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We experimentally assess the suitability of transmon qubits with fixed frequencies and fixed
interactions for the realization of analogue quantum simulations of spin systems. We test a set
of necessary criteria for this goal on a commercial quantum processor using full quantum process
tomography and more efficient Hamiltonian tomography. Significant single qubit errors at low
amplitudes are identified as a limiting factor preventing the realization of analogue simulations on
currently available devices. We additionally find spurious dynamics in the absence of drive pulses,
which we identify with coherent coupling between the qubit and a low dimensional environment.
With moderate improvements, analogue simulation of a rich family of time-dependent many-body
spin Hamiltonians may be possible.

I. INTRODUCTION

Recent experimental progress towards the development
of fault-tolerant quantum computers has been consider-
able [1]. However, the current so-called noisy intermedi-
ate scale quantum (NISQ) devices are limited by a level of
noise that at present precludes implementation of many
algorithms [2]. An exciting application which is thought
to be achievable even in the presence of noise, lies in the
quantum simulation of physical systems for which classi-
cal simulations are intractable [3].

A wide array of experimental platforms have already
demonstrated many of the commonly-applied criteria [4]
for the realization of quantum simulations [5–8]. The
digital approach towards implementing such a simulation
typically involves decomposing the time evolution oper-
ator into a series of implementable gates through Trot-
terization [9], an approach that has been demonstrated
for a variety of small systems experimentally on NISQ
devices [10–12]. Such gate-based quantum simulations
are highly flexible, being capable (in principle at least)
of simulating any quantum system due to the universal-
ity of quantum computation. In practise, these simula-
tions are restricted to small system sizes and short sim-
ulation times, since increasing either necessitates more
gates, which come with a commensurate increase in er-
ror.

An alternative approach, known as analogue quan-
tum simulation [3] directly simulates a system of in-
terest by manipulating a controllable experimental sys-
tem that mimics it, allowing for decomposition proto-
cols such as Trotterization to be circumvented. The in-
creased efficiency of analogue simulation has allowed for
the simulation of larger quantum systems for longer times
than gate-based approached in platforms such as cold

atoms [13–15] and has motivated substantial research
into implementations in other platforms such as super-
conducting circuits [16–19]. This efficiency comes at the
expense of limiting the simulations to the system’s “na-
tive” Hamiltonians. Additionally, such analogue simula-
tors may be restricted in the measurements that can be
performed upon them, in contrast to gate-based devices
which have access to general Pauli string measurements.
This motivates the search for alternative quantum simu-
lation platforms to complement the existing ones.

In order to implement an analogue quantum simula-
tion, it is crucial that the map between an applied control
protocol and the resulting experimental effective Hamil-
tonian is well understood. To this end three criteria may
be identified that are necessary for the experimental im-
plementation of analogue quantum simulations [4, 20]:

(C1) Expressibility: The experimental Hamiltonian must
permit control protocols which allow for some class
(or multiple classes) of interesting models to be sim-
ulated.

(C2) Controllability: It should be possible to switch in-
dividual control terms on and off independently,
without inducing significant errors on other qubits.

(C3) Stability: The map between the control protocol
and the experimental effective Hamiltonian should
be stable enough over time that characterization
and simulation experiments can be performed with-
out the map changing due to, for example, param-
eter drift. Additionally, the coherence time of the
device should be sufficiently long to allow simula-
tions to be performed.

In this work we experimentally assess the extent to which
fixed-frequency, fixed-interaction (FF) transmon qubits
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available through the IBM Quantum cloud-based plat-
form [21] satisfy these criteria, and thereby probe the
utility of this system as a platform for analogue quan-
tum simulation. As a platform primarily used for gate-
based quantum computation, FF transmon qubits allow
for the control of individual qubits and arbitrary Pauli
string measurements [22]. Additionally, the underlying
physical Hamiltonian used to implement these gates may
be mapped to a wide array of interesting Hamiltonians
which may be simulated [23]. As such, FF transmon
devices are potentially highly useful as a platform for
analogue simulation.

FF transmon devices can be modelled as weakly cou-
pled Duffing oscillators controlled via time-dependent
drive pulses. Two-body entanglement can be generated
through a cross-resonance interaction, in which a qubit
is driven at the resonant frequency of another to which
it is coupled [24, 25]. This procedure results in an entan-
gling operation comprised of ZX and ZY terms (where
1, X, Y, Z are the Pauli matrices and the tensor prod-
uct is implied) along with a number of spurious single
qubit terms. In order to use this platform for analogue
quantum simulation, the magnitude of these terms must
be well known such that they can be controlled during a
simulation. If this can be achieved, FF transmon qubits
should allow for a rich class of systems to be simulated,
including Ising Hamiltonians with individually address-
able Ising coupling and single qubit magnetic field con-
trol, systems with XY -type interactions and the quan-
tum East model [26]. Thus, they satisfy criterion (C1).

While the effective Hamiltonian resulting from apply-
ing cross-resonance drives can be derived rigorously using
Floquet theory [27], the resulting predictions are not suf-
ficiently precise to run high-fidelity simulations. Instead,
we characterize the device experimentally. First, we use
full quantum process tomography (QPT) to show that
it is possible to individually and independently control
the cross-resonance interaction, and to find the dominant
spurious terms. Second, we use Hamiltonian tomogra-
phy to accurately and efficiently extract the Hamiltonian
rates.

We characterize the unwanted single-qubit terms gen-
erated through the cross-resonance drives and extract
phase, amplitude and detuning errors. In principle, these
can be cancelled using weak additional tones, but we ob-
serve that the drive amplitudes cannot be controlled with
sufficient precision to do so, which could be fixed with
hardware improvements.

