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Abstract 

Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest 

provide insight into the organisation of neural function, how these differentiate individuals 

based on their traits, and the neural basis of different types of self-generated thoughts. 

Although brain activity during wakeful rest is valuable for understanding important features of 

human cognition, its unconstrained nature makes it difficult to disentangle neural features 

related to personality traits from those related to the thoughts occurring at rest. Our study 

builds on recent perspectives from work on ongoing conscious thought that highlight the 

interactions between three brain networks - ventral and dorsal attention networks, as well as 

the default mode network. We combined measures of personality with state-of-the-art indices 

of ongoing thoughts at rest and brain imaging analysis, and explored whether this ‘tri-partite’ 

view can provide a framework within which to understand the contribution of states and traits 

to observed patterns of neural activity at rest. To capture macro-scale relationships between 

different brain systems, we calculated cortical gradients to describe brain organisation in a low 

dimensional space. Our analysis established that for more introverted individuals, regions of 

the ventral attention network were functionally more aligned to regions of the somatomotor 

system and the default mode network. At the same time, a pattern of detailed self-generated 

thought was associated with a decoupling of regions of dorsal attention from regions in the 

default mode network. Our study, therefore, establishes interactions between attention 

systems and the default mode network are important influences on ongoing thought at rest 

and highlights the value of integrating contemporary perspectives on conscious experience 

when understanding patterns of brain activity at rest. 
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Introduction  

Macro-scale patterns of brain activity at rest have the potential for understanding the 

organisation of neural function, different types of psychiatric conditions (Cao et al., 2018; 

Koban et al., 2021), developmental changes including those during adolescence and old age  

(Dosenbach et al., 2010; Cui et al., 2020; Gratton et al., 2020; Wen et al., 2020), neurological 

disorders (Zhang et al., 2021) and are important for revealing the neural basis behind the 

landscape of self-generated experiences (Karapanagiotidis et al., 2019; Mckeown et al., 2020; 

Kucyi et al., 2021). However, compared to controlled experimental conditions, interpreting 

neural activity recorded during resting-state functional magnetic resonance imaging (rs-fMRI) 

is challenging, partly because both trait-level aspects of the individual, and, the inherently 

complex and dynamic nature of ongoing experience at rest are both contributory factors to the 

observed brain activity (Smallwood et al., 2021b). It has recently been suggested that the 

meaning of different patterns of neural activity can be usefully constrained by pairing imaging 

data at rest with additional measures (Finn, 2021), for example by accounting for the patterns 

of thoughts individuals experience at rest (Karapanagiotidis et al., 2020, 2021; Mckeown et 

al., 2020; Gonzalez-Castillo et al., 2021; Kucyi et al., 2021) or features of their personality 

(Hsu et al., 2018). While this methodological perspective is invaluable, we currently lack a 

theoretical framework within which to understand the brain-cognition relationships that these 

observations will establish. To address this gap in the literature, our study explores whether 

contemporary theories of the neural basis of ongoing conscious thought can provide a 

framework within which to interpret associations between macro-scale patterns of neural 

activity observed at rest, and measures of traits and ongoing experience. 

 

Emerging views of how the brain supports patterns of ongoing conscious thought highlight 

interactions between three large scale networks (Menon et al., Smallwood et al., 2021; Huang 

et al., 2021): the ventral attention network (VAN), the dorsal attention network (DAN) and the 
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default mode network (DMN). According to these ‘tri-partite’ network accounts, key hubs of 

the ventral attention network, such as the anterior insula and dorso-lateral prefrontal cortex, 

help gate access to conscious experience, influencing interactions between the DAN, which 

is more important for external mental content (Corbetta and Shulman, 2002), and the DMN 

which is important when states rely more on internal representations (Smallwood et al., 

2021a). For example, Huang and colleagues established that activity levels in the anterior 

insula determine whether stimuli presented at perceptual threshold are consciously perceived 

(Huang et al., 2021), and this gating of external input emerged as a consequence of changes 

in the normal interactions between the DAN and DMN. They also found that disruptions to 

activity in the insula through anaesthesia resulted in reductions in self-generated mental 

imagery. Coming from a different perspective, Turnbull and colleagues (Turnbull et al., 2019b) 

used experience sampling during task performance to link patterns of neural activity to 

different features of ongoing thought. For example, they found activity in the dorsolateral 

prefrontal cortex (a member of the VAN, (Yeo et al., 2011)) was correlated with apparently 

contradictory patterns of ongoing thought – (i) self-generated episodic thoughts during periods 

of low demands, and (ii) patterns of detailed task focus when individuals were engaged in 

demanding external task. In the same study, neural activity within regions of the dorsal parietal 

cortex within the DAN, was exclusively reduced when participants engaged in self-generated 

thinking, highlighting a parallel neglect of external input seen by Huang and colleagues. 

