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Abstract
Background The paternal diet affects lipid metabolism in offspring for at least two generations through nutritional program-
ming. However, we do not know how this is propagated to the offspring.
Objectives We tested the hypothesis that the changes in lipid metabolism that are driven by paternal diet are propagated 
through spermatozoa and not seminal plasma.
Methods We applied an updated, purpose-built computational network analysis tool to characterise control of lipid metabo-
lism systemically (Lipid Traffic Analysis v2.3) on a known mouse model of paternal nutritional programming.
Results The analysis showed that the two possible routes for programming effects, the sperm (genes) and seminal plasma 
(influence on the uterine environment), both have a distinct effect on the offspring’s lipid metabolism. Further, the program-
ming effects in offspring suggest that changes in lipid distribution are more important than alterations in lipid biosynthesis.
Conclusions These results show how the uterine environment and genes both affect lipid metabolism in offspring, enhancing 
our understanding of the link between parental diet and metabolism in offspring.
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Abbreviations
CMD  Cardio-metabolic disease
CNS  Central nervous system
DNL  De novo Lipogenesis
ENFC  Error-normalised fold change

HH  Offspring group bred from sperm from fathers fed 
a high carbohydrate, low protein diet and seminal 
plasma from ones fed a high carbohydrate, low 
protein diet

HN  Offspring group bred from sperm from fathers fed 
a high carbohydrate, low protein diet and seminal 
plasma from ones fed a normal diet

JTC  Jaccard-Tanimoto coefficient
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LTA  Lipid Traffic Analysis
NH  Offspring group bred from sperm from fathers fed 

a normal diet and seminal plasma from ones fed a 
high carbohydrate, low protein diet

NN  Offspring group bred from sperm from fathers fed 
a normal diet and seminal plasma from ones fed a 
normal diet

MS  Mass Spectrometry
PC  Phosphatidylcholine
PE  Phosphatidylethanolamine
PI  Phosphatidylinositol
SM  Sphingomyelin
SUSP  Shared and unique structures plot
TG  Triglyceride

1  Background

There is growing recognition that paternal nutritional pro-
gramming is an important factor in the metabolism and 
health of offspring(Hur et al., 2017; Li et al., 2016; McPher-
son et al., 2016; Morgan et al., 2020; Watkins & Sinclair, 
2014; Watkins et al., 2017, 2018). This research has con-
tributed to the understanding that obesity in both men and 
women has long-term consequences for their offspring 
through nutritional programming (Jazwiec & Sloboda, 2019; 
Tarry-Adkins & Ozanne, 2017; Watkins & Sinclair, 2014; 
Watkins et al., 2018). It has sparked interest in the mecha-
nisms that lead to nutritional programming. One important 
avenue is the evidence that lipid metabolism is clearly asso-
ciated with nutritional programming (Furse et al., 2019, 
2021b) and changes in lipid metabolism are associated with 
an increased risk of cardio-metabolic disease (CMD) (Cro-
pley et al., 2016; Fernandez-Twinn et al., 2019; Ng et al., 
2010; Perng et al., 2019; Wei et al., 2014). Lipid metabolism 
is both shaped by nutritional programming and associated 
with metabolic ill-health, which suggests shared underlying 
mechanisms.

However, there are myriad possible mechanisms that 
can play a role in paternal nutritional programming. First, 
the nutrition of the parent(s) affects their own body com-
position and organ function. This includes general effects 
like obesity of course but also subtler ones such as a high 
carbohydrate diet increasing the rate of de novo lipogen-
esis. Second, the molecular changes that occur in the off-
spring as a result of that parental nutrition, such as their 
volume of adipose (Lecoutre & Breton, 2014; Lukaszewski 
et al., 2013) and hyperglycaemia (Fernandez-Twinn et al., 
2019). Such effects have also been investigated by network 
analysis of lipid metabolism (Furse et al., 2021b). Third, 
exposure to poor nutrition or over nutrition can result in 
epigenetic changes that can also be propagated. However, 
it remains unclear through which route(s) nutritional 

programming is propagated, especially from the father 
to the offspring. Propagation of nutritional programming 
from fathers to offspring is likely to be simpler than that 
from mothers to offspring; propagation of paternal pro-
gramming can only happen through the spermatozoa or 
seminal plasma. Current evidence suggests that these two 
have separate effects(Li et al., 2016; McPherson et al., 
2016; Morgan et  al., 2020; Watkins & Sinclair, 2014; 
Watkins et al., 2017, 2018; Wei et al., 2014), however a 
relationship with lipid metabolism has not been reported 
for either of them individually.