Additionally, we identify spurious dynamics in the ab-
sence of driving with coupling between two level system
(TLS) defects and the transmon qubits. The error terms
arising from these fluctuate significantly over time, mean-
ing that the IBM Quantum devices do not satisfy crite-
rion (C3). This, rather than imperfections with the en-
tangling operation, is identified as the key limiting factor
preventing the realization of fully-controllable analogue
quantum simulations on current-generation FF transmon
devices.

II. CONTROLLING FIXED-FREQUENCY,
FIXED-INTERACTION TRANSMON QUBITS

The starting point for the analysis presented here is
the verification of the model used to inform experimen-
tal control protocols. For FF transmon qubits, the sys-
tem can be described as a series of n coupled Duffing
oscillators, for which the Hamiltonian is [22, 23]

Hduff =

n∑
i=1

(
ωia
†
iai + αia

†
ia
†
iaiai +Di(t)(ai + a†i )

)
+
∑
〈i,j〉

Jij(ai − a†i )(aj − a†j) , (1)

where ωi and α are the harmonic frequency and anhar-
monicity of the ith transmon respectively, Jij is the ca-
pacitive coupling strength between the ith and jth trans-
mon, where the nearest-neighbour notation 〈i, j〉 reflects
the physical connectivity of the device, and the drive on
the ith transmon is given by

Di(t) =
Ω

2
Re
[
ei(ωi+∆i)tdi(t)

]
, (2)

with drive strength Ω, applied detuning ∆i and dimen-
sionless drive envelope d(t). For high enough anhar-
monicities relative to the applied drive strength, the tran-
sition between the states |0〉 and |1〉 is well separated
from the higher energy levels, and so the system may be
described by a qubit model,

H =

n∑
i=1

ωi

2
Zi +Di(t)Xi +

∑
〈i,j〉

JijYiYj , (3)

where the notation X,Y, Z has been used for the Pauli
matrices.

Single qubit X,Y and Z terms can be independently
controlled by applying a pulse at zero detuning with the
drive envelope parameterized as

di(t) = (hXi (t) + ihYi (t)) exp

(
−2iΩ

∫ t

0

hZi (t′)dt′
)
. (4)

In the frame rotating at the qubit frequencies, the effec-
tive Hamiltonian resulting from this drive is

H(t) =
Ω

2

∑
i

[
hXi (t)Xi + hYi (t)Yi + hZi (t)Zi

]
. (5)

The coupling parameter Jij in FF transmon devices can-
not be controlled, and thus needs to be small enough
compared to the detuning between connected qubits that
in the absence of driving the qubits are effectively de-
coupled. In this case, an entangling operation can be
switched on by driving one qubit at the resonant fre-
quency of another to which it is coupled [24, 28]. To
first order, the off-resonant drive generates no dynamics.
However, to second order interplay between the drive and
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the static coupling results in an effective cross-resonance
entangling operation of the general form

HCR
ij =

∑
A∈{1,X,Y,Z}

c1Aij 1iAj + cZA
ij ZiAj . (6)

Estimations for the values of the coefficients {ckij} have
been extracted using high order Schrieffer-Wolff pertur-
bation theory [27, 29] but these depend on experimental
parameters that are inaccessible to end users and which
can drift over time. As a result, we find it more practical
to extract the coefficients experimentally in a calibration
process.

III. HAMILTONIAN VERIFICATION AND
CALIBRATION THROUGH TOMOGRAPHY

The level of control offered by the cross-resonance
Hamiltonian (Eq. (6)) theoretically allows for the simula-
tion of a rich array of lattice spin systems. However, it is
crucial to verify that the experimental dynamics continue
to satisfy criteria C1-C3 in the presence of imperfections
such as cavity leakage. In particular, the cross-resonance
drives should not induce any dynamics on qubits other
than the control and target, and the result of applying
two simultaneous cross-resonance drives on two differ-
ent qubits should be the sum of the individual cross-
resonance interactions (i.e., Heff

1,2,3 = Heff
1,2 +Heff

2,3). Quan-
tum process tomography (QPT) is ideally suited to the
verification of these properties, since it makes no assump-
tions about the underlying dynamics and can thus iden-
tify unexpected terms. The experimental implementa-
tion of QPT for this purpose is presented in Sec. III A.

While QPT is rigorous, it is highly inefficient, requiring
a number of expectation value measurements that is pro-
portional to d4 (with d = 2n the dimension of the Hilbert
space) to obtain the process matrix that characterizes a
given channel. It is thus unsuitable for the calibration of
the Hamiltonian coefficients in Eq. (6). Instead, having
verified the structure of the effective Hamiltonian, these
rates can be calibrated far more efficiently using Hamilto-
nian tomography [30–32], which for this system requires
only five Rabi oscillation experiments for a full charac-
terization of the effective Hamiltonian. The Hamiltonian
tomography protocol used in this work is presented in
Sec. III B.

A. Quantum Process Tomography

QPT yields the full process matrix characterizing the
experimental dynamics, including non-unitary contribu-
tions from decoherence. For the purposes of Hamilto-
nian identification, only the unitary contribution of the
full quantum channel is considered, and so these effects
are not taken into account. The extent to which the dy-
namics are faithfully represented by a unitary operator is
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FIG. 1. Effective Hamiltonian rates extracted from full pro-
cess tomography on qubits 1 and 2, implemented on the
ibmq guadalupe quantum device following the application of
a cross-resonance drive on qubit 1 at the frequency of qubit 2
for varying pulse durations. The dominant ZiXj , 1iXj and
Zi1j terms are significantly stronger than any other Hamil-
tonian terms (shown in gray, with 1iYj shown in red as an
illustration) and the rates are consistent for all drive durations
as expected.

characterized by the dominant eigenvalue λ0 of the pro-
cess matrix, which is 1 for a fully unitary operator and
0 < λ0 < 1 for non-unitary operations. Since non-unitary
errors cannot be directly counteracted in the scheme pro-
posed here, this measurement represents an additional
check on the viability of analogue simulation protocols.

