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Abstract. The field of computational pathology has witnessed great
advancements since deep neural networks have been widely applied.
These networks usually require large numbers of annotated data to train
vast parameters. However, it takes significant effort to annotate a large
histo-pathology dataset. We introduce a light-weight and interpretable
model for nuclei detection and weakly-supervised segmentation. It only
requires annotations on isolated nucleus, rather than on all nuclei in the
dataset. Besides, it is a generative compositional model that first locates
parts of nucleus, then learns the spatial correlation of the parts to further
locate the nucleus. This process brings interpretability in its prediction.
Empirical results on an in-house dataset show that in detection, the pro-
posed method achieved comparable or better performance than its deep
network counterparts, especially when the annotated data is limited. It
also outperforms popular weakly-supervised segmentation methods. The
proposed method could be an alternative solution for the data-hungry
problem of deep learning methods.
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1 Introduction

Histopathology images provide an understanding of the microenvironment of
various diseases. Nuclei detection and segmentation plays an important role for
the analysis of cell morphology and organization. Unfortunately, the non-uniform
chromatin texture, irregularity in size and shape as well as touching cells and
background clutters put a big challenge to automated nuclei detection and seg-
mentation [2,13,24].
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Fig. 1. Flowchart of the proposed method for nuclei detection. A convolution layer is
used as feature extractor. For training, we cropped nucleus image patches and learn
model parameters (µ and A) in an unsupervised way. In testing, we compute the nucleus
existence probability with learned parameters, together with a shape decomposition
algorithm to separate touching nuclei, to obtain a per-pixel likelihood prediction.

Recently, deep convolutional neural networks (DNNs) have shown remarkable
and reliable performance in histopathology image nuclei detection and segmen-
tation [5,12,16,23,28]. Some works adapt a top-down object detector such as
Faster RCNN [18] to histopathology images [3,4]. Others formalize detection as
regression to a proximity map, where values on the proximity map represent the
proximity to or probability of a nucleus center [8,21,26]. However, the collec-
tion of a large number of annotated data is critical and becomes a bottleneck
to train conventional DNNs for the analysis of new modalities. To address this
issue, there have been interests in nuclei segmentation with weak supervision.
Most works in this direction exploited pseudo labels such as progressive model
output [14], Voronoi and clustering labels [17], and super-pixel [6]. Nevertheless,
a large collection of data is still needed, and most works regard DNNs as a black
box without exploring its hidden representations, thus having little interpretabil-
ity in their decision process. Considering nuclei shapes are invariant to stains,
generative models for nuclei detection and segmentation learned from a small
dataset are an alternative for efficient and robust analysis of pathology images.

In this study, we propose a light-weight interpretable model for nuclei detec-
tion and weakly supervised segmentation. We aim to design a generative model
for a single nucleus, therefore only annotations on isolated nucleus are required,
which significantly reduces the annotation cost. Inspired by the Compositional
Networks [11], we developed a model that do explicit compositional modeling
of a nucleus. In this way, the proposed method is able to locate nuclei by find-
ing image regions that it can explain with high probability, and give human
interpretable explanations for its prediction. To the best of our knowledge, we
are the first to adapt Compositional Networks to nuclei detection and segmen-
tation on histopathology images. To further boost the performance at touching
nuclei that are hard to locate and segment precisely, we introduce a non-learning
algorithm that requires no annotations to separate touching nuclei. Near-convex
shape decomposition has been widely studied in its application to segment binary
shapes into parts. However, little has been studied in its effectiveness in sepa-
rating touch nuclei in histopathology images. We adapted a near-convex shape
decomposition algorithm by developing novel ways of defining cuts and assigning
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pathologically reasonable weights to the cuts, which proved to be well suited
for this task. The output of the separation algorithm is integrated into the
compositional model. Empirical results on an in-house DAPI (4’,6-diamidino-
2-phenylindole) stained pathology image dataset demonstrate the effectiveness
and data efficiency of the proposed method for nuclei detection and weakly-
supervised segmentation.

2 Method

In Sect. 2.1, we discuss Compositional Network [11], which was originally intro-
duced for natural image classification. We discuss its interpretability for nuclei
detection in Sect. 2.2. Section 2.3 discusses our extension based on the Composi-
tional Networks to multiple instance detection, where each nucleus is regarded as
an object instance. Finally, in Sect. 2.4, we utilize the prior knowledge about the
near-convex shape of nuclei, and introduce near-convex shape decomposition into
the developed model, which further facilitates the separation of touching nuclei.
The whole flowchart is illustrated in Fig. 1.

