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We experimentally assess the suitability of
transmon qubits with fixed frequencies and
fixed interactions for the realization of ana-
logue quantum simulations of spin systems.
We test a set of necessary criteria for this goal
on a commercial quantum processor using full
quantum process tomography and more effi-
cient Hamiltonian tomography. Significant sin-
gle qubit errors at low amplitudes are identi-
fied as a limiting factor preventing the realiza-
tion of analogue simulations on currently avail-
able devices. We additionally find spurious dy-
namics in the absence of drive pulses, which
we identify with coherent coupling between
the qubit and a low dimensional environment.
With moderate improvements, analogue simu-
lation of a rich family of time-dependent many-
body spin Hamiltonians may be possible.

1 Introduction
Recent experimental progress towards the develop-
ment of fault-tolerant quantum computers has been
considerable [4]. However, the current so-called noisy
intermediate scale quantum (NISQ) devices are lim-
ited by a level of noise that at present precludes im-
plementation of many algorithms [36]. An exciting
application which is thought to be achievable even in
the presence of noise, lies in the quantum simulation
of physical systems for which classical simulations are
intractable [15].

A wide array of experimental platforms have al-
ready demonstrated many of the commonly-applied
criteria [10] for the realization of quantum simula-
tions [6–8, 28]. The digital approach towards im-
plementing such a simulation typically involves de-
composing the time evolution operator into a series
of implementable gates through Trotterization [42],
an approach that has been demonstrated for a va-
riety of small systems experimentally on NISQ de-

vices [5, 24, 35]. Such gate-based quantum simula-
tions are highly flexible, being capable (in principle
at least) of simulating any quantum system due to
the universality of quantum computation. In prac-
tise, these simulations are restricted to small system
sizes and short simulation times, since increasing ei-
ther necessitates more gates, which come with a com-
mensurate increase in error.

An alternative approach, known as analogue quan-
tum simulation [15] directly simulates a system of
interest by manipulating a controllable experimen-
tal system that mimics it, allowing for decomposition
protocols such as Trotterization to be circumvented.
The increased efficiency of analogue simulation has
allowed for the simulation of larger quantum systems
for longer times than gate-based approached in plat-
forms such as cold atoms [14, 16, 17] and has mo-
tivated substantial research into implementations in
other platforms such as superconducting circuits [18–
20, 38, 46, 48]. This efficiency comes at the expense
of limiting the simulations to the system’s “native”
Hamiltonians. Additionally, such analogue simulators
may be restricted in the measurements that can be
performed upon them, in contrast to gate-based de-
vices which have access to general Pauli string mea-
surements. This motivates the search for alternative
quantum simulation platforms to complement the ex-
isting ones.

A typical workflow for implementing analogue
quantum simulations is to choose a target Hamilto-
nian of interest and then to construct a control proto-
col that maps the system Hamiltonian to that target.
Thus, in order to implement an analogue quantum
simulation, it is crucial that the map between an ap-
plied control protocol and the resulting experimental
effective Hamiltonian is well understood. To this end
three criteria may be identified that are necessary for
the experimental implementation of analogue quan-
tum simulations [10, 12]:

(C1) Expressibility: The experimental Hamiltonian
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must permit control protocols which allow for
some class (or multiple classes) of interesting
models to be simulated.

(C2) Practical Controllability: It should be possible to
switch individual control terms on and off inde-
pendently, without inducing significant errors on
other qubits.

(C3) Stability: The map between the control proto-
col and the experimental effective Hamiltonian
should be stable enough over time that char-
acterization and simulation experiments can be
performed without the map changing due to, for
example, parameter drift. Additionally, the co-
herence time of the device should be sufficiently
long to allow simulations to be performed.

In this work we experimentally assess the extent to
which fixed-frequency, fixed-interaction (FF) trans-
mon qubits available through the IBM Quantum
cloud-based platform [3] satisfy these criteria, and
thereby probe the utility of this system as a plat-
form for analogue quantum simulation. As a plat-
form primarily used for gate-based quantum com-
putation, FF transmon qubits allow for the control
of individual qubits and arbitrary Pauli string mea-
surements [23]. Additionally, the underlying physical
Hamiltonian used to implement these gates may be
mapped to a wide array of interesting Hamiltonians
which may be simulated [31]. As such, FF transmon
devices are potentially highly useful as a platform for
analogue simulation.

FF transmon devices can be modelled as weakly
coupled Duffing oscillators controlled via time-
dependent drive pulses. Two-body entanglement can
be generated through a cross-resonance interaction, in
which a qubit is driven at the resonant frequency of
another to which it is coupled [9, 37]. This procedure
results in an entangling operation comprised of ZX
and ZY terms (where 1, X, Y, Z are the Pauli matri-
ces and the tensor product is implied) along with a
number of spurious single qubit terms. In order to use
this platform for analogue quantum simulation, the
magnitude of these terms must be well known such
that they can be controlled during a simulation. If
this can be achieved, FF transmon qubits should al-
low for a rich class of systems to be simulated, includ-
ing Ising Hamiltonians with individually addressable
Ising coupling and single qubit magnetic field control,
systems with XY -type interactions and the quantum
East model [34].
While the effective Hamiltonian resulting from ap-

plying cross-resonance drives can be derived rigor-
ously using Floquet theory [30], the resulting predic-
tions are not sufficiently precise to run high-fidelity
simulations. Instead, we characterize the device ex-
perimentally. While the aim of the paper is to assess
the platform against the criteria listed above, each ex-
periment yields evidence about multiple criteria. For

clarity, the experimental results are presented in full
first, with a summary of the assessments of the above
criteria presented at the end of the paper.

In the first set of experiments, we use full quantum
process tomography (QPT) to show that it is possible
to individually and independently control the cross-
resonance interaction, and to find the dominant spu-
rious terms. Second, we use Hamiltonian tomography
to accurately and efficiently extract the Hamiltonian
rates.

We characterize the unwanted single-qubit terms
generated through the cross-resonance drives and ex-
tract phase, amplitude and detuning errors. In prin-
ciple, these can be cancelled using weak additional
tones, but we observe that the drive amplitudes can-
not be controlled with sufficient precision to do so,
which could be fixed with hardware improvements.