The effective Hamiltonian may be extracted by taking
the logarithm of the reconstructed unitary evolution op-
erator. Using this method, the eigenvalues of the effective
Hamiltonian are obtained only up to factors of 2π. This
ambiguity can be alleviated by extracting Hamiltonian
terms over a range of different pulse durations. While the
cross-resonance interaction can generate interactions con-
sisting of any coherent mixture of ZiXj and ZiYj terms,
for convenience here we work with interactions that are
aligned along one axis only. This can be achieved by
applying a drive pulse with a purely real drive envelope
(i.e., hYi = 0 in Eq. (4)), resulting in only ZiXj interac-
tions, along with the spurious single qubit rotations to be
characterized. In practise, we find that the experimental
pulse envelopes can accumulate significant phase errors.
These can be eliminated by adjusting the phase of the
drive envelope until no ZiYj interactions are observed.
This calibration procedure has been performed prior to
performing all of the experiments presented here.

Fig. 1 shows the observed effective Hamiltonian rates
for a series of cross-resonance interactions applied on the
ibmq guadalupe quantum device, with the minimum fac-
tors of π needed to generate linear plots added. Factors
of π rather than 2π are added since the terms that domi-
nate the dynamics (ZiXj , 1iXj and Zi1j) mutually com-
mute, meaning that there is an additional ambiguity aris-
ing from the fact that adding π to any term results in an
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(a) (b) (c) (d)

FIG. 2. Schematic diagram for the series of process tomog-
raphy experiments used to verify the qualitative form of the
cross-resonance effective Hamiltonian Eq. (6). In all cases,
full QPT is performed on qubits 1 and 2. (a) No drives are
applied (b) Qubit 1 is driven at the frequency of qubit 2 (c)
Qubit 3 is driven at the frequency of qubit 2 (d) Both qubit
1 and qubit 3 are simultaneously driven at the frequency of
qubit 2.

unmeasureable global phase. These largest terms corre-
spond to the terms predicted by Eq. (6), showing that the
qualitative features of the cross-resonance gate are indeed
reliable for this system. Additionally, the largest eigen-
value for the process matrices generated by these experi-
ments was approximately 0.93, showing that the dynam-
ics are dominated by the unitary evolution. Given that
the reported measurement error rates for IBM Quantum
devices are on the order of 1% [28], it is reasonable to
ascribe a large portion of the non-unitary errors to state
preparation and measurement errors.

To verify that the effective Hamiltonian for the three
qubit channel is the sum of the two qubit effective Hamil-
tonians (i.e., Heff

1,2,3 = Heff
1,2 +Heff

2,3), we use four two-qubit
QPT experiments, where the tomography is performed
on qubits 1 and 2 after the application of the follow-
ing different drive protocols (outlined schematically in
Fig. 2):

1. No drives, leave the qubits idle for the drive dura-
tion.

2. Drive qubit 1, leave qubit 3 idle.

3. Drive qubit 3, leave qubit 1 idle.

4. Drive both qubit 1 and 3 simultaneously.

If the effective Hamiltonian generating the dynamics ob-
served in experiment 4 is equal to the sum of Hamilto-
nians for the previous three experiments, then it can be
concluded that the Hamiltonian for the full n−qubit sys-
tem may be obtained by characterizing all qubit pairs
involved in the experiment. Additionally, experiment 3
may be used to confirm that no unexpected additional
terms are generated on idle qubits – that is, the dynam-
ics observed in experiment 3 should only be single qubit
X rotations. Fig. 3 summarises the experimental results
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FIG. 3. Summary of Hamiltonian rates obtained from the
application of experiments 1-4 explained in the main text and
summarised in Fig. 2, with the tomography performed on
qubits 1 and 2 (shown by the blue ellipses), implemented on
the ibmq guadalupe quantum device. Terms with rates less
than 0.2 have been dropped for clarity, with the exception
of c1Y , which is shown for comparison. The first four sets
of bars correspond to the experimental data for the various
driving setups, while the final set corresponds to the predicted
values for driving qubits 1 and 3 simultaneously, obtained as
the sum of the Hamiltonian rates for driving qubits 1 and 3
separately plus the idle Hamiltonian, which is approximately
vanishing. This predicted set of rates is very close (within
1.5%) to the real experimental rates for the simultaneous drive
with the exception of the 1iYj rate, which is at a much lower
magnitude and is therefore more susceptible to measurement
error. This indicates that the simultaneous drive can indeed
be modelled accurately as the sum of the individual effective
Hamiltonians.

from experiments 1-4. As expected, no additional terms
are observed on qubits 1 and 2 when qubit 3 is driven,
regardless of whether qubit 1 is itself driven. Addition-
ally, the predicted rates arising from adding the Hamilto-
nian rates for experiments 1-3 (final set of bars in Fig. 3)
matches the results of experiment 4 very well, with all the
rates apart from c1Y (the rate of the 1iYj term) differing
by less than 0.05MHz, or less than 1.5% of the observed
Hamiltonian rates. The error for c1Y was slightly higher,
at 0.07MHz, however this is likely due to its significantly
lower relative size, making it more susceptible to fluctua-
tions due to measurement error. This indicates that the
experimental drive behaves as indicated by Eq. (6), with-
out significant cross-talk, and that the effective Hamilto-
nians for smaller subsystems can be added to obtain the
dynamics for larger systems.

