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Abstract 30 

Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest 31 

provide insight into the organisation of neural function, how these differentiate individuals 32 

based on their traits, and the neural basis of different types of self-generated thoughts. 33 

Although brain activity during wakeful rest is valuable for understanding important features of 34 

human cognition, its unconstrained nature makes it difficult to disentangle neural features 35 

related to personality traits from those related to the thoughts occurring at rest. Our study 36 

builds on recent perspectives from work on ongoing conscious thought that highlight the 37 

interactions between three brain networks - ventral and dorsal attention networks, as well as 38 

the default mode network. We combined measures of personality with state-of-the-art indices 39 

of ongoing thoughts at rest and brain imaging analysis and explored whether this ‘tri-partite’ 40 

view can provide a framework within which to understand the contribution of states and traits 41 

to observed patterns of neural activity at rest. To capture macro-scale relationships between 42 

different brain systems, we calculated cortical gradients to describe brain organisation in a low 43 

dimensional space. Our analysis established that for more introverted individuals, regions of 44 

the ventral attention network were functionally more aligned to regions of the somatomotor 45 

system and the default mode network. At the same time, a pattern of detailed self-generated 46 

thought was associated with a decoupling of regions of dorsal attention from regions in the 47 

default mode network. Our study, therefore, establishes that interactions between attention 48 

systems and the default mode network are important influences on ongoing thought at rest 49 

and highlights the value of integrating contemporary perspectives on conscious experience 50 

when understanding patterns of brain activity at rest. 51 

  52 
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Introduction  53 

Macro-scale patterns of brain activity at rest have the potential for elucidating the organisation 54 

of neural function, different types of psychiatric conditions (Cao et al., 2018; Koban et al., 55 

2021), developmental changes including those during adolescence and old age  (Dosenbach 56 

et al., 2010; Cui et al., 2020; Gratton et al., 2020; Wen et al., 2020), neurological disorders 57 

(Zhang et al., 2021) and are important for revealing the neural basis behind the landscape of 58 

self-generated experiences (Karapanagiotidis et al., 2019; Mckeown et al., 2020; Kucyi et al., 59 

2021). However, compared to controlled experimental conditions, interpreting neural activity 60 

recorded during resting-state functional magnetic resonance imaging (rs-fMRI) is challenging, 61 

partly because both trait-level aspects of the individual, and, the inherently complex and 62 

dynamic nature of ongoing experience at rest are both contributory factors to the observed 63 

brain activity (Smallwood et al., 2021b). It has recently been suggested that the meaning of 64 

different patterns of neural activity can be usefully constrained by pairing imaging data at rest 65 

with additional measures (Finn, 2021), for example by accounting for the patterns of thoughts 66 

individuals experience at rest (Karapanagiotidis et al., 2020, 2021; Mckeown et al., 2020; 67 

Gonzalez-Castillo et al., 2021; Kucyi et al., 2021), trait variation in how people think during 68 

tasks (Smallwood et al., 2016) or features of their personality (Hsu et al., 2018). While this 69 

methodological perspective is invaluable, we currently lack a theoretical framework within 70 

which to understand the brain-cognition relationships that these observations will establish. 71 

To address this gap in the literature, our study explores whether contemporary theories of the 72 

neural basis of ongoing conscious thought can provide a framework within which to interpret 73 

associations between macro-scale patterns of neural activity observed at rest, and measures 74 

of traits and self-reports of ongoing experience. 75 

 76 

Emerging views of how the brain supports patterns of ongoing conscious thought highlight 77 

interactions between three large scale networks (Menon, 2011; Huang et al., 2021; Smallwood 78 

et al., 2021b): the ventral attention network (VAN), the dorsal attention network (DAN) and the 79 
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default mode network (DMN). Traditionally, it was argued that the DMN was thought to have 80 

an antagonistic relationship with systems linked to external processing (Fox et al., 2005). 81 

However, according to the ‘tri-partite’ network accounts the relationship between the DMN and 82 

other brain systems is more nuanced. From this perspective key hubs of the ventral attention 83 

network, such as the anterior insula and dorso-lateral prefrontal cortex, help gate access to 84 

conscious experience regardless of the focus of attention. This is hypothesised to occur 85 

because the VAN influences interactions between the DAN, which is more important for 86 

external mental content (Corbetta and Shulman, 2002), and the DMN which is important when 87 

states (including tasks) rely more on internal representations (Smallwood et al., 2021a). For 88 

example, Huang and colleagues (Huang et al., 2021) established that activity levels in the 89 

anterior insula determine whether stimuli presented at perceptual threshold are consciously 90 

perceived, and this gating of external input emerged as a consequence of changes in the 91 

normal interactions between the DAN and DMN. They also found that disruptions to activity in 92 

the insula through anaesthesia resulted in reductions in self-generated mental imagery. 93 

Coming from a different perspective, Turnbull and colleagues (Turnbull et al., 2019b) used 94 

experience sampling during task performance to link patterns of neural activity to different 95 

features of ongoing thought. For example, they found activity in the dorsolateral prefrontal 96 

cortex (a member of the VAN according to a parcellation by Yeo, Krienen and colleagues, 97 

(Yeo et al., 2011) was correlated with apparently contradictory patterns of ongoing thought – 98 

(i) self-generated episodic thoughts during periods of low demands, and (ii) patterns of detailed 99 

task focus when individuals were engaged in demanding external task. In the same study, 100 

however, neural activity within regions of the dorsal parietal cortex within the DAN, was 101 

exclusively reduced when participants engaged in self-generated thinking, highlighting a 102 

parallel neglect of external input seen by Huang and colleagues. Finