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BACKGROUND: Gestational diabetes is associated with increased risk of type 2 diabetes mellitus and cardiovascular disease for the
mother in the decade after delivery. However, the molecular mechanisms that drive these effects are unknown. Recent studies in
humans have shown that lipid metabolism is dysregulated before diagnosis of and during gestational diabetes and we have shown
previously that lipid metabolism is also altered in obese female mice before, during and after pregnancy. These observations led us
to the hypothesis that this persistent dysregulation reflects an altered control of lipid distribution throughout the organism.
METHODS: We tested this in post-weaning (PW) dams using our established mouse model of obese GDM (high fat, high sugar,
obesogenic diet) and an updated purpose-built computational tool for plotting the distribution of lipid variables throughout the
maternal system (Lipid Traffic Analysis v2.3).
RESULTS: This network analysis showed that unlike hyperglycaemia, lipid distribution and traffic do not return to normal after
pregnancy in obese mouse dams. A greater range of phosphatidylcholines was found throughout the lean compared to obese
post-weaning dams. A range of triglycerides that were found in the hearts of lean post-weaning dams were only found in the livers
of obese post-weaning dams and the abundance of odd-chain FA-containing lipids differed locally in the two groups. We have
therefore shown that the control of lipid distribution changed for several metabolic pathways, with evidence for changes to the
regulation of phospholipid biosynthesis and FA distribution, in a number of tissues.
CONCLUSIONS: We conclude that the control of lipid metabolism is altered following an obese pregnancy. These results support
the hypothesis that obese dams that developed GDM maintain dysregulated lipid metabolism after pregnancy even when
glycaemia returned to normal, and that these alterations could contribute to the increased risk of later type 2 diabetes and
cardiovascular disease.
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INTRODUCTION
Gestational diabetes mellitus (GDM) is the most common
complication of pregnancy and is known to be associated with
an increased risk of metabolic disease post partum. Obesity is a
major risk factor for GDM, with around a third of women with a
BMI > 30 developing GDM during their first pregnancy [1–3]
compared to around 8% in the general UK population [4]. Women
who develop gestational diabetes are at increased risk of type 2
diabetes mellitus (T2DM) in the decade after delivery [5–8].
Furthermore, a systematic review of over 5 million women in
9 studies found that women who previously had GDM had a two-
fold increased risk of cardiovascular events independent of a
progression to T2DM [9].
Studies of lipid metabolism during pregnancy and before the

diagnosis of GDM in humans have shown that several lipid
pathways are dysregulated before the hyperglycaemia associated

with GDM becomes established [10–12]. Specifically, serum-serum
comparisons of control and GDM groups have identified
differences in triglyceride (TG), phosphatidylcholine (PC) and
sphingomyelin (SM) lipid classes [11–13]. These include lipids
involved in energy storage and distribution (TGs) as well as
membrane structure (PC, SM). These patterns were observed in
both a healthy BMI [12] and an obese [11] human cohort. Most of
the variables identified had several olefin bonds, indicating that
the supply and distribution of polyunsaturated fatty acids may be
important. As this dysregulation of lipid metabolism in humans
occurs 10 weeks before diagnosis of gestational diabetes and
includes alterations in the metabolism of both structural lipids and
triglycerides, the evidence suggests there are systemic dysregula-
tions in lipid metabolism that could contribute to the develop-
ment of GDM. Using a mouse model of obese GDM, we recently
showed that, similar to humans, lipid metabolism as measured in
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serum, was dysregulated even before pregnancy [14]. Further-
more, we also demonstrated major changes in lipid classes with
advancing pregnancy [14], plausibly an effect of hyperglycaemia
and impaired glucose tolerance [15] over and above that which
occurs in a lean pregnancy [16].
Studies in humans have shown that maternal obesity not only

increases the mothers’ risk of GDM [3, 4] but also drives the
programming of cardio-metabolic disease in offspring [17, 18].
Animal studies clearly support this programmed risk to the
offspring [19, 20]. Women with a history of gestational diabetes
mellitus have a 2-fold higher CVD risk than the background
population [21] highlighting a major health problem. Cardiovas-
cular disease is a major killer of women in the UK and the USA
with nearly double the rate of mortality as breast cancer [22].
Human studies have shown that an altered lipid metabolism in
women increases their risk of cardiovascular disease [23] and is
associated with prior exposure to GDM [24]. In the current study
we test the hypothesis that GDM is accompanied by changes
in lipid metabolism that remain after pregnancy, when the
hyperglycaemia associated with GDM has disappeared. To test
this, we used an established mouse model of maternal high-fat-
diet-induced obesity in which dams display impaired glucose
tolerance during pregnancy, that, as is typical with GDM, resolves
after delivery [15, 25, 26] (Fig. 1A). We profiled glycaemia and
insulinaemia in the post-weaning mice and collected a range
of metabolically active tissues to determine organismal lipid
metabolism after weaning (22 days post partum, Fig. 1B). We
capitalised on an updated version of Lipid Traffic Analysis [27, 28]
(LTA, v2.3) to analyse lipidomics data from the tissues to do a
system-level characterisation of the number, type and abundance
of lipid variables in and between compartments in the two groups
of female mice. LTA is a powerful tool to test our hypothesis
because it uses the spatial distribution of lipids to test how the
control of lipid metabolism differs between the two groups.

MATERIALS AND METHODS
Animal model
All procedures were conducted in accordance with the UK Home Office
Animal (Scientific Procedures) Act 1986 and following local ethics
committee approval at the University of Cambridge. Animals were
maintained at the University’s biomedical research facility as described
previously [15, 25, 26]. Briefly, female C57BL/6 J mice were fed either a
control (RM1) or an obesogenic high-fat-high-sugar diet from weaning and
throughout 2 pregnancy and lactation cycles (Fig. 1A, both diets
manufactured by Special Dietary Services Ltd; Witham, UK). As described
previously [15, 29], the composition of the respective diets are as follows:
Control diet [~7% simple sugars, 3% fat, 50% polysaccharide, and 15%
protein (w/w)]; Obesogenic diet [high-fat diet: ~10% simple sugars, 20%
animal lard, 28% polysaccharide, and 23% protein (w/w) supplemented
with sweetened condensed milk supplied in a glass jar (~55% simple sugar,
8% fat, and 8% protein (w/w)) and micronutrient mineral mix]. Proven
breeders were rested for 1-3 weeks between weaning of the first litter and
before mating for the second (experimental) pregnancy. The timing of this
was determined when the control dams had achieved a total body-fat
mass of no more than 5 g, and the obese exceeded 10 g of total fat mass as
assessed by time domain nuclear magnetic resonance (TD-NMR) (Mini-spec
TD-NMR, Bruker UK Ltd). The sires used were all C57BL/6 J mice of 12-24
weeks of age. To negate the effects of confounding paternal nutritional
programming [27, 30, 31] the sires were only fed the control diet apart for
the duration of mating. At conception, as indicated by a vaginal plug, the
dams were singly housed throughout pregnancy. Immediately after
weaning, the dams remained singly housed for 48 hours to measure food
intake by weighing the contents of the diet hopper (and the pot of
condensed milk) at the start and end of the 48-hour period. Pellet (and
milk) intake was then averaged over the period to determine daily food
intake. n= 8 dams per group were used. Just before killing, body
composition was measured by Time Domain Nuclear Magnetic Resonance
(TD-NMR) (Mini-spec TD-NMR, Bruker UK Ltd). Dams were culled by a rising
concentration of carbon dioxide followed by cardiac puncture for blood
collection and tissue dissection. Brain, adipose tissue, liver, heart and

vastus lateralis muscle were weighed and flash frozen in liquid nitrogen
before being stored at −80 °C until lipid analysis.