We note that we have not investigated longer-distance
coupling on the basis that we have not observed cross-talk
between next-nearest neighbours, which makes longer-
range couplings unlikely. Under this assumption, the
characterization of a full n−qubit system can be per-
formed using a number of experiments that is indepen-
dent of n by characterizing disconnected sets of qubits in
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FIG. 4. Hamiltonian terms resulting from applying simulta-
neous cross-resonance drives on qubits 1 and 3, implemented
on the ibmq guadalupe quantum device. The Hamiltonian
was obtained as the logarithm of the process matrix obtained
from full process fidelity as described in the main text. The
terms highlighted in red correspond to the expected non-zero
coefficients arising from the cross-resonance drive and terms
with magnitudes less than 0.15 have been dropped for clarity.
While the results are significantly noisier than the two qubit
experiments, the dominant terms are those expected from the
theory.

parallel.

1. Three Qubit Quantum Process Tomography

As an additional check that next-nearest-neighbour
cross-talk is negligible, the full process matrix corre-
sponding to the simultaneous cross-resonance drive on
qubits 1 and 3 can be evaluated to obtain the full three
qubit Hamiltonian coefficients – the results of such a pro-
cedure are shown in Fig. 4. The primary reason for this is
to verify that the terms observed in Fig. 3 arise only from
the expected two-body interactions and spurious single
qubit terms and not from any unanticipated three-body
interactions (such as a ZiXjZk interaction). Although
these terms should not be present based on the Hamil-
tonian Eq.(6), it is important to verify that no unantici-
pated sources of cross-talk are present.

The dominant Hamiltonian terms in Fig. 4 are
those expected from the theoretical drives (that is,
1i1jZk,1iXj1k,1iXjZk, Zi1j1k and ZiXj1k), which
are highlighted in red. There are a number of other
terms with moderate strengths, albeit less than half the
magnitude of the expected terms. Notably, these terms
are completely unexpected, with no clear mechanism for
how they could arise, whereas terms which could feasibly
be generated in a system with substantial pulse leakage
(such as ZiXjZk or Zi1jZk) are not observed. More-
over, there is no evidence of these terms in the two qubit
Hamiltonians (Fig. 3). This strongly implies that the

observed terms are artefacts arising from the imperfect
reconstruction of the Hamiltonian from the experimen-
tal data. Measurement error and decoherence can in-
duce significant errors in the process matrix, which can
then be exacerbated by the matrix logarithm. Both of
these effects become increasingly problematic as the sys-
tem size increases, which is why the data for the three
qubit process matrices are noisier than the correspond-
ing two qubit process matrices. This is further evidenced
by the principle eigenvalue of the extracted three qubit
process matrix, which is λ0 = 0.74, much lower than was
obtained for the two-qubit process matrices.

B. Hamiltonian Tomography

Full QPT is useful for verifying that the expected dy-
namics are being generated in the experimental setup,
but, as argued above, it is ill-suited to extracting the
quantitative Hamiltonian rates necessary to characterize
the system. With a verified Hamiltonian form, however,
it is possible to obtain these rates far more efficiently
using Hamiltonian tomography [30–32].

For many systems of interest (including the FF trans-
mon system which forms the basis of this work) the time
evolution operator generated by the system Hamiltonian
consists of a linear combination of only a small number
of Pauli terms. When particularized to two qubis, the
terms in the Hamiltonian Eq. (6) form a closed group
under multiplication, meaning that the cross-resonance
channel can be expressed in terms of a linear combina-
tion of only the terms appearing in Eq. (6), rather than
the full set of Pauli operators. Since the qualitative form
of the Hamiltonian Eq. (6) has been rigorously verified
through QPT in the previous section, this reduced struc-
ture can be relied upon as accurate, thereby allowing the
channel to be fully characterized using significantly less
effort than full QPT.

We extract the rates ckij (with the exception of cZ1ij ) in
Eq. (6) through a series of Rabi oscillation experiments
acting on the |00〉 and |10〉 initial states and measuring
in the X, Y and Z bases on the target qubit. The pro-
tocol for performing this set of tomography experiments
may be found in the qiskit experiments framework on
GitHub [33].

For pulses in which the drive envelope is purely real
(i.e., hYi = 0 in Eq. (4)), three terms are dominant: the
Zi1j , ZiXj and 1iXj terms. Similarly, for purely imag-
inary drive envelopes (hXi = 0 in Eq. (4)) the dynamics
are dominated by Zi1j , ZiYj and 1iYj . In this case,
by initializing in the |++〉 and |−−〉 initial states and
measuring the target qubit in the X basis on the control
qubit, the magnitude of the Zi1j can be obtained as the
sum of the frequencies of the two resulting cosine func-
tions. With this, the full set of coefficients in Eq. (6) may
be obtained using only 8 Rabi oscillation experiments.
This fitting procedure works very well, as evidenced by
Fig. 5, which shows the results of the Hamiltonian tomog-
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FIG. 5. Dynamics generated by applying the cross-resonance
interaction over increasing pulse durations, with a drive am-
plitude of Ω = 36 MHz. (a) Expectation value evolution re-
sulting from measuring qubit 2 in each Pauli basis following
evolution from |00〉 (blue) and |10〉 (orange). (b) Rabi oscil-
lations resulting from applying the cross resonance channel
on the |++〉 (blue) and |−−〉 (orange) initial states, mea-
suring the first qubit. For both plots, points correspond to
experimental data obtained from the ibm hanoi quantum de-
vice and the solid lines correspond to numerical expectation
values extracted from evolution of the cross-resonance Hamil-
tonian predicted by the fits to the experimental data. The
amplitudes of the oscillations are slightly reduced due to mea-
surement error. The Hamiltonian rates obtained from these
fits are given in Table. I.