Additionally, we identify spurious dynamics in the
absence of driving with coupling between two level
system (TLS) defects and the transmon qubits. The
error terms arising from these fluctuate significantly
over time. This, rather than imperfections with the
entangling operation, is identified as the key limiting
factor preventing the realization of fully-controllable
analogue quantum simulations on current-generation
FF transmon devices.

2 Controlling fixed-frequency, fixed-
interaction transmon qubits
The starting point for the analysis presented here is
the verification of the model used to inform experi-
mental control protocols. For FF transmon qubits,
the system can be described as a series of n cou-
pled Duffing oscillators, for which the Hamiltonian
is [23, 31]

Hduff =
n∑

i=1

(
ωia

†
i ai + αia

†
i a†

i aiai + Di(t)(ai + a†
i )

)
+

∑
⟨i,j⟩

Jij(ai − a†
i )(aj − a†

j) , (1)

where ωi and α are the harmonic frequency and an-
harmonicity of the ith transmon respectively, Jij is
the capacitive coupling strength between the ith and
jth transmon, where the nearest-neighbour notation
⟨i, j⟩ reflects the physical connectivity of the device,
and the drive on the ith transmon is given by

Di(t) = Ω
2 Re

[
ei(ωi+∆i)tdi(t)

]
, (2)

with drive strength Ω, applied detuning ∆i and di-
mensionless drive envelope d(t). For high enough an-
harmonicities relative to the applied drive strength,
the transition between the states |0⟩ and |1⟩ is well
separated from the higher energy levels, and so the
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system may be described by a qubit model,

H =
n∑

i=1

ωi

2 Zi + Di(t)Xi +
∑
⟨i,j⟩

JijYiYj , (3)

where the notation X, Y, Z has been used for the Pauli
matrices.

Single qubit X, Y and Z terms can be indepen-
dently controlled by applying a pulse at zero detuning
with the drive envelope parameterized as

di(t) = (hX
i (t) + ihY

i (t)) exp
(

−2iΩ
∫ t

0
hZ

i (t′)dt′
)

.

(4)
In the frame rotating at the qubit frequencies, the
effective Hamiltonian resulting from this drive is

H(t) = Ω
2

∑
i

[
hX

i (t)Xi + hY
i (t)Yi + hZ

i (t)Zi

]
. (5)

The coupling parameter Jij in FF transmon devices
cannot be controlled, and thus needs to be small
enough compared to the detuning between connected
qubits that in the absence of driving the qubits are
effectively decoupled. In this case, an entangling op-
eration can be switched on by driving one qubit at
the resonant frequency of another to which it is cou-
pled [37, 39]. To first order, the off-resonant drive gen-
erates no dynamics. However, to second order inter-
play between the drive and the static coupling results
in an effective cross-resonance entangling operation of
the general form

HCR
ij =

∑
A∈{1,X,Y,Z}

c1A
ij 1iAj + cZA

ij ZiAj . (6)

Estimations for the values of the coefficients {ck
ij}

have been extracted using high order Schrieffer-Wolff
perturbation theory [30, 41] but these depend on ex-
perimental parameters that are inaccessible to end
users and which can drift over time. As a result,
we find it more practical to extract the coefficients
experimentally in a calibration process.

In the following sections, the results of evaluat-
ing and performing such an experimental calibration
protocol are presented. To simplify the results such
that the fundamental properties of the underlying sys-
tem can be clearly identified, the phase of the drive
pulse was calibrated such that the resulting dynamics
should induce interactions along the ZiXj axis only,
and alternating qubits were driven such that the ef-
fective Hamiltonian should be of the form of an Ising-
like system. This is not a fundamental limitation of
the system, and the procedures described in this work
should be generalizable such that the full range of dy-
namics expressible from Eq. (6) can be generated.

3 Hamiltonian Verification and Cali-
bration Through Tomography
The level of control offered by the cross-resonance
Hamiltonian (Eq. (6)) theoretically allows for the sim-
ulation of a rich array of lattice spin systems. How-
ever, it is crucial to verify that the experimental dy-
namics continue to satisfy criteria C1-C3 in the pres-
ence of imperfections such as cavity leakage. In par-
ticular, the cross-resonance drives should not induce
any dynamics on qubits other than the control and
target, and the result of applying two simultaneous
cross-resonance drives on two different qubits should
be the sum of the individual cross-resonance interac-
tions (i.e., Heff

1,2,3 = Heff
1,2 + Heff

2,3). Quantum process
tomography (QPT) is ideally suited to the verifica-
tion of these properties, since it makes no assumptions
about the underlying dynamics and can thus identify
unexpected terms. The experimental implementation
of QPT for this purpose is presented in Sec. 3.1.

While QPT is rigorous, it is highly inefficient, re-
quiring a number of expectation value measurements
that is proportional to d4 (with d = 2n the dimen-
sion of the Hilbert space) to obtain the process ma-
trix that characterizes a given channel. It is thus un-
suitable for the calibration of the Hamiltonian coeffi-
cients in Eq. (6). Instead, having verified the struc-
ture of the effective Hamiltonian, these rates can be
calibrated far more efficiently using Hamiltonian to-
mography [25, 29, 45], which for this system requires
only five Rabi oscillation experiments for a full char-
acterization of the effective Hamiltonian. The Hamil-
tonian tomography protocol used in this work is pre-
sented in Sec. 3.2.

3.1 Quantum Process Tomography
QPT yields the full process matrix characterizing the
experimental dynamics, including non-unitary contri-
butions from decoherence. For the purposes of Hamil-
tonian identification, only the unitary contribution
of the full quantum channel is considered, and so
these effects are not taken into account. The extent
to which the dynamics are faithfully represented by
a unitary operator is characterized by the dominant
eigenvalue λ0 of the process matrix, which is 1 for a
fully unitary operator and 0 < λ0 < 1 for non-unitary
operations. Since non-unitary errors cannot be di-
rectly counteracted in the scheme proposed here, this
measurement represents an additional check on the
viability of analogue simulation protocols.

