
1 
 

Investigating the genetic and environmental basis of head 

micromovements during MRI  
 

Short title: Genetics of head motion 
 

Author List (in this order) 

Name, Title Contribution Affiliation Email address 

Beyer, 

Frauke 

(PhD) 

Study 

conception, 

Data analysis, 

Manuscript 

writing 

Department of 

Neurology, Max 

Planck Institute for 

Human Cognitive and 

Brain Sciences, 

Leipzig; SFB 1052, 

Obesity Mechanisms, 

Subproject A1, 

University of Leipzig 

fbeyer@cbs.mpg.de, 

ORCID-ID: 0000-0001-5401-

852X 

Horn, Katrin 

(Msc) 

genomic data 

and 

MetaGWAS 

analysis 

Institute for Medical 

Informatics, Statistics 

and Epidemiology; 

Leipzig University 

katrin.horn@imise.uni-leipzig.de 

Frenzel, S. 

(MSc) 

bioinformatics, 

statistical 

analysis 

Department of 

Psychiatry and 

Psychotherapy, 

University Medicine 

Greifswald, 

Greifswald, Germany 

stefan.frenzel@uni-greifswald.de 

Hofer, Edith 

(PhD) 

bioinformatics, 

statistical 

analysis 

Clinical Division of 

Neurogeriatrics, 

Department of 

Neurology, Medical 

University of Graz, 

Austria                        

Institute for Medical 

Informatics, Statistics 

and Documentation, 

Medical University of 

Graz, Austria 

edith.hofer@medunigraz.at 

Knol, Maria 

J. (MSc) 

phenotype 

preparation, 

statistical 

analysis 

Department of 

Epidemiology, 

Erasmus MC 

University Medical 

Center, Rotterdam, 

the Netherlands 

m.j.knol@erasmusmc.nl 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

mailto:fbeyer@cbs.mpg.de
https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


2 
 

Morys, Filip 

(PhD) 

bioinformatics, 

statistical 

analysis 

Montreal Neurological 

Institute, McGill 

University, Montreal, 

QC, Canada 

filip.morys@mcgill.ca 

Vainik, Uku 

(PhD)  

bioinformatics, 

statistical 

analysis 

Institute of 

Psychology, Faculty of 

Social Sciences, 

University of Tartu, 

Estonia 

Montreal Neurological 

Institute, McGill 

University, Montreal, 

QC, Canada 

uku.vainik@gmail.com 

Van der 

Auwera, 

Sandra 

(PhD). 

bioinformatics, 

statistical 

analysis  

German Center for 

Neurodegenerative 

Diseases (DZNE), Site 

Rostock/ Greifswald, 

Greifswald, Germany 

Department of 

Psychiatry and 

Psychotherapy, 

University Medicine 

Greifswald, 

Greifswald, Germany 

auweras@uni-greifswald.de 

Wittfeld, 

Katharina 

(PhD) 

bioinformatics, 

statistical 

analysis 

German Center for 

Neurodegenerative 

Diseases (DZNE), Site 

Rostock/ Greifswald, 

Greifswald, Germany 

Department of 

Psychiatry and 

Psychotherapy, 

University Medicine 

Greifswald, 

Greifswald, Germany 

katharina.wittfeld@uni-

greifswald.de 

Saba, 

Yasaman 

(MSc). 

bioinformatics, 

statistical 

analysis 

University of 

Bordeaux, Inserm, 

Bordeaux Population 

Health Research 

Center, team 

VINTAGE, UMR 1219, 

33000, Bordeaux, 

France                                                                   

Research Unit-Genetic 

Epidemiology, 

Gottfried Schatz 

y.saba@medunigraz.at 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

Research Center for 

Cell Signaling, 

Metabolism and 

Aging,, Medical 

University of Graz, 

Austria 

Adams, 

Hieab HH 

(MD, PhD, 

Prof.) 

phenotype data 

aquisition, 

funding 

Department of Clinical 

Genetics, Erasmus 

MC University Medical 

Center, Rotterdam, 

the Netherlands 

Department of 

Radiology and Nuclear 

Medicine, Erasmus 

MC University Medical 

Center, Rotterdam, 

the Netherlands 

h.adams@erasmusmc.nl 

Bülow, 

Robin (MD) 

MRI data 

aquisition 

Institute of Diagnostic 

Radiology and 

Neuroradiology, 

University Medicine 

Greifswald, 

Greifswald, Germany 

Robin.Buelow@med.uni-

greifswald.de 

Grabe, 

Hans (MD, 

Prof.) 

phenotype data 

aquisition, 

funding 

German Center for 

Neurodegenerative 

Diseases (DZNE), Site 

Rostock/ Greifswald, 

Greifswald, Germany 

Department of 

Psychiatry and 

Psychotherapy, 

University Medicine 

Greifswald, 

Greifswald, Germany 

Hans.Grabe@med.uni-

greifswald.de 

Homuth, 

Georg 

(PhD) 

genotype data 

aquisition 

Interfaculty Institute for 

Genetics and 

Functional Genomics, 

University Medicine 

Greifswald, 

Greifswald, Germany 

georg.homuth@uni-

greifswald.de 

Koini, 

Marisa 

(PhD) 

phenotype 

preparation 

Clinical Division of 

Neurogeriatrics, 

Department of 

Neurology, Medical 

marisa.koini@medunigraz.at 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


4 
 

University of Graz, 

Austria 

Loeffler, 

Markus 

(MD, Prof.) 

study 

conception, 

funding  

Institute for Medical 

Informatics, Statistics 

and Epidemiology; 

University of Leipzig 

markus.loeffler@imise.uni-

leipzig.de 

Schmidt, 

Helena 

(MD, PhD, 

Prof.) 