raphy implemented on the ibm hanoi quantum device.
This is to be expected given the full QPT results above.
The solid lines in both Fig. 5a and Fig. 5b are gener-
ated by numerically evolving the cross-resonance Hamil-
tonian obtained from the fits to the experimental data.
In both cases, the points are the raw experimental data.
The suppression in the observed amplitudes is most likely
due to measurement error since it is present at t = 0.
The Hamiltonian rates obtained from the tomography
are given in Table I. By far the largest term, at over
3MHz is the Zi1j term arising from the AC Stark shift

Hamiltonian term Rate/MHz
ZiXj -0.4915
ZiYj -0.0332
ZiZj 0.0294
1iXj 0.4168
1iYj 0.0649
1iZj -0.0756
Zi1j 3.0810

TABLE I. Cross-resonance Hamiltonian rates extracted from
the ibm hanoi quantum device using Hamiltonian tomogra-
phy as described in the main text, with the applied drive
amplitude Ω = 36 MHz. The dynamics are dominated by the
AC Stark shift Zi1j term, which can be eliminated by adjust-
ing the qubit drive frequency or by applying a dynamic phase
to single qubit pulses, leaving dynamics generated principally
by the desired ZiXj and 1iXj , the latter of which can be
eliminated by the addition of a simultaneous resonant pulse
on the target qubit. All other terms are significantly smaller.

on the control qubit from the off-resonant drive. This is
expected to be the case based on theoretical predictions
(the Stark shift term is proportional to the square of the
applied drive amplitude Ω, whereas the other terms are
proportional to either JijΩ or J2

ij , with Jij � Ω).
The next largest rates are the desired entangling op-

erator ZiXj and the spurious single qubit 1iXj rota-
tion, which for these qubits and drive parameters have
equal and opposite rates with magnitudes approximately
0.5MHz. All other terms have substantially smaller mag-
nitudes and can be neglected. In particular, the two-
body ZiYj and ZiZj terms, arising from residual drive
phase miscalibration and qubit-qubit self-interaction re-
spectively, are the smallest and are more than an order
of magnitude smaller than the desired ZiXj term. These
are the most problematic terms, since they cannot be
eliminated using single qubit quantum control.

In order to use the cross-resonance interaction for ana-
logue quantum simulation, it is necessary to be able to
control all the Hamiltonian terms. As shown in Eq. (4),
the single qubit terms can be controlled or eliminated
through the addition of resonant control pulses, while the
magnitude of the two-body interactions is controlled by
the amplitude of the cross-resonance drive. Since chang-
ing this amplitude also changes all the other Hamilto-
nian rates, a strategy for implementing analogue quan-
tum simulation in this platform would be to fix the cross-
resonance amplitude, and only use single qubit control to
implement the desired simulation.

A reasonable initial target would be to generate a pure
Ising-type interaction (after basis change) of the form

H =
∑
〈i,j〉

JZX
ij ZiXj . (7)

In order to accomplish this, single qubit control pulses
can be used to cancel the remaining spurious terms.
These compensation pulses must be applied at very small
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amplitudes compared with those typically used for sin-
gle qubit control. For comparison, the resonant ampli-
tude for implementing a single qubit X gate on an IBM
Quantum device is typically 30 MHz, approximately sixty
times that needed to eliminate the spurious 1iXj term.
It is often assumed that low amplitude drives are unprob-
lematic, however, in real experiments implementing such
small drives can cause significant problems, which will be
shown in the following section.

IV. OTHER SOURCES OF ERROR

From the above analysis, it has been demonstrated
that criterion (C1) (the device must be sufficiently ex-
pressible) for the implementation of analogue quantum
simulations on FF transmon qubits is indeed satisfied,
and that criterion (C2) (the device must be controllable)
can be satisfied as long as the small pulses necessary
to cancel the spurious single qubit terms can be imple-
mented accurately. While the fidelity of single qubit dy-
namics is typically assumed to be much higher than that
of entangling operations [34, 35], this breaks down in the
low-amplitude regime necessitated by the analogue sim-
ulation protocol proposed here.

The weakness of the effective cross-resonance interac-
tion also means that simulations must be run for longer
times than single qubit resonant dynamics to observe in-
teresting dynamics. As an illustrative example, consider
a calibrated ZiXj drive with a strength of 0.5 MHz. In
order to simulate the time dynamics of this system for a
duration JZXt = 1 (not an especially ambitious goal con-
sidering gate-based methods implemented on IBM Quan-
tum devices are capable of exceeding such times for many
systems of interest [36, 37]) the pulses need to be applied
for a duration of 2µs. In principle, this is not an issue,
since the reported decoherence and dephasing times for
FF devices significantly exceed these times (they are typ-
ically on the order of 100 µs [38]), meaning that the co-
herence requirement of criterion (C3) (the device should
be stable) should be satisfied. Since the viability of ana-
logue quantum simulation relies heavily upon this fea-
ture of FF transmon qubits, the reliability of these de-
coherence times should be verified in real experimental
settings. Additionally, over such long durations, small
errors can greatly reduce the fidelity of the applied dy-
namics, making characterization of the dynamics at low
pulse amplitudes and over long times crucial for analogue
quantum simulation.

A. Low Amplitude Errors

One problematic source of errors arising from the weak
cross-resonance interaction is the deviation from theoret-
ical predictions for low amplitude (Ω less than approxi-
mately 1.5MHz) resonant drives. This has significant im-
plications for the realization of the analogue simulations

described here due to the weakness of the cross-resonance
interaction compared to typical resonant control.

The dynamics generated by a weak resonant pulse can
be investigated using single qubit quantum state tomog-
raphy following the evolution of the |0〉 state over time.
Given the weak nature of the pulse and the fact that any
coupled qubits have frequencies which are well detuned
from the drive qubit, it is reasonable to ignore spectator
qubits.