Glucose tolerance test
On the day of weaning (21 days post partum), dams were fasted for 16 h,
beginning at 16:30. Dams were placed individually into a clean cage
with access to water. Blood was drawn from the tail for basal (0 min)
glucose measurements (AlphaTRAK2, Zoetis, USA). Dams were then
injected intraperitoneally (i.p.) with 1 g/kg glucose and further tail blood
glucose measurements were made at timed intervals after injection
(15 min, 30 min, 45 min, 60 min, 90 min and 120 min). Blood was also
collected at 0 min, 15 min and 30 min time points into haematocrit
sodium-heparin capillary tubes (Hirschmann-Laborgeräte, Germany).
Plasma was isolated after centrifugation (Haematospin, Hawksley, UK)
for four minutes and plasma insulin was measured using a Ultra-
sensitive Mouse Insulin ELISA (CrystalChem, USA) following manufac-
turer’s instructions. Area under the curve (AUC) was calculated by

Fig. 1 The tissue network of the mouse model of obese-GDM used
in the present study. A Schematic representation of the mouse
model showing the groups, pregnancies and weaning. B The
network that describes the lipid traffic associated with this model,
including tissues whose activity is typically associated with diet-
driven diabetes. The termini represent traffic flow from synthesis
(liver), for structural purposes (CNS), fatty acid oxidation (heart,
vastus, liver) and storage (adipose). This metabolic relationship
between tissues was used as the structure of the network for all
analyses in the present study. Lean refers to mice fed exclusively a
diet of normal chow ad libitum whereas Obese refers to mice fed a
high fat diet drawn from mainly dairy fat sources.
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summation of trapezoids (Prism 8, GraphPad, USA). Using the matched
plasma insulin and glucose values, HOMA-IR was calculated using the
HOMA calculator (Diabetes Trial Unit, University of Oxford available
here: https://www.dtu.ox.ac.uk/homacalculator/).

Clinical lipid measures
Serum cholesterol, fatty acids, lipoproteins and gross TGs (Table S1) were
measured as follows. Total cholesterol and total triglycerides were measured
using a Dimension RxL analyzer (Siemens Healthcare Limited, UK). HDL
cholesterol was measured using a homogeneous accelerator-selective
detergent assay with a Dimension RxL analyzer (Siemens Healthcare
Limited, UK). LDL cholesterol was calculated using the Friedwald equation
[32]. Free fatty acids were measured using the Roche Free Fatty Acid Half-
Micro Kit (Roche Diagnostics Limited, UK).

Lipidomics
Lipidomics data for this study were drawn from a previous study that used
a combination of mass spectrometry and phosphorus NMR to establish the
lipidome of the six tissues used [33]. All procedures that were used to
generate these data are therefore as described previously [33–35]. Briefly,
whole tissue/organ samples were homogenised in a chaeotropic buffer to
prepare a stable, pipettable solution that was then extracted with a
mixture of dichloromethane, methanol and triethylammonium chloride,
with adjustments for the abundance of triglyceride in adipose [33].
Samples of fresh diet were dispersed in the same chaeotropic buffer used
for preparing tissue samples and homogenised thoroughly before being
freeze-thawed and agitated (3× cycles, -80/40 °C). Chow diet samples were
also centrifuged briefly (20k × g, 2 min) after homogenisation in order to
collect debris-free supernatant. Homogenates were prepared by a different
person to the dissections in order to blind the researcher to the groupings.
Mass spectrometry samples were prepared and data collected in a high

throughput fashion using samples run in randomised order by Direct
Infusion Mass Spectrometry [33, 35], via glass-coated 384 well plates. NMR
samples were prepared and data collected in a low throughput fashion
using a modified form of the CUBO solvent system and assigned using
reference 2D spectra acquired for the purpose [33, 34]. Dual spectroscopy
identified up to 776 lipid variables in positive ionisation mode and up to
467 lipid variables in negative ionisation mode in liver, brain, heart, vastus
lateralis muscle and adipose tissue homogenates and in serum. The
combination of the two spectroscopic techniques enabled us to verify the
abundance of lipid classes that can be isobaric. PC and PE isoforms can be
isobaric in positive ionisation mode, but are separable in both 31P NMR and
negative ionisation mode, enabling identification without use of LC-MS.

Lipid traffic analysis
Lipid Traffic Analysis code v1.0 [27] was further developed in the present
study to produce Lipid Traffic Analysis code v2.3. The code for the Binary
Traffic analysis (Switch Analysis) was updated to include alignment of lists
and automated calculation of J and p-values from binary lists and
improved categorisation of lipid variables (including assessment of all TG-
derived glycerides). The configuration of the U-lipid, A-lipid and B-lipid
sections of the code was altered to make running any of the three
individual parts of the code feasible. Novel code was written in R(v3.6.x)
and processed in RStudio(v1.2.5x). See the Data Availability Statement for
access to the full R code for Lipid Traffic Analysis v2.3.
In the analysis of the present study tissues used were mapped to the

known biological/metabolic network (Fig. 1B) and lipids categorised in the
Switch Analysis under A, B and U types [27, 28]. Variables were regarded as
present if they had a signal strength >0 in ≥66% of samples per group.

Statistical methods
Univariate and bivariate statistical analyses, and error normalised fold
change (ENFC) [27], were calculated in Microsoft Excel 2016. Graphs were
prepared in Excel 2016 or OriginLab 2018. Calculations of Jaccard-Tanimoto
Coefficients (JTCs, J) and associated p-values [27] were used as a non-
parametric measure of the distinctions between lipid variables associated
with phenotype(s). The p-value associated with each J represents the
probability that the difference between the lists of variables for the two
phenotypes occurred by random chance, representing both the number of
variables only found in either of the two groups and the order of the binary
list. All lipidomic data were assumed to be unequally distributed and
heteroscedastic and so the appropriate type of non-parametric test was
applied.

Glucose tolerance, body composition and liver weight data were
normally distributed, and therefore unpaired Student t-tests were used.

RESULTS
Mouse model of gestational diabetes
Glucose tolerance tests showed that the lean (Control) and obese-
GDM dams displayed similar glycaemic control post partum
(Fig. 2A, B). However, serum insulin levels were increased in the
obese group at all time points during the GTT (Fig. 2C), suggesting
the obese-GDM mice were euglycaemic but insulin resistant. The
obese group were, as expected, heavier and fatter that controls
(Fig. 2D, E) and their livers were also heavier (Fig. 2F). The serum
lipoprotein profiles of the two groups were distinct, with the
obese-GDM group showing an increase in total cholesterol (mainly
in HDLs) and increased circulating fatty acids (Fig. 3). This
suggested that lipid metabolism differed between the two groups
but does not explain how. We therefore investigated lipid
metabolism at a molecular level. We began by testing the
hypothesis that these effects were driven by a difference in the
dietary intake of the two groups.