In this study we elected to investigate the propagation 
of paternal nutritional programming effects through sper-
matozoa and seminal plasma. The hypothesis was that 
changes in lipid metabolism were driven by paternal diet 
are propagated through spermatozoa. We tested this using 
a mouse model of high carbohydrate intake that comprised 
four feeding groups. The four groups were bred from sperm 
and seminal plasma from males either fed the normal (N) or 
high carbohydrate (H) diet (Watkins & Sinclair, 2014; Wat-
kins et al., 2017, 2018). The four groups were represented 
by two-letter codes, NN, NH, HH and HN, that denoted the 
origin of the spermatozoon and seminal plasma, respectively 
(Fig. 1A). Thus group NH was bred from sperm from males 
fed a normal diet and seminal plasma from a male fed a 
high carbohydrate diet (H). The groups with both sperm and 
seminal plasma from sires fed the same diet (NN and HH) 
were regarded as controls.

We collected the tissues that were most relevant for lipid 
metabolism, liver, serum, right brain, cerbellum, heart and 
adipose, and acquired lipidomics data on all. This included 
semi-quantitative data on around 1100 lipid isoforms, i.e. 
the species of each lipid class such as PC(34:1) or TG(48:0). 
This provided data on the expected destinations of fatty-acid-
containing compounds, viz. structure (brain), fatty acid oxi-
dation (heart) and storage (adipose), Fig. 1B. These data 
were analysed using Shared and Unique Structures Plots for 
tissue-tissue comparisons, and Lipid Traffic Analysis (Furse 
et al., 2021d, 2021b), with updated code (v2.3), for network 
analyses.

The network analysis tool, Lipid Traffic Analysis (LTA) 
characterised the number, type and abundance of lipids in 
and between tissues, and calculated the relationship between 
the lipids for the two groups (e.g. control and experimental). 
This allows us to use the spatial or temporal distribution of 
metabolites to characterise how the control of metabolism 
differs in a given phenotype. This approach is useful because 
it has found changes to the timing of lipid metabolism (Furse 
et al., 2021d) and changes in the tissues in which lipids accu-
mulate (Furse et al., 2021b). LTA is crucial for testing the 
central hypothesis of the present study because it is the only 
tool that allows the investigation of the control of metabo-
lism using metabolite abundance.
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2  Materials and methods

2.1  Study design

The mouse model used in the present study is a model of 
paternal nutritional programming described in detail (Mor-
gan et al., 2020; Watkins & Sinclair, 2014; Watkins et al., 
2017, 2018) (Fig. 1A). This model was designed to test for a 
difference in dietary intake without a difference in calorific 
intake. Both diets were considered in the healthy range for 
protein and carbohydrate intake and were not obesogenic. 
Sperm and seminal plasma from each group were separated 
and used to produce four groups of offspring (See Genera-
tion of F1 offspring). Tissues were collected from F1 off-
spring to describe the lipid metabolism network (Fig. 1B) 
and lipidomics data collected (detailed description in the 
Lipidomics section below). The spatial distribution of lipids 
in the Control and Experimental groups’ networks was used 
to identify differences in the control of lipid metabolism 
between the two systems and thus test the hypothesis of the 
study. This method of data analysis, called Lipid Traffic 
Analysis (LTA) has been used previously by us to answer 
questions about paternal nutritional programming (Furse 
et al., 2021b), the present study is the first analysis that iden-
tifies differences between the propagation of programming 
effects between sperm and seminal plasma.