Following Eq. (5) and applying pulses which are ap-
proximately constant such that hi are approximately
time-independent (with deviations from this primarily
arising from the non-zero pulse ramp time), the resulting
dynamics can be fit to a model Hamiltonian of the form

H =
Ω

2

(
hXX + hY Y + hZZ

)
. (8)

For the purposes of this work, the target channel is gen-
erated by the application of a purely real pulse with zero
detuning such that the effective Hamiltonian is simply
1
2ΩX. By performing the state tomography experiments
over an array of pulse durations, the magnitudes of the
X,Y and Z terms can be extracted, allowing for the
phase (resulting in spurious Y terms), detuning (resulting
in spurious Z terms) and amplitude (resulting in incor-
rect Rabi frequencies) errors to be characterized. Since
the necessary evolution times for investigating such weak
fields are long enough for dephasing and decoherence ef-
fects to be observed, an additional exponential decay of
the form exp(−t/T2) was included in the dynamics, al-
lowing for an approximation of the T2 decay time to also
be extracted. Fig. 6 shows the results of such a state to-
mography scheme for two low amplitudes, 0.07 MHz, cor-
responding to 0.0005% of the maximum drive amplitude
accessible through the IBM Pulse platform and 1.50MHz,
corresponding to 0.01% of the maximum drive amplitude.
It should be stressed that although these amplitudes are
very small when compared with typical resonant control
pulses on FF qubits, it is often necessary to use such
low amplitudes for cancelling the spurious terms in the
cross-resonance Hamiltonian.

For both Fig. 6b and Fig. 6a, there are significant am-
plitude, phase and detuning errors, with the relative size
of the errors being much higher for the lower drive ampli-
tude. For Fig. 6a, the experimental Rabi frequency (ob-

tained as
√

(hX)2 + (hY )2) was observed to be 1.44MHz,
corresponding to an error of 0.06MHz or 4%. The phase
error (obtained by fitting hX and hY to Fig. 6a and then
obtaining the phase of hX + ihY ) was found to be −0.04
with the detuning error being 0.05MHz. The origin of
these errors is most likely due to miscalibration: since
the typical target amplitudes for implementing quantum
gates are as high as possible without inducing unwanted
transitions, the experimental settings for the resonant
drives will be calibrated for this regime. The low ampli-
tudes used in these experiments are far from this regime,
and so moderate non-linearities in the control hardware
could result in deviations between the software and the
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FIG. 6. Single qubit quantum state tomography results show-
ing 〈X〉, 〈Y 〉 and 〈Z〉 expectation values over varying drive du-
rations, with drive amplitudes of (a) 1.50 MHz and (b) 0.07
MHz, implemented on the ibm hanoi quantum device. The
points correspond to experimental data and the solid lines
correspond to fits to Eq. (8), from which phase, detuning and
amplitude errors may be extracted. For (a), the observed
Rabi frequency was 1.44MHz, the observed phase error was
−0.04π and the observed detuning was 0.05MHz. For (b), the
observed Rabi frequency was 0.16MHz, the observed phase er-
ror was 0.65π and the observed detuning was 0.07MHz. The
observed T2 time for both (a) and (b) was 31.69µs (this was
extracted from (b) and used in the plots of both (a) and (b)).

experimental realization. While these deviations are not
ideal, and could cause problems for an experimental sim-
ulation in which precise parameters are required, in prin-
ciple the errors can be counteracted by adjusting the am-
plitude, phase and frequency of the applied pulse.

For Fig. 6b, the experimental errors are much higher,
with the observed Rabi frequency being 0.16 MHz, corre-
sponding to an error of 0.09 MHz or 129% of the theoret-
ical drive. The phase error was also significantly higher,
at approximately 0.65π, while the observed detuning was
0.07 MHz. The latter two errors, although higher than
Fig. 6a, should also be able to be corrected in the same
way. The amplitude error, however, cannot be fixed
in software, as it likely arises from the finite resolution

0 10 20 30 40 50

Delay duration/µs

−1.0

−0.5

0.0

0.5

1.0

〈X
〉

Cosine fit

Experiment

FIG. 7. Plot of spurious dynamics observed on the ibm hanoi

quantum device in the absence of driving as a function of delay
time, with the points corresponding to the experimental data
and the red line corresponding to a least squares best fit to
Eq. (9). The qubit is initialised in the |+〉 X eigenstate, left
idle for varying durations and measured in the X basis. The
same dynamics were not observed for the same experiment
performed in the Z basis, indicating the presence of a spurious
Z field. Given the structure of the observed interaction, the
most likely explanation is that it is caused by coupling to a
two level system defect in the superconducting material.

of the arbitrary waveform generators (AWGs). AWGs
with more than the required resolution can be built us-
ing commercially-available components [39]. Thus, while
this is a limiting factor preventing the implementation
of analogue quantum simulations on currently available
devices, it should not represent an insurmountable chal-
lenge for such an implementation in the near future.

B. Spurious Dynamics in the Undriven System

A second consequence of the weak cross-resonance in-
teraction is that the simulations need to be performed for
longer times than for resonant single qubit dynamics (on
the order of approximately 10µs). Both the reported T2

and bare T ∗2 dephasing times for the IBM Quantum de-
vices should be long enough for this to be achieved [38].
However, experimentally, additional spurious terms may
be observed which significantly impact the behaviour of
FF transmon systems over this time period. This is illus-
trated when one attempts to measure the dephasing of
the system experimentally. The dephasing of a quantum
system can be experimentally measured by initializing in
the |+〉 state, waiting for varying durations, and then
measuring in the X eigenbasis. In a system with de-
phasing error, the expectation value should exhibit an
exponential decay over the characteristic T ∗2 time. In the
absence of any driving or spurious fields, there should
not be any oscillatory behaviour. This is not necessar-
ily the case experimentally. Fig. 7 shows the results of
performing such an experiment on the ibm hanoi quan-
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tum device, with the results being dominated by strong
oscillations. This effect is not symmetric for all axes: per-
forming the same experiment in the Z eigenbasis results
in no such oscillations, implying that the effect arises due
to a spurious Z field.