Dietary fatty acid intake
Profiling of the fatty acid (FA) composition of the chow and high
fat diets showed that the FA intake of the two groups was very
different, however, included the same 33 FAs. Of the 33 FAs
detected, 26 were highly significantly (p < 0.001) different
between the two diets (Bonferroni correction for multiple
variables p= 0.00152; Supplementary information 1). Lean mice
ate around 5.7 g of chow per day (2.56 kcal/g; fat, 7.42% [kcal];
RM1, Special Diets Services, Witham, UK) whereas obese mice ate
around 5.5 g of the HF pellet (6.79 kcal/g; fat, 45% [kcal]; 45% AFE
Fat, Special Diets Services, Witham, UK) as well as 3 g of
condensed milk per day (8% fat [w/w]; Nestle, fortified with
mineral and vitamin mix AIN93G), with the latter consuming a
higher overall fat intake than the chow-fed mice. We therefore
tested whether any differences in abundance between the two
groups might be attributed solely to dietary intake or whether
there was a difference in control of FA metabolism and
distribution in the lean and GDM systems. This was tested in
storage (adipose) and oxidative (heart) tissues which represent a
considerable fraction of all FAs within the organism but also
represent tissues that are at a distance from dietary intake and
thus their composition is subject to the controls of lipid
metabolism in the organism. Thus, with adipose and heart, dietary
FAs are so far removed that the diet will influence but not reflect
or dictate the composition of the tissue. Our hypothesis was that
the TG profile of the adipose tissue would be modulated to reflect
the influx of the most abundant FAs of the dietary intake.
The relative abundance of three C18 FAs differed (p < 0.05)

between the two groups in adipose tissue (Supplementary
information 2). The abundance of FA(18:0) in adipose tissue from
the lean group was just under three times that of chow diet,
whereas the composition of FA(18:0) in the obesogenic diet was at
least twice as high as that of lean dams (weight-for-weight,
Fig. 4A). As the overall fat intake was higher for the HFD (obese-
GDM) group, the accumulation of FA(18:0) in the adipose tissue of
the obese-GDM group did not reflect this, being only ~10%
higher. FA(18:1) was more abundant in the GDM group’s diet but
the abundance in their adipose tissue was lower than that of lean
dams (Fig. 4A). The abundance of FA(18:2) in the HFD was only
about 10% of that of the chow diet, whereas the abundance of
FA(18:2) was higher in the adipose tissue of obese dams. These
results suggest that the way adipose tissue fatty acid distribution
is controlled differs between the two groups and differences
do not simply reflect differences in dietary composition. The
composition of the adipose tissue represents the summative effect
of both dietary intake and FA use. We therefore tested the same
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hypothesis in a tissue that typically use FAs as its major energy
source and does not typically store them.
In heart tissue, which uses FAs as an energy source, two

FAs showed very significant differences in mean abundance
(p < 0.001) between lean and obese groups and one further,
FA(14:0), with a p= 0.003, Fig. 4B. The differences here were more
pronounced than those of the adipose tissue (vide supra, Fig. 4A).
For all three of these FAs, the heart tissue of lean mice had higher
relative amounts of FA(12:0, 14:0, 15:0) than that of obese-GDM
animals, and the abundance of all three FAs was lower in obese
hearts despite being more abundant in the obesogenic diet
(Fig. 4B). Furthermore, the ratio of FA(15:0)/FA(17:0) was higher
in the obese group (3.7 in obese and 2.4 in lean, p= 0.006),
showing that the HFD increases the relative abundance of FA(15:0)
relative to FA(17:0), consistent with a higher intake of dairy fat
[36–38]. There was also a disparity in FA(16:0) (p= 0.003), the most
abundant FA in the heart. FA(16:0) was around 10% more

Fig. 2 Glucose tolerance test and gross body composition of the mouse model at the time of tissue collection. A Blood glucose
concentrations in post-weaning dams during a glucose tolerance test (GTT). B Glucose area under the curve during the GTT. C Insulin
concentrations in dams’ plasma at basal (0), 15 and 30min post glucose challenge and calculated fasting HOMA-IR (0 min). D Dam bodyweight
at weaning. E Dam fat mass (measured by TDNMR) as a percentage of bodyweight at weaning. F Dam liver mass at weaning. The p values are
based on unpaired Student t-tests between the lean and obese groups for comparisons given above braces between distributions. I.P., Intra-
peritoneal; HOMA-IR, HOmeostatic Model Assessment for Insulin Resistance.

Fig. 3 Lipoprotein, cholesterol and triglyceride measures. Deter-
mined using standard clinical bioassays. Values given in Table S1.
The p values for comparisons given above braces between
distributions. Chol, cholesterol.
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abundant in hearts from the obese group (Supplementary
information 2).
These findings suggest that the control of FA accumulation and

distribution of the four most abundant fatty acids, FA(16:0, 18:0, 18:1,
18:2), and at least three more minor ones, differed between the two
groups. This strongly implies that the differences observed do not
result solely from differences in the FA profile of dietary intake but
are mediated by differences in control of lipid metabolism in the
two groups of dams. Furthermore, the different effects observed in
the heart and adipose compartments suggested that comparisons in
the 2 tissue types would provide only a fragmentary pattern of lipid
metabolism and that an integrative approach would be required to
construct a more complete picture. In order to test the primary
hypothesis that lipid metabolism differed systemically between the
lean and obese-GDM mice, we progressed to a network analysis
(Lipid Traffic Analysis) to characterise the lipid metabolism through-
out the metabolic network of the two phenotypes by including an
expanded set of tissues, e.g. liver, muscle and brain as well as serum.

Lipid traffic analysis
The Switch Analysis part of a Lipid Traffic Analysis [27, 28]
(updated v2.3, see Methods) was used to plot the distribution of
lipid variables throughout the biological network shown in Fig. 1B.

The accumulation/absence of variables across the network
indicates how the control of metabolism differs between the
two groups. The Switch Analysis of TGs showed that there were
generally more variables associated with the lean group,
indicating a wider variety of TGs through the network in these
animals (Fig. 5A). The TG variables between two adjacent
compartments (B-type lipids) were associated with Jaccard-
Tanimoto co-efficients (J) of around 0.65 with accompanying
probabilities (p) of <0.4. Where J= 0.65, about two thirds of
variables are the same for both phenotypes. Where p < 0.5 for this
type of comparison, both groups being compared have variables
that the other does not. Importantly, this is distinct from the use
of p values in tests for quantifying the consistency between the
null hypothesis and the tested hypothesis. The J ~0.65 p < 0.4 for
B-type TGs (Fig. 5A) show that the similarity between the two
groups is not strong, consistent with the evidence of different
distribution suggested above (Fig. 4). The same trend is observed
in PCs, with J ~0.72 and p < 0.4 throughout B-type PCs (Fig. 5B).
This shows that the control of lipid metabolism is different in the
two phenotypes, for both structural lipids (PLs) and energy supply
and storage (TGs).
The difference in variety and number of A-type TGs and PCs led

us to explore how lipid traffic differed between the groups.
Isoforms of some of the most abundant TGs such as TG(52:3)
appeared throughout the networks of both groups (Fig. 6). This
was also true for TGs that are associated with de novo lipogenesis
(DNL), such as TG(50:1) and TG(50:2) [39]. However several
isoforms of TG were only found throughout the lean network
and not the obese-GDM one, including TG(48:1, 50:3, 52:4). This
indicated that a variety of TGs differed between the groups,
suggesting that distribution as well as biosynthesis differed
between the two phenotypes.
These results were echoed in the variables for structural lipid

classes such as PCs, phosphatidylethanolamines (PEs) and
sphingomyelins (SMs). Although several commonplace palmitate
(FA(16:0)) and oleate- (FA(18:1)) containing isoforms of PC
appeared throughout the networks of both phenotypes
(Fig. S1), the adducts detected suggest that some are less
abundant in the obese group, e.g. chloride adducts of PC(36:3,
38:5). Despite this, some polyunsaturated PCs are found widely
across the network, such as the DHA-containing PC(36:6, 40:6),
suggesting subtle but important changes in the control of
FA composition of PCs. The contrasts were clearer in PEs, where
although PE(36:1, 36:2, 36:4) are found throughout, PE(34:2) was
found throughout obese systems whereas PE(34:0) was in lean
mice (Fig. S2). This suggests that the gross PE composition of the
systems differed between phenotypes, moving to PE(34:2) and
from PE(34:0) in the obese-GDM group.
Several isoforms of SM, 33:1, 34:1, 36:1, 37:1, appear throughout

most or all of the network for both phenotypes, but at least two
isoforms appear throughout only one. For example, SM(39:1)
appeared throughout the obese network but not in the lean, and
SM(35:1) appeared throughout the lean phenotype but not in the
obese (Fig. S3). SM(39:1) is a known marker of dairy intake,
consistent with the composition of the obesogenic diet, however
what directs the appearance of SM(35:1) only in the lean
phenotype is unclear. Despite structural similarities to SM(39:1)
and SM(35:1), SM(37:1) appears almost throughout both networks,
suggesting no connection with diet or phenotype.
The lipids that were unique to a particular compartment, i.e.