2.1 Compositional Networks for Nuclei Modeling

Compositional Network [11] explains the feature map from a convolutional layer
in a generative view. Denote a feature map as F ∈ R

H×W×D, with H and
W being the spatial size and D being the channel size. The feature vector fi

at position i are assumed independently generated, and each is modeled as a
mixture of von-Mises-Fisher (vMF) distributions:

p(F |A, Λ) =
∏

i

p(fi|Ai, Λ), (1)

p(fi|Ai, Λ) =
∑

k

αi,kp(fi|μk), (2)

p(fi|μk) ∝ exp {σfT
i μk}, ||fi|| = 1, ||μk|| = 1, (3)

where Λ = {μk} are kernels for vMF distribution, which can be regarded as the
“mean” feature vector of each mixture component k, and Ai = {αi,k} are the
spatial coefficients, which learn the probability of μk being activated at position
i. We say that a vMF kernel μk is activated at position i if fi and μk have a
high cosine similarity. We set the hyperparameter σ = 30 for tractability. Given
a set of feature maps, the mixture coefficients {αi,k} and the vMF kernels {μk}
can be learned via Maximum Likelihood Estimation in an unsupervised way.

2.2 Interpretable Modeling of Nucleus

An important property of convolutional networks is that the spatial information
is preserved in the feature maps. To utilize this property, the set of spatial
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coefficients {αi,k} are introduced to describe the expected activation of a kernel
μk at a position i. Thus, αk at all positions can be intuitively thought of as
a 2D template, which depicts the expected spatial activation pattern of parts
of a nucleus – e.g. where the edges are expected to be located in the image.
Therefore, the decision process of the proposed model can be interpreted as first
detecting parts, then spatially combining them to get a probability about the
nucleus’ presence. Note that this implements a part-based voting mechanism.

As the spatial pattern varies dramatically with the shape, size and orientation
of nuclei, we further represent F as a mixture of compositional models:

p(F |Θ) =
M∑

m=1

νmp(F |Am), (4)

with V={νm ∈ {0, 1},
∑

m νm=1}. Here M is the number of compositional models
in the mixture distribution and νm is a binary assignment variable that indicates
which compositional model is active. Intuitively, each mixture component m
will represent a different set of nuclei with specific shape and size (see Fig. 3 in
Appendix). The parameters of the mixture components {Am} need to be learned
in an EM-style manner by iterating between estimating the assignment variables
V and maximum likelihood estimation of {Am}.

2.3 Adaptation to Nucleus Detection

Previous work has proposed to detect salient object in natural images based
on Compositional Network [25]. However, it is limited by the assumption that
only one salient object is present in an image. Due to the significant difference
between histopathology images and natural images, the adaptation for nucleus
detection is non-trivial.

First, the background in DAPI stained histopathology images is cleaner than
natural images. However, this encourages the model to rely heavily on the back-
ground signals, which is undesirable and results in false positives in background
regions. We propose to get rid of the disturbance of background signals by mask-
ing. For each mixture component m, we pick a subset from Am to obtain a soft
foreground mask: Mm =

∑
k∈Kf

αm
k , where Kf is a subset of vMF kernels which

represents foreground parts (interior, edge, etc.). Then, we modify the compu-
tation of log-likelihood of p(F |Am) as:

log p(F |Am) =
∑

i Mm
i log p(fi|Am

i , Λ)∑
i Mm

i

(5)

which gives more weights to vMF kernels activated at foreground.
Second, we extend the model to multiple objects by modifying the likelihood:

p(F) =
∏

i

∏

n

p(Fi)zi,n (6)

where Fi are patches from a whole feature map F , and {zi,n ∈ {0, 1}|∑n zi,n =
1} are indicators of existence of object n at patch Fi. Note that by the design
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of the likelihood, only one object model can be active at one position in the
feature map. We maximize the likelihood defined in Eq. 6 by applying the model
in sliding windows, then selecting the local maxima in the resulted likelihood
map after non-maximum suppression.