genotype data 

acquisition, 

funding  

Research Unit-Genetic 

Epidemiology, 

Gottfried Schatz 

Research Center for 

Cell Signaling, 

Metabolism and 

Aging,, Medical 

University of Graz, 

Austria 

helena.schmidt@medunigraz.at 

Schmidt, 

Reinhold 

(MD, Prof.) 

phenotype data 

aquisition, 

funding  

Clinical Division of 

Neurogeriatrics, 

Department of 

Neurology, Medical 

University of Graz, 

Austria 

reinhold.schmidt@medunigraz.at 

Teumer, 

Alexander 

(PhD) 

genotype data 

preparation 

Institute for 

Community Medicine, 

University Medicine 

Greifswald, 

Greifswald, Germany 

ateumer@uni-greifswald.de 

Vernooij, 

MW (MD, 

PhD, Prof.) 

phenotype data 

aquisition, 

funding 

Department of 

Epidemiology, 

Erasmus MC 

University Medical 

Center, Rotterdam, 

the Netherlands 

Department of 

Radiology and Nuclear 

Medicine, Erasmus 

MC University Medical 

Center, Rotterdam, 

the Netherlands 

m.vernooij@erasmusmc.nl 

Villringer, 

Arno (MD, 

Prof.) 

phenotype data 

aquisition, 

funding  

Department of 

Neurology, Max 

Planck Institute for 

Human Cognitive and 

Brain Sciences, 

Leipzig 

villringer@cbs.mpg.de 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

Völzke, 

Henry (MD, 

Prof) 

phenotype data 

aquisition, 

funding 

Institute for 

Community Medicine, 

University Medicine 

Greifswald, 

Greifswald, Germany 

voelzke@uni-greifswald.de 

Zonneveld, 

Hazel (MD) 

phenotype data 

aquisition, data 

processing 

Department of 

Epidemiology, 

Erasmus MC 

University Medical 

Center, Rotterdam, 

the Netherlands 

Department of 

Radiology and Nuclear 

Medicine, Erasmus 

MC University Medical 

Center, Rotterdam, 

the Netherlands 

h.zonneveld@erasmusmc.nl 

Dagher, A. 

(MD, Prof.) 

Study 

conception, 

Discussion and 

revision, 

funding  

Montreal Neurological 

Institute, McGill 

University, Montreal, 

QC, Canada 

alain.dagher@mcgill.ca 

Scholz, 

Markus 

(PhD, Prof.) 

genotype data 

acquisition, 

data analysis, 

study 

conception, 

funding  

Institute for Medical 

Informatics, Statistics 

and Epidemiology; 

University of Leipzig 

markus.scholz@imise.uni-

leipzig.de 

Witte AV 

(PhD) 

Study 

conception, 

Manuscript 

writing and 

revision, 

Discussion   

Department of 

Neurology, Max 

Planck Institute for 

Human Cognitive and 

Brain Sciences, 

Leipzig; SFB 1052, 

Obesity Mechanisms, 

Subproject A1, 

University of Leipzig 

Day Clinic for 

Cognitive Neurology, 

University Hospital 

Leipzig, Leipzig 

University 

witte@cbs.mpg.de 

on behalf of the NeuroCHARGE working group 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

Data availability statement: 

Summary statistics for the GWAS meta-analysis on head motion will be deposited in the 

Leipzig Health Atlas (https://www.health-atlas.de/). Researchers may obtain access to the 

raw data for UKBB, LIFE-Adult and the Rotterdam study via data usage requests, for all 

other studies the authors may be contacted to provide data access.  

Funding statements 

Study of Health in Pomerania (SHIP and SHIP-Trend):  

SHIP is part of the Community Medicine Research net of the University of Greifswald, 

Germany, which is funded by the Federal Ministry of Education and Research (grants no. 

01ZZ9603, 01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the Social 

Ministry of the Federal State of Mecklenburg-West Pomerania, and the network ‘Greifswald 

Approach to Individualized Medicine (GANI_MED)’ funded by the Federal Ministry of 

Education and Research (grant 03IS2061A). Genome-wide data have been supported by the 

Federal Ministry of Education and Research (grant no. 03ZIK012) and a joint grant from 

Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg- West 

Pomerania. MRI scans in SHIP and SHIP-TREND have been supported by a joint grant from 

Siemens Healthineers, Erlangen, Germany and the Federal State of Mecklenburg-West 

Pomerania. The University of Greifswald is a member of the Caché Campus program of the 

InterSystems GmbH. 

 

LIFE-Adult 

The LIFE-Adult was funded by the Leipzig Research Center for Civilization Diseases (LIFE). 

LIFE is an organizational unit affiliated to the Medical Faculty of the University of Leipzig. 

LIFE is funded by means of the European Union, by the European Regional Development 

Fund (ERDF) and by funds of the Free State of Saxony within the framework of the 

excellence initiative (Grant Numbers: 713-241202, 713-241202, 14505/2470, 14575/2470). 

Analysis was also funded by the Deutsche Forschungsgemeinschaft (Grant Number: CRC 

1052 “Obesity mechanisms” A1). 

Rotterdam Study (RS):  

The generation and management of GWAS genotype data for the Rotterdam Study (RS I, 

RS II, RS III) were executed by the Human Genotyping Facility of the Genetic Laboratory of 

the Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands. The GWAS 

datasets are supported by the Netherlands Organisation of Scientific Research NWO 

Investments (nr. 175.010.2005.011, 911-03-012), the Genetic Laboratory of the Department 

of Internal Medicine, Erasmus MC, the Research Institute for Diseases in the Elderly (014-

93-015; RIDE2), the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for 

Scientific Research (NWO) Netherlands Consortium for Healthy Aging (NCHA), project nr. 