The effective Hamiltonian may be extracted by tak-
ing the logarithm of the reconstructed unitary evo-
lution operator. Using this method, the eigenvalues
of the effective Hamiltonian are obtained only up to
factors of 2π. This ambiguity can be alleviated by
extracting Hamiltonian terms over a range of differ-
ent pulse durations. While the cross-resonance in-
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Figure 1: Effective Hamiltonian rates extracted from full pro-
cess tomography on qubits 1 and 2, implemented on the
ibmq guadalupe quantum device following the application
of a cross-resonance drive on qubit 1 at the frequency of
qubit 2 for varying pulse durations. The dominant ZiXj ,
1iXj and Zi1j terms are significantly stronger than any
other Hamiltonian terms (shown in gray, with 1iYj shown
in red as an illustration) and the rates are consistent for all
drive durations as expected.

teraction can generate interactions consisting of any
coherent mixture of ZiXj and ZiYj terms, for conve-
nience here we work with interactions that are aligned
along one axis only. This can be achieved by applying
a drive pulse with a purely real drive envelope (i.e.,
hY

i = 0 in Eq. (4)), resulting in only ZiXj interac-
tions, along with the spurious single qubit rotations
to be characterized. In practise, we find that the ex-
perimental pulse envelopes can accumulate significant
phase errors. These can be eliminated by adjusting
the phase of the drive envelope until no ZiYj inter-
actions are observed. This calibration procedure has
been performed prior to performing all of the experi-
ments presented here.

Fig. 1 shows the observed effective Hamiltonian
rates for a series of cross-resonance interactions ap-
plied on the ibmq guadalupe quantum device, with
the minimum factors of π needed to generate linear
plots added. Factors of π rather than 2π are added
since the terms that dominate the dynamics (ZiXj ,
1iXj and Zi1j) mutually commute, meaning that
there is an additional ambiguity arising from the fact
that adding π to any term results in an unmeasure-
able global phase. These largest terms correspond
to the terms predicted by Eq. (6), showing that the
qualitative features of the cross-resonance gate are in-
deed reliable for this system. Additionally, the largest
eigenvalue for the process matrices generated by these
experiments was approximately 0.93, showing that
the dynamics are dominated by the unitary evolution.
Given that the reported measurement error rates for
IBM Quantum devices are on the order of 1% [39],
it is reasonable to ascribe a large portion of the non-
unitary errors to state preparation and measurement
errors.

(a) (b) (c) (d)

Figure 2: Schematic diagram for the series of process tomog-
raphy experiments used to verify the qualitative form of the
cross-resonance effective Hamiltonian Eq. (6). In all cases,
full QPT is performed on qubits 1 and 2. (a) No drives are
applied (b) Qubit 1 is driven at the frequency of qubit 2 (c)
Qubit 3 is driven at the frequency of qubit 2 (d) Both qubit
1 and qubit 3 are simultaneously driven at the frequency of
qubit 2.

The strengths of the dominant interactions and
their magnitude relative to the subdominant terms
are essentially constant over the measured pulse du-
rations, indicating that the interactions in the sys-
tem are stable with respect to the pulse duration.
The applied drive pulse used to obtain these results
had a strength of approximately 45MHz, which is
well below the qubit-qubit coupling strength between
the qubits considered (approximately 1.7MHz). In
this weak driving regime, the system should be well
approximated by the static cross-resonance Hamilto-
nian, which indeed seems to be the case. Any drive
strength in this regime should give rise to ZiXj and
11Xj terms that have similar relative magnitudes –
the Zi1j term will have a different relative magnitude
since it depends quadratically rather than linearly on
the drive strength. In the strong driving regime, cou-
pling to higher energy levels can induce substantial
unwanted terms in the Hamiltonian. Since such a
regime is difficult to control accurately enough for
the purposes analogue quantum simulation, we do not
consider it in this work and instead focus exclusively
on the weak driving regime.

To verify that the effective Hamiltonian for the
three qubit channel is the sum of the two qubit ef-
fective Hamiltonians (i.e., Heff

1,2,3 = Heff
1,2 + Heff

2,3), we
use four two-qubit QPT experiments, where the to-
mography is performed on qubits 1 and 2 after the
application of the following different drive protocols
(outlined schematically in Fig. 2):

1. No drives, leave the qubits idle for the drive du-
ration.

2. Drive qubit 1, leave qubit 3 idle.

3. Drive qubit 3, leave qubit 1 idle.

4. Drive both qubit 1 and 3 simultaneously.
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application of experiments 1-4 explained in the main text
and summarised in Fig. 2, with the tomography performed
on qubits 1 and 2 (shown by the blue ellipses), implemented
on the ibmq guadalupe quantum device. Terms with rates
less than 0.2 have been dropped for clarity, with the exception
of c1Y , which is shown for comparison. The first four sets of
bars correspond to the experimental data for the various driv-
ing setups, while the final set corresponds to the predicted
values for driving qubits 1 and 3 simultaneously, obtained as
the sum of the Hamiltonian rates for driving qubits 1 and 3
separately plus the idle Hamiltonian, which is approximately
vanishing. This predicted set of rates is very close (within
1.5%) to the real experimental rates for the simultaneous
drive with the exception of the 1iYj rate, which is at a much
lower magnitude and is therefore more susceptible to mea-
surement error. This indicates that the simultaneous drive
can indeed be modelled accurately as the sum of the individ-
ual effective Hamiltonians.

If the effective Hamiltonian generating the dynam-
ics observed in experiment 4 is equal to the sum of
Hamiltonians for the previous three experiments, then
it can be concluded that the Hamiltonian for the full
n−qubit system may be obtained by characterizing all
qubit pairs involved in the experiment. Additionally,
experiment 3 may be used to confirm that no unex-
pected additional terms are generated on idle qubits –
that is, the dynamics observed in experiment 3 should
only be single qubit X rotations. Fig. 3 summarises
the experimental results from experiments 1-4. As ex-
pected, no additional terms are observed on qubits 1
and 2 when qubit 3 is driven, regardless of whether
qubit 1 is itself driven. Additionally, the predicted
rates arising from adding the Hamiltonian rates for
experiments 1-3 (final set of bars in Fig. 3) matches
the results of experiment 4 very well, with all the rates
apart from c1Y (the rate of the 1iYj term) differ-
ing by less than 0.05MHz, or less than 1.5% of the
observed Hamiltonian rates. The error for c1Y was
slightly higher, at 0.07MHz, however this is likely due
to its significantly lower relative size, making it more
susceptible to fluctuations due to measurement error.
This indicates that the experimental drive behaves as
indicated by Eq. (6), without significant cross-talk,
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Figure 4: Hamiltonian terms resulting from applying simulta-
neous cross-resonance drives on qubits 1 and 3, implemented
on the ibmq guadalupe quantum device. The Hamiltonian
was obtained as the logarithm of the process matrix obtained
from full process fidelity as described in the main text. The
terms highlighted in red correspond to the expected non-zero
coefficients arising from the cross-resonance drive and terms
with magnitudes less than 0.15 have been dropped for clarity.
While the results are significantly noisier than the two qubit
experiments, the dominant terms are those expected from
the theory.

and that the effective Hamiltonians for smaller sub-
systems can be added to obtain the dynamics for
larger systems.

We note that we have not investigated longer-
distance coupling on the basis that we have not ob-
served cross-talk between next-nearest neighbours,
which makes longer-range couplings unlikely. Un-
der this assumption, the characterization of a full
n−qubit system can be performed using a number
of experiments that is independent of n by character-
izing disconnected sets of qubits in parallel.

3.1.1 Three Qubit Quantum Process Tomography

As an additional check that next-nearest-neighbour
cross-talk is negligible, the full process matrix corre-
sponding to the simultaneous cross-resonance drive on
qubits 1 and 3 (that is, the same set of drives that gen-
erated the third set of data in Fig. 3) can be evaluated
to obtain the full three qubit Hamiltonian coefficients
– the results of such a procedure are shown in Fig. 4.
The primary reason for investigating the same drive
protocol using three qubit QPT is to verify that the
terms observed in Fig. 3 arise only from the expected
two-body interactions and spurious single qubit terms
and not from any unanticipated three-body interac-
tions (such as a ZiXjZk interaction). Although these
terms should not be present based on the Hamiltonian
Eq.(6), it is important to verify that no unanticipated
sources of cross-talk are present.

The dominant Hamiltonian terms in Fig. 4 are
those expected from the theoretical drives (that is,
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1i1jZk,1iXj1k,1iXjZk, Zi1j1k and ZiXj1k), which
are highlighted in red. There are a number of other
terms with moderate strengths, albeit less than half
the magnitude of the expected terms. Notably, these
terms are completely unexpected, with no clear mech-
anism for how they could arise, whereas terms which
could feasibly be generated in a system with sub-
stantial pulse leakage (such as ZiXjZk or Zi1jZk)
are not observed. Moreover, there is no evidence of
these terms in the two qubit Hamiltonians (Fig. 3),
which can be seen most clearly by the ZiZj1k term,
which has an observed strength approximately 1/3
that of the ZiXj1k term in the three qubit QPT re-
sults, but which is negligible in the two qubit QPT re-
sults. This strongly implies that the observed terms
are artefacts arising from the imperfect reconstruc-
tion of the Hamiltonian from the experimental data.
Measurement error and decoherence can induce sig-
nificant errors in the process matrix, which can then
be exacerbated by the matrix logarithm. Both of
these effects become increasingly problematic as the
system size increases, which is why the data for the
three qubit process matrices are noisier than the cor-
responding two qubit process matrices. This is further
evidenced by the principle eigenvalue of the extracted
three qubit process matrix, which is λ0 = 0.74, im-
plying a strong degree of non-unitarity. If this were
due to the physical channel being non-unitary, one
would expect this to also be reflected in the two qubit
QPT results. However, all of the experiments showed
a similar, very high degree of unitarity, with principle
eigenvalues of approximately 0.93, a value which did
not significantly change with the addition of the sec-
ond drive pulse. As such, it is more likely that this
non-unitarity is due to measurement noise and pro-
cess matrix reconstruction error rather than genuine
physical processes.

3.2 Hamiltonian Tomography
Full QPT is useful for verifying that the expected dy-
namics are being generated in the experimental setup,
but, as argued above, it is ill-suited to extracting the
quantitative Hamiltonian rates necessary to charac-
terize the system. With a verified Hamiltonian form,
however, it is possible to obtain these rates far more
efficiently using Hamiltonian tomography [25, 29, 45].

For many systems of interest (including the FF
transmon system which forms the basis of this work)
the time evolution operator generated by the system
Hamiltonian consists of a linear combination of only a
small number of Pauli terms. When particularized to
two qubis, the terms in the Hamiltonian Eq. (6) form
a closed group under multiplication, meaning that the
cross-resonance channel can be expressed in terms of
a linear combination of only the terms appearing in
Eq. (6), rather than the full set of Pauli operators.
Since the qualitative form of the Hamiltonian Eq. (6)

Hamiltonian term Rate/MHz
ZiXj -0.4915
ZiYj -0.0332
ZiZj 0.0294
1iXj 0.4168
1iYj 0.0649
1iZj -0.0756
Zi1j 3.0810

Table 1: Cross-resonance Hamiltonian rates extracted from
the ibm hanoi quantum device using Hamiltonian tomog-
raphy as described in the main text, with the applied drive
amplitude Ω = 36 MHz. The dynamics are dominated by the
AC Stark shift Zi1j term, which can be eliminated by adjust-
ing the qubit drive frequency or by applying a dynamic phase
to single qubit pulses, leaving dynamics generated principally
by the desired ZiXj and 1iXj , the latter of which can be
eliminated by the addition of a simultaneous resonant pulse
on the target qubit. All other terms are significantly smaller.

has been rigorously verified through QPT in the previ-
ous section, this reduced structure can be relied upon
as accurate, thereby allowing the channel to be fully
characterized using significantly less effort than full
QPT.

We extract the rates ck
ij (with the exception of

cZ1
ij ) in Eq. (6) through a series of Rabi oscilla-
tion experiments acting on the |00⟩ and |10⟩ initial
states and measuring in the X, Y and Z bases on
the target qubit. The protocol for performing this
set of tomography experiments may be found in the
qiskit experiments framework on GitHub [2].

For pulses in which the drive envelope is purely real
(i.e., hY

i = 0 in Eq. (4)), three terms are dominant:
the Zi1j , ZiXj and 1iXj terms. Similarly, for purely
imaginary drive envelopes (hX

i = 0 in Eq. (4)) the
dynamics are dominated by Zi1j , ZiYj and 1iYj . In
this case, by initializing in the |++⟩ and |−−⟩ initial
states and measuring the target qubit in the X ba-
sis on the control qubit, the magnitude of the Zi1j

can be obtained as the sum of the frequencies of the
two resulting cosine functions. With this, the full set
of coefficients in Eq. (6) may be obtained using only
8 Rabi oscillation experiments. This fitting proce-
dure works very well, as evidenced by Fig. 5, which
shows the results of the Hamiltonian tomography im-
plemented on the ibm hanoi quantum device. This is
to be expected given the full QPT results above. The
solid lines in both Fig. 5a and Fig. 5b are generated by
numerically evolving the cross-resonance Hamiltonian
obtained from the fits to the experimental data. In
both cases, the points are the raw experimental data.
The suppression in the observed amplitudes is most
likely due to measurement error since it is present at
t = 0. The Hamiltonian rates obtained from the to-
mography are given in Table 1. By far the largest
term, at over 3MHz is the Zi1j term arising from

6
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Figure 5: Dynamics generated by applying the cross-
resonance interaction over increasing pulse durations, with a
drive amplitude of Ω = 36 MHz. (a) Expectation value evo-
lution resulting from measuring qubit 2 in each Pauli basis
following evolution from |00⟩ (blue) and |10⟩ (orange). (b)
Rabi oscillations resulting from applying the cross resonance
channel on the |++⟩ (blue) and |−−⟩ (orange) initial states,
measuring the first qubit. For both plots, points correspond
to experimental data obtained from the ibm hanoi quantum
device and the solid lines correspond to numerical expecta-
tion values extracted from evolution of the cross-resonance
Hamiltonian predicted by the fits to the experimental data.
The amplitudes of the oscillations are slightly reduced due
to measurement error. The Hamiltonian rates obtained from
these fits are given in Table. 1.

the AC Stark shift on the control qubit from the off-
resonant drive. This is expected to be the case based
on theoretical predictions (the Stark shift term is pro-
portional to the square of the applied drive amplitude
Ω, whereas the other terms are proportional to either
JijΩ or J2

ij , with Jij ≪ Ω).
The next largest rates are the desired entangling op-

erator ZiXj and the spurious single qubit 1iXj rota-
tion, which for these qubits and drive parameters have
equal and opposite rates with magnitudes approxi-
mately 0.5MHz. All other terms have substantially
smaller magnitudes and can be neglected. In particu-
lar, the two-body ZiYj and ZiZj terms, arising from
residual drive phase miscalibration and qubit-qubit
self-interaction respectively, are the smallest and are
more than an order of magnitude smaller than the
desired ZiXj term. These are the most problematic
terms, since they cannot be eliminated using single
qubit quantum control.

In order to use the cross-resonance interaction for
analogue quantum simulation, it is necessary to be
able to control all the Hamiltonian terms. As shown
in Eq. (4), the single qubit terms can be controlled or
eliminated through the addition of resonant control
pulses, while the magnitude of the two-body inter-
actions is controlled by the amplitude of the cross-
resonance drive. Since changing this amplitude also
changes all the other Hamiltonian rates, a strategy for
implementing analogue quantum simulation in this
platform would be to fix the cross-resonance ampli-
tude, and only use single qubit control to implement
the desired simulation.

A reasonable initial target would be to generate a
pure Ising-type interaction (after basis change) of the
form

H =
∑
⟨i,j⟩

JZX
ij ZiXj . (7)

In order to accomplish this, single qubit control pulses
can be used to cancel the remaining spurious terms.
These compensation pulses must be applied at very
small amplitudes compared with those typically used
for single qubit control. For comparison, the resonant
amplitude for implementing a single qubit X gate on
an IBM Quantum device is typically 30 MHz, approx-
imately sixty times that needed to eliminate the spu-
rious 1iXj term. It is often assumed that low am-
plitude drives are unproblematic, however, in real ex-
periments implementing such small drives can cause
significant problems, which will be shown in the fol-
lowing section.

4 Other Sources of Error
From the above analysis, it has been demonstrated
that FF transmon qubits would be a powerful plat-
form for analogue quantum simulation, assuming that
the small pulses necessary to cancel the spurious sin-
gle qubit terms can be implemented accurately. While

7



the fidelity of single qubit dynamics is typically as-
sumed to be much higher than that of entangling oper-
ations [40, 44], this breaks down in the low-amplitude
regime necessitated by the analogue simulation pro-
tocol proposed here.
The weakness of the effective cross-resonance in-

teraction also means that simulations must be run
for longer times than single qubit resonant dynam-
ics to observe interesting dynamics. As an illustra-
tive example, consider a calibrated ZiXj drive with
a strength of 0.5 MHz. In order to simulate the time
dynamics of this system for a duration JZXt = 1 (not
an especially ambitious goal considering gate-based
methods implemented on IBM Quantum devices are
capable of exceeding such times for many systems of
interest [21, 43]) the pulses need to be applied for a
duration of 2µs. In principle, this is not an issue, since
the reported decoherence and dephasing times for FF
devices significantly exceed these times (they are typ-
ically on the order of 100 µs [22]). Since the viability
of analogue quantum simulation relies heavily upon
this feature of FF transmon qubits, the reliability of
these decoherence times should be verified in real ex-
perimental settings. Additionally, over such long du-
rations, small errors can greatly reduce the fidelity of
the applied dynamics, making characterization of the
dynamics at low pulse amplitudes and over long times
crucial for analogue quantum simulation.