Finally, in a second study, Turnbull and colleagues found that at rest, trait variance in the 

ability to focus on self-generated experience in laboratory situations with lower task demands 

is associated with decoupling of signals arising from the DAN and DMN (Turnbull et al., 2019). 

Summarising this emerging evidence, studies focused on understanding ongoing thought 

patterns from different perspectives converge on the view that regions of the VAN may be 

important for gating conscious access to different types of content by biasing interactions 

between the DAN and the DMN (Huang et al., 2021; Smallwood et al., 2021b)  

 
  In this paper we refer to the networks using the taxonomy provided by Yeo, Krienen and colleagues 
(Yeo et al., 2011) 
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Our current study explored whether this “tri-partite network” view of ongoing conscious thought 

derived from studies focused on understanding conscious experience, provides a useful 

organising framework for understanding the relation between observed brain activity at rest 

and patterns of cognition/ personality traits. We examined links between both (i) trait 

descriptions of individuals and (ii) patterns of ongoing thought. Our sample was a cohort of 

144 participants who underwent a one-hour resting-state scan. Across this one-hour period, 

participants were interrupted on four occasions to answer a set of questions about their 

experiences at rest using multidimensional experience sampling (MDES), similar to a number 

of prior neuroimaging studies (Smallwood et al., 2016; Poerio et al., 2017; Wang et al., 2018). 

During a different session, the same participants also completed a battery of measures 

assessing features of their personality (such as the Big five (Costa and McCrae, 2008)) as 

well as subclinical/ psychiatric traits such as trait anxiety and depression (Zigmond and Snaith, 

1983). Since our research question depends on understanding the hypothesised relationship 

between large scale networks (VAN, DMN and DAN), we used the Brainspace toolbox (Vos 

de Wael et al., 2020) to provide whole brain low dimensional representations of functional 

brain organisation, generating maps which represent the similarities and differences in the 

activity within different systems. We used R version 4.2.0 (R Core Team, 2021) to produce 

low dimensional representations of both traits and thoughts using principal component 

analysis (PCA). Using these two sets of data, we performed multiple regression to identify how 

brain network organisation varies with traits and states. In these analyses, the low dimensional 

representations of brain organisation were the dependent measures, and the components of 

traits and states were explanatory variables. 

Methods 

Data 

The dataset used here is part of the MPI-Leipzig Mind-Brain-Body (MPILMBB) database 

(Mendes et al., 2019). The complete dataset consists of a battery of self-reported personality 
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measures, measures of spontaneous thought, task data, and structural and resting-state 

functional MRI (one hour, divided into four adjacent 15-min sessions) from participants 

between 20 and 75 years of age. A detailed description of the participants, measures, and 

data acquisition protocol has been previously published along with the dataset (Mendes et al., 

2019).  

Participants 

We limited our investigation to personality and thought self-reports, and rs-fMRI from 

participants under 50 years of age, who had complete data from at least three resting-state 

scans. The resulting sample included 144 participants (74 men, mean age= 26.77 years, SD= 

4.03; 70 women, mean age = 26.93 years, SD = 5.55). 

Resting state fMRI 

The current sample includes fully pre-processed rs-fMRI data from 144 participants (four 

scans from 135 participants, and three scans from nine participants whose data were missing 

or incomplete). The rs-fMRI was acquired in axial orientation using T2∗-weighted gradient-

echo echo planar imaging (GE-EPI) sensitive to blood oxygen level-dependent (BOLD) 

contrast. Sequences were identical across the four runs, with the exception of alternating slice 

orientation and phase-encoding direction, to vary the spatial distribution of distortions and 

signal loss. Imaging and pre-processing parameters are described in detail in Mendes et al 

(Mendes et al., 2019). 