050-060-810. This work has been performed as part of the CoSTREAM project 

(www.costream.eu) and has received funding from the European Union's Horizon 2020 

research and innovation programme under grant agreement No 667375. This project has 

also received funding from the European Research Council (ERC) under the European 

Union’s Horizon 2020 research and innovation programme (project: ORACLE, grant 

agreement No: 678543). 

 

The Austrian Stroke Prevention Familiy Study (ASPS-Fam):  

The research reported in this article was funded by the Austrian Science Fond (FWF) grant 

number P20545-P05 and P13180 and supported by the Austrian National Bank Anniversary 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


7 
 

Fund, P15435, the Austrian Ministry of Science under the aegis of the EU Joint Programme-

Neurodegenerative Disease Research (JPND)-www.jpnd.eu  and by the Austrian Science 

Fund P20545-B05. The Medical University of Graz supports the databank of the ASPS-Fam. 

UKBB 

The UK  Biobank and its Imaging Enhancement are funded by the Medical Research Council 

and the Wellcome Trust. Data was accessed through agreement 35605 (PI, A. Dagher). Uku 

Vainik has been funded by Estonian Research Council's personal research funding start-up 

grant PSG656. 

Conflict of interest disclosure 

The authors declare no competing interests. 

Ethics approval statement 

All included studies were performed according to the declaration of Helsinki and received 

approval of local ethic committees. 

 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

Abstract 

Introduction: Head motion during magnetic resonance imaging is heritable. Further, it 

shares phenotypical and genetic variance with body mass index (BMI) and impulsivity. Yet, 

to what extent this trait is related to single genetic variants and physiological or behavioral 

features is unknown. We investigated the genetic basis of head motion in a meta-analysis of 

genome-wide association studies. Further, we tested whether physiological or psychological 

measures, such as respiratory rate or impulsivity, mediated the relationship between BMI 

and head motion. 

Methods: We conducted a genome-wide association meta-analysis for mean and maximal 

framewise head displacement (FD) in seven population neuroimaging cohorts (UK Biobank, 

LIFE-Adult, Rotterdam Study cohort 1-3, Austrian Stroke Prevention Family Study, Study of 

Health in Pomerania; total N = 35.109). We performed a pre-registered analysis to test 

whether respiratory rate, respiratory volume, self-reported impulsivity and heart rate 

mediated the relationship between BMI and mean FD in LIFE-Adult. 

Results: No variant reached genome-wide significance for neither mean nor maximal FD. 

Neither physiological nor psychological measures mediated the relationship between BMI 

and head motion. 

Conclusion: Based on these findings from a large meta-GWAS and pre-registered follow-up 

study, we conclude that the previously reported genetic correlation between BMI and head 

motion relies on polygenic variation, and that neither psychological nor simple physiological 

parameters explain a substantial amount of variance in the association of BMI and head 

motion. Future imaging studies should thus rigorously control for head motion at acquisition 

and during preprocessing. 

 

Keywords: head motion, genome wide association, obesity, magnetic resonance imaging, 

neuroimaging, BMI, impulsivity, artefact 
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1. Introduction 

Head motion (HM) during magnetic resonance imaging (MRI) is a major source of nuisance 

in MRI studies as it decreases data quality and induces significant bias in imaging 

biomarkers such as functional connectivity and gray matter volume (Power et al., 2012; 

Savalia et al., 2017; Van Dijk et al., 2012). There is a remarkably consistent association of 

higher body mass index (BMI) and higher head motion, yet the underlying mechanisms 

remain poorly understood (Beyer et al., 2017; Hodgson et al., 2016; Madan, 2018). 

Previous studies have attributed the association to physiological parameters such as 

breathing rate and chest volume (Ekhtiari et al., 2019; Siegel et al., 2017). Higher respiratory 

rate, shallower breaths and lower lung volume have been consistently reported in obesity 

(Burki & Baker, 1984; Littleton, 2012). Respiration explains a considerable part of variance in 

head motion and signal variation during functional MRI, which is on the one hand due to 

physical motion associated with breathing and on the other hand related to artificial head 

motion induced by chest motion and subtle susceptibility shifts (Fair et al., 2020). Thus, 

differences in respiratory parameters might mediate the observed BMI-head motion 

relationship.  

A different line of research suggests a neurobiological trait, which predisposes to higher head 

motion and potentially more impulsive (motor) behavior in general (Zeng et al., 2014). Higher 

head motion has been consistently reported in attention-deficit disorder (ADHD) and is 

phenotypically and genetically correlated with impulsivity (Couvy-Duchesne et al., 2016; 

Kong et al., 2014; Thomson et al., 2020). Impulsivity and decreased inhibitory control show 

small yet reliable association with BMI, which could be in part explained by shared genetic 

factors (Meule & Blechert, 2016; Vainik et al., 2018). Head motion is moderately heritable (h² 

~ 0.4) and shares genetic variance with BMI (ρg ~ 0.8) in studies based on family structure 

(Couvy-Duchesne et al., 2014; Engelhardt et al., 2017; Hodgson et al., 2016). Thus, a 

genetically determined tendency towards impulsive behavior might underlie both BMI and 

head motion. Another psychological factor to be considered is anxiety and claustrophobic 

feelings which people with higher BMI might experience more often than lean participants in 

the narrow scanner bore. Anxiety (reflected by higher heart rate) might also contribute to 

higher head motion (van Minde et al., 2014).  

Taken together, different psychological and physiological factors might contribute to the 

robust phenotypic association of BMI and head motion. Here, we aimed to further explore the 

role of these factors by  

1. investigating the genetic basis of head motion in a meta-analysis of genome wide 

association studies (GWAS). We hypothesized to detect either body weight-related 

(e.g. FTO) or impulsivity/ADHD-related variants (e.g. ADGRL3), either one of which 

would be indicative of the pathways involved in the genetic association between head 

motion and BMI.  