4.1 Low Amplitude Errors
One problematic source of errors arising from the
weak cross-resonance interaction is the deviation from
theoretical predictions for low amplitude (Ω less than
approximately 1.5MHz) resonant drives. This has sig-
nificant implications for the realization of the ana-
logue simulations described here due to the weakness
of the cross-resonance interaction compared to typical
resonant control.
The dynamics generated by a weak resonant pulse

can be investigated using single qubit quantum state
tomography following the evolution of the |0⟩ state
over time. Given the weak nature of the pulse and the
fact that any coupled qubits have frequencies which
are well detuned from the drive qubit, it is reasonable
to ignore spectator qubits.
Following Eq. (5) and applying pulses which are ap-

proximately constant such that hi are approximately
time-independent (with deviations from this primar-
ily arising from the non-zero pulse ramp time), the
resulting dynamics can be fit to a model Hamiltonian
of the form

H = Ω
2

(
hXX + hY Y + hZZ

)
. (8)

For the purposes of this work, the target channel is
generated by the application of a purely real pulse
with zero detuning such that the effective Hamilto-
nian is simply 1

2 ΩX. By performing the state tomog-
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Figure 6: Single qubit quantum state tomography results
showing ⟨X⟩, ⟨Y ⟩ and ⟨Z⟩ expectation values over varying
drive durations, with drive amplitudes of (a) 1.50 MHz and
(b) 0.07 MHz, implemented on the ibm hanoi quantum de-
vice. The points correspond to experimental data and the
solid lines correspond to fits to Eq. (8), from which phase,
detuning and amplitude errors may be extracted. For (a), the
observed Rabi frequency was 1.44MHz, the observed phase
error was −0.04π and the observed detuning was 0.05MHz.
For (b), the observed Rabi frequency was 0.16MHz, the ob-
served phase error was 0.65π and the observed detuning was
0.07MHz. The observed T2 time for both (a) and (b) was
31.69µs (this was extracted from (b) and used in the plots
of both (a) and (b)).

raphy experiments over an array of pulse durations,
the magnitudes of the X, Y and Z terms can be ex-
tracted, allowing for the phase (resulting in spurious
Y terms), detuning (resulting in spurious Z terms)
and amplitude (resulting in incorrect Rabi frequen-
cies) errors to be characterized. Since the necessary
evolution times for investigating such weak fields are
long enough for dephasing and decoherence effects to
be observed, an additional exponential decay of the
form exp(−t/T2) was included in the dynamics, al-
lowing for an approximation of the T2 decay time to
also be extracted. Fig. 6 shows the results of such
a state tomography scheme for two low amplitudes,
0.07 MHz, corresponding to 0.0005% of the maximum
drive amplitude accessible through the IBM Pulse
platform and 1.50MHz, corresponding to 0.01% of

8



the maximum drive amplitude. It should be stressed
that although these amplitudes are very small when
compared with typical resonant control pulses on FF
qubits, it is often necessary to use such low ampli-
tudes for cancelling the spurious terms in the cross-
resonance Hamiltonian.

For both Fig. 6b and Fig. 6a, there are significant
amplitude, phase and detuning errors, with the rel-
ative size of the errors being much higher for the
lower drive amplitude. For Fig. 6a, the experimen-
tal Rabi frequency (obtained as

√
(hX)2 + (hY )2) was

observed to be 1.44MHz, corresponding to an error of
0.06MHz or 4%. The phase error (obtained by fit-
ting hX and hY to Fig. 6a and then obtaining the
phase of hX + ihY ) was found to be −0.04 with the
detuning error being 0.05MHz. The origin of these
errors is most likely due to miscalibration: since the
typical target amplitudes for implementing quantum
gates are as high as possible without inducing un-
wanted transitions, the experimental settings for the
resonant drives will be calibrated for this regime. The
low amplitudes used in these experiments are far from
this regime, and so moderate non-linearities in the
control hardware could result in deviations between
the software and the experimental realization. While
these deviations are not ideal, and could cause prob-
lems for an experimental simulation in which precise
parameters are required, in principle the errors can be
counteracted by adjusting the amplitude, phase and
frequency of the applied pulse.

For Fig. 6b, the experimental errors are much
higher, with the observed Rabi frequency being
0.16 MHz, corresponding to an error of 0.09 MHz
or 129% of the theoretical drive. The phase error
was also significantly higher, at approximately 0.65π,
while the observed detuning was 0.07 MHz. The latter
two errors, although higher than Fig. 6a, should also
be able to be corrected in the same way. The am-
plitude error, however, cannot be fixed in software,
as it likely arises from the finite resolution of the ar-
bitrary waveform generators (AWGs). AWGs with
more than the required resolution can be built using
commercially-available components [26]. Thus, while
this is a limiting factor preventing the implementation
of analogue quantum simulations on currently avail-
able devices, it should not represent an insurmount-
able challenge for such an implementation in the near
future.

4.2 Spurious Dynamics in the Undriven System
A second consequence of the weak cross-resonance in-
teraction is that the simulations need to be performed
for longer times than for resonant single qubit dy-
namics (on the order of approximately 10µs). Both
the reported T2 and bare T ∗

2 dephasing times for the
IBM Quantum devices should be long enough for this
to be achieved [22]. However, experimentally, addi-
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Figure 7: Plot of spurious dynamics observed on the
ibm hanoi quantum device in the absence of driving as a
function of delay time, with the points corresponding to the
experimental data and the red line corresponding to a least
squares best fit to Eq. (9). The qubit is initialised in the |+⟩
X eigenstate, left idle for varying durations and measured
in the X basis. The same dynamics were not observed for
the same experiment performed in the Z basis, indicating
the presence of a spurious Z field. Given the structure of
the observed interaction, the most likely explanation is that
it is caused by coupling to a two level system defect in the
superconducting material.

tional spurious terms may be observed which signifi-
cantly impact the behaviour of FF transmon systems
over this time period. This is illustrated when one
attempts to measure the dephasing of the system ex-
perimentally. The dephasing of a quantum system can
be experimentally measured by initializing in the |+⟩
state, waiting for varying durations, and then measur-
ing in the X eigenbasis. In a system with dephasing
error, the expectation value should exhibit an expo-
nential decay over the characteristic T ∗

2 time. In the
absence of any driving or spurious fields, there should
not be any oscillatory behaviour. This is not necessar-
ily the case experimentally. Fig. 7 shows the results
of performing such an experiment on the ibm hanoi
quantum device, with the results being dominated by
strong oscillations. This effect is not symmetric for all
axes: performing the same experiment in the Z eigen-
basis results in no such oscillations, implying that the
effect arises due to a spurious Z field.
The oscillations in Fig. 7 may be fit to a function

of the form

f(t) = (c0 cos(f0t) + c1 cos(f1t)) e−t/T ∗
2 , (9)

with five fit parameters {c0, c1, f0, f1, T ∗
2 }. The re-

sults of such a fit for qubit 16 in the ibm hanoi
quantum device are given as the red line in Fig. 7.
For this fit, the optimal frequencies were obtained as
f0 = 0.18 MHz and f1 = 0.24 MHz, with weight co-
effients c0 = 0.48 and c1 = 0.51. These coefficients do
not reproduce the behaviour observed when measur-
ing other qubits or when measuring the same qubit
on different days and thus should be considered to
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be specific to this qubit at this particular time. As
expected, the T ∗

2 time was found to be significantly
shorter than the T2 time reported by IBM, at 20.2µs
as opposed to 209.6µs for this qubit. This may still
be long enough to offer some advantage for analogue
quantum simulation.