2.2  Animal model

Animals were maintained at Aston University’s biomedi-
cal research facility as described previously (Watkins et al., 
2018) and is shown in Fig. 1A in the context of the present 
study. Briefly, entire and vasectomised 8 week old C57BL6 

males were fed either control normal protein, normal carbo-
hydrate diet (NP-NC, ‘N’ in the present study; 18% casein, 
21% sucrose, 42% corn starch, 10% corn oil; n = 16 entire 
and 8 vasectomised males) or isocaloric low protein, high 
carbohydrate diet (LP-HC, ‘H’ in the present study; 9% 
casein, 24% sucrose, 49% corn starch, 10% corn oil; n = 16 
entire and 8 vasectomised males) for a period of 8–12 weeks. 
Diets were manufactured commercially (Special Dietary 
Services Ltd; UK) and their composition described previ-
ously (Watkins et al., 2018). The structure of the feeding, 
breeding and tissue collection were as previously described 
(Furse et al., 2021b).

2.3  Generation of F1 offspring

Virgin 8-week-old female C57BL/6 mice (n = 8 litters per 
treatment) were super-ovulated by intraperitoneal injections 
of pregnant mare serum gonadotrophin (1 IU) and human 
chorionic gonadotrophin (1 IU) 46–48 h later. Intact NP-NC 
and LP-HC fed males were culled by cervical dislocation 
after a minimum of 8 weeks on respective diets. Sperm were 
isolated from caudal epididymi of NP-NC and LP-HC sires 
as described (Morgan et al., 2020; Watkins et al., 2018) 
and allowed to capacitate in vitro (37 °C, 135 mM NaCl, 
5 mM KCl, 1 mM  MgSO4, 2 mM  CaCl2, 30 mM HEPES; 
supplemented immediately before use with 10 mM lactic 
acid, 1 mM sodium pyruvate, 20 mg.mL−1 BSA, 25 mM 
 NaHCO3). Females were artificially inseminated 12 h post 
human chorionic gonadotrophin injection with ~  107 sperm 
and subsequently housed over night with a vasectomized 
C57BL/6 male fed either NP-NC or LP-HC diet. Females 
were weighed regularly (every 4–5 days) for the detection 
of weight gain associated with a developing pregnancy. Four 

Fig. 1  The mouse model and tissues used in the present study. Panel 
A, Schematic representation of the mouse model showing the genera-
tion of offspring across two generations. Panel B, the network that 
describes the lipid traffic associated with de novo lipogenesis from 
the liver to termini (CNS, heart and adipose) via the serum. The ter-
mini represent traffic flow for structural purposes (CNS), fatty acid 
oxidation (heart) and storage (adipose). This metabolic relationship 

between tissues was used as the structure of the network for all anal-
yses in the present study. NP-NC refers to a diet of normal protein-
normal carbohydrate (NN in the text) whereas LP-HC refers to a low 
protein-high carbohydrate diet (HH in the text). Adipose was only 
available for F1A groups, whole brain samples used for F1N groups, 
with separate right brain and cerebellum for F1A. Figure adapted 
from reference(Furse et al., 2021b)
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groups of offspring were generated, termed NN (NP-NC 
sperm and NP-NC seminal plasma), HH (LP-HC sperm and 
LP-HC seminal plasma), NH (NP-NC sperm and LP-HC 
seminal plasma) and HN (LP-HC sperm and NP-NC semi-
nal plasma). The number of females inseminated, pregnancy 
rates, gestation lengths and litter parameters have been 
reported (Watkins et al., 2018). In the current study, we 
focused on tissues collected from F1 and F2 NN (NP-NC) 
and LL (LP-HC) groups as these provide a model for nor-
mal- and high carbohydrate intake in humans, and in order 
to reduce complicating factors.

2.4  Materials, animals, consumables and chemicals

Purified lipids were purchased from Avanti Polar lipids Inc. 
(Alabaster, Alabama, US). Solvents and fine chemicals were 
purchased from SigmaAldrich (Gillingham, Dorset, UK) and 
not purified further. Mice were purchased from Harlan Labo-
ratories Ltd (Alconbury, Cambridgeshire, UK). Hormones 
were purchased from Intervet (Milton Keynes, UK).