U-type lipid variables, also provided evidence that supported the
hypothesis that disrupted lipid metabolism follows a pregnancy
characterised by GDM. We found that there were several U-type
TGs in adipose tissue, with about three times as many in adipose
tissue of the lean group (21:7, J 0.22, p 0.05; Fig. 5A). This was
similar for hearts (14:5, J 0.06, p 0.01; Fig. 5A). However,
the situation was inverted for liver, where there were more
U-type variables for the obese than the lean group (14:33, J 0.07,

Fig. 4 Relative abundance of FAs in chow and high fat diets and
tissues from lean and obese groups. A Adipose tissue. B Heart
tissue. *p < 0.05; **p < 0.005; ***p < 0.001. CM, condensed milk; FA,
fatty acid; HFP, high fat pellet.
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p 0.00; Fig. 5A). This led us to compare the TG isoforms present in
the obese liver and lean heart/adipose in order to determine
whether there was a connection. Six of the variables involved were
found in both the livers of the obese group and the hearts of the
lean group, TG(40:00, 40:01, 42:00, 46:02, 50:05, 52:05). This group
of variables comprised isoforms associated with de novo lipogen-
esis, TG(40:00, 40:01, 42:00, 46:02), and polyunsaturated species
more closely associated with dietary intake, TG(50:05, 52:05). Thus,
the spatial distribution of a range TGs differs between the two
phenotypes, with a possible restriction on TGs being transported
out of the liver in the obese phenotype.
Although this accounts for 6 variables, there are around 20

more U-type TGs in obese than lean livers. A further comparison
of the isoform lists suggests that these are mainly odd-chain
containing TGs with little overlap with lean heart or adipose
(Table S2). The presence of such a variety of odd-chain-containing
TGs suggests that several such TGs are produced locally. There
are also a variety of odd-chain-containing PCs on the serum-brain
axis that appear in both phenotypes (Fig. 5B), suggesting that

odd-chain fatty acid metabolism is not necessarily a hallmark
difference of these two phenotypes.

DISCUSSION
The aim of this study was to test the hypothesis that changes in
control of lipid metabolism outlast the hyperglycaemia associated
with GDM. In the mouse model used, glycaemic control during a
glucose challenge after weaning did not differ between lean and
obese-GDM dams at the end of lactation, but the post-GDM group
remained insulin resistant. Comparison of FA intake with the FA
composition of individual tissues showed that the FA composition
in tissues differed considerably between groups and that
differences in dietary intake were not the primary driver of this
effect. Lipid Traffic Analysis showed that the lean group had a
wider variety of both TGs and PCs than the obese phenotype, and
that there was different lipid traffic through the lean and obese
animals, with some lipid variables being retained in the liver in the
GDM phenotype but being found in the heart in the lean

Fig. 5 Switch analysis of the tissue network used in the present study. A Triglycerides (TGs), B Phosphatidylcholines (PCs). Small pie charts
represent the numbers of variables only found in the given tissue, larger pie charts represent the numbers of variables found in both adjacent
tissues. J represents the Jaccard-Tanimoto distance and p the accompanying probability that the binary list of variables for the two groups
differed by random chance [27].
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phenotype. Taken together, these results showed that altered
control of lipid metabolism and insulin resistance were features of
post-GDM obese dams. This combination of metabolic dysregula-
tions is of interest because the obese-GDM phenotype represents
a group at much higher risk of metabolic disease, such as T2DM,
after pregnancy. The cause of this increased risk is presently
unknown. Humans display evidence of dysregulation of lipid
metabolism and distribution in pregnancy before development of
insulin resistance [10–12]. Therefore our working hypothesis is
that dysregulated lipid metabolism drives the insulin resistance/
hyperinsulinaemia that remains post partum and contributes to
increased future risk of T2DM after GDM.
A relationship between lipid metabolism and insulin resis-

tance is well established. Insulin resistance such as that found in
the present study is accompanied by raised circulating FAs (as a
consequence of adipose tissue insulin resistance), which inhibit
glucose uptake into skeletal muscle [40–42]. Furthermore, lipid
‘spill-over’ from adipocytes is more frequent in obesity, with
adipocytes exhibiting higher rates of spontaneous lipolysis [43],
resulting in increased delivery of fatty acids and triglyceride
production in non-adipose tissues. This is reflected in the
current study by an increase in liver weights of the obese dams
and the appearance of ‘obese-specific’ liver TGs associated with
de novo lipogenesis. A strength of the present study for
understanding the relationship between insulin resistance and
lipid metabolism is that it analyses the difference in lipid
metabolism between a healthy (lean) post-pregnancy group and
one that developed GDM.
This study found evidence that both TGs and PCs have different

isoform profiles and a different number and variety of variables
throughout the lean and obese animals. Such a difference
between groups raises questions about how the system operates.
Indeed, there are several possible explanations for such different
lipid profiles. The supply of FAs is an obvious possible driver of FA
abundance in vivo. However, although the abundance of FAs in
the diet of the two groups was distinct, the accumulation and
distribution of FAs could not be explained by the composition of
the diet. Paradoxically, the lean group displayed a greater variety
of lipids throughout their systems despite all of the same FAs
being detected in the chow and high fat diet, and fat intake being
considerably higher in the HFD group. Broadly, there are two
possible explanations for a different breadth of variety of lipids in

the presence of an adequate supply of FAs and similar physical
activity. One is that endogenous production of FAs (e.g. de novo
lipogenesis) is more nuanced where there is a greater intake of
carbohydrate (as there is in the chow diet), and thus this improves
the availability of FAs. The other is that the control of lipid
biosynthesis from the formation of diglyceride differs between the
two groups. Either way, how FAs (either alone or in DGs) are
marshalled differs between the two groups, altering the range of
lipid isoforms observed.
FA variety may arise partly from fatty acid modification. Several

modifications of FAs are possible in vivo, including desaturation,
chain lengthening (elongation) and chain shortening. The latter
typically produces fatty acids with an odd number of carbons. The
possibility of differences in FA modifications between groups is
intriguing as there is long-standing evidence for a relationship
between fatty acid metabolism, in particular the better distribu-
tion of the long-chain polyunsaturated arachidonic acid and its
hydroxylated derivatives, and the development of insulin resis-
tance [44, 45] (reviews [46, 47]). Greater endogenous synthesis or a
better distribution of arachidonic-acid containing lipids (such as
PC [48]), as observed in the lean group, may therefore contribute
to a return to normal insulin sensitivity in that group. Indeed,
the evidence for a difference in distribution of arachidonate-
containing isoforms of PC is particularly important where the
supply of arachidonate is not restricted, as in the present study.
The supply of arachidonic acid is not expected to be a metabolic
bottleneck where there is a good dietary supply of it or linoleic
acid (as in the current study), as linoleic acid can be lengthened
and desaturated to produce arachidonic acid in mice and humans
[49, 50]. However, how it is marshalled through the system may
differ, e.g. PC(38:5), Fig S1.
Odd-chain fatty acids (OCFAs) have been associated with lower

risk of T2DM [51, 52] (review [53]). This is typically associated with
a higher dietary intake of dairy fat [54], however it is difficult to
test hypotheses based on this directly as it includes a number of
species, principally FA(15:0) and FA(17:0), that can come from both
dietary and endogenous synthesis, e.g. FA(17:0) from the product
of Hacl1. FA(15:0) can come from dairy fat [36], for example
through branched FAs produced by Gram-positive bacteria in the
gut of Bos taurus. The presence of these and other OCFAs could
increase the number of lipid isoforms detected. Importantly,
OCFA-containing lipids appeared throughout the system.
A number of OCFA-containing PCs were found in the brains of