Since there are two observed frequencies in the os-
cillations, the observed dynamics cannot be explained
by a simple frequency misalignment. While it is dif-
ficult to identify the source of these errors with any
certainty given the limited experimental access avail-
able to end users, the form of the dynamics is con-
sistent with coupling between the qubit and a meso-
scopic environment. Such an environment could be
provided by the presence of parasitic two-level sys-
tems (TLSs) [11, 27] arising from structural defects
in the superconducting material. In the experiment
presented in Fig. 7, coupling to a single TLS defect
would induce the observed dynamics. The presence of
TLSs in superconducting qubits is well known to be
a significant source of decoherence [33], and could be
generated through background radioactivity or cosmic
rays [32]. It is likely that the TLS coupling also in-
duces significant decoherence, reducing the observed
T ∗

2 time. Eliminating this coupling could therefore
significantly increase the decoherence times, allowing
for longer analogue simulation times to be reached
and extending the utility of such protocols. The na-
ture of the spurious dynamics varies significantly over
time. Fig. 8(a) shows 100 repetitions of the dephasing
test outlined above, obtained on a different day to the
data presented in Fig. 7 but for the same qubit and
device. The blue lines show individual evolution for a
characteristic subset of 20 experiments, with the blue
shaded region corresponding to the upper and lower
bounds of the obtained results. These data also show
similar oscillatory behaviour, but cannot be well re-
produced by fits to Eq. (9). This can be explained
by the qubit coupling to multiple TLS defects rather
than a single one as in Fig. 7. Moreover, the oscilla-
tions fluctuate significantly over the time scale dur-
ing which the experiments were performed (approxi-
mately six hours), indicating that the cause of the os-
cillatory behaviour changes substantially on this time
scale. Performing the same experiment, but measur-
ing in the Z basis (Fig. 8(b)) yields no oscillations
for any of the 100 experimental repetitions, providing
further evidence that the dynamics are induced by an
effective Z field. The increase in the ⟨Z⟩ expectation
value over time arises from the decay of the initial
state |+⟩ to a linear combination of |+⟩ and |−⟩ over
time due to dephasing.

The black line in Fig. 8(a) shows the average be-
haviour across all experimental runs, with the limit-
ing behaviour trending towards an exponential decay.
Performing the delay experiment on different qubits
on different days does not always result in oscilla-
tions, but can also result in decay behaviour similar
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Figure 8: Single qubit time dynamics and purity measure-
ments corresponding to experiments initialized in |+⟩ and
measured in all three Pauli bases following different delay
times, with the experiments implemented on the ibm hanoi
quantum device. The data were obtained from the same
qubit as Fig. 7, but on a different day. (a) Time evolution
of ⟨X⟩ expectation values, with the black line correspond-
ing to the mean evolution, the blue lines corresponding to
experimental evolution and the shaded region bounding the
highest and lowest points observed. (b) Time evolution of
⟨Z⟩ expectation values, with the black line corresponding to
the mean evolution, the orange lines corresponding to experi-
mental evolution and the shaded region bounding the highest
and lowest points observed. (c) Purity measurements for the
delay experiments. While a multi-frequency classical field to-
gether with T2 dephasing could explain the results of (a) and
(b), the revivals in the purity at approximately 20µs and 40µs
in (c) cannot be explained by classical noise sources.
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to this mean behaviour. If the variation in the os-
cillatory dynamics can be explained by coupling to
a mesoscopic TLS environment in which the number
of defects is not constant over time, then the time-
average behaviour of this system is likely to be qual-
itatively similar to coupling between a qubit and a
bulk environment of defects. This decay behaviour
could therefore be plausibly explained by coupling to
a macroscopic environment of TLS defects.

The identification of the source of the oscillations
with coupling to a low-dimensional environment is
further reinforced by Fig. 8(c), which shows the pu-
rity of the single qubit state as a function of delay
time for the same experiments as Figs. 8(a) and (b).
The purity measurements show a significant revival at
approximately 20µs and a smaller revival at approx-
imately 40µs. Such revivals cannot be explained by
classical sources of noise (such as, for example, mag-
netic fields induced by nearby power lines) and are
indicative of coherent coupling between the qubit and
some other quantum object. This is further evidence
in support of the identification of the spurious dynam-
ics with coupling to a low-dimensional environment
consisting of TLS defects.

There is therefore strong evidence that the observed
dynamics are due to a coherent coupling process be-
tween the qubit and some other quantum object.
Based on the form of the oscillations and the fact
that TLSs have been identified as a major source of
decoherence in other superconducting platforms, it is
reasonable to identify this quantum object with TLS
defects. However, this cannot be rigorously verified
(nor, indeed, disproven) using the level of experimen-
tal access available to end users. The spurious oscillat-
ing terms, regardless of their origin, are a significant
barrier to the implementation of analogue quantum
simulation on FF transmon qubits and thus the ex-
perimental investigation of their origin is of crucial
importance if such a goal is to be achieved.

5 Assessment against the viability cri-
teria
In this section, the conclusions drawn from the ex-
perimental results presented in the rest of the paper
are used to explicitly evaluate the performance of FF
transmon qubits with respect to the criteria of (C1)
expressibility, (C2) practical controllability and (C3)
stability outlined in the introduction.

(C1) Expressibility
As shown in Sec. 2, FF transmons are, theoretically,
highly expressible, and should therefore satisfy this
criterion. Through the full quantum process tomog-
raphy results in Sec. 3.1, the validity of Eq. (6) (and
therefore the expressibility of the system) is verified.

