
cos θ

sin θ
e2 , (40a)

ê2 = e2 + v1
cos θ

sin θ
e1 , (40b)

This is the infinitesimal form of a rotation in two dimensions

êa = R b
a eb , (41)

where the rotation matrix is

R b
a =

(
cos(δψ) sin(δψ)
− sin(δψ) cos(δψ)

)
'
(

1 δψ
−δψ 1

)
, (42)

and δψ is defined in Eq. (34). Inserting Eqs. (40) into
Eq. (37) we obtain

Pij = ĥ+

(
ê1iê1j − ê2iê2j

)
+ ĥ×

(
ê1iê2j + ê2iê1j

)
, (43)

where ĥ+ and ĥ× are given by Eqs. (36). From this we
see that the response of any interferometer can be written
in terms of the two standard antenna patterns F+(n) and
F×(n) associated to the aberrated direction n. The two in-
ferred polarisations ĥ+ and ĥ× are modified by the source
velocity.

Eq. (43) tells us that the spin-1 modes that are gener-
ated by the velocity of the source can always be re-absorbed
into spin-2 modes with aberrated direction n and mixed po-
larisations ĥ+ and ĥ×. One could however wonder if by ac-
tively searching for vector modes, i.e. by including spin-1
antenna patterns in the modelling of the signal, one could
measure the amplitude of these new modes, as well as the
true direction ñ. This turns out to be impossible, since there
is no unique way of splitting the signal into spin-2 modes and
spin-1 modes, see Appendix D for details.

As a consequence, from a data analysis point of view,
the template of a signal constructed for the direction of prop-
agation ñ using spin-2 modes, spin-1 modes and the polar-
isation angle Ψ̃ will be equivalent (up to a factor O(|v|2))

© 2019 RAS, MNRAS 000, 1–13



6 Bonvin et al.

5
0
5

St
ra

in

1e 22 h(n) = F + (n)h + + F × (n)h × + F1(n)h1 + F2(n)h2

Spin-2
Spin-1

5
0
5

St
ra

in

1e 22 h(n) = F + (n)h + + F × (n)h ×

Spin-2

1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
t tc[s]

0.0

2.5

5.0

|h
(n

)
h(

n)
|

1e 24

Figure 2. The first and second panels show two templates con-

structed for a GW signal from a binary with 30M� − 30M� at a

distance of 500 Mpc and with v = (0.1, 0, 0). In the first panel, we
construct the template as the sum of two spin-1 (orange line) and

spin-2 signals (blue line) using the true sky direction ñ and the

true polarisation angle ψ̃. In the second panel, we construct the
template using the aberrated sky position n and aberrated po-

larisation angle ψ and only spin-2 modes. The third panel shows
the difference between the two templates which is of the order

of O(|v|2), as our framework is defined at the first order in pe-

culiar motion. The detector is taken with arms l̂ = (1, 0, 0) and
m̂ = (0, 1, 0).

to the template of a signal propagating in the direction n
with spin-2 modes and polarisation angle Ψ. Fig. 2 shows
the templates for the true and the aberrated directions of a
simulated GW signal with |v| = 0.1 (see caption for more
details). For the true direction, the template is the sum of
spin-2 and spin-1 components. As expected, the two tem-
plates differ by a factor O(|v|2).

Another manner to understand this total degeneracy
is to consider the geometric interpretation of the transfor-
mation of the dimensionless driving force matrix from the
source frame to the observer frame. Let us consider the rota-
tion vector Añ→n = α(ñ∧v̂⊥), where α is the angle between
ñ and n and (ñ ∧ v̂⊥) is a unit vector orthogonal to them.
The rotation around Añ→n carries ñ along a great circle to
n. Its components are

R j
i ≡ exp

(
−Akñ→nε j

ki

)
' δji − ñiv

j + viñ
j , (44)

and the transformation rules (38) are directly seen as the ef-
fect of this latter infinitesimal rotation since they are equiv-
alent to e1i = R j

i ẽ1j and e2i = R j
i ẽ2j . Therefore Eq. (37)

is simply

Pij(n) = R p
i R

q
j P̃pq(ñ) , (45)

with P̃ij = h̃TT
ij . We recognize the transformation rule of

a tensor on the unit sphere under a rotation R. Hence the
driving force matrix is also transformed by the infinitesimal
rotation which transports ñ onto n. Note that this transfor-
mation is equivalent to a parallel transport of the driving
force along the great circle connecting ñ and n, as by con-
struction both vectors lie in the equatorial plane of vectors
normal to Añ→n.