2.5  Lipidomics

Lipidomics data for this study were collected in the same 
analytical run as a previous study, using a combination 
of mass spectrometry and phosphorus NMR (Furse et al., 
2021b). All procedures used are therefore precisely as 
already described (Furse et al., 2021b). Briefly, whole tissue/
organ samples were homogenised in a chaeotropic buffer to 
prepare a stable, pipettable solution that was then extracted 
with a mixture of dichloromethane, methanol and triethyl-
ammonium chloride, with adjustments for the abundance 
of triglyceride in adipose (Furse et al., 2020a). Mass spec-
trometry samples were prepared and data collected in a high 
throughput fashion using Direct Infusion Mass Spectrometry 
(Harshfield et al., 2019), via glass-coated 384 well plates. 
NMR samples were prepared and data collected in a low 
throughput fashion using a modified (Furse et al., 2020a) 
form of the CUBO solvent system (Bosco et al., 1997; Cre-
monini et al., 2004; Culeddu et al., 1998; Murgia et al., 
2003) and assigned using reference 2D spectra acquired 
for the purpose (Furse et al., 2020a, 2021c). Lipidomics 
data were interpreted using dual spectroscopy (Furse et al., 
2020a), in the case of these data, a combination of DIMS 
and 31P NMR was used to establish the composition of phos-
pholipids. Glycerides and cholesterol were identified and 
quantified based on the MS data only (Furse et al., 2021b). 
Lipid identification: 586 lipid variables in positive ionisation 
mode and up to 564 lipid variables in negative ionisation 
mode in liver, brain, heart and adipose homogenates and in 
serum were putatively identified according to the Metabo-
lomics Standards Initiative at Level 2.

2.6  Lipid traffic analysis

Lipid Traffic Analysis code v1.0 (Furse et al., 2021b) was 
further developed in the present study to produce Lipid Traf-
fic Analysis code v2.3. Lipid variables in each compartment 
(lipid station) were categorised according to whether they 
are unique to it (U type lipids), shared with one adjacent 
to it (B type lipids, uni- and bidirectional) or found in all 
compartments (A type lipids). The code for the Binary 
Traffic analysis (Switch Analysis) (Furse et al., 2021b) was 
updated to include alignment of lists and automated calcu-
lation of JTCs and p values from binary lists and improved 
categorisation of lipid variables (including assessment of all 
TG-derived glycerides). The configuration of the U-lipid, 
A-lipid and B-lipid sections of the code was altered to make 
running any of the three individual parts of the code fea-
sible. Novel code was written in R(v3.6.x) and processed 
in RStudio(v1.2.5x). The full code for Lipid Traffic Analy-
sis v2.3 can be found in the Supplementary Information. 
Dimensions for the Abundance Analysis were calculated 
using Eqs. 1 and 2 from previous work (Furse et al., 2021b):

The analysis of the present study used only MS data and 
was similar to previous studies (Furse et al., 2021b, 2022) 
but with adjustments for four rather than two groups. The 
tissues used were mapped to the known biological/metabolic 
network (Fig. 1B). Categories for the Switch Analysis were 
A, B and U lipids. Dimensions for the Abundance Analysis 
were calculated using Eqs. 1 and 2 in the original LTA paper 
(Furse et al., 2021b). Variables were regarded as present if 
they had a signal strength > 0 in ≥ 66% of samples.

Statistical methods. Univariate and bivariate statisti-
cal calculations, and error normalised fold change (ENFC) 
(Furse et al., 2021b), were done in Microsoft Excel 2016. 
Graphs were prepared in OriginLab 2018. Calculations of 
Jaccard-Tanimoto Coefficients (JTCs) (Furse et al., 2021b; 
Jaccard, 1912; Tanimoto, 1958) and associated p values 
(Rahman et al., 2014) were used as a non-parametric meas-
ure of the distinctions between lipid variables associated 
with phenotype(s). The p value associated with each J rep-
resents the probability that the difference between the lists 
of variables for the two phenotypes occurred by random 
chance, representing both the number of variables only 
found in either of the two groups and the order of the binary 
list. They are not the same as the p values used in a stu-
dent’s t-test. To guide interpretation, in an LTA, typically, 

(1)Margin change = x
E
− x

C

(2)Error normalised fold change =

log
10

(

x
E

x
C

)

(
√

(a2+b2)
2

)
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a p value ≤ 0.55 means that at least one of the variables of 
each group does not appear in the other whereas a p value is 
0, none of the variables in the two groups is the same.