Thus, criterion (C1) is satisfied.

(C2) Practical Controllability
The full process tomography results for different driv-
ing setups in Sec. 3.1 show that the two-qubit coupling
terms can be applied in parallel without inducing sig-
nificant additional noise. Additionally, the Hamilto-
nian tomography results in Sec. 3.2 show that a cali-
bration procedure to obtain the amplitudes necessary
to control all the Hamiltonian terms is feasible, being
able to be completed with greatly reduced effort com-
pared with full quantum process tomography. These
experiments imply that the FF transmon system is
indeed controllable – however, the issues with low am-
plitude single qubit driving presented in Sec. 4.1 mean
that full control is not possible on currently avail-
able devices. This is mostly attributed to the finite
resolution of the control hardware not allowing for
the accurate implementation of low amplitude pulses,
which are themselves necessary due to the relatively
weak cross-resonance interaction compared with typi-
cal resonant single-qubit drive strengths. Such a limi-
tation could be overcome with moderate hardware im-
provements. Alternatively, analogue control schemes
could be devised that incorporate the control limita-
tions into the simulation (for example, one could sim-
ulate Hamiltonian dynamics in the presence of a static
magnetic field). Thus, criterion (C2) is not currently
satisfied on available devices, but it is close to being
satisfied and the limitations imposed by the lack of
practical controllability could be overcome with mod-
erate effort.

(C3) Stability
One of the most favorable aspects of FF transmon
qubits as a platform for quantum computing is their
long coherence times. In Sec. 3.2 and 4.1, these long
coherence times are observed for both the two-qubit
Hamiltonian tomography and the single qubit driving
results respectively, providing experimental verifica-
tion of this property. However, the stability of the
experimental system is called into question by the evi-
dence of TLS coupling presented in Sec. 4.2. The pres-
ence of this coupling could, in principle, be accounted
for in the control scheme for an analogue simulation.
Although approaches for achieving such control over
the defects are still in their infancy, with robust ex-
perimental techniques for characterising TLS defects
in superconducting materials only being published in
the last few years [1, 11, 27], practical approaches have
been proposed using techniques such as noise spec-
trum engineering [47]. The more problematic feature
of this coupling is its transient nature, changing dra-
matically over relatively short periods of time, which
could cause issues for analogue simulations that could
not be alleviated through a calibration procedure. For
this reason, criterion (C3) is not currently satisfied.
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6 Conclusion and Outlook
Quantum simulation is one of the flagship applications
of quantum devices. Current digital devices satisfy al-
most all of the criteria necessary for the realization of
such simulations, but gate errors continue to pose sig-
nificant problems for digital simulation methods such
as Trotterization.

Analogue quantum simulation is an alternative
route towards realizing Hamiltonian simulation. We
experimentally evaluate fixed-frequency transmon
qubits against three criteria which must be satisfied
in order to realise analogue quantum simulation ex-
perimentally: (C1) expressibility, (C2) practical con-
trollability and (C3) stability.

Our results indicate that superconducting fixed-
frequency devices are a flexible and highly controllable
analogue simulation platform, and we demonstrate
that the Hamiltonian of the system can be measured
quickly and with high confidence.

We find that the weakness of the cross-resonance
interaction causes significant issues. At the low am-
plitudes required to counteract the spurious single
qubit terms arising from the cross-resonance interac-
tion, significant phase, amplitude and detuning errors
cause problematic deviations from the ideal resonant
drive. At moderate drive amplitudes these can be ad-
dressed on currently available devices by calibrating
the drive pulses, but for very low amplitudes the lim-
ited resolution of the arbitrary waveform generators
(AWGs) precludes such calibration protocols from be-
ing realized. This issue could be easily addressed us-
ing high resolution AWGs, and thus is not a signif-
icant limiting factor for the implementation of ana-
logue quantum simulations on FF transmon qubits.
Criteria (C1) (the system Hamiltonian must be ex-
pressible enough to permit simulation of systems of in-
terest) and (C2) (the system must be controllable such
that individual Hamiltonian terms can be switched
on and off independently) may then be satisfied with
only modest improvements to current FF transmon
implementations.

Alternatively, the floor on the implementable drive
pulse amplitudes could be interpreted as a minimum
disorder term for analogue simulations. For the ex-
ample drives here, the minimum disorder would cor-
respond to approximately one third of the ZiXj in-
teraction strength, although the precise value varies
from qubit to qubit.

A more problematic issue is diagnosed through the
presence of dynamical evolution on qubits which are
initialized in an X eigenstate and left without addi-
tional drive pulse. We attribute the observed dynam-
ics to coupling to two level system defects, which is
known to be a major source of decoherence in other
superconducting platforms. Since the spurious dy-
namics fluctuate over time, any protocol designed to
eliminate the interaction would need to account for

this fluctuation in order to ensure that criterion (C3)
(the system must remain stable over the duration of
the simulation) is satisfied.
Since rigorous verification and full characterization

of the TLS interaction are not possible with the level
of experimental access available to end users, a crucial
route for further investigation lies in the application of
spectroscopic techniques reported in other supercon-
ducting quantum platforms for the full characteriza-
tion of this effect [13] and in the development of an ef-
fective method to eliminate these interactions. While
the focus of this work is on evaluating FF qubits as a
platform for analogue quantum simulation, this par-
ticular error could have a significant impact on gate-
based computation as well. TLS coupling has been
identified as a key source of decoherence in supercon-
ducting platforms [33], and so a focus on addressing
this problem could have wide-reaching implications
beyond analogue simulation.
In summary, FF transmon qubits have great po-

tential as a platform for analogue quantum simula-
tion due to their ability to implement a wide array
of physically interesting Hamiltonians. The primary
limiting factors preventing the implementation of such
simulations on current devices are the limited resolu-
tion of the control pulses and spurious coupling to two
level system defects. The former can be straightfor-
wardly eliminated with either modest hardware im-
provements or incorporation of the limitations into
the simulations, while the latter requires further ex-
perimental work identify, characterize and eliminate
the coupling. Overcoming these limitations will allow
for the realization of the potential of FF transmon
qubits for analogue quantum simulation.
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