Personality measures  

To provide a broad description of individual traits we included data from the following 21 

questionnaires:  

Table 1. List of personality/ dispositional trait questionnaires 

Abbreviation Behavioural Measure 

ACS Attention Control Scale (Derryberry and Reed, 2002) 

ASR Adult Self Report (Achenbach and Rescorla, 2003) 
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BDI-II Beck Depression Inventory -II (Beck et al., 1993) 

BIS/BAS Behavioural Inhibition and Approach System (Carver and White, 1994) 

BP Boredom Proneness Scale (Farmer and Sundberg, 1986) 

ESS Epworth Sleepiness Scale (Johns, 1991) 

Gold-MSI Goldsmiths Musical Sophistication Index (Müllensiefen et al., 2014) 

HADS Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983) 

IAT Internet Addiction Test (Young, 1998) 

IMIS Involuntary Musical Imagery Scale (Floridou et al., 2015) 

MMI Multimedia Multitasking Index (Ophir et al., 2009) 

NEO PI-R NEO Personality Inventory-Revised (Costa and McCrae, 2008) 

PSSI Personality Style and Disorder Inventory (Kuhl and Kazén, 2009) 

SCS Brief Self-Control Scale(Tangney et al., 2004) 

SDS Social Desirability Scale-17 (Crowne and Marlowe, 1960) 

SES Self-Esteem Scale (O’Malley and Bachman, 1979) 

SD3 Short Dark Triad (Jones and Paulhus, 2014) 

S-D-MW Spontaneous and Deliberate Mind-Wandering (Carriere et al., 2013; Golchert et al., 

2017) STAXI State-Trait Anger Expression Inventory 

TPS Tuckman Procrastination Scale (Tuckman, 2016) 

UPPS-P UPPS-P Impulsive Behaviour Scale (Lynam et al., 2006; Schmidt et al., 2008) 

 

Multi-dimensional experience sampling  

Participants underwent a short MDES survey immediately after each 15 min rs-fMRI scan, 

which retrospectively measured various dimensions of spontaneous thought. The battery 

included 12 statements which participants rated on a visual analog scale with 5% response 

increments that go from 0% = “describes my thoughts not at all” to 100% = “describes my 

thoughts completely”. The current analysis sample includes MDES data for all available 

instances of rs-fMRI scans for each participant. 
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Analyses 

Dimension reduction for questionnaire and MDES data 

We performed two separate principal component analyses (PCA) to obtain low dimensional 

summaries of the 71 trait variables from 21 questionnaires, and 12 thought variables from 

MDES.  

71 scores from the personality questionnaires of 144 participants were included and missing 

data were imputed by the variable mean. PCA was performed on this matrix and five “trait” 

components (henceforth referred to as “traits”) were selected on the basis of eigenvalues >1, 

using the Kaiser-Guttman criterion (Joliffe, 2002). For the MDES data, separate instances of 

responding for each participant were concatenated, resulting in a matrix with 576 observations 

of 12 variables. PCA was performed on this matrix, and five “thought” components (henceforth 

referred to as “thought patterns”) were selected on the basis of eigenvalues >1. Varimax 

rotation was applied to both solutions to optimize the distinctiveness of each component. The 

five thought pattern scores were then averaged across the four scans, resulting in one score 

for each thought pattern for each participant, describing their location on a particular thought 

dimension. 

Dimension reduction for whole-brain functional connectivity 

Functional time-series for each participant was extracted using the Schaefer 400 parcellation 

(Schaefer et al., 2018) using the fully pre-processed data from all resting-state scans. The 

data from separate scans were concatenated, and a 400x400 connectivity matrix was 

calculated from the resulting time series for each participant using Pearson correlation. A 

group connectivity matrix of the whole sample was calculated by averaging the 144 individual 

matrices. 

In order to summarize whole brain connectivity in a low-dimensional space, we performed 

gradient analysis using the Brainspace toolbox (Vos de Wael et al., 2020). 10 macro-scale 

gradients were calculated for the group (Fig 2). First, we applied fisher’s z transform to the 
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group matrix, building an affinity matrix (kernel= normalized angle, sparsity= 0.9) and then 

decomposed it using PCA. We chose the PCA approach for gradient calculation, as Hong and 

colleagues (Hong et al., 2020) have shown that compared to non-linear decomposition 

methods, PCA provides better reliability and higher phenotypic predictive value for 

connectivity gradients. For ease of interpretation and comparability, group gradients were 

aligned to a subsample of the HCP dataset (Essen et al., 2013) included in BrainSpace. 