3  Results

The mouse model showed differences in the number of 
A-type triglycerides (TG), i.e. TGs found throughout the 
biological networks (Fig. 1B) of the control feeding groups 
(NN and HH, Fig. 2A). The two diets, normal and high car-
bohydrate, led to different configurations of lipid metabolism 
in offspring. This was observed through the number of dif-
ferent isoforms of TG that appear throughout the network for 
NN and HH. The Jaccard-Tanimoto distance (J) and prob-
ability (p) statistics for the NN-HH comparison for the TGs 
in the two groups (J 0·78 and p 0·48, Fig. 2) showed that 
a majority of the 29 TG species found throughout the NN 
system were also found throughout the HH system. This 
was interpreted through the J and p statistics calculated; J 
represents the similarity factor of the two groups and p val-
ues represent the probability that the difference between the 
lists of variables for the two phenotypes occurred by random 
chance. The p values quoted are not the same as those of 

a student’s t-test and should not be interpreted as thresh-
olds, though some general patterns exist. Where p ≤ 0·55, 
typically at least one variable in each group is not also in 
the other, and where p = 0, no variables are shared between 
the two groups. Thus, the J of 0·78 and p of 0·48 shown in 
Fig. 2 showed that there were 6 additional species in the HH 
group (29:35, the number of variables for the control and 
experimental groups, respectively) and that both systems 
have isoforms of TG that appear throughout it that the other 
group does not. These results about TG metabolism showed 
that the differences in dietary intake by fathers caused nutri-
tional programming of lipid metabolism and differences in 
the distribution of energy storage lipids.

The role of phosphatidylcholines (PCs) was tested in 
the same way, Fig. 2B. The comparison of the paternal diet 
control groups (NN and HH) for PCs showed that there 
were fewer isoforms of PC that appeared throughout HH 
than NN (32:23) and several isoforms that only appeared 
in one of the two groups (J 0·62, p 0·31). PCs showed a 
similar trend to the TGs, with clear differences between 
the two dietary intakes. We therefore tested the primary 
hypothesis through a comparison of the two cross-paired 
feeding type phenotypes, with the controls (NN against NH, 
and HH against HN). These comparisons are designed to 

Fig. 2  The ubiquitous triglyceride (TG) and phosphatidylcholine 
(PC) variables found in mice associated with a paternal high carbohy-
drate diet. Panel A, Triglycerides (NN and HH groups); B, Triglycer-
ides (HN and HH groups); C, Triglycerides (NH and NN groups); D, 
Phosphatidylcholines (NN and HH groups); B, Phosphatidylcholines 
(HN and HH groups); C, Phosphatidylcholines (NH and NN groups). 
NN, NH, HN and HH refer to the feeding group of the (grand)sire 
from which the spermatozoa and seminal plasma were drawn, respec-

tively. N, normal; H, high carbohydrate, low protein. The grey arrows 
show the comparisons of the control groups with the cross-paired 
sperm-seminal plasma. The Jaccard-Tanimoto coefficients (J) and 
probability (p) values that describe the similarity between sets of var-
iables. Accompanying tables show the J and p values for sets of vari-
ables with seminal plasma from the same phenotype as the control 
where the number of variables is similar between the two groups
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demonstrate whether the seminal plasma of the sire on a 
high carbohydrate diet modulated the profile of TGs in the 
offspring. This tests the primary hypothesis of the study as if 
the programming effects are propagated only through sperm, 
the source of the seminal plasma will not influence the lipid 
metabolism of the offspring.