However, even though in the source frame we chose for

convenience to use the vectors naturally associated with the
spherical components (Eqs. (20b) and (20c)), the rotated
ones, e1 and e2, are not directly the unit vectors naturally
associated with spherical coordinates in the observer frame:
ê1 and ê2. Both sets being orthonormal and normal to n,
they are related by a rotation around n of angle δψ, that
is Eq. (41), with R b

a related to R j
i through R b

a ≡ êiaebi =
êiaR

j
i ẽbj .
Therefore, from the simple transformation rule (45), the

spherical basis components of the driving force, which are
P̃ab ≡ ẽiaẽjbP̃ij and Pab ≡ êiaêjbPij , are related through

Pab(n) = R c
a R

d
b P̃cd(ñ) . (46)

This is yet another way to write the transformation rule of a
tensor on the unit sphere under a rotation, which translates
into Eqs. (36) for the polarisation components. In short, the
mixing of polarisations is essentially a consequence of the
fact that the basis used to define polarisations, the natural
spherical basis, is not parallel transported along the great
circle connecting ñ to n, whereas the driving force matrix is
parallel transported. The only exception is when the great
circle connecting ñ to n is either the equator or a meridian of
the spherical coordinates system. For infinitesimal transfor-
mations which we have considered here, the natural spherical
basis is also (infinitesimally) parallel transported whenever
the direction (initial or final, this is equivalent for infinites-
imal transformations) is on the equator, even if the trans-
formation direction is not tangential to the equator. That
is whenever the conditions θ = π/2 (emitting direction on
the equator) or v1 = 0 (an aberration along a meridian) are
satisfied, the natural spherical basis is infinitesimally paral-
lel transported, and we can check that indeed δψ = 0 under
these conditions.

Also, one should bear in mind that the rotation (44)
which accounts for the effect of the transverse velocity de-
pends on ñ and is not a unique global rotation. Therefore, a
source with a transverse velocity is degenerate from a source
without velocity but rotated with R, only because we can
observe a single emission direction. Finally, let us highlight
that the transformation of the driving force matrix due to a
transverse velocity, seen as rotation or as parallel transport,
is similar to the transformation of the CMB polarisation
tensor which is also a spin-2 quantity, see e.g. Section III of
Challinor & van Leeuwen (2002).

5 TIME DELAY FROM A NETWORK OF
DETECTORS

For a network of interferometers, in addition to the signal
measured by each detector, the time delay between the dif-
ferent detectors due to their different position with respect
to the source is measured. This time delay depends directly
on the direction of the source, and provides therefore a pre-
cise way of measuring this direction (more precise than from
the antenna patterns, since the phase of the GW is measured
with a better precision than the amplitude of the two polar-
isations). We will see that in the case of a moving source the
time delay depends on the aberrated direction n and not on
the true direction ñ.

We consider the geometry plotted in Fig. 3. In the refer-
ence frame of the source (denoted by tilde), the source emits
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Figure 3. Geometrical configuration used to calculate the time

delay.

a GW at time t̃e = 0 and at position R̃e = (0, 0, 0). The first
interferometer receives the wave at time t̃1 and position R̃1,
where R̃1 = t̃1 (let us recall that we work in units c = 1). The
observer, who is moving with a velocity −v with respect to
the source, sees boosted coordinates xµ = (t,R) = Λ ν

µ x̃ν ,
where Λ is defined in Appendix A. At linear order in the
velocity the time of emission and reception are given by

te = t̃e + v · R̃e = 0 , (47a)

t1 = t̃1 + v · R̃1 = R̃1 + v · R̃1 . (47b)

The same calculation applies to the second interferometer.
The difference in arrival time between the two detectors is
therefore given by

∆t ≡ t2 − t1 = R̃2 − R̃1 + v · (R̃2 − R̃1) . (48)

Defining Ã as the vector connecting the two detectors:

Ã = R̃2 − R̃1 , (49)

we see from Fig. 3 that

Ã2 = R̃2
1 + R̃2

2 − 2R̃1R̃2 cos β̃ , (50a)