Finally, following Mckeown et al. (Mckeown et al., 2020) 10 gradients were calculated in order 

to maximize the gradient fit for all individuals during alignment. Individual gradients were 

calculated for each participant, aligned to the group-level gradients, resulting in a 400x10 

matrix for each participant. Subsequent regression analyses were limited to the first three 

gradients, which have been relatively well-characterized in previous work (Margulies et al., 

2016; Mckeown et al., 2020; Turnbull et al., 2020). To visualize the functional axis captured 

by each gradient, we performed Neurosynth (Yarkoni et al., 2011) decoding on the group 

gradient maps (Fig 2). Further, we calculated the average gradient score for all parcels within 

each of the seven connectivity networks described by Yeo and colleagues (Yeo et al., 2011) 

(Fig 2). 

Stability of thoughts-patterns and gradients 

To quantify the stability of thoughts and connectivity gradients over the whole scanning period, 

intra-class correlation coefficients (ICC) were calculated for the thought patterns and following 

Hong and colleagues (Hong et al., 2020), discriminability indices (Bridgeford et al., 2021) were 

calculated for whole gradients by treating the 4 scans and subsequent thought probes as 

separate instances. We used the two-way mixed effects model (i.e. type 3 ICC) used for 

quantifying test-retest reliability, where samples cannot be considered independent (Koo and 

Li, 2016). Only the 135 participants who had four full-length resting state scans were included 

in this analysis. As this analysis found reasonable levels of reliability (see below), the averages 

of the four separate thought scores were used as regressors in subsequent analysis. This 
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allowed for both a robust measure of thought patterns over the whole testing period, and the 

inclusion of all 144 participants in the analysis. 

Multiple Multivariate Regression 

To investigate the relationship between individual differences in traits, thoughts, and macro-

scale cortical gradients, we used multiple multivariate regression as implemented in the 

MATLAB SurfStat Toolbox (Worsley et al., 2009) [http://www.math.mcgill.ca/keith/surfstat/]. 

400 separate linear models were estimated for 400 parcels, with the gradient scores from the 

first three gradients as the dependent variables, and with five trait scores (Fig 1A) and five 

thought scores (Fig 1B), as well as nuisance variables age, motion, and gender included as 

independent variables. The resulting significant effects from 400 parcels were corrected for 

False Discovery Rate (FDR, q < .05) (Storey, 2003) at the multivariate (three gradients) level. 

Follow-up univariate analyses were performed on the resulting parcels for each gradient 

separately, and effects were further Bonferroni corrected (pbonf < .025) for the total number of 

comparisons performed for all parcels (including the analyses of all three gradients) for each 

variable. Additionally, to see how the trait components related to the thought components, we 

performed multiple multivariate regression with the thoughts as dependent variables and traits 

as independent variables.  

Results  

Traits and thought patterns 

Application of PCA to the battery of personality questionnaires resulted in five “traits” (Fig 1 A) 

with eigenvalues > 1, explaining 48.4% of the variance. The five trait components, 

independent of the direction of loadings, largely map onto the “big five” personality factors: 

neuroticism, conscientiousness (positive loading on “procrastination” in our PCA result), 

extraversion (positive loading on “introversion” in our PCA result), agreeableness (positive 

loading on anti-social in our results) and openness to experience, respectively, with the first 

component “neuroticism” accounting for 23.7% of the total variance. Application of PCA to the 
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MDES questions revealed five “thought patterns” (Fig. 1 B) with eigenvalues>1, explaining 

65.4% of the variance. Based on the most heavily loaded dimensions within each pattern, we 

named these: “modality” (image vs words), “positive episodic social”, “specific internal”, “self-

relevant” and “prospective”.  

Intraclass correlation – thoughts  

Our first analysis established the reliability of thought components across the one hour of 

scanning. The five thought patterns showed low to moderate agreement between individual 

scores from single sessions (modality = 0.5856, positive episodic-social= 0.4531, specific 

internal= 0.5226, self-relevant = 0.5832, prospective= 0.3118), indicating a degree of 

variability between sessions. The average of all scores had high ICCs for the first four 

components (modality = 0.8497, positive episodic social = 0.7783, specific internal = 0.8141, 

self-relevant = 0.8484, prospective = 0.6444). The average scores from 4 sessions were used 

as regressors in subsequent analyses. 