2. testing whether respiratory parameters, heart rate or measures of impulsivity  

mediated the association of BMI and head motion. 

2. Methods 

2.1 Meta-GWAS 

We performed a GWAS meta-analysis of 35109 participants of European ancestry from 7 

studies (stage 1) that contributed summary statistic data.  
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2.1.1 Study populations 

All participating studies except for the UK biobank study are part of the Cohorts for Heart 

and Aging Research in Genomic Epidemiology (CHARGE) consortium. Each study was 

approved by the local ethics committee and conducted according to the declaration of 

Helsinki. Informed consent was obtained from all participants.  

The analysis plan for the meta-GWAS was pre-specified and sent to all participating 

studies (see https://osf.io/ahfv9/ for more details). Study participants were older than 18 

years and not diagnosed with stroke, brain pathologies (e.g. tumors or traumatic brain 

injury) or dementia. For basic demographics of the participants see Supplementary Table 

1. 

2.1.2 Imaging 

Resting-state fMRI was performed on 1.5 or 3 Tesla scanners at all study sites. The 

phenotypes of interest mean and maximal frame-wise displacement (mFD, maxFD) were 

calculated according to Power et al. (Power et al., 2012). All but one study used FSL’s 

function MCFLIRT to extract 6 motion parameters (three rotational and three 

translational) which model the frame-to-frame head motion. In SHIP, AFNI’s 3dvolreg 

was used to calculate these parameters. Then, framewise displacement was calculated 

from these parameters according to (Power et al., 2012). We provided a publicly 

available custom script to all research groups 

(https://github.com/fBeyer89/life_followup_preproc/blob/master/qa/resting/qa_pipeline/util

s.py). Information on scanner manufacturers, acquisition protocols and motion correction 

tools are provided in Supplementary Table 1.  

2.1.3  Genotyping and Imputation 

Information on genotyping platforms, quality control procedures and imputations methods 

for each participating study are provided in Supplementary Table 2. All studies used 

commercially available genotyping arrays, including Illumina or Affymetrix arrays. Single 

study quality control was performed at the discretion of the single study groups. Using 

validated software, each study performed genotype imputations. 

2.1.4 Quality control of single study association results 

Summary statistics of all studies were checked and harmonized with the software 

EasyQC. We discarded SNPs not in the reference panel (1000 Genomes phase 3, 

version 5, European ancestry), mismatching alleles or mismatching chromosomal 

position with respect to the reference. Moreover, we removed SNPs with missing allele 

information (effect allele, effect allele frequency), missing association statistics (beta 

estimates, standard errors) or missing imputation quality score. SNPs were filtered for 

weighted minor allele frequency (MAF) >1%. Genotyped SNPs were filtered for call rate 

>97% and p-value of Hardy-Weinberg test >10-6. Imputed SNPs were filtered for 

imputation quality score >0.5 and for deviation from reference allele frequency <20%. 

Finally, the alleles were harmonized so that the same effect allele was used in all studies. 

Variance inflation factor lambda was calculated for single study GWAS. Test statistics 

were corrected by genomic control if λ >1. 

2.1.5 Statistical Analysis 

The single-study GWAS were performed locally following a uniform analysis plan 

provided to all study groups. We performed linear regression analysis of the log-

transformed phenotypes of interest (mFD and maxFD). Covariates were age, sex, total 
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intracranial volume (TIV) as well as three principle components of genetic population 

structure.  

An additive gene-dose model was assumed. The analyses were performed for all 

individuals combined ,and separately for female and male participants (self-reported; 

note that diverse gender was not assessed in most studies) following the SAGER 

guidelines (Heidari et al., 2016).  

2.1.6 Meta-analysis 

Altogether two traits were meta-analysed, combined together or stratified by sex. Fixed 

effects inverse variance meta-analysis was performed as primary statistics.  

Random effects meta-analysis results were also reported. Meta-analysis results were 

filtered for number of contributing studies >2 and heterogeneity I2<0.75. 

A p-value of <5 10-8 was considered genome-wide significant.  

2.2  Investigation of respiratory and psychological measures in the relationship of 

BMI and head motion 

We pre-registered this part of the analysis on the Open Science Framework 

.https://osf.io/rh52s. 

We hypothesized that respiratory rate, respiratory volume per time (RVT), heart rate, total 

impulsivity, motor, or self-control impulsivity might mediate the link between BMI and HM. 

Further, we aimed to test whether BMI was associated with differences in the correlation 

between frame-to-frame HM and BOLD signal intensity with respiratory trace and RVT.  

Our sample was taken from the LIFE-Adult study, a population-based cohort study with 

10.000 participants which included genotyping, MRI and deep phenotyping (Loeffler et 

al., 2015)(Engel et al., 2021 in preparation). The study was approved by the Ethics 

committee of the Medical Faculty of Leipzig University and all participants signed written 

informed consent and received a renumeration for their participation. 

2.2.1 Sample 

We included 1006 participants with follow-up MRI acquisition available on June, 30th 

2021. The flowchart in Supplementary Figure 8 illustrates the exclusion and missing data 

which led to the final sample sizes in the different analysis parts. 

 

2.2.2 Imaging and physiological data acquisition 

Resting state fMRI was acquired with the same echo-planar-imaging sequence as in the 

baseline assessment (repetition time, 2 s; echo time, 30 ms; flip angle, 90°; image matrix, 

64 × 64; 30 slices; field of view, 192 × 192 × 144 mm3, no multiband, iPAT acceleration: 

1, voxel size of 3 mm × 3 mm, slice thickness of 4 mm, slice gap of 0.8 mm; 300 

volumes; total acquisition time, 10:04 minutes). Physiological parameters were recorded 

during the scan using Siemens proprietary hardware (breathing belt and an oximeter 

attached to the index finger). The sampling rate was 50 Hz for both devices.. 