2.4 Touching Nuclei Separation

Nuclei usually clump and touch with each other, makeing it difficult to recognize
single nucleus. The compositional model is able to explain for a single nucleus,
but insufficient to separate touching nuclei precisely. We introduce a non-learning
algorithm to segment nucleus that requires no annotations. The algorithm is
adapted from near-convex shape decomposition [19]. The decomposition output
is integrated into the compositional model as a shape prior.

First, we select the vMF kernel μ0 that respond to the background. Given
a feature map F , we compute 1 − μT

0 fi at each position i to obtain a nucleus
foreground score map. It is further binarized to get foreground connected compo-
nents. These connected components may consist of a single nucleus or touching
nuclei. To distinguish between them, we leverage the following observations:
1) The shapes of nuclei are usually convex. 2) When multiple nuclei cluster
together, there are usually concave points along the boundary of the connected
component. Based on these observations, we propose to use a near-convex shape
decomposition algorithm to process each connected component.

Following [19], a near-convex decomposition of a shape S, Dφ(S), is defined
as a set of non-overlapping parts Pi each with concavity c(Pi):

Dψ(S) = {Pi|
⋃

i

Pi = S,∀Pi ∩ Pj = ∅, c(Pi) ≤ ψ} (7)

c(Pi) = max
v1,v2∈Boundary(Pi)

{c(v1, v2)} (8)

where Pi denotes the decomposed parts; ψ = 3 is a parameter for near-convex
tolerance. For any two points v1, v2 on the boundary of Pi, c(v1, v2) is intuitively
defined as the max distance from a boundary point u between v1, v2 to the line
segment v1v2. If c(v1, v2) > ψ, they are named mutex pairs. A set of poten-
tial cuts is needed to split S. We compute the curvature of the boundary of S
and locate concave points on it. A potential cut is formed by the line segment
between two concave points if the line segment lies inside S. To comply with the
near-convex constraint, all mutex pairs must be cut into different parts. Further-
more, a specifically designed weight is assigned to each cut, which encourages the
selected cuts to be perpendicular to the local boundary and be short, in accord
with human intuition. In Appendix 1, we give detailed illustration, formulation
and solution for this algorithm.

Nuclei Candidates as Prior. After decomposing the nuclei foreground con-
nected components, the obtained regions are near convex and are taken as can-
didates of single nucleus. These candidates serve as a prior guiding where to pay
attention to for nucleus detection. We define the prior probability of nucleus exis-
tence q as Gaussian distributions centered at each candidate. The final detection
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probability is obtained by integrating the prior into the compositional model and
the final probability map is defined as:

p(F) =
∏

i

∏

n

p(Fi)zi,nq(i). (9)

2.5 Weakly-Supervised Nuclei Segmentation

The nuclei candidates obtained from Sect. 2.4 can also be used as segmentation
masks. Since the algorithm only receives bounding box as supervision which
is used to crop nucleus images, it achieves segmentation masks in a weakly-
supervised way. The obtained segmentation masks have a property to be near
convex. Although rare nuclei can have concave shapes and be wrongly cut, it can
be indicative of potential annotation errors (e.g. where the annotator mistakenly
recognized a pair of touching nuclei as a single one).

3 Experiments and Results

Dataset. Multiplexed immunofluorescence (mIF) and immunohistochemistry
(IHC) are emerging technologies with better predictions for immunotherapy [15].
The mIF images were obtained using Vectra-3 and Vectra Polaris microscopes
(Akoya BioSciences, MA, USA) from six patients with liver cancer (3), lung
adenocarcinoma (1), lung small cell carcinoma (1), and melanoma (1). For the
nuclei detection and segmentation, DAPI(4’,6-diamidino-2-phenylindole) stained
images were used in this study among the multispectral images. The selected
images were manually annotated and checked by trained researchers. Totally
18312 nuclei were annotated on 210 images, 186 for training and 24 for testing.

3.1 Nuclei Detection

Baselines & Evaluation Metrics. Our motivation is to develop data-efficient
models to save annotation efforts, meanwhile being interpretable. Therefore, we
compare our model with a classic baseline patch-CNN [22], and one of the state-
of-the-art methods [27], which utilized structured regression with a U-Net-like
backbone [20]. For patch-CNN, the model complexity is close to ours and the
same patch size was used, which makes the comparison fair. The structured
regression (SR) [27] method is trained with full image supervision rather than
on isolated nuclei, as it was designed. Therefore, it serves as an upper-bound for
comparison. Following [1,7,10,21], we adopt the commonly used precision (P) -
recall (R) metrics to evaluate nucleus detection methods.