Next, we examined the relationship between the low dimensional representations of both 

personality and thoughts. Multiple multivariate regression using traits as predictor variables of 

thought patterns established that “negative affect” had a significant effect on thoughts (5,134) = 

3.88, p = 0.003, partial η² = 0.127). Univariate follow-up showed that a high score on trait 

neuroticism was significantly associated with less “positive episodic social” thought (pattern 2;  

ß = -0.229, 95% CI = [-0.389 -0.07], p = 0.005, partial η² = 0.055) as well as greater “self-

relevant” thought (pattern 4; ß = 0.229, 95% CI = [0.066 0.391], p = 0.006, partial η² = 0.053), 

(Supplementary Fig. 3). 
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Figure 1. Principal components of traits and thoughts  

A) First five trait components derived from PCA are represented as word-clouds with negative 

loadings shown in blue, and positive loadings in red; the absolute loading value is represented 

by the font size of the item. In the bottom left panel, scree-plot showing the percentage of trait 

variance explained by the each of the first 10 components B) Results of the application of PCA 

to the MDES data, depicted in the same way.  
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Macro-scale cortical gradients  

The first three group level gradients are shown in Fig. 2 along with their Neurosynth meta-

analytic associations and relationships to the Yeo-networks (Yeo et al., 2011) (7-network 

solution). The first gradient (G1) differentiates between visual regions at one end and DMN at 

the other. The second gradient (G2) describes the dissociation between somatomotor and 

visual cortices. The third gradient (G3) captures the segregation between different transmodal 

systems (the default mode network versus the fronto-parietal system). The three gradients are 

largely similar to the ones reported by Margulies et al.(Margulies et al., 2016) and subsequent 

literature (Hong et al., 2019; Paquola et al., 2019; Bethlehem et al., 2020; Mckeown et al., 

2020; Turnbull et al., 2020). The endpoints of G1 are different in that one end is anchored by 

the visual network alone, as opposed to visual and somatomotor, while in G2, the 

somatomotor network is separated from both the visual and default mode networks, as 

opposed to the visual network alone. For ease of interpretation and comparability with previous 

studies (Mckeown, Turnbull), gradients were aligned to a subsample of the HCP dataset 

(Essen et al., 2013) included in BrainSpace. Similar to this template, the first two gradients 

together describe network-level connectivity space, anchored at three ends by the visual, 

somatomotor and default mode network, respectively (Fig. 3).  Single gradients tended to be 

stable over the 4 sessions, with a discriminability index of 0.964 for Gradient 1, 0.918 for 

Gradient 2, and 0.983 for Gradient 3 over four adjacent scans from 135 participants. 

Discriminability indices are similar to those previously reported by (Hong et al., 2020).  
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Figure 2. Group-level gradients of functional connectivity  

On the left are the first three group-averaged gradients, represented in left lateral and medial 

views. Regions with similar whole-brain connectivity profiles are shown in similar colours, with 

yellow and purple regions indicating most dissimilar connectivity patterns. Loading ranges and 

directions are arbitrary. In the middle, word clouds representing the top 10 positive (red) and 

negatively correlated (blue) Neurosynth decoding topic terms for each gradient map. On the 

right, radar-plots showing the Yeo-network profile of each group-level gradient depicted in the 

left column. Each radar-plot shows the mean gradient loadings for all parcels within the seven 

Yeo networks. 
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Figure 3. Comparison of group-level gradients to BrainSpace HCP template  

The first scatterplot shows 400 parcel positions along G1 and G2 in the template calculated 

from the HCP subsample included in BrainSpace toolbox (Vos de Wael et al., 2020). The 

second scatterplot shows parcel positions in the group-level gradients G1 and G2 after 

Procrustes alignment to the HCP template. Parcels are color-coded according to their 

respective Yeo network. Yeo networks are shown as color-coded brain maps on the right.   

 

Relationship between state- trait variability and cortical gradients   

Having established low dimensional representations of thought, personality, and brain 

organisation, we next examined associations between different types of personality and 

ongoing thought experienced during the scan and our metrics of functional brain organisation. 