2.2.3 rsfMRI and physiological data preprocessing 

We used FSL’s function MCFLIRT to extract 6 motion parameters from the rsfMRI scan 

(three rotational and three translational) which model the frame-to-frame head motion. 

Framewise displacement was calculated from these parameters according to (Power et 

al., 2012) using a publicly available custom script 

(https://github.com/fBeyer89/life_followup_preproc/blob/master/qa/resting/qa_pipeline/util
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s.py). We used log10-transformed average mFD and frame-to-frame FD for analysis. 

We also calculated DVARS, a measure of BOLD fluctuations from frame to frame which 

allows us to quantify the effect of head motion/physiological parameters on the acquired 

signal (Power et al., 2015). Standardized DVARS was calculated from the raw fMRI scan 

with the ComputeDVARS function from the nipype.algorithms.confounds module in this 

script.  

We used PhysIO toolbox (“Created: 2011-08-01”) in Matlab version 9.3 to preprocess the 

physiological data (Kasper et al., 2017). We performed automated pulse detection for 

detecting cardiac phase with default parameters for heartbeat duration outliers. Heart rate 

was estimated by averaging heart beat duration in a sliding window of 6 seconds (3 TR) 

(Chang et al., 2009). Respiration maximal and minimal amplitude (corresponding to 

respiratory cycles) was also automatically detected. Then, respiratory volume per time 

(RVT) was calculated by dividing the amplitude between adjacent breathing minima and 

maxima by the interpolated time interval between them (Birn et al., 2006). We normalized 

RVT by dividing it by the maximal RVT value for each participant and calculated the 

average and standard deviation of the normalized RVT. Respiratory rate (RR) was 

calculated as the inverse of the average of all interpolated breathing cycle durations. To 

estimate the correlation of head motion and respiration, we first downsampled the 

respiratory amplitude trace and RVT to the scan frequency (1/TR). Then, we calculated 

Pearson’s correlation of the respiratory trace/RVT with FD or DVARS.  

We excluded participants with physiologically implausible values of RR (< 0.16 Hz or > 

0.5 Hz) and HR (< 40 bpm or > 110 bpm). 

BMI was determined based on the anthropometric assessment in the LIFE-study and 

calculated as weight divided by height squared. We excluded participants with 

physiologically implausible values of BMI (<15 kg/m2 and >60 kg/m2).  

 

2.2.4 Psychological measures 

We used the Barratt impulsiveness scale in its revised version (BIS-11) to assess self-

reported impulsivity. Based on published scoring scheme, we derived the total impulsivity 

scale, the motor impulsivity subscale and the self-control subscale (Kong et al., 2014; 

Patton et al., 1995). 

2.2.5 Statistical analysis 

All statistical analyses were done using R version 3.6.1. The code for the statistical 

analyses is publicly accessible at https://github.com/fBeyer89/Mediators_of_HeadMotion. 

As pre-registered, we performed mediation analyses for respiratory and psychological 

variables. BMI was the independent predictor, mFD was the outcome and all models 

were adjusted for age and sex (male as reference category). Mediating factors were RR, 

mean RVT and HR for the physiological and BIS_motor, BIS_selfcontrol, BIS_total for 

the psychological models. 

The mediation models were implemented in the R package lavaan 0.6.7 and estimated 

using maximum likelihood. The standard errors and confidence intervals were derived 

from 1000 bootstraps. Depending on the number of tests per group, we used Bonferroni-

corrected p-values (physiological: p<0.0167 and psychological mediations p<0.0167). 

Further, we tested whether the correlation of respiratory parameters and frame-to-frame 

head motion and BOLD signal variation was associated with BMI. To this end, we first 

derived the frame-to-frame correlation of downsampled RVT and the respiratory trace 

with frame-to-frame head motion and BOLD signal variation. Then, we estimated the 
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association of BMI and these correlations in linear models adjusting for age and sex. We 

performed full-null model comparison (omitting BMI from the null models) and used a 

Bonferroni-adjusted p-value (p<0.0125) for the four models tested. 

Evaluation of statistical model assumptions  

We checked all variables visually for normality and noticed no strong deviation except for 

BIS11_selfcontrol which was not normally distributed because only six items were used 

for its construction.. 

We visually inspected the residuals of the linear models used in the mediation analysis, 

and checked for variance inflation and heteroskedasticity. All residuals looked 

approximately normally distributed, and there was no case of strong heteroskedasticity 

or variance inflation with VIF >10.  

We repeated the mediation models without influential cases defined by Cooks distance > 

4/n (n is the number of individuals included in the respective models). 

In the pre-registration we planned to check the quality of fit of the mediation models with 

common fit indices used in structural equation models (SEM). However, this was 

considered unnecessary since no latent variables were considered  

2.3 Results 

2.3.1 Meta-GWAS 

Age and sex distribution as well as average mFD of the participating studies can be 

found in Supplementary Table 1.  

Meta-analysis of seven studies and 35,109 subjects did not result in genome-wide 

significant associations neither for mFD nor max FD (see Figure 1). This applies for the 

combined and the stratified analyses (see Supplementary Figures 3 -- 6).
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Figure 1: Manhattan plot showing the min(p-value) for an association of both phenotypes 
mean and maximal FD with genetic variants. 

For mFD, there were 109 SPNs with a p<10-6. The strongest effects were on 
chromosome 3 in the variants rs2218592 (p=2.1 10⁻7) and rs9867092 (p=2.1 10⁻7) and 
on chromosome 16 in the variants rs8054401 (p=3.9 10-7) and rs741695 (p=5 10- 7) (see 
Supplementary Figures 1 and 2). According to the UK Biobank gene atlas 
(http://geneatlas.roslin.ed.ac.uk/phewas), the chr 3 variant is related to tea intake, while 
the chr 16 variant has strongest associations with body weight. 