The NH group showed a different profile of TG species 
to the NN group, as did the HN group from the HH group 
(Fig. 2C, D). The J and p statistics showed that there was an 
overlap of 0.79 between the NN and NH groups, with a p 
of 0·46 (Fig. 2C). This same pattern is observed in the HH 
against HN comparison and also for both comparisons for 
PCs (Fig. 2E, F). This result showed that the seminal plasma 
from normal and high carbohydrate-fed fathers has a differ-
ent effect on the number of ubiquitous TGs and also that the 
two propagation routes alter it in different ways, which we 
had not expected.

The evidence for distinct propagation of nutritional pro-
gramming effects through spermatozoa and seminal plasma 
in both TG and PC metabolism raised questions about how 
this affected individual tissues associated with lipid metab-
olism (and metabolic disease). We tested for tissue-tissue 
effects by constructing Shared and Unique Structures Plots 
(SUSPs; Fig. 3, Fig. S1). These SUSPs were used to iden-
tify lipid biosynthesis pathways, if any, that were affected 
by the paternal diet in individual tissues. Error normalised 
fold change (Furse et al., 2021b) (ENFC) was calculated for 
all variables and all compartments for NN-NH and HH-HN 
comparisons. The plot for serum (Fig. 3) showed the general 
pattern of these, with no clear evidence for a separate group 
of lipids associated with the effect (Fig. S1). The difference 
in the profile of both ubiquitous TGs and PCs between NN 
and NH, and HH and HN, together with the evidence that 
there were no clear effects within individual tissues, raised 
the question of how the effects of the parental diet can be 
characterised. We formed the hypothesis that there were 
changes to the metabolic machinery (biochemical infra-
structure) of the system that exist throughout the system 
that are not measurable at a local level (through tissue-tissue 
comparisons).

We used a Switch Analysis from LTA (v2.3, see Meth-
ods) to test this. We identified differences in the spatial dis-
tribution of lipids in the system. Switch Analysis showed 
that both TGs and PCs only found in part of the system 
followed a similar trend to the ubiquitous lipids of the same 
classes (shown in Fig. 2). There was typically an overlap 
of 0·7–0·8 for TGs and 0·8–0·9 for PCs, and with both pos-
sessing variables only found in one of the two phenotypes 
in each comparison, i.e. p < 0·55 (Fig. 4). A Switch Analysis 
of a third lipid class, sphingomyelins (SMs), showed that the 
differences in distribution of this lipid class are less strongly 
affected by the paternal diet, at least in parts of the system 
(Fig. 4C).

The evidence for differences in the control of lipid metab-
olism in the phenotypes suggested to us that distribution 
rather than the activity of biosynthetic pathways may dif-
fer between phenotypes. We used an Abundance Analysis 
(Furse et al., 2021b) to quantify the difference in abundance 
of established molecular biomarkers across the network. 
This is a targeted analysis that augments the Switch Anal-
ysis by quantifying the abundance of lipid species with a 
known biological role or origin. The Abundance Analysis 
was done by calculating the ENFC (Furse et al., 2021b) of 
a set of variables representing major phospholipid classes 
and cholesterol; a set of variables associated with de novo 
lipogenesis (DNL), TG(46:0, 46:1, 48:0, 48:1) (Sanders 
et al., 2018); a set representing TGs associated with dietary 
intake, TG(52:2, 54:4, 54:8, 56:7) and the most abundant 
PCs, PC(34:1, 34:2, 36:4, 38:4). Radar plots of the analy-
ses are shown in Fig. 5. The control groups (NN and HH) 
groups were tested against the groups that had spermatozoa 
from the same source but different seminal plasma (NH and 
HN, respectively). As with the tissue-tissue comparisons 
(SUSPs) and Switch Analyses, changes to lipid metabolism 
driven only by the spermatozoa would give a difference in 
ENFC for either of the two comparisons, but not both.