R̃2
2 = R̃2

1 + Ã2 − 2R̃1Ã cos β̃ , (50b)

leading to

R̃2 cos β̃ − R̃1 = −Ã cos α̃ = Ã · ñ . (51)

We are interested in situations where the distance to the
source is much larger than the distance between the detec-
tors, such that cos β̃ ' 1. The time delay becomes then

∆t = Ã · (ñ + v) . (52)

The distance between the two detectors in the source frame,
Ã, can be related to the distance in the observer frame using
that

R̃1i =
(
Λ−1) µ

i
x1µ = −vit1 +R1i , (53)

and similarly for R̃2i. This leads to

Ã = A− v ·∆t . (54)

Inserting this in Eq. (52) and keeping only terms at linear
order in the velocity we obtain

∆t = A · (ñ + v − v3ñ) = A · (ñ + v⊥) = A · n . (55)

Figure 4. Sketch of the effect of aberration for a binary which is

edge-on with respect to the observer.

The time delay is therefore proportional to the aberrated
direction n.

In practice, one often measures the phase shift between
the waveform detected by two detectors at a fixed reference
time, rather than the time delay. We can easily show that
the phase shift is affected in the same way as the time delay
by the source velocity. The phases at time t and positions
R1 and R2 are given by

Φ(t,R1) = −kµxµ1 = E (t−R1 · n) , (56a)

Φ(t,R2) = −kµxµ2 = E (t−R2 · n) , (56b)

where kµ = E(−1,n). The phase shift is given by

∆Φ = −EA · n . (57)

As expected, the phase shift is therefore also proportional
to the aberrated direction n.

This calculation of the time delay (and the phase shift)
shows that a network of detectors also measures the aber-
rated direction and not the intrinsic one in the source frame.

6 OBSERVATIONAL IMPACT OF THE
SOURCE VELOCITY

We have seen that the source velocity affects the strain in
two ways: 1) it aberrates the direction of the source, both in
the antenna patterns and in the time delay; and 2) it mixes
the two polarisations of the wave. The first effect is common
to any signal emitted by a moving source. In particular it
affects in the exact same way electromagnetic signals. The
second effect on the other hand is specific to the fact that
a GW is a spinned quantity. This effect is therefore absent
in standard optical or radio surveys, where we measure the
intensity (which is a spin-zero quantity) of the electromag-
netic field.3 These two effects have a direct impact on the
measurement of the parameters of the binary.

As for electromagnetic signals, aberration means that

3 It would however be present if we were to measure directly the
electromagnetic field, which is a spin-1 quantity.
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we do not receive the GW that have been emitted in the
observed direction n, but rather the GW that have been
emitted in a different direction ñ. As depicted in Fig. 4,
the source appears therefore in the correct position, but the
form of the wave corresponds to the one emitted in direction
ñ. Since GW are not isotropically emitted by the binary sys-
tem, aberration has a direct impact on the amplitude of the
detected signal. In particular, even though the signal seems
to come from direction n, the inclination angle that governs
the amplitude of the signal is the one associated to the direc-
tion ñ. The relation between ι̃, defined as the angle between
ñ and the normal to the plane of the binary in the frame
of the source Ñ (see Fig. 4), and the true inclination angle
ι that we would have if there would be no velocity (i.e. the
angle between n and Ñ) directly follows from the relation
between n and ñ and is therefore linear in the transverse ve-
locity v⊥. The polarisations h̃+ and h̃× in Eqs. (36) depend
however not directly on ι̃ but on its cosine, which is related
to the one in absence of velocity by

cos ι̃ = cos ι− Ñ · v⊥ . (58)

We see that the effect vanishes for a binary that is face-on,
since in this case Ñ is parallel to n, which is perpendicular
to v⊥ (note that this does not hold at higher order in the
velocity). On the contrary the effect is maximum for a binary
which is edge-on, and with v⊥ orthogonal to the plane of the
binary, as illustrated in Fig. 4. The fact that the amplitude
of the effect depends on Ñ, i.e. on the orientation of the
plane with respect to the observer, is directly linked to the
fact that the amplitude of the polarisations scales with cos ι̃.
For ι = 0, the change is quadratic in δι: cos(ι̃) = cos(0 +
δι) ' 1 − δι2/2, whereas for ι = π/2 the change is linear:
cos(ι̃) = cos(π/2 + δι) ' −δι.