both groups, suggesting that OCFAs are part of normal lipid
metabolism in this tissue, and unaffected even by considerable
differences in dietary intake. OCFAs are also commonplace in TGs.
In the present study OCFAs appeared in a variety of tissues in both
feeding groups but with little overlap between compartments,
indicating that circulation of OCFA-containing species is poor or
that they are generally made locally. However, labelling studies
would be required to establish this formally. The mechanistic
connection between any single or all OCFAs, and the risk of insulin
resistance is unknown. Investigations based on circulating lipid
composition showed that there is evidence for separate derivation
of FA(15:0) and FA(17:0) [36–38] consistent with both endogenous
and dietary influences. However, the effect of FA(17:0), the one
produced in greater amounts endogenously, is stronger [55]. The
biochemical role of these fatty acids has yet to be elucidated,
including whether they represent cause or effect.
The difference in lipid variety between the two animal groups

can also be explained by a difference in the control of lipid
metabolism. One possibility is that although the obese-GDM
group had excess fat intake, including the saturated FAs (SFAs)
associated with DNL, their livers did not reduce or discontinue
production SFAs from excess carbohydrate, leading to increased
abundance of FA(16:0)- (palmitic acid) containing lipids, with
knock-on effects on the relative abundance PUFA-containing
lipids. This contrasts with the lean animals for whom endogenous

Fig. 6 Wiring (London Underground) diagrams of triglyceride
(TG) variables found in which tissues. Blue lines represent the lean
group whereas orange lines represent the obese-GDM group. A
variable was considered present if B= > 0.66.
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biosynthesis of palmitic acid is important because their diet is
naturally low in it. A strength of the present study is that the
system-level analysis enabled us to separate local and system-
wide differences between groups and thus identify the reach of
lipids associated with particular processes, such as DNL, or with
clear roles such as structural components of membranes. This was
useful for both TGs and PLs.
The range of TGs associated with de novo lipogenesis (DNL), TG

(48:0, 48:1, 50:1, 50:2, 50:3) [39], was narrower in the obese-GDM
group, with TG(48:1, 50:3) not found throughout the latter group
(Fig. 6). This difference in variety existed despite the total TG
abundance in the circulation being the same for both groups (Fig.
3), suggesting that how the control of the mixture of TGs, and thus
FAs differed between the groups. A clear difference in system-wide
traffic of structural lipids was also observed clearly. For example,
saturated PE(34:0) was found throughout most of the lean system
whereas it was not in the obese-GDM group, whereas the
unsaturated PE(34:2) was only found throughout the obese system.
The kind of systemic analysis used on the mouse model in the

present study is probably impossible in humans, however a
comparison of the systemic changes in lipid metabolism that we
observed in the current study and those observed in the
circulation of obese humans before GDM was diagnosed [10–12]
showed that there were several similarities between the two.
Polyunsaturated PCs were less abundant in the circulation of
obese humans before GDM diagnosis [11] and in the obese dams
post partum (Fig. S1). Furthermore TGs associated with DNL were
reorganised in both humans before GDM [11, 12] and in the
current study two known markers of DNL, TG(50:1, 50:2) were
maintained throughout the systems of the obese-GDM group, and
were also higher in obese humans who later developed GDM
[11, 12]. These similar shifts before diagnosis of GDM diagnosis
(humans) and after delivery (mice) led us to the hypothesis that
altered systemic lipid metabolism contributes mechanistically to
the development of insulin resistance. Results from an observa-
tional study of the progress of GDM to T2DM in humans agrees
with these direct observations, also finding the same molecular
markers associated with GDM after pregnancy and for progress to
T2DM [56], as the earlier studies found in advance of hypergly-
caemia in human pregnancy. This would explain the glucose
intolerance in situations of increased insulin resistance, such as
that associated with pregnancy (GDM) or with ageing (T2DM).
Therefore, dysregulation of lipid metabolism could precede and
contribute to the development of dysregulated glycaemia and
ultimately glucose intolerance.
The difference in the composition of structural lipids in

membranes provides a possible mechanism for these effects.

For example, the differences in PC and PE composition and supply
discussed above suggest that there are changes in both bilayer
(PC, SM) and non-bilayer (PE) lipids, with important implications
for regulation of membrane fluidity [48, 57]. The relationship
between membrane composition and membrane protein activity
is well established [58, 59]. Specifically, physical studies of
membrane behaviour show that where there is an increase in
the abundance of saturated and mono-unsaturated FAs of
medium length (16 or 18 carbons) and thus a proportional
reduction in the abundance of shorter-chain and polyunsaturated
FAs, the membrane will become less fluid [60, 61], an effect known
to modulate the kinetics of enzymes and the affinity of receptors
for substrates [62, 63]. Theoretically, both a more and a less fluid
membrane could therefore disrupt the activity of insulin receptors
(for example), with physical effects caused by membranes that are
either too fluid or too rigid. This is shown schematically in Fig. 7.
This hypothesis provides an explanation for insulin resistance
being driven by a dysregulation of lipid metabolism, and for
observations that rigid membranes impair insulin signalling [64].
This is consistent with the hypothesis that emergence of GDM and
T2DM is not driven solely by short-term over-nutrition.
In conclusion, the present study showed that obesity-induced

GDM driven by a high fat-high sugar obesogenic diet is
associated with considerable changes in the systemic control
of the lipid distribution. This included tissue-specific effects on
lipid metabolism that were not attributable to differences in
dietary intake but could affect insulin sensitivity. The present
study therefore shows that unlike the hyperglycaemia present
during GDM [15], changes in lipid metabolism associated with
GDM persist post-weaning. Therefore metabolic dysregulation
of lipids provides a mechanism for the development of T2DM in
women previously affected by GDM. We propose that dysre-
gulation of lipid metabolism, associated with obesity and GDM,
contributes to the observed increased risk of T2DM and
cardiovascular disease in women who have had one or more
GDM pregnancies [65]. As cardiovascular disease is the number
one killer of women in the UK and the US, with almost double
the mortality rate of breast cancer [22], we conclude that
studies such as this are key to identifying potential targets for
intervention to prevent the increasing burden of poor cardio-
metabolic health.

DATA AVAILABILITY
The novel R code developed in the present study for Lipid Traffic Analysis v2.3 is in
Supplementary Information S3. LTA v1.0 is publicly available [27, 66]. The MS dataset
used in the present study is available publicly, as are the original NMR data [33].

Fig. 7 Summary of the hypothesis that the increased risk of CVD/T2DM associated with obese GDM is associated with altered lipid
metabolism.

S. Furse et al.

8

Nutrition and Diabetes            (2022) 12:8 

https://doi.org/10.5281/zenodo.5499760


REFERENCES
1. Poston L, Bell R, Croker H, Flynn AC, Godfrey KM, Goff L, et al. Effect of a beha-

vioural intervention in obese pregnant women (the UPBEAT study): a multicentre,
randomised controlled trial. Lancet Diabetes Endocrinol. 2015;3:767–77. https://
doi.org/10.1016/S2213-8587(15)00227-2.

2. Briley AL, Barr S, Badger S, Bell R, Croker H, Godfrey KM, et al. A complex inter-
vention to improve pregnancy outcome in obese women; the UPBEAT rando-
mised controlled trial. BMC Pregnancy Childbirth. 2014;14:74 https://doi.org/
10.1186/1471-2393-14-74.

3. Kim SY, England L, Wilson HG, Bish C, Satten GA, Dietz P. Percentage of gesta-
tional diabetes mellitus attributable to overweight and obesity. Am J Public
Health. 2010;100:1047–52. https://doi.org/10.2105/AJPH.2009.172890.

4. McIntyre HD, Catalano P, Zhang C, Desoye G, Mathiesen ER, Damm P. Gestational
diabetes mellitus. Nat Rev Dis Prim. 2019;5:47 https://doi.org/10.1038/s41572-
019-0098-8.