To this end, we performed a multiple multivariate regression with thoughts, traits, and nuisance 

variables (motion, age and gender) as independent variables, with whole brain functional 

organisation, as captured by the first three gradients, as dependent variables. In these 

analyses both trait “introversion” and a pattern describing “specific internal” thought showed 

significant effects at the multivariate level. Results from the univariate follow-up of effects 

within each gradient are shown in Fig. 4 and 5, and Table 2.  

Trait Introversion (Fig 4) 

Along the first gradient, a parcel within the right orbitofrontal cortex (within the executive 

control network, shown in orange) showed more similarity with transmodal regions for 

individuals high on introversion. Six parcels within the ventral attention network, including 
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anterior insula, operculum and cingulate cortex were closer to the somatomotor end along 

gradient two (shown in purple). The same regions showed lower scores along the third 

gradient in participants with higher introversion scores, indicating stronger integration with the 

default mode network. A parcel within posterior cingulate cortex (control) was also more 

segregated from the visual end of gradient two in participants with higher introversion scores.   

 

Figure 4. Relationship between trait “Introversion” on the first three connectivity 

gradients 

On the left, parcels within the first three gradients that show significant (pbonf<0.025) 

differences related to trait “introversion”, orange indicating regions within the “frontoparietal 

control network”, and violet indicating regions within the “ventral attention”. Scatter plots depict 

the relationship between individual scores for “introversion” thought (x-axis) and average 
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gradient score of all affected parcels (y-axis) within each gradient. Each datapoint is a 

participant. Both axes show standardized scores. Detailed results from individual parcels are 

reported in table 2. The right column shows Neurosynth decoding of ROI maps of affected 

parcels within each gradient, showing top ten positively correlated topic terms in red, and top 

ten negatively associated topic terms in blue. 

Detailed internal cognition (Fig 5) 

Relationships with patterns of detailed internal cognition were confined to the dorsal attention 

and visual networks. A region within the superior parietal lobule (DAN) had lower scores on 

the first gradient (more transmodal) and higher scores on the second gradient (less visual), 

indicating less similarity with visual regions whose ongoing experience was more “specific” 

and “internal”. Along the third gradient, higher “specific internal” thought scores were 

associated with greater separation between these regions and the default mode network. 

Finally, a parcel within the parahippocampal gyrus/ extrastriate (visual network) showed a 

broad spread along gradient one, with participants with higher “specific internal” thought 

scores falling on the transmodal/ DMN side and participants with lower scores (higher 

“surroundings”) closer to the visual system side. 
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Figure 5. Relationship between specific internal thought and the first three connectivity 

gradients  

On the left, parcels within the first three gradients that show significant differences 

(pbonf<0.025) related to “specific internal” thought, green indicating regions within “dorsal 

attention network” (DAN), and purple indicating regions within the “visual network”. Scatter 

plots depict the relationship between individual scores for “specific internal” thought (x-axis) 

and average gradient score of all affected parcels (y-axis) within each gradient. Each datapoint 

is a participant. Both axes show standardized scores. Detailed results from individual parcels 

are reported in table 1. The right column shows Neurosynth decoding of ROI maps of affected 

parcels within each gradient, showing top ten positively correlated topic terms in red, and top 

ten negatively associated topic terms in blue. 
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Table 2. Relationships between first three connectivity gradients and introversion and 

specific internal thought 

IV DV Yeo Network Parcel t (130) puncorr pbonf 

Introversion G1 Control OFC (R) -4.2214 0.00002 0.0012 

 

G2 VAN A Ins (L) 3.7888 0.00012  

   

A Ins (R) 4.3110 0.00002  

   

Fr Oper (R) 3.8081 0.00011  

   

A Cing (R) 3.1879 0.00090  

  

Control P Cing (L) 4.0504 0.00004  

 

G3 VAN A Ins (L) -3.9539 0.00006  

   

A Ins (L) -3.6784 0.00017  

   

A Ins (R) -4.2031 0.00002  

   

Fr Oper (R) -4.1767 0.00003  

   

A Cing (R) -3.9732 0.00006  

Specific Internal 

Thought  G1 Visual PHC/ ExStr -2.9105 0.00212 0.0028 

  DAN SPL (L) -4.5433 0.00001  

 