In Fig. 4 we show for illustration the case where the
effect of aberration is maximum. In this configuration, if the
source were not moving, we would receive only the h+ polar-
isation, since only h+ is emitted along n (cos ι = 0 meaning
that h× = 0). However, since the source is moving, we do
not receive the GWs that have been emitted in direction n
but rather the GWs that have been emitted in direction ñ
(and that we see coming from direction n). Along ñ both
h+ and h× are produced and therefore we observe these two
polarisations. From this we wrongly conclude that the plane
of the binary is slightly inclined with respect to us, i.e. that
the binary is not edge-on.

The second effect, the mixing of polarisations, simply
means that the true polarisation of the source cannot be
inferred, but that one measures instead a wrong polarisation

Ψ = Ψ̃− v1
cos θ

sin θ
. (59)

Like for aberration, this means that the plane of the binary
appears slightly turned (this time around n) with respect to
the observer.

We see therefore that the source velocity biases the mea-
surement of the angles describing the orientation of the bi-
nary system with respect to the observer. However, since
these intrinsic parameters are unknown and randomly dis-
tributed over the population of sources, having a wrong mea-
surement of them has no direct observational impact. In
particular, the other parameters like the luminosity distance
and the chirp mass are not affected by aberration and by the

change in polarisation, since the source velocity is fully reab-
sorbed into the new direction n and the new polarisation Ψ.
This can be mathematically seen with the Fisher formalism.
The measured strain h depends on a set of parameters Θ.
The Fisher matrix associated to these parameters is given
by

Γij =

(
∂h(Θ)

∂Θi

∣∣∣∂h(Θ)

∂Θj

)
(60)

where the scalar product is defined as

(a|b) = 4Re

[∫ fhigh

flow

â(f)∗b̂(f)

S(f)
df

]
, (61)

where S(f) is the detector power spectral density (PSD), f
is the GW frequency, ∗ indicates the complex conjugate, ·̂
the Fourier components, flow is a low frequency cut-off given
by the detector sensitivity and fhigh an high frequency cut-
off given by the sampling rate of data. The bias induced on
the parameters Θ by the source velocity is then given by

∆Θi = (Γ−1)ij
(
∂h(Θ)

∂Θj

∣∣∣h(Θ)− h̃(Θ)

)
, (62)

where h̃ is the strain that we would have in the absence
of velocity. In our case, the difference between h and h̃ can
be fully reabsorbed into a different polarisation and different
inclination angle. The observed strain (35) is found from the
transformation rules (36) which are equivalent to (46), that
is to a rotation of the source with R. Hence we can write
that h̃(Θ) = h(R−1(Θ)), where R−1(Θ) are the parameters
characterising a source with initial parameters Θ and sub-
sequently rotated with R−1. That is, if Θ defines a binary
plane orthogonal to Ni, then R−1(Θ) defines a rotated bi-

nary plane orthogonal to R−1
i

j
Nj . Defining the parameters

shifts by δΘ = Θ−R−1(Θ), the only non-zero components
of δΘ are δΨ and δ(cos ι) since they characterise the orien-
tation of the binary plane. Taylor expanding around Θ we
then obtain

h̃(Θ) ' h(Θ)− ∂h(Θ)

∂Θk
δΘk , (63)

leading to

∆Θi = (Γ−1)ij
(
∂h(Θ)

∂Θj

∣∣∣∂h(Θ)

∂Θk

)
δΘk (64)

= (Γ−1)ijΓjkδΘ
k = δΘi .

Hence we see that the only parameters that are biased by
the transverse velocity of the source are the polarisation and
the inclination angle. In particular, the source transverse
velocity has no impact on the luminosity distance and the
chirp mass.

Let us conclude this section by noting that while the
difference between n and ñ depends on the relative velocity
between the source and the observer and is therefore the
same if the source moves with velocity v⊥ with respect to
the observer or if the observer moves with velocity −v⊥ with
respect to the source, the observational consequences are dif-
ferent in these two cases. In the case of a moving source, the
incoming direction of the GW in the observer frame is not
affected by the motion. As a consequence n denotes the true
direction of the source, and ñ is the direction of emission in
the source frame, as depicted in Fig. 4. The source velocities

© 2019 RAS, MNRAS 000, 1–13



9

have therefore no impact on the observed position of sources
in the sky. The velocity only affects the part of the source
that the observer sees. On the other hand, in the case of
a moving observer, the emitted direction of the GW in the
source frame is not affected by the motion. Consequently ñ
denotes the true direction of the source, and n the appar-
ent direction, seen by the moving observer. The observed
positions of sources in the sky are therefore affected by the
observer velocity. More precisely, the observer velocity with
respect to a frame were sources are on average at rest gen-
erates a dipole in the source distribution, as computed for
example in Mastrogiovanni et al. (2022) for GW events or
in Domènech et al. (2022) and Dalang et al. (2022) for galaxy
counts.