The Abundance Analysis showed that there is a clear dif-
ference in the effects on the distribution of structural lipids 
(such as PC) and energy storage and distribution (TGs) and 
where this occurs in the system. The adipose in particular 
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Fig. 3  Shared and Unique Structures Plot of the error-normalised fold 
change for each variable measured in the serum of adult mice whose 
fathers were fed a high carbohydrate (H) or normal (N) diet. The two-
letter codes represent the pairing of sperm and seminal plasma, i.e. 
NH represents sperm from sires fed a normal diet and seminal plasma 
from sires fed a high carbohydrate diet. ENFC calculated from two 
groups with the same sperm phenotype in order to test the hypothesis 
that the nutritional programming is propagated through sperm only. 
ENFC calculated from relative abundance of the variables (‰), cal-
culated as previously described (Furse et al., 2021b)
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Fig. 4  Switch analysis of B-type 
triglyceride (TG), phosphatidyl-
choline (PC) and sphingomyelin 
(SM) isoforms for F1 Adults. 
Panel A, Triglycerides (TGs). 
Panel B, Phosphatidylcholines 
(PCs). Panel C, Sphingomyelins 
(SMs). The Jaccard-Tanimoto 
coefficients (J) and prob-
ability (p) values that describe 
the similarity between sets of 
variables. Inset tables show 
the J and p values for sets of 
variables with seminal plasma 
from the same phenotype as the 
control where the number of 
variables is similar between the 
two groups. TGs were detected 
in positive ionisation mode 
whereas PCs were detected in 
negative ionisation mode
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Fig. 5  Abundance analyses of lipid variables in the neonate and adult 
F1 offspring of fathers fed a normal or a high carbohydrate diet, 
measured by mass spectrometry in positive ionisation mode. These 
radar plots show fold change in abundance of lipid variables unrelated 
(rows 1 and 2) and related (row 3) to de novo lipogenesis between 
two groups, scaled to the error. The value given is the log of the mean 
of experimental abundance values divided by the mean of control 

values, divided by the propagated error for that variable(Furse et al., 
2021b). The values for the NN and HH groups were the denomina-
tors. NN, NH, HN and HH refer to the feeding group of the (grand)
sire of the spermatozoa and seminal plasma, respectively. N, normal; 
H, high carbohydrate, low protein. ADI, adipose; CEB, cerebellum; 
HEA, heart; LIV, liver; RiB, right brain; SER, serum
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shows a difference between comparisons for structural lipids 
and cholesterol (Fig. 5). However, there is not a clear pat-
tern, even within PCs alone. This suggests that the com-
position of membranes in adipose is shaped by nutritional 
programming through seminal plasma. By contrast, adipose, 
liver and serum were largely similar in TG profile. The CNS 
tissues tested showed considerable differences in abundance 
of both DNL and dietary TGs between comparisons, show-
ing here too that seminal plasma influences TG distribution 
within the CNS. Like PCs, there is also no clear pattern. 
The absence of a clear pattern for the abundance of PCs 
in adipose and TGs in the CNS explains why tissue-tissue 
comparisons failed to identify such differences. These results 
are also consistent with those above, that both seminal 
plasma and sperm propagate changes in lipid metabolism in 
offspring in a mouse model of high paternal carbohydrate 
intake.

4  Discussion

Our study was motivated by the hypothesis that changes in 
lipid metabolism driven by the dietary intake of grandsires 
was propagated through spermatozoa rather than seminal 
plasma. This hypothesis was based on spermatozoa because 
the complicated changes to lipid metabolism driven by pater-
nal nutrition might be expected only to be possible through 
subtle changes to gene expression. However, network analy-
sis showed that the feeding group associated with both sper-
matozoa and seminal plasma shaped lipid metabolism in 
offspring, with effect sizes of a roughly similar breadth and 
magnitude but a different sort.