G2 DAN SPL (L) 4.1217 0.00003  

 

 DAN SPL (R) 3.3542 0.00052  

 

G3 DAN SPL (L) 4.4548 0.00001  

IV = Independent Variable, DV = Dependent Variable, G = Gradient, VAN = Ventral Attention Network, 

DAN = Dorsal Attention Network, OFC = Orbitofrontal Cortex, A = Anterior, P = Posterior, Fr = Frontal, 

Ins = Insula, L= Left, R= Right, Oper = Operculum, Cing = Cingulate Cortex, PHC = Parahippocampal 

Cortex, ExStr = Extrastriate cortex, SPL = Superior Parietal Lobule. Results reported in the table are 

from univariate (single-gradient) follow-up tests for parcels showing a significant effect for each IV at 

the multivariate (3-gradient) level. Univariate tests are Bonferroni corrected for the total number of 

parcels (all 3 gradients) where tests were performed (21 parcels for Introversion, 9 for Specific Internal 

Thought).  
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Discussion  

Our study investigates whether an emerging “tri-partite” perspective from contemporary views 

of ongoing conscious thought can provide a framework that can account for the relationship 

between dispositional traits, ongoing thought, and individual differences in large scale patterns 

of neural connectivity at rest. This tri-partite network account emphasises the roles of regions 

embedded within three large scale networks as important for ongoing experience: the ventral 

attention network, the dorsal attention network and the default mode network (Smallwood et 

al., 2021; Huang et al., 2021). We calculated macro-scale connectivity gradients from one 

hour of resting state fMRI for 144 participants. The variability of these gradients was then 

analysed as a function of self-reports of ongoing thought patterns (captured by the principal 

components of MDES) and personality traits (described by the principal components of a 

battery of personality and habit measures). Given the tendency of certain traits to be correlated 

with frequency of specific patterns of thought (e.g. depression level with intrusive and negative 

thought (Konu et al., 2021) we also looked for possible dependencies between trait and 

thought components through multivariate regression using traits as predictors. 

Our analyses confirmed that both patterns of thought, and indices of traits, contribute to 

patterns of brain organisation in a manner that converges with the emerging tri-partite view of 

ongoing conscious thought. For example, it has been hypothesised that the ventral attention 

network (VAN) helps adjudicate between internal and external influences on ongoing thought 

(Smallwood et al., 2021, Huang et al., 2021) and we found that individuals who were high on 

dispositional “introversion” showed variation in anterior insula, overlying operculum and ACC: 

all regions making up part of the VAN. For more introverted people these regions showed 

greater alignment with somatomotor regions and less with visual cortex (gradient 2), and 

greater alignment with default mode network than the fronto parietal network (gradient 3).  

Notably, prior studies have found that regions of sensorimotor cortex are linked to deliberate 

mind-wandering (Golchert et al., 2017) and individuals who tend to generate patterns of 

episodic social cognition during periods of low task demands show greater temporal 
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correlation between the VAN and sensori-motor cortex (Turnbull et al., 2019a). Introversion 

reflects a predisposition towards internal subjective states rather than external objects (Jung, 

1995), and so our analysis also suggests that there may be an important  relationship between 

sensorimotor cortex and the ventral attention network in patterns of internal thought. 

Our study also highlighted associations between observed patterns of neural organisation at 

rest and patterns ongoing thought are also consistent with hypothesized tripartite view 

(Smallwood et al., 2021, Huang et al., 2021). For example, we found a pattern of detailed 

thinking during wakeful rest that was correlated with stronger decoupling between a region 

within dorsal parietal cortex from the visual network (as indexed by changes in both gradients 

1 and 2), and greater separation from the default mode network (gradient 3).  This region 

overlaps with a region within the DAN identified by (Turnbull et al., 2019b) in which brain 

activity was reduced during self-generated thoughts relative to external task focus, suggesting 

an important role for the DAN in external facing attention. Furthermore, using a technique 

known as “echoes” analysis (Leech et al., 2012), Turnbull and colleagues established that 

individuals who engaged in self-generated thought during situations of low external demand, 

at rest showed greater separation between the dorsal attention network and lateral regions of 

the default mode network in a region of the dLPFC, also a member of the VAN. Together, 

therefore, the convergence between the current analysis and perspectives from research on 

conscious experience highlight a high degree of overlap in both the regions identified and the 

hypothesised functions. Our observations are important, therefore, because they help 

establish that, with the appropriate methodology (McKeown et al., 2020; Finn, 2021; Gonzalez-

Castillo et al., 2021) neural accounts of conscious experience (Smallwood et al., 2021; Huang 

et al., 2021) provide an important valuable way to make sense of brain-cognition links 

observed at rest.  