7 CONCLUSIONS

In this paper, we showed that the peculiar motion of a gravi-
tational wave source with respect to the observer rest frame,
induces a distortion in the observed waveform. In particu-
lar the presence of a (non-zero) component of the peculiar
velocity transverse to the line-of-sight gives rise to appar-
ent vector polarisations in the observer frame. These are
pure projection effects, proportional to the plus and cross
polarisations in the source frame. They share therefore the
same time dependence as the spin-2 modes and do not corre-
spond to new degrees of freedom. We have shown that this
implies that the spin-1 modes can always be rewritten as
spin-2 modes coming from an aberrated direction, and with
a slightly different polarisation.

One could however wonder if by actively searching for
vector modes, i.e. by including spin-1 antenna patterns in
the modeling of the strain, one could measure the ampli-
tude of these new modes, as well as the true (non aberrated)
source location. Comparing this with the aberrated direc-
tion obtained from the time-delay, one could then measure
the transverse velocity. We showed that unfortunately, this
is not feasible since, without knowing the peculiar velocity,
there is no unique/preferred way of splitting the signal into
spin-2 modes and spin-1 modes. The only meaningful solu-
tion is therefore the one with no spin-1 mode. This is indeed
the only solution for which the direction inferred from the
waveform and the direction inferred from time delay are the
same.

A direct consequence of the aberration of GW sources
is that the parameters encoding the orientation of the bi-
nary system with respect to the observer are biased. For
example, a binary that is edge-on, for which we should only
detect a h+ polarisation, will appear slightly inclined since
we will receive both h+ and h× polarisations. The inclina-
tion angle and the polarisation angle that we measure are
therefore not the true ones. Since these angles are unknown
and are independent of other parameters, like the chirp mass
or the luminosity distance, this bias has no direct impact
on astrophysical or cosmological constraints inferred from
GW measurements such as Finke et al. (2021); Leyde et al.
(2022); The LIGO Scientific Collaboration et al. (2021b);
Mancarella et al. (2022); Iacovelli et al. (2022). However, it
might impact studies aiming at constraining the inclination
distribution of binaries (Vitale et al. 2022).

We stress that the same effect is present in the case of

an astrophysical source emitting spin-1 waves: if we look at
the electric field emitted by such a source we find that the
direction of propagation of the spin-1 wave is aberrated and
that the only effect on the source parameters is an apparent
rotation (i.e. the intrinsic angles defining the source orienta-
tion are biased). For example, for gamma-ray burst sources,
if one defines an angle ι between the line of sight and the
normal to the rotation plane, the effect of a transverse ve-
locity is given by a change in the source orientation due to
aberration given by Eq. (58), and a mixing of the two spin-1
polarisations of the emitted electromagnetic radiation.

We observe that our findings significantly differ from
the conclusions of Torres-Orjuela et al. (2019). The authors
of this reference compute distortions in the antenna pattern
function of a GW detector, induced by a peculiar motion of
the observer frame with respect to the frame of emission.
They find that a velocity component orthogonal to the line
of sight gives a non-monotonic modification of the ampli-
tude of the wave. However, while the authors consider kine-
matic effects on the source position, they neglect the effect
induced by a relative motion on the directions of GW polar-
isation (they defer this study to a future work). It is likely
that by properly accounting for this change, they would find
that the modifications in the antenna pattern can be reab-
sorbed into a redefinition of the propagation direction (in
agreement with our results). This has a profound impact on
the resulting signal. Indeed, contrary to what is concluded
in Torres-Orjuela et al. (2019), we find that the impact of
transverse velocities on GWs is completely analogous to the
one on electromagnetic signals, i.e. it can be fully explained
in terms of a relativistic beaming effect without the need of
invoking additional corrections. We also find that transverse
velocities do not produce spurious non-GR-like signals nor
modifications in the source luminosity distance, unlike what
is claimed in that reference.