For maxFD, the only association found when thresholding for p<10-6 was on chromosome 
4 with variants rs114571645 (p=2.3 10- 7) and rs6845933 (p=2.9 10- 7) (see 
Supplementary Figure 3). Variant rs114571645 is related to allergy according to the gene 
atlas. 
In the analysis separated into males and females, also no variant reached genome-wide 
significance (see Supplementary Figures 5 – 8).  

2.3.2 Mediation analyses 

Physiological Mediation 

There was no significant mediation effect of RR, RVT or HR on the relation between 

between BMI and mFD, also after excluding influential cases (see Table 1). 

All mediation models showed a strong direct effect between BMI and mFD (for RR: 

unstandardized β=0.049, 95% confidence interval (CI): [0.043;0.054], p<0.001). 

BMI was significantly associated with higher HR (unstandardized β= 0.28, 95% CI: 

[0.12;0.46], p<0.001), but not RR (unstandardized β= 0.00092,, 95% CI: [0.00013; 

0.0017], p=0.018) or RVT (unstandardized β=0.00076; confidence interval (CI): [-0.0018; 

0.0031], p=0.54). Further, both respiratory parameters were strongly negatively 

associated with mFD (RR: unstandardized β=-2.49, 95% CI: [-3.0;-1.99], p<0.001; RVT: 

unstandardized β=-0.35, 95% CI: [-0.49;-0.21], p<0.001; see Figure 2).  

 

Table 1: Results of the physiological mediation models, shown for the full sample and 
without influential cases. RR: respiratory rate; RVT: respiratory volume per time, HR: 
heart rate, CI: Confidence interval. 

 Complete sample (N=913) Without influential cases 

Mediator Indirect effect a*b 
[95% CI] 

p-
value 

Indirect effect a*b 
[95% CI] 

p-
value 

N 
influential 
cases 

RR -0.0023  

[-0.0044;-0.00034] 

0.025 -0.0019 

[-0.0042; -0.00004] 

0.073 84 

RVT -0.0003 

[-0.0012;0.0006] 

0.55 -0.00018 

[-0.0012;0.0007] 

0.69 93 

HR -0.00018 

[-0.0010;0.00044] 

0.63 -0.00028 

[-0.0012; 0.00028] 

0.42 92 
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Figure 2: Mediation models for RR (upper left panel), RVT (upper right panel) and HR 
(lower panel) showing standardized estimates. Dashed arrows indicate residual (co-
)variance. Solid arrows indicate estimated regression coefficients, green/red indicate 
significant positive/negative associations (p<0.05), black indicates no significant 
association. The reference category for sex was male. BMI: body mass index, mFD: 
mean framewise displacement, RR: respiratory rate, RVT: respiratory volume per time, 
HR: heart rate.  

 

Regression analysis 

There was a significant negative association of higher BMI and the correlation between 

framewise FD and RVT (β=-0.0058, 95% C.I.: [-0.0088;-0.0027], p=0.00025) which 

remained significant after excluding 43 influential cases. There was no significant 

association with any of the other framewise correlation measures. 

 

Psychological mediation analyses 

We found a significant positive association between BMI and the BIS subscales (BIS 
total: β=0.18, CI: [0.06; 0.28], p=0.0016; BIS motor: β=0.06, CI: [0.013; 0.10], p=0.0013 
and BIS self-control: β=0.06, CI: [0.017; 0.10], p=0.0046). Yet, none of the scales 
significantly mediated the relationship between BMI and mFD (see Table 2 and Figure 3),  

 

Table 2: Results of the psychological mediation models, shown for the full samples 
(sample size depending on investigated variable, see left column) and without influential 
cases. BIS: Barratt Impulsiveness Scale; CI: confidence interval 

 Complete sample (N > 966) Without influential cases 
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Mediator Indirect effect a*b 
[95% CI] 

p-
value 

Indirect effect a*b 
[95% CI] 

p-
value 

N 
influential 
cases 

BIS_total 

(N = 982) 

-0.0001  

[-0.0008; -0.0004] 

0.69 0.00009 

[-0.0005; 0.0008] 

0.77 98 

BIS_motor 

(N = 981) 

-0.00009 

[-0.0007; 0.0003] 

0.68 0.00006 

[-0.0004; 0.0006] 

0.80 102 

BIS_selfcontrol 

(N = 966) 

-0.0003 

[-0.0012; 0.0001] 

0.29 -0.00034 

[-0.0013; 0.00028] 

0.38 102 

 

Figure 3: Mediation model for BIS total, motor and self-control impulsivity scales showing 
standardized estimates. Dashed arrows indicate residual (co-)variance. Solid arrows 
indicate estimated regression coefficients, green/red indicate significant positive/negative 
associations (p<0.05), black indicates no significant association. The reference category 
for sex was male. BMI: body mass index, mFD: mean framewise displacement, BIS: 
Barratt Impulsiveness Scale.  
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2.4  Discussion 

In this meta-GWAS including > 35,000 individuals, we did not find a statistically 

significant genetic variant associated with mean or maximal FD. While there was a 

positive correlation of BMI and head motion in a subsample analysis of ~1000 individuals, 

neither physiological nor psychological measures mediated this association. These 

results do therefore not support that single factors underlie the association of BMI and 

head motion. The phenotypic association of BMI and head motion could be rather related 

to more complex factors, e.g. polygenetic traits with many low-effect variants or different 

sources of head motion, i.e. specific breathing patterns.  

In the meta-GWAS of head motion, we expected to detect variants related to obesity (e.g. 