The oscillations in Fig. 7 may be fit to a function of
the form

f(t) = (c0 cos(f0t) + c1 cos(f1t)) e
−t/T∗

2 , (9)

with five fit parameters {c0, c1, f0, f1, T
∗
2 }. The results of

such a fit for qubit 16 in the ibm hanoi quantum device
are given as the red line in Fig. 7. For this fit, the op-
timal frequencies were obtained as f0 = 0.18 MHz and
f1 = 0.24 MHz, with weight coeffients c0 = 0.48 and
c1 = 0.51. These coefficients do not reproduce the be-
haviour observed when measuring other qubits or when
measuring the same qubit on different days and thus
should be considered to be specific to this qubit at this
particular time. As expected, the T ∗2 time was found
to be significantly shorter than the T2 time reported by
IBM, at 20.2µs as opposed to 209.6µs for this qubit. This
may still be long enough to offer some advantage for ana-
logue quantum simulation.

Since there are two observed frequencies in the oscil-
lations, the observed dynamics cannot be explained by
a simple frequency misalignment. While it is difficult
to identify the source of these errors with any certainty
given the limited experimental access available to end
users, the form of the dynamics is consistent with cou-
pling between the qubit and a mesoscopic environment.
Such an environment could be provided by the presence
of parasitic two-level systems (TLSs) [40, 41] arising from
structural defects in the superconducting material. In the
experiment presented in Fig. 7, coupling to a single TLS
defect would induce the observed dynamics. The pres-
ence of TLSs in superconducting qubits is well known
to be a significant source of decoherence [42], and could
be generated through background radioactivity or cosmic
rays [43]. It is likely that the TLS coupling also induces
significant decoherence, reducing the observed T ∗2 time.
Eliminating this coupling could therefore significantly in-
crease the decoherence times, allowing for longer ana-
logue simulation times to be reached and extending the
utility of such protocols. The nature of the spurious dy-
namics varies significantly over time. Fig. 8(a) shows 100
repetitions of the dephasing test outlined above, obtained
on a different day to the data presented in Fig. 7 but for
the same qubit and device. The blue lines show indi-
vidual evolution for a characteristic subset of 20 experi-
ments, with the blue shaded region corresponding to the
upper and lower bounds of the obtained results. These
data also show similar oscillatory behaviour, but cannot
be well reproduced by fits to Eq. (9). This can be ex-
plained by the qubit coupling to multiple TLS defects
rather than a single one as in Fig. 7. Moreover, the oscil-
lations fluctuate significantly over the time scale during
which the experiments were performed (approximately
six hours), indicating that the cause of the oscillatory
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2
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FIG. 8. Single qubit time dynamics and purity measurements
corresponding to experiments initialized in |+〉 and measured
in all three Pauli bases following different delay times, with
the experiments implemented on the ibm hanoi quantum de-
vice. The data were obtained from the same qubit as Fig. 7,
but on a different day. (a) Time evolution of 〈X〉 expecta-
tion values, with the black line corresponding to the mean
evolution, the blue lines corresponding to experimental evo-
lution and the shaded region bounding the highest and lowest
points observed. (b) Time evolution of 〈Z〉 expectation val-
ues, with the black line corresponding to the mean evolution,
the orange lines corresponding to experimental evolution and
the shaded region bounding the highest and lowest points ob-
served. (c) Purity measurements for the delay experiments.
While a multi-frequency classical field together with T2 de-
phasing could explain the results of (a) and (b), the revivals
in the purity at approximately 20µs and 40µs in (c) cannot
be explained by classical noise sources.

behaviour changes substantially on this time scale. Per-
forming the same experiment, but measuring in the Z
basis (Fig. 8(b)) yields no oscillations for any of the 100
experimental repetitions, providing further evidence that
the dynamics are induced by an effective Z field. The in-
crease in the 〈Z〉 expectation value over time arises from
the decay of the initial state |+〉 to a linear combination
of |+〉 and |−〉 over time due to dephasing.

The black line in Fig. 8(a) shows the average behaviour
across all experimental runs, with the limiting behaviour
trending towards an exponential decay. Performing the
delay experiment on different qubits on different days
does not always result in oscillations, but can also re-
sult in decay behaviour similar to this mean behaviour.
If the variation in the oscillatory dynamics can be ex-
plained by coupling to a mesoscopic TLS environment in
which the number of defects is not constant over time,
then the time-average behaviour of this system is likely
to be qualitatively similar to coupling between a qubit
and a bulk environment of defects. This decay behaviour
could therefore be plausibly explained by coupling to a
macroscopic environment of TLS defects.

The identification of the source of the oscillations with
coupling to a low-dimensional environment is further re-
inforced by Fig. 8(c), which shows the purity of the sin-
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gle qubit state as a function of delay time for the same
experiments as Figs. 8(a) and (b). The purity measure-
ments show a significant revival at approximately 20µs
and a smaller revival at approximately 40µs. Such re-
vivals cannot be explained by classical sources of noise
(such as, for example, magnetic fields induced by nearby
power lines) and are indicative of coherent coupling be-
tween the qubit and some other quantum object. This
is further evidence in support of the identification of the
spurious dynamics with coupling to a low-dimensional
environment consisting of TLS defects.