In Torres-Orjuela et al. (2021) the authors claim that
when considering aberration and polarisation rotation, not
only the frequency of the GWs change but also the ampli-
tude of their spherical modes. They deduce that this allows
the detection of the transverse speed of a source (i.e. the
authors claim that the effect cannot be reabsorbed into a
redefinition of the source’s intrinsic orientation). This is in
direct contradiction with what we have shown explicitly in
this article. Their proof is based on the determination of the
transformation matrix which relates multipoles in the source
frame to multipoles in the observer frame. Their Eq. (37) can
be seen as such a transformation when using a multi-index
notation L = (`,m), as it is of the form

∑
L Y

L
KH

L = H ′
K

,
with YLK a matrix. They then deduce that their Eq. (39)
leads to a contradiction to the existence of such a matrix,
whereas in fact it simply determines the coefficients in one
line of the transformation matrix YLK when L = (2, 2). Note
that the problem of finding how the multipoles of a signal are
transformed by a boost, that is finding the YLK , has already
been solved for spin-0 and spin-2 quantities in the context
of CMB temperature and polarisation in e.g. Challinor &
van Leeuwen (2002), Dai & Chluba (2014) and Yasini &
Pierpaoli (2017). In any case, the crucial point is that since
we are observing from a single position, we cannot see the
change in the multipoles due to the source velocity. We can
only sample the GW field in one direction, and as we have
demonstrated in this paper, the boosted field in one direc-
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tion is fully degenerate with the unboosted one in a different
direction.

We conclude with a final remark: one might be tempted
to assume that the large-scale correlations of the (cosmic-
flow) velocity across the sky would induce correlations be-
tween the inclination angle of different sources. Measuring
such a correlation, would then provide a direct way of mea-
suring the transverse cosmological velocity. Unfortunately,
the correlation of inclination angle turns out to be always
vanishing: the change in inclination δι = ι̃ − ι does not de-
pend directly on the transverse velocity v⊥ but on the pro-
jection of v⊥ on a random variable Ñ. This completely re-
moves the correlation (see Appendix E for details). We stress
that even if we would correlate cos ι with another quantity,
e.g. galaxy number density, the correlation would also van-
ish. Aberration can therefore not be used to measure the
transverse velocity of sources.
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APPENDIX A: TRANSFORMATIONS OF THE
METRIC TENSOR

We now consider how metric perturbation in 4 dimensions
transforms under boost of velocity −v (since the observer
moves with velocity −v with respect to the source). The
metric perturbation transforms as

hµν = Λ α
µ Λ β

ν h̃αβ ,

hµν = ΛµαΛνβ h̃
αβ , (A1)

where

Λ0
0 = γ , Λ0

i = Λi0 = −γvi ,

Λij = δij +
γ2

1 + γ
vivj ,

Λ0
0 = γ , Λ0

i = Λi
0 = γvi ,

Λi
j = δji +

γ2

1 + γ
viv

j , (A2)

with γ−2 = 1− vivi and β2 ≡ vivi.
Let us start with upper indices

h00 = Λ0
αΛ0

β h̃
αβ ,

h0i = Λ0
αΛiβ h̃

αβ ,

hij = ΛjαΛjβ h̃
αβ . (A3)

Now we assume that in the non-tilde frame (frame comoving

with the source) we are in TT gauge, implying h̃00 = h̃0i =
0.

h00 = Λ0
mΛ0

nh̃
mn = γ2vmvnh̃

mn ,

h0i = Λ0
mΛinh̃

mn = −γvm
(
δin +

γ2

1 + γ
vivn

)
h̃mn ,

hij = ΛimΛjnh̃
mn

=

(
δim +

γ2

1 + γ
vivm

)(
δjn +

γ2

1 + γ
vjvn

)
h̃mn . (A4)

At linear order in the velocity

h00 = 0 ,

h0i = −vmh̃mi ,

hij = h̃ij . (A5)

In flat space it follows that

h00 = 0 ,

h0i = vmh̃mi ,

hij = h̃ij . (A6)

The wave in the observer frame (without a tilde) is not in
the TT gauge anymore. However, it is possible to fix the TT
gauge with respect to the observer by performing the set of
transformations detailed in the next appendix.