Implementation Details. The proposed method uses the first layer of a U-
Net [20] as a feature extractor, which is pretrained on unsupervised nuclei super-
pixel segmentation. It is followed by the generative compositional model defined
in Sect. 2. We used 3097 isolated nuclei to learn the model parameters. We empir-
ically found that 12 vMF kernels are sufficient to model different parts of a
nucleus (See Fig. 2 in Appendix). The number of compositional models in the
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Fig. 2. Evaluation of nucleus detection by Precision-Recall curve. (a) Trained with full
data; (b) Trained with 10% data.

mixture is set to M = 20, each represents nuclei with a specific size and shape
(See Fig. 3 in Appendix). To detect nuclei with various orientations, we rotated
input images by every 30◦. The hyper-parameters were chosen via evaluation on
a validation set.

Results. Figure 2 shows the P-R curve of the baseline Patch-CNN, SR and the
proposed method. The proposed method surpasses patch-CNN by a large margin,
which shows the effectiveness of the proposed method. We believe this is due to
the explicit generative modeling of nuclei features, which boosts performance
while keeping the model to be light-weight. Due to extended model complexity
and full image supervision training, SR outperforms the proposed method. This
is understandable since the SR model is a much deeper network and has a larger
field of view with full image supervision. However, deep neural networks like SR
are data hungry and require large amounts of data to learn their parameters,
while the proposed method only requires the annotations of isolated nuclei, which
saves much effort for human experts.

To verify the hypothesis that our method is more data-efficient than deep
neural networks, we made a comparison between SR and our method under
approximately the same amount of training data in terms of the number of
nuclei used. For SR, this was implemented by limiting the number of training
images to ensure the total number of nucleus seen in training are about the same.
In Fig. 2(b), we can see that when trained with approximately the same amount
of data, the performance of SR degrades significantly. This result proves that
when large amounts of annotated nuclei samples are not available, our method
is able to present superior nuclei detection results than an over-parameterized
(in terms of the dataset size) deep neural network.

Table 1. Weakly supervised segmentation performance measured in AJI and DSC on
the in-house dataset.

AJI DSC

BBTP 0.6765 0.8513

PointAnno 0.5991 0.7805

Ours 0.7030 0.8900
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3.2 Weakly-Supervised Nuclei Segmentation

As stated in Sect. 2.5, by utilizing the unsupervisedly learned vMF kernels and
the near-convex decomposition algorithm, we can obtain nuclei instance segmen-
tation masks. We compare with two weakly-supervised segmentation methods,
BBTP [9] and PointAnno [17]. BBTP is a well-known weakly-supervised model
for natural images, and PointAnno is developed for nuclei segmentation. Aggre-
gated Jaccard Index (AJI) [12] and Dice similarity coefficient (DSC) were used
as metrics. AJI focuses more on the correct matching between segmented nuclei
instances and ground-truths, while DSC focuses on the foreground/background
classification.

Table 1 shows the segmentation performance of the three methods. Our
method outperforms BBTP and PointAnno on both AJI and DSC. What’s more,
our method requires little training (only the clustering of vMF kernels), which
is an advantage over deep networks. Qualitative results are shown in Fig. 3.
Our method is able to precisely locate the foreground and cut touching nuclei,
even for hard cases where more than two nuclei are touching with each other.
Compared with BBTP and PointAnno, the segmentation masks obtained by the
proposed method aligns better with the ground-truth nuclei contours, thanks to
the accurate detection of foreground as well as the cutting at reasonable positions
between touching nuclei.

Fig. 3. Qualitative segmentation results. Each line shows one image from the test set
and the segmentation masks obtained by three methods on it. (a) is the DAPI stained
image with the boundaries of each nucleus annotated. (b) are the predictions of BBTP,
(c) are the predictions of PointAnno, and (d) are the predictions of our method.
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4 Conclusion

We introduce a light-weight interpretable model for nuclei detection and segmen-
tation. It is data-efficient that ease the data annotation cost for data hungry deep
learning methods. In addition, it is interpretable in that it exploits the hidden
features and builds probabilistic models for nucleus. We hope our work would
contribute to the study of data efficiency and interpretability in the histology
image analysis community.
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