Second, our data provides evidence for the “decoupling” hypothesis of self-generated 

experience (Smallwood et al., 2013). This perspective emerged from observations that cortical 

processing of external inputs is reduced when individuals focus on internal self-generated 
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thought (Smallwood et al., 2008; Kam et al., 2011; Baird et al., 2014), and assumes that this 

reduced processing of external input allows an internal train of thought to persist in a more 

detailed manner (p.524,Smallwood, 2013 (Smallwood, 2013b)). Our data is consistent with 

this view since both personality traits linked to internal focus (“introversion”), and patterns of 

detail experience that are not directed externally (“specific internal thought”), are linked to 

reductions in the similarity between neural activity in regions linked to attention and cognition, 

with regions of visual cortex. In this way our study provides novel insight into how the macro-

scale functional patterns across the cortex support the emergence of detailed patterns of 

internal experience. Critically, in our study there was no external task from which thinking 

needed to be decoupled from, ruling out accounts of this process as a “lapse” in the normal 

upregulation of task relevant material needed for task completion (for discussion see Franklin 

et al., 2013, Smallwood 2013ab). 

Although our study establishes how contemporary work on conscious experience can help 

understand patterns of brain organisation observed at rest and highlights how these 

approaches can be leveraged to understand the neural correlates of both an individuals’ traits, 

and their thoughts, there are nonetheless important questions that our study leaves open. For 

example, contemporary work on ongoing conscious thought highlights time and context as 

key variables necessary for understanding the neural correlates of different features of 

thinking. Since the aim of our study was to focus on the brain at rest, interpretations of our 

results should bear in mind that under different task conditions, neural correlates between 

thinking, personality and neural activity may be different. For example, prior studies have 

established that posterior elements of the default mode network can become integrated into 

task positive systems (Krieger-Redwood et al., 2016; Vatansever et al., 2017) and under 

demanding task conditions the default mode network is linked to patterns of task focused 

cognition (Sormaz et al., 2018).  Similarly, our analysis focused on ‘static’ indices of neural 

activity rather than dynamic measures. We chose to focus on static indices of neural activity 

because our prior studies have shown that brain-behaviour correlations can be relatively 
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stable over time (Wang et al., 2020), and as we establish in our study these patterns show 

reasonable stability across a one hour session. Furthermore, our study, particularly with 

respect to the findings relating to DAN, map closely onto studies that use experience sampling 

to identify momentary correlations between neural activity and experience (Turnbull et al., 

2019b, 2019a, 2020). Nonetheless, there are likely to be important features of ongoing 

experience that our analysis of static brain organisation cannot capture, and so we suggest 

that future work should explore dynamic changes in neural data and their links to cognition 

(Kucyi, 2018). It is worth noting that mapping momentary changes between in ongoing 

experience and neural activity will likely depend on a data set tailored to this question, in 

particular in which (i) experience sampling measures are collected more frequently as well as 

(ii) methodological advances that allow patterns of activity to be mapped without using 

temporal correlation. In addition, our analysis of the trait and thought data alone revealed that 

“neuroticism” was related to high negative and episodic thoughts, however, we did not find 

any other significant relationships among traits and thought patterns. In the current data, 

neuroticism was the most prominent out of all five traits included in the analysis, accounting 

for 50% of the total variance explained by them. It is therefore possible that correlations with 

other trait patterns may emerge with data sets with larger sample sizes and that measure 

thinking across multiple contexts.    
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Supplementary  figures 

 

Supp. figure 1. Heatmap showing variable component loadings for the first 5 principal 

components derived from trait questionnaires   
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Supp. figure 2. Heatmap showing variable component loadings for the first 5 principal 

components derived from MDES  
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Supp. figure 3. Scatter-plots showing the relationship between trait “Negative affect”, 

and “Positive Episodic Social” and “Self-relevant” thought.   
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