5. Damm P. Future risk of diabetes in mother and child after gestational diabetes
mellitus. Int J Gynecol Obstet. 2009;104:S25–S26. https://doi.org/10.1016/j.
ijgo.2008.11.025.

6. Herath H, Herath R, Wickremasinghe R. Gestational diabetes mellitus and risk of
type 2 diabetes 10 years after the index pregnancy in Sri Lankan women-A
community based retrospective cohort study. PloS ONE. 2017;12:
e0179647–e0179647. https://doi.org/10.1371/journal.pone.0179647.

7. Coustan DR. Recurrent GDM and the development of type 2 diabetes have
similar risk factors. Endocrine. 2016;53:624–5. https://doi.org/10.1007/s12020-
016-1016-4.

8. Chen L-W, Soh SE, Tint M-T, Loy SL, Yap F, Tan KH, et al. Combined analysis of
gestational diabetes and maternal weight status from pre-pregnancy through
post-delivery in future development of type 2 diabetes. Sci Rep. 2021;11:5021
https://doi.org/10.1038/s41598-021-82789-x.

9. Kramer CK, Campbell S, Retnakaran R. Gestational diabetes and the risk of car-
diovascular disease in women: a systematic review and meta-analysis. Diabeto-
logia. 2019;62:905–14. https://doi.org/10.1007/s00125-019-4840-2.

10. White SL, Pasupathy D, Sattar N, Nelson SM, Lawlor DA, Briley AL, et al. Metabolic
profiling of gestational diabetes in obese women during pregnancy. Diabetolo-
gia. 2017;60:1903–12. https://doi.org/10.1007/s00125-017-4380-6.

11. Furse S, White SL, Meek CL, Jenkins B, Petry CJ, Vieira MC, et al. Altered trigly-
ceride and phospholipid metabolism predates the diagnosis of gestational dia-
betes in obese pregnancy. Mol Omics. 2019;15:420–30. https://doi.org/10.1039/
C9MO00117D.

12. Lu L, Koulman A, Petry CJ, Jenkins B, Matthews L, Hughes IA, et al. An unbiased
lipidomics approach identifies early second trimester lipids predictive of maternal
glycemic traits and gestational diabetes mellitus. Diabetes Care. 2016;39:2232.

13. Rahman ML, Feng Y-CA, Fiehn O, Albert PS, Tsai MY, Zhu Y, et al. Plasma lipi-
domics profile in pregnancy and gestational diabetes risk: a prospective study in
a multiracial/ethnic cohort. BMJ Open Diabetes Res Care. 2021;9:e001551 https://
doi.org/10.1136/bmjdrc-2020-001551.

14. Furse S, Fernandez-Twinn DS, Chiarugi D, Koulman A, Ozanne SE. Lipid meta-
bolism is dysregulated before, during and after pregnancy in a mouse model of
gestational diabetes. Int J Mol Sci. 2021;22:7452 https://doi.org/10.3390/
ijms22147452.

15. Fernandez-Twinn DS, Gascoin G, Musial B, Carr S, Duque-Guimaraes D, Blackmore
HL, et al. Exercise rescues obese mothers’ insulin sensitivity, placental hypoxia
and male offspring insulin sensitivity. Sci Rep. 2017;7:44650 https://doi.org/
10.1038/srep44650.

16. Musial B, Fernandez-Twinn DS, Vaughan OR, Ozanne SE, Voshol P, Sferruzzi-Perri
AN, et al. Proximity to delivery alters insulin sensitivity and glucose metabolism in
pregnant mice. Diabetes. 2016;65:851–60. https://doi.org/10.2337/db15-1531.

17. Chu AHY, Godfrey KM. Gestational diabetes mellitus and developmental pro-
gramming. Ann Nutr Metab. 2020;76:4–15. https://doi.org/10.1159/000509902.

18. Kampmann FB, Thuesen ACB, Hjort L, Olsen SF, Pires SM, Tetens I, et al. Exposure
to gestational diabetes is a stronger predictor of dysmetabolic traits in children
than size at birth. J Clin Endocrinol Metab. 2018;104:1766–76. https://doi.org/
10.1210/jc.2018-02044.

19. Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine
programming of obesity and type 2 diabetes. Diabetologia. 2019;62:1789–801.
https://doi.org/10.1007/s00125-019-4951-9.

20. Perng W, Oken E, Dabelea D. Developmental overnutrition and obesity and type
2 diabetes in offspring. Diabetologia. 2019;62:1779–88. https://doi.org/10.1007/
s00125-019-4914-1.

21. Harreiter J, Fadl H, Kautzky-Willer A, Simmons D. Do women with diabetes need
more intensive action for cardiovascular reduction than men with diabetes? Curr
Diabetes Rep. 2020;20:61 https://doi.org/10.1007/s11892-020-01348-2.

22. British Heart Foundation: UK Factsheet (2021).
23. Knopp RH. Risk factors for coronary artery disease in women. Am J Cardiol.

2002;89:28–34. https://doi.org/10.1016/S0002-9149(02)02409-8.

24. Rizvi AA, Cuadra S, Nikolic D, Giglio VR, Montalto G, Rizzo M. Gestational diabetes
and the metabolic syndrome: can obesity and small, dense low density lipo-
proteins be key mediators of this association? Curr Pharm Biotechnol.
2014;15:38–46. https://doi.org/10.2174/1389201015666140330193653.

25. Loche E, Blackmore HL, Carpenter AA, Beeson JH, Pinnock A, Ashmore TJ, et al.
Maternal diet-induced obesity programmes cardiac dysfunction in male mice
independently of post-weaning diet. Cardiovascular Res. 2018;114:1372–84.
https://doi.org/10.1093/cvr/cvy082.

26. Musial B, Vaughan OR, Fernandez-Twinn DS, Voshol P, Ozanne SE, Fowden AL,
et al. A Western-style obesogenic diet alters maternal metabolic physiology with
consequences for fetal nutrient acquisition in mice. J Physiol. 2017;595:4875–92.
https://doi.org/10.1113/JP273684.

27. Furse S, Watkins AJ, Hojat N, Smith J, Williams HEL, Chiarugi D, et al. Lipid traffic
analysis reveals the impact of high paternal carbohydrate intake on offsprings’
lipid metabolism. Commun Biol. 2021;4:163 https://doi.org/10.1038/s42003-021-
01686-1.

28. Furse, S, Watkins, AJ, Williams, HEL, Snowden, SG, Chiarugi, D & Koulman, A.
Paternal nutritional programming of lipid metabolism is propagated by sperm
and seminal plasma. Metabolomics. https://doi.org/10.1007/s11306-022-01869-9
(2022).

29. Samuelsson A-M, Matthews PA, Argenton M, Christie M, McConnell R, Jansen JM.
et al. Diet-induced obesity in female mice leads to offspring hyperphagia,
adiposity, hypertension, and insulin resistance: a novel murine model of devel-
opmental programming. Hypertension. 2008;51:383–92.

30. Morgan HL, Paganopoulou P, Akhtar S, Urquhart N, Philomin R, Dickinson Y, et al.
Paternal diet impairs F1 and F2 offspring vascular function through sperm and
seminal plasma specific mechanisms in mice. J Physiol. 2020;598:699 https://doi.
org/10.1113/jp278270.

31. Watkins AJ, Dias I, Tsuro H, Allen D, Emes RD, Moreton J, et al. Paternal diet
programs offspring health through sperm- and seminal plasma-specific pathways
in mice. Proc Natl Acad Sci USA. 2018;115:10064 https://doi.org/10.1073/
pnas.1806333115.

32. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-
density lipoprotein cholesterol in plasma, without use of the preparative
ultracentrifuge. Clin Chem. 1972;18:499–502. https://doi.org/10.1093/clinchem/
18.6.499.