FTO) or impulsivity (e.g. ADHD-associated SNPs ADGRL3). While one of the sub-

threshold variants is also weakly linked with body weight according to the UK Biobank 

gene atlas, no single variant is reliably associated with head motion in this well-powered 

analysis. This indicates that the genetic correlation of head motion and BMI/impulsivity 

which has been previously reported is driven by polygenic effects with very small 

individual effect sizes (Couvy-Duchesne et al., 2016; Hodgson et al., 2016). Importantly, 

the previous studies estimated heritability of head motion from family structure, not 

genome-wide significant SNPs. For polygenetic traits, GWAS-based heritability is smaller 

than family-based heritability due to large number of small effect SNPs, untagged 

variants with larger effects sizes, non-additive genetic variation and environmental effects 

(including epigenetic modifications) (Yang et al., 2017). Thus, it is likely that no single 

variant explains enough variance to be a genome-wide predictor of this polygenic trait.   

Even though head motion was determined similarly across studies, it is possible that 

study-specific patient positioning and fixation influenced the magnitude of head motion 

and inter-participant variation, and with that, decreased our power due to increased 

heterogeneity between studies. In the UKBB, the largest sample in our analysis, the 

correlation of BMI and mean FD was comparable to previous reports (Pearson’s r ~ 0.5, 

data not shown). Thus, differences in data acquisition are unlikely to explain the null 

result.  

Previous studies indicated that physiological rather than psychological factors are major 

determinants of head motion (Ekhtiari et al., 2019; Makowski et al., 2019). However, in 

our pre-registered analyses, neither physiological nor psychological measures 

independently mediated the link between BMI and head motion. 

In line with the literature, we found BMI to be associated with higher trait impulsivity in our 

sample (Meule & Blechert, 2016). Yet, impulsivity was not related to head motion in our 

sample. Possibly, the link between impulsivity and head motion is stronger in children 

and young adults who may have less self-control and for whom other (physiological) 

factors do not yet play an important role (Couvy-Duchesne et al., 2016; Kong et al., 

2014).  

In the physiological mediation models, there was no mediating effect of respiratory rate, 

volume per time and heart rate. This might be due to two aspects. First, the hypothesized 

relationship between BMI and respiratory parameters was largely absent. In the literature, 

alterations in the respiratory system have been mostly reported for morbidly obese 

individuals (BMI > 40 kg/m²) (Littleton, 2012). In our sample of 1006 individuals, there 

were only 8 morbidly obese individuals and 40 individuals with a BMI above 35 kg/m². 

Thus, although we saw a trend association of BMI and RR, differences in respiration in 

our sample may not have been as pronounced.  

Second, we expected higher HR and RR to predict higher head motion, but found no or 
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even the inverse relationship. Upon inspection of exemplary carpet plots, we saw that 

participants with lower RR often showed irregular breathing patterns with many deep 

breaths which were associated with higher head motion. Participants with higher RR had 

more regular respiration cycles, which went along with lower head motion (see Figure 4) 

 

Figure 4: Motion (FD, outliers %), physiological (RVT, respiration trace and HR) and fMRI 

signal (DVARS) parameters shown over individual voxel timeseries (red: GM, green: WM, 

yellow: ventricle, blue: cerebellum). For the left participant, RR is 0.18 and average mFD is 

0.29 mm, for the right participant RR is 0.41 and average mFD is 0.004).  

Interestingly, we found higher BMI to be associated with less correlation of frame-to-frame 

head motion and RVT. At average BMI, this correlation was close to zero, indicating that FD 

and RVT become less associated with higher BMI. This might indicate that FD depends on 

factors other than respiration with higher BMI, or that episodes with respiration-related head 

motion and subsequent deep breathing phase with decreased RVT (in which anti-correlation 

of FD and RVT have been observed) are more frequent in individuals with higher BMI. 

A major strength of this study is the large meta-GWAS of a rsfMRI-derived phenotype in 7 

cohorts. Furthermore, we conducted a comprehensive, pre-registered investigation of 

physiological and psychological mediators of the association between BMI and head motion. 

The most important limitations of the meta-GWAS study are the biased sample sizes among 

the included studies and the absence of a replication sample while for the mediation 

analyses a more detailed investigation of breathing patterns, more specific psychological 

measures and the inclusion of a proxy for anxiety in the scanner would have been desirable. 

We conclude that the strong phenotypic correlation of head motion and BMI is not induced by 

strong genetic variants, nor explained by simple physiological or psychological variables on a 

population level. Further studies might explore specific breathing patterns associated with 

head motion, and investigate further potential sources of the strong phenotypic link between 

BMI and head motion. In the meantime, rsfMRI studies investigating BMI or aging should 

prevent head motion during acquisition using customized head molds or prospective motion 

correction and employ adequate motion correction techniques during preprocessing to avoid 

a confounding effect of head motion on their neuroimaging measures. 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


19 
 

References 

Beyer, F., Kharabian Masouleh, S., Huntenburg, J. M., et al. (2017). Higher body mass index 
is associated with reduced posterior default mode connectivity in older adults. Hum 
Brain Mapp, 38(7), 3502-3515. doi:10.1002/hbm.23605 

Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-
variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. 
Neuroimage, 31(4), 1536-1548.  

Burki, N. K., & Baker, R. W. (1984). Ventilatory regulation in eucapnic morbid obesity. The 
American review of respiratory disease, 129(4), 538-543.  

Chang, C., Cunningham, J. P., & Glover, G. H. (2009). Influence of heart rate on the BOLD 
signal: the cardiac response function. Neuroimage, 44(3), 857-869.  