There is therefore strong evidence that the observed
dynamics are due to a coherent coupling process between
the qubit and some other quantum object. Based on the
form of the oscillations and the fact that TLSs have been
identified as a major source of decoherence in other su-
perconducting platforms, it is reasonable to identify this
quantum object with TLS defects. However, this can-
not be rigorously verified (nor, indeed, disproven) using
the level of experimental access available to end users.
The spurious oscillating terms, regardless of their origin,
are a significant barrier to the implementation of ana-
logue quantum simulation on FF transmon qubits and
thus the experimental investigation of their origin is of
crucial importance if such a goal is to be achieved.

V. CONCLUSION AND OUTLOOK

Quantum simulation is one of the flagship applications
of quantum devices. Current digital devices satisfy al-
most all of the criteria necessary for the realization of
such simulations, but gate errors continue to pose sig-
nificant problems for digital simulation methods such as
Trotterization.

Analogue quantum simulation is an alternative route
towards realizing Hamiltonian simulation. We ex-
perimentally evaluate fixed-frequency transmon qubits
against three criteria which must be satisfied in order
to realise analogue quantum simulation experimentally:
(C1) expressibility, (C2) controllability and (C3) stabil-
ity.

Our results indicate that superconducting fixed-
frequency devices are a flexible and highly controllable
analogue simulation platform, and we demonstrate that
the Hamiltonian of the system can be measured quickly
and with high confidence.

We find that the weakness of the cross-resonance in-
teraction causes significant issues. At the low amplitudes
required to counteract the spurious single qubit terms
arising from the cross-resonance interaction, significant
phase, amplitude and detuning errors cause problematic
deviations from the ideal resonant drive. At moderate
drive amplitudes these can be addressed on currently
available devices by calibrating the drive pulses, but for
very low amplitudes the limited resolution of the arbi-
trary waveform generators (AWGs) precludes such cali-
bration protocols from being realized. This issue could be

easily addressed using high resolution AWGs, and thus is
not a significant limiting factor for the implementation of
analogue quantum simulations on FF transmon qubits.
Criteria (C1) (the system Hamiltonian must be express-
ible enough to permit simulation of systems of interest)
and (C2) (the system must be controllable such that in-
dividual Hamiltonian terms can be switched on and off
independently) may then be satisfied with only modest
improvements to current FF transmon implementations.

Alternatively, the floor on the implementable drive
pulse amplitudes could be interpreted as a minimum dis-
order term for analogue simulations. For the example
drives here, the minimum disorder would correspond to
approximately one third of the ZiXj interaction strength,
although the precise value varies from qubit to qubit.

A more problematic issue is diagnosed through the
presence of dynamical evolution on qubits which are ini-
tialized in an X eigenstate and left without additional
drive pulse. We attribute the observed dynamics to cou-
pling to two level system defects, which is known to be
a major source of decoherence in other superconducting
platforms. Since the spurious dynamics fluctuate over
time, any protocol designed to eliminate the interaction
would need to account for this fluctuation in order to en-
sure that criterion (C3) (the system must remain stable
over the duration of the simulation) is satisfied.

Since rigorous verification and full characterization of
the TLS interaction are not possible with the level of ex-
perimental access available to end users, a crucial route
for further investigation lies in the application of spec-
troscopic techniques reported in other superconducting
quantum platforms for the full characterization of this ef-
fect [44] and in the development of an effective method to
eliminate these interactions. While the focus of this work
is on the evaluation of analogue quantum simulations on
FF qubits, TLS coupling has been identified as a key
source of decoherence in superconducting platforms [42],
and so a focus on addressing this problem could have
wide-reaching implications beyond this application.

In summary, FF transmon qubits have great poten-
tial as a platform for analogue quantum simulation due
to their ability to implement a wide array of physically
interesting Hamiltonians. The primary limiting factors
preventing the implementation of such simulations on
current devices are the limited resolution of the control
pulses and spurious coupling to two level system defects.
The former can be straightforwardly eliminated with ei-
ther modest hardware improvements or incorporation of
the limitations into the simulations, while the latter re-
quires further experimental work identify, characterize
and eliminate the coupling. Overcoming these limita-
tions will allow for the realization of the potential of FF
transmon qubits for analogue quantum simulation.
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[16] A. A. Houck, H. E. Türeci, and J. Koch, On-chip quan-
tum simulation with superconducting circuits, Nat. Phys.
8, 292 (2012).

[17] M. J. Hartmann, Quantum simulation with interacting
photons, J. Opt. 18, 104005 (2016).

[18] S. A. Wilkinson and M. J. Hartmann, Superconducting
quantum many-body circuits for quantum simulation and
computing, Appl. Phys. Lett. 116, 230501 (2020).

[19] M. J. Hartmann, F. G. Brandao, and M. B. Plenio, Quan-
tum many-body phenomena in coupled cavity arrays,
Laser Photonics Rev. 2, 527 (2008).

[20] D. P. DiVincenzo, The physical implementation of quan-
tum computation, Fortschr. Phys. 48, 771 (2000).

[21] M. S. ANIS, Abby-Mitchell, H. Abraham, AduOffei,
R. Agarwal, G. Agliardi, M. Aharoni, V. Ajith, I. Y.
Akhalwaya, G. Aleksandrowicz, et al., Qiskit: An open-
source framework for quantum computing (2021).

[22] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gus-
tavsson, and W. D. Oliver, A quantum engineer’s guide
to superconducting qubits, Appl. Phys. Rev. 6, 021318
(2019).

[23] D. Malz and A. Smith, Topological two-dimensional Flo-
quet lattice on a single superconducting qubit, Phys. Rev.
Lett. 126, 163602 (2021).

[24] C. Rigetti and M. Devoret, Fully microwave-tunable uni-
versal gates in superconducting qubits with linear cou-
plings and fixed transition frequencies, Phys. Rev. B 81,
134507 (2010).
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