33. Furse S, Fernandez-Twinn D, Jenkins B, Meek CL, Williams HE, Smith GCS, et al. A
high throughput platform for detailed lipidomic analysis of a range of mouse and
human tissues. Anal Bioanal Chem. 2020;412:2851–62. https://doi.org/10.1007/
s00216-020-02511-0.

34. Furse S, Williams HEL, Watkins AJ, Virtue S, Vidal-Puig A, Amarsi R, et al. A
pipeline for making 31P NMR accessible for small- and large-scale lipidomics
studies. Anal Bioanal Chem. 2021;413:4763–73. https://doi.org/10.1007/s00216-
021-03430-4.

35. Harshfield EL, Koulman A, Ziemek D, Marney L, Fauman EB, Paul DS, et al. An
unbiased lipid phenotyping spproach to study the genetic determinants of lipids
and their association with coronary heart disease risk factors. J Proteome Res.
2019;18:2397–410. https://doi.org/10.1021/acs.jproteome.8b00786.

36. Jenkins B, Aoun M, Feillet-Coudray C, Coudray C, Ronis M, Koulman A. The dietary
total-fat content affects the in vivo circulating C15:0 and C17:0 fatty acid levels
independently. Nutrients. 2018;10:1646.

37. Jenkins BJ, Seyssel K, Chiu S, Pan P-H, Lin S-Y, Stanley E, et al. Odd chain fatty
acids; new insights of the relationship between the gut microbiota, dietary
intake, biosynthesis and glucose intolerance. Sci Rep. 2017;7:44845 https://doi.
org/10.1038/srep44845.

38. Smedman AE, Gustafsson I-B, Berglund LG, Vessby BO. Pentadecanoic acid in
serum as a marker for intake of milk fat: relations between intake of milk fat and
metabolic risk factors. Am J Clin Nutr. 1999;69:22–29. https://doi.org/10.1093/
ajcn/69.1.22.

39. Sanders F, Acharjee A, Walker C, Marney L, Roberts L, Imamura F, et al. Hepatic
steatosis risk is partly driven by increased de novo lipogenesis following carbo-
hydrate consumption. Genome Biol. 2018;19:79 https://doi.org/10.1186/s13059-
018-1439-8.

40. Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced
inhibition of glucose uptake. J Clin Investig. 1994;93:2438–46. https://doi.org/
10.1172/JCI117252.

41. Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet.
2005;365:1415–28. https://doi.org/10.1016/S0140-6736(05)66378-7.

42. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid
cycle its role in insulin sensitivity and the metabolic disturbances of diabetes
mellitus. Lancet. 1963;281:785–9. https://doi.org/10.1016/S0140-6736(63)
91500-9.

43. Laurencikiene J, Skurk T, Kulyté A, Hedén P, Åström G, Sjölin E, et al. Regulation of
lipolysis in small and large fat cells of the same subject. J Clin Endocrinol Metab.
2011;96:E2045–E2049. https://doi.org/10.1210/jc.2011-1702.

S. Furse et al.

9

Nutrition and Diabetes            (2022) 12:8 

https://doi.org/10.1016/S2213-8587(15)00227-2
https://doi.org/10.1016/S2213-8587(15)00227-2
https://doi.org/10.1186/1471-2393-14-74
https://doi.org/10.1186/1471-2393-14-74
https://doi.org/10.2105/AJPH.2009.172890
https://doi.org/10.1038/s41572-019-0098-8
https://doi.org/10.1038/s41572-019-0098-8
https://doi.org/10.1016/j.ijgo.2008.11.025
https://doi.org/10.1016/j.ijgo.2008.11.025
https://doi.org/10.1371/journal.pone.0179647
https://doi.org/10.1007/s12020-016-1016-4
https://doi.org/10.1007/s12020-016-1016-4
https://doi.org/10.1038/s41598-021-82789-x
https://doi.org/10.1007/s00125-019-4840-2
https://doi.org/10.1007/s00125-017-4380-6
https://doi.org/10.1039/C9MO00117D
https://doi.org/10.1039/C9MO00117D
https://doi.org/10.1136/bmjdrc-2020-001551
https://doi.org/10.1136/bmjdrc-2020-001551
https://doi.org/10.3390/ijms22147452
https://doi.org/10.3390/ijms22147452
https://doi.org/10.1038/srep44650
https://doi.org/10.1038/srep44650
https://doi.org/10.2337/db15-1531
https://doi.org/10.1159/000509902
https://doi.org/10.1210/jc.2018-02044
https://doi.org/10.1210/jc.2018-02044
https://doi.org/10.1007/s00125-019-4951-9
https://doi.org/10.1007/s00125-019-4914-1
https://doi.org/10.1007/s00125-019-4914-1
https://doi.org/10.1007/s11892-020-01348-2
https://doi.org/10.1016/S0002-9149(02)02409-8
https://doi.org/10.2174/1389201015666140330193653
https://doi.org/10.1093/cvr/cvy082
https://doi.org/10.1113/JP273684
https://doi.org/10.1038/s42003-021-01686-1
https://doi.org/10.1038/s42003-021-01686-1
https://doi.org/10.1007/s11306-022-01869-9
https://doi.org/10.1113/jp278270
https://doi.org/10.1113/jp278270
https://doi.org/10.1073/pnas.1806333115
https://doi.org/10.1073/pnas.1806333115
https://doi.org/10.1093/clinchem/18.6.499
https://doi.org/10.1093/clinchem/18.6.499
https://doi.org/10.1007/s00216-020-02511-0
https://doi.org/10.1007/s00216-020-02511-0
https://doi.org/10.1007/s00216-021-03430-4
https://doi.org/10.1007/s00216-021-03430-4
https://doi.org/10.1021/acs.jproteome.8b00786
https://doi.org/10.1038/srep44845
https://doi.org/10.1038/srep44845
https://doi.org/10.1093/ajcn/69.1.22
https://doi.org/10.1093/ajcn/69.1.22
https://doi.org/10.1186/s13059-018-1439-8
https://doi.org/10.1186/s13059-018-1439-8
https://doi.org/10.1172/JCI117252
https://doi.org/10.1172/JCI117252
https://doi.org/10.1016/S0140-6736(05)66378-7
https://doi.org/10.1016/S0140-6736(63)91500-9
https://doi.org/10.1016/S0140-6736(63)91500-9
https://doi.org/10.1210/jc.2011-1702


44. Wu M, Wang X, Duan Q, Lu T. Arachidonic acid can significantly prevent early
insulin resistance Induced by a high-fat diet. Ann Nutr Metab. 2007;51:270–6.
https://doi.org/10.1159/000105448.

45. Laffer CL, Laniado-Schwartzman M, Nasjletti A, Elijovich F. 20-HETE and circu-
lating insulin in essential hypertension with obesity. Hypertension.
2004;43:388–92. https://doi.org/10.1161/01.HYP.0000112224.87290.3a.

46. Sears B, Perry M. The role of fatty acids in insulin resistance. Lipids Health Dis.
2015;14:121–121. https://doi.org/10.1186/s12944-015-0123-1.

47. Kalupahana NS, Claycombe KJ, Moustaid-Moussa N. (n-3) Fatty acids alleviate
adipose tissue inflammation and insulin resistance: mechanistic insights. Adv
Nutr. 2011;2:304–16. https://doi.org/10.3945/an.111.000505.

48. Furse S, de Kroon AIPM. Phosphatidylcholine’s functions beyond that of a
membrane brick. Mol Membr Biol. 2015;32:117–9. https://doi.org/10.3109/
09687688.2015.1066894.

49. Fan Y-Y, Monk JM, Hou TY, Callway E, Vincent L, Weeks B, et al. Characterization of
an arachidonic acid-deficient (<em>Fads1</em> knockout) mouse model. J Lipid
Res. 2012;53:1287–95. https://doi.org/10.1194/jlr.M024216.

50. Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: a review. J Adv
Res. 2018;11:23–32. https://doi.org/10.1016/j.jare.2018.03.005.

51. Krachler B, Norberg M, Eriksson JW, Hallmans G, Johansson I, Vessby B, et al. Fatty
acid profile of the erythrocyte membrane preceding development of Type 2
diabetes mellitus. Nutr Metab Cardiovasc Dis. 2008;18:503–10. https://doi.org/
10.1016/j.numecd.2007.04.005.

52. Forouhi NG, Koulman A, Sharp SJ, Imamura F, Kröger J, Schulze MB, et al. Dif-
ferences in the prospective association between individual plasma phospholipid
saturated fatty acids and incident type 2 diabetes: the EPIC-InterAct case-cohort
study. lancet Diabetes Endocrinol. 2014;2:810–8. https://doi.org/10.1016/s2213-
8587(14)70146-9.

53. Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang W-S, Lankinen M, et al.
Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes:
A pooled analysis of prospective cohort studies. PLOS Med. 2018;15:e1002670
https://doi.org/10.1371/journal.pmed.1002670.

54. Jenkins B, West J, Koulman A. A review of odd-chain fatty acid metabolism and
the role of pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) in health
and disease. Molecules. 2015;20:2425.

55. Huang L, Lin J-S, Aris IM, Yang G, Chen W-Q, Li L-J. Circulating saturated fatty
acids and incident type 2 diabetes: a systematic review and meta-analysis.
Nutrients. 2019;11:998 https://doi.org/10.3390/nu11050998.

56. Lai M, Liu Y, Ronnett GV, Wu A, Cox BJ, Dai FF, et al. Amino acid and lipid
metabolism in post-gestational diabetes and progression to type 2 diabetes: a
metabolic profiling study. PLOS Med. 2020;17:e1003112 https://doi.org/10.1371/
journal.pmed.1003112.

57. Dawaliby R, Trubbia C, Delporte C, Noyon C, Ruysschaert J-M, Van Antwerpen P, et al.
Phosphatidylethanolamine is a key regulator of membrane fluidity in eukaryotic
cells. J Biol Chem. 2016;291:3658–67. https://doi.org/10.1074/jbc.M115.706523.

58. Lee AG. How lipids affect the activities of integral membrane proteins. Biochim
Biophys Acta. 2004;1666:62–87. https://doi.org/10.1016/j.bbamem.2004.05.012.

59. Lee AG. Lipid–protein interactions in biological membranes: a structural per-
spective. Biochim Biophys Acta. 2003;1612:1–40. https://doi.org/10.1016/S0005-
2736(03)00056-7.

60. Koynova R, Caffrey M. Phases and phase transitions of the hydrated phosphati-
dylethanolamines. Chem Phys Lipids. 1994;69:1–34. https://doi.org/10.1016/0009-
3084(94)90024-8.

61. Koynova R, Caffrey M. Phases and phase transitions of the phosphatidylcholines.
Biochim Biophys Acta. 1998;1376:91–145. https://doi.org/10.1016/S0304-4157(98)
00006-9.

62. Furse S, Mak L, Tate EW, Templer RH, Ces O, Woscholski R, et al. Synthesis of
unsaturated phosphatidylinositol 4-phosphates and the effects of substrate
unsaturation on SopB phosphatase activity. Org Biomol Chem. 2015;13:2001–11.
https://doi.org/10.1039/c4ob02258k.

63. Goldberg EM, Zidovetzki R. Effects of dipalmitoylglycerol and fatty acids on
membrane structure and protein kinase C activity. Biophys J. 1997;73:2603–14.

64. Pilon M. Revisiting the membrane-centric view of diabetes. Lipids Health Dis.
2016;15:167–167. https://doi.org/10.1186/s12944-016-0342-0.

65. Daly B, Toulis KA, Thomas N, Gokhale K, Martin J, Webber J, et al. Increased risk of
ischemic heart disease, hypertension, and type 2 diabetes in women with pre-
vious gestational diabetes mellitus, a target group in general practice for pre-
ventive interventions: a population-based cohort study. PLOS Med. 2018;15:
e1002488 https://doi.org/10.1371/journal.pmed.1002488.

66. Furse, S, Watkins, AJ, Hojat, N, Smith, J, Williams, HEL, Chiarugi, D et al. Code for:
Lipid traffic analysis reveals the impact of high paternal carbohydrate intake on
offsprings’ lipid metabolism. https://doi.org/10.5281/zenodo.4309347 (2021).

ACKNOWLEDGEMENTS
The authors gratefully acknowledge funding from the BBSRC (BB/M027252/1 for SF
and AK and BB/T014210/1 for SF) and MRC and BHF (MC_UU_12012/4 and RG/17/12/
33167 for DFT and SEO). JHB was supported by a British Heart Foundation
Studentship [FS/14/59/31282]. Serum-lipid analyses were carried out by the Core
Biochemical Assay Laboratory, Cambridge University Hospitals NHS Foundation Trust,
Cambridge, UK.

AUTHOR CONTRIBUTIONS
DFT and SF conceived the research question with AK and SEO. SF carried out all lipid
analyses and wrote the manuscript with DFT. DC conceived improvements to
previous code with SF and wrote all novel code. DFT and SEO developed the mouse
model. DFT did all animal work with JB and produced all tissue samples. AK and SEO
wrote the original grant proposals. SF, DFT and AK interpreted data and revised the
manuscript with comments from all authors. All authors commented on the
manuscript and approved the final version.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41387-022-00185-4.

Correspondence and requests for materials should be addressed to Samuel Furse or
Albert Koulman.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

S. Furse et al.

10

Nutrition and Diabetes            (2022) 12:8 

https://doi.org/10.1159/000105448
https://doi.org/10.1161/01.HYP.0000112224.87290.3a
https://doi.org/10.1186/s12944-015-0123-1
https://doi.org/10.3945/an.111.000505
https://doi.org/10.3109/09687688.2015.1066894
https://doi.org/10.3109/09687688.2015.1066894
https://doi.org/10.1194/jlr.M024216
https://doi.org/10.1016/j.jare.2018.03.005
https://doi.org/10.1016/j.numecd.2007.04.005
https://doi.org/10.1016/j.numecd.2007.04.005
https://doi.org/10.1016/s2213-8587(14)70146-9
https://doi.org/10.1016/s2213-8587(14)70146-9
https://doi.org/10.1371/journal.pmed.1002670
https://doi.org/10.3390/nu11050998
https://doi.org/10.1371/journal.pmed.1003112
https://doi.org/10.1371/journal.pmed.1003112
https://doi.org/10.1074/jbc.M115.706523
https://doi.org/10.1016/j.bbamem.2004.05.012
https://doi.org/10.1016/S0005-2736(03)00056-7
https://doi.org/10.1016/S0005-2736(03)00056-7
https://doi.org/10.1016/0009-3084(94)90024-8
https://doi.org/10.1016/0009-3084(94)90024-8
https://doi.org/10.1016/S0304-4157(98)00006-9
https://doi.org/10.1016/S0304-4157(98)00006-9
https://doi.org/10.1039/c4ob02258k
https://doi.org/10.1186/s12944-016-0342-0
https://doi.org/10.1371/journal.pmed.1002488
https://doi.org/10.5281/zenodo.4309347
https://doi.org/10.1038/s41387-022-00185-4
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	A mouse model of gestational diabetes shows dysregulated lipid metabolism post-weaning, after return to euglycaemia
	Introduction
	Materials and methods
	Animal model
	Glucose tolerance test
	Clinical lipid measures
	Lipidomics
	Lipid traffic analysis
	Statistical methods

	Results
	Mouse model of gestational diabetes
	Dietary fatty acid intake
	Lipid traffic analysis

	Discussion
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