APPENDIX B: GAUGE TRANSFORMATION
TO PURELY SPATIAL PERTURBATION

Suppose we have a general plane gravitational wave of the
form

hab = Habf(kaxa) with kaka = 0.

© 2019 RAS, MNRAS 000, 1–13
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Without loss of generality we choose spatial axes such that
the gravitational wave is propagating in the ẑ direction, so
that k̂a = (1, 0, 0, 1). We now consider a gauge transforma-
tion of the form

ξa = ΞaF (kaxa), (B1)

where F (u) is the integral of f(u), i.e., dF/du = f(u). A
gauge transformation of this form leads to a transformation
of the metric perturbation

hnew
ab = hold

ab − ∂aξb − ∂bξa
= Hnew

ab f(kaxa), (B2)

in which

Hnew
ab = Hab −


2Ξ0 Ξx Ξy Ξz + Ξ0

Ξx 0 0 Ξx
Ξy 0 0 Ξy

Ξz + Ξ0 Ξx Ξy 2Ξz

 . (B3)

Making the choice

Ξa =

(
1

2
H00, H0x, H0y,−

1

2
H00 +H0z

)
(B4)

reduces the metric perturbation to purely spatial form

Hnew
ab =


0 0 0 0
0 Hxx Hxy −H0x

0 Hxy Hyy −H0y

0 −H0x −H0y Hzz +H00 − 2H0z

 .

(B5)

For the particular metric components given in Eq. (A6), this
gauge transformation gives

Hnew
ab =

0 0 0 0

0 h̃xx h̃xy −vxh̃xx − vyh̃xy
0 h̃xy h̃yy −vxh̃xy + vyh̃xx
0 −vxh̃xx − vyh̃xy vyh̃xx − vxh̃xy 0


(B6)

in which we have used h̃yy = −h̃xx and h̃00 = h̃0z = h̃zz =
0. We see that this gauge transformation makes the purely
spatial part of the metric equal to the electric components
of the Riemann tensor, justifying the assumptions made in
Section 3.2.

APPENDIX C: RELATION BETWEEN
PROPER TIMES

To relate the proper time in the source frame dτ̃ to the
proper time in the observer frame dτ , we proceed in the
following way. We first relate the 4-momentum of the GW
in the source and observer frame to the phase Φ 4

k̃µ = − ∂

∂x̃µ
Φ (C1)

kµ = − ∂

∂xµ
Φ . (C2)

4 Since Φ is a scalar, it is invariant under a boost: Φ̃ = Φ.

Since GWs propagate along null geodesics, the phase is con-
served during propagation:

k̃µk̃µ = −k̃µ ∂

∂x̃µ
Φ = 0 . (C3)

Let us now consider two GWs emitted subsequently: the first
one at time τ̃ with phase Φ(τ̃) and the second one at time
τ̃ + dτ̃ with phase Φ(τ̃ + dτ̃). The observer receives these
GWs at time τ and τ + dτ respectively and since the phase
is conserved we have

Φ(τ̃ + dτ̃)− Φ(τ̃) = Φ(τ + dτ)− Φ(τ) . (C4)

Using that

Φ(τ̃ + dτ̃)− Φ(τ̃) = dτ̃
dΦ

dτ̃
= dτ̃ ũα

∂Φ

∂x̃α
= dτ̃ ũαk̃α = −Ẽdτ̃ ,

(C5)

and similarly at the observer, we find

Ẽdτ̃ = Edτ . (C6)

APPENDIX D: VECTOR AND TENSOR MODE
SPLITTING

One could wonder if by actively searching for vector modes,
i.e. by including spin-1 antenna patterns in the modelling of
the signal, one could measure the amplitude of these new
modes, as well as the true direction ñ. Comparing this with
the aberrated direction obtained from the time-delay, one
could then measure the transverse velocity v⊥. We show
here that this turns out to be impossible, since there is no
unique way of splitting the signal into spin-2 modes and
spin-1 modes.