The evidence collected suggests that there are several 
effects on lipid metabolism propagated through both routes 
of spermatozoon and seminal plasma. The existence of an 
influence of each suggests that seminal plasma has a more 
important role in shaping lipid metabolism than has hith-
erto been realised. The result is robust partly because of the 
structure of the mouse model used in the present study. The 
sperm and seminal plasma were separated and combined 
as appropriate for each of the four groups and inseminated 
in the same manner for each. The specific effects on both 
structural lipids and energy storage and distribution invite 
speculation about the relationship between these and the 
changes to internal structures and volume of adipose (Arner 
et al., 2010; Gimpfl et al., 2017) in offspring associated with 
increased risk of metabolic disease such as type II diabetes 
mellitus. It is not currently possible to pinpoint that relation-
ship precisely, however our results can inform the genera-
tion of hypotheses about how the membrane composition of 
adipocytes and in the CNS modulates their function in vivo 
and the role this may have in metabolic disease.

The propagation of nutritional programming effects 
through both the spermatozoon that fertilises the ovum and 
the seminal plasma delivered at the same time are undoubt-
edly of interest because the reach of the two is distinct. The 
spermatozoon has a fundamental impact on the genome 
of the resulting individual and thus its reach is entire. The 
seminal plasma has reach through its influence on the uter-
ine environment. Previous reports have shown some of the 
downstream effects of the seminal plasma. Evidence from 
studies in mammals show that repeated exposure to seminal 
plasma leads to better fertilisation(Robertson & Sharkey, 
2016) and a lower prevalence of inflammation in gestation 
(Bromfield, 2016; Kenny & Kell, 2018). Studies in Bos tau-
rus have shown that the seminal plasma used can influence 
genes involved in the cell cycle and growth (Mateo-Otero 
et al., 2020). This evidence, along with that from the present 
study, suggests that seminal plasma shapes lipid metabolism 
by modulating the uterine environment during pregnancy. 
The reasons for the specificity to the developing individuals’ 
adipose and CNS are not clear. One possible explanation is 
that this effect is marked in these two compartments due to 
their heavy involvement in lipid metabolism, rather than a 
function-specific effect.

Importantly, our study shows that the effects of both 
routes include programming affects on biosynthesis as well 
as distribution, albeit with an unclear pattern in the former. 
It remains difficult to disentangle these, which is inherent in 
lipid metabolism as it is made up of several processes that 
are not linked directly. The evidence for changes to lipid 
biosynthesis came from Switch Analyses (Figs. 2 and 4) and 
Abundance Analyses (Fig. 5), without clear evidence of this 
within individual tissues (Fig. 3).

Switch Analyses showed that coverage between groups 
(the number of lipid variables found in both groups in 
a given comparison, measured by the Jaccard-Tanimoto 
coefficient or J value) was typically below 90% for both 
triglycerides and phosphatidylcholines, with different vari-
ables unique to either group (typically p values were below 
0·55). The patterns observed in individual marker species 
were inconsistent with one another but differed consider-
ably from no effect (ENFC = 0). This therefore shows that 
there are considerable changes to the lipid composition 
that exist within biosynthetic pathways, presumably affect-
ing it at several points, e.g. the availability of fatty acids 
and the interconversion of lipid head groups. As the abun-
dance of cholesterol is also programmed with this pheno-
type, sterol synthesis or possibly the enteric circulation 
may be altered too. Further work with a different model is 
required to separate the possible changes to lipid metabo-
lism wrought through sperm and seminal plasma, e.g. fatty 
acid effects and head group biosynthesis/interconversion.
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5  Conclusions

This study shows that the hypothesis that lipid metabolism 
is altered by sperm alone was not correct. Instead, the novel 
LTA v2.3 showed that both possible channels for propaga-
tion, sperm cells and seminal plasma, are involved in shap-
ing the control over phospholipid, triglyceride an even cho-
lesterol metabolism in offspring. It also suggests that the 
compartments that are the most heavily involved in lipid 
metabolism (adipose and CNS rather than heart) are the ones 
in which the effect was strongest. However, that effect was 
counter-intuitive as it was the structure of the adipocytes 
and the abundance of TGs in the CNS that was affected, 
rather than the other way around. This study paves the way 
for investigations of the relationship- between paternal pro-
gramming and the risk of CMD in offspring. Such studies 
would be important because they could inform interventions 
to overcome an increased risk of programmed metabolic dis-
ease that have been driven by parental diet.
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