Couvy-Duchesne, B., Blokland, G. A. M., Hickie, I. B., et al. (2014). Heritability of head 
motion during resting state functional MRI in 462 healthy twins. Neuroimage, 102, 
424-434. doi:https://doi.org/10.1016/j.neuroimage.2014.08.010 

Couvy-Duchesne, B., Ebejer, J. L., Gillespie, N. A., et al. (2016). Head Motion and 
Inattention/Hyperactivity Share Common Genetic Influences: Implications for fMRI 
Studies of ADHD. PLoS One, 11(1), e0146271. doi:10.1371/journal.pone.0146271 

Ekhtiari, H., Kuplicki, R., Yeh, H.-w., & Paulus, M. P. (2019). Physical characteristics not 
psychological state or trait characteristics predict motion during resting state fMRI. 
Sci. Rep., 9(1), 419. doi:10.1038/s41598-018-36699-0 

Engelhardt, L. E., Roe, M. A., Juranek, J., et al. (2017). Children’s head motion during fMRI 
tasks is heritable and stable over time. Dev. Cogn. Neurosci., 25, 58-68. 
doi:https://doi.org/10.1016/j.dcn.2017.01.011 

Fair, D. A., Miranda-Dominguez, O., Snyder, A. Z., et al. (2020). Correction of respiratory 
artifacts in MRI head motion estimates. Neuroimage, 208, 116400. 
doi:https://doi.org/10.1016/j.neuroimage.2019.116400 

Heidari, S., Babor, T. F., De Castro, P., Tort, S., & Curno, M. (2016). Sex and gender equity 
in research: rationale for the SAGER guidelines and recommended use. Research 
integrity and peer review, 1(1), 1-9.  

Hodgson, K., Poldrack, R. A., Curran, J. E., et al. (2016). Shared Genetic Factors Influence 
Head Motion During MRI and Body Mass Index. Cereb. Cortex.  

Kasper, L., Bollmann, S., Diaconescu, A. O., et al. (2017). The PhysIO toolbox for modeling 
physiological noise in fMRI data. J. Neurosci. Methods, 276, 56-72.  

Kong, X. Z., Zhen, Z., Li, X., et al. (2014). Individual differences in impulsivity predict head 
motion during magnetic resonance imaging. PLoS One, 9(8). 
doi:10.1371/journal.pone.0104989 

Littleton, S. W. (2012). Impact of obesity on respiratory function. Respirology, 17(1), 43-49.  
Loeffler, M., Engel, C., Ahnert, P., et al. (2015). The LIFE-Adult-Study: objectives and design 

of a population-based cohort study with 10,000 deeply phenotyped adults in 
Germany. BMC Public Health, 15(1), 691. doi:10.1186/s12889-015-1983-z 

Madan, C. R. (2018). Age differences in head motion and estimates of cortical morphology. 
PeerJ, 6(2167-8359 (Print)), e5176. doi:10.7717/peerj.5176 

Makowski, C., Lepage, M., & Evans, A. C. (2019). Head motion: the dirty little secret of 
neuroimaging in psychiatry. Journal of psychiatry & neuroscience: JPN, 44(1), 62.  

Meule, A., & Blechert, J. (2016). Trait impulsivity and body mass index: a cross-sectional 
investigation in 3073 individuals reveals positive, but very small relationships. Health 
Psychology Open, 3(2), 2055102916659164.  

Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt 
impulsiveness scale. J. Clin. Psychol., 51(6), 768-774. doi:10.1002/1097-
4679(199511)51:6<768::aid-jclp2270510607>3.0.co;2-1 

Power, J., Schlaggar, B., & Petersen, S. (2015). Recent progress and outstanding issues in 
motion correction in resting state fMRI. Neuroimage, 105, 536-551.  

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). 
Spurious but systematic correlations in functional connectivity MRI networks arise 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuroimage.2014.08.010
https://doi.org/10.1016/j.dcn.2017.01.011
https://doi.org/10.1016/j.neuroimage.2019.116400
https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/


20 
 

from subject motion. Neuroimage, 59(3), 2142-2154. 
doi:10.1016/j.neuroimage.2011.10.018 

Savalia, N. K., Agres, P. F., Chan, M. Y., et al. (2017). Motion‐related artifacts in structural 

brain images revealed with independent estimates of in‐scanner head motion. Human 
brain mapping, 38(1), 472-492.  

Siegel, J. S., Mitra, A., Laumann, T. O., et al. (2017). Data Quality Influences Observed Links 
Between Functional Connectivity and Behavior. Cereb. Cortex, 27(9), 4492-4502. 
doi:10.1093/cercor/bhw253 

Thomson, P., Johnson, K. A., Malpas, C. B., et al. (2020). Head Motion During MRI 
Predicted by out-of-Scanner Sustained Attention Performance in Attention-
Deficit/Hyperactivity Disorder. Journal of Attention Disorders, 1087054720911988. 
doi:10.1177/1087054720911988 

Vainik, U., Baker, T. B., Dadar, M., et al. (2018). Neurobehavioural Correlates of Obesity are 
Largely Heritable. bioRxiv, 204917.  

Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on 
intrinsic functional connectivity MRI. Neuroimage, 59(1), 431-438.  

van Minde, D., Klaming, L., & Weda, H. (2014). Pinpointing moments of high anxiety during 
an MRI examination. Int. J. Behav. Med., 21(3), 487-495.  

Yang, J., Zeng, J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2017). Concepts, 
estimation and interpretation of SNP-based heritability. Nat. Genet., 49(9), 1304-
1310. doi:10.1038/ng.3941 

Zeng, L. L., Wang, D., Fox, M. D., et al. (2014). Neurobiological basis of head motion in brain 
imaging. Proc Natl Acad Sci USA, 111(16), 6058-6062. 
doi:10.1073/pnas.1317424111 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 26, 2021. ; https://doi.org/10.1101/2021.10.25.465703doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.25.465703
http://creativecommons.org/licenses/by-nc/4.0/