We start from the dimensionless driving force matrix
computed in Eq. (22) and we split the transverse velocity of
the source as

v⊥ = (v⊥ −w⊥) + w⊥ , (D1)

where w⊥ is an arbitrary transverse velocity with ampli-
tude w⊥ � 1 such that we can work at linear order in the
velocities. The aberrated direction related to the transverse
velocity w⊥ is given by

s = ñ + w1ẽ1 + w2ẽ2 . (D2)

Following Eqs. (38) we define the two natural polarisation
axes associated to s:

f̂1 = ẽ1 − w1ñ− w1
cos θ̃

sin θ̃
ẽ2 , (D3a)

f̂2 = ẽ2 − w2ñ + w1
cos θ̃

sin θ̃
ẽ1 . (D3b)

Inserting this into (22) we find for the dimensionless driving
force matrix

Pij = Ĥ+

(
f̂1if̂1j − f̂2if̂2j

)
+ Ĥ×

(
f̂1if̂2j + f̂2if̂1j

)
(D4)

+ Ĥ1

(
sif̂1j + f̂1isj

)
+ Ĥ2

(
sif̂2j + f̂2isj

)
,

© 2019 RAS, MNRAS 000, 1–13
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where

Ĥ+ = h̃+ − 2w1
cos θ̃

sin θ̃
h̃× , (D5a)

Ĥ× = h̃× + 2w1
cos θ̃

sin θ̃
h̃+ , (D5b)

Ĥ1 = −(v1 − w1)h̃+ − (v2 − w2)h̃× , (D5c)

Ĥ2 = −(v1 − w1)h̃× + (v2 − w2)h̃+ . (D5d)

From this we see that there is an infinite number of ways of
splitting the signal into spin-2 and spin-1 modes with asso-
ciated aberrated direction s. There is no way to determine
which splitting corresponds to the true velocity v and there-
fore the only meaningful solution is the one with no spin-1
modes. This is indeed the only solution for which the direc-
tion inferred from the waveform and the direction inferred
from time delay are the same.

APPENDIX E: ZERO CORRELATION OF
ORIENTATION ACROSS THE SKY

In this appendix we schematically prove that the 2-point
correlation function of the source orientation across the sky
is vanishing. We assume to have two pixels across the sky,
each one containing a set of GW binary systems, with ran-
dom orientations Ñ i

1 in the first pixel and Ñ i
2 in the second

one.
When we correlate two different pixels in the sky we get

〈cos ι̃1 cos ι̃2〉 =− 〈cos ι1Ñ2 · v2
⊥〉 − 〈cos ι2Ñ2 · v1

⊥〉

+ 〈cos ι1 cos ι2〉+ 〈Ñ1 · v1
⊥Ñ2 · v2

⊥〉 , (E1)

where the mean has to be interpreted as an ensemble average
when acting on stochastic velocities and as a geometric mean
over a bunch of sources when acting on geometric quantities.
This can be rewritten as

〈cos ι̃1 cos ι̃2〉 =− 〈cos ι1〉〈Ñ2 · v2
⊥〉 − 〈cos ι2〉〈Ñ2 · v1

⊥〉

+ 〈cos ι1〉〈cos ι2〉+ 〈Ñ i
1Ñ

j
2 〉〈v

1
⊥i
v2⊥j
〉 . (E2)

It is apparent that the first three terms on the right hand
side vanish. However the last vanishes as well due to

〈Ñ i
1Ñ

j
2 〉 = 〈Ñ i

1〉〈Ñ j
2 〉 = 0 , (E3)

which states that the orientation in two different pixels is
not correlated, and the orientations inside each pixel are
randomly distributed.

Notice that if one takes the limit 1 → 2 in (E2), it
appears that cosmological velocities give a modification in
the variance of the velocity field. This is due to the fact
that when computing the aberration angle, we kept only
the first order term in the velocity. However, we need to
make sure that unit vectors have unit norm, as an incorrect
normalization brings biases when estimating the variance
of cos ι. Explicitly, for the aberrated direction, one has to
consider

ñ =
n + v⊥√

1 + v2⊥
. (E4)

Now we use that the average of a direction vector is such

that 〈ÑiÑj〉 = (1/3)δij hence 〈(cos ι)2〉 = (n · n)/3 = 1/3.
Then we compute

〈(cos ι̃)2〉 =
〈(cos ι)2〉+ 〈(Ñ · v⊥)2〉

1 + v2⊥
=

1
3

+
v2⊥
3

1 + v2⊥
=

1

3
. (E5)

Hence 〈(cos ι̃)2〉 = 〈(cos ι)2〉, showing that the variance of
the orientation is also not affected by a global velocity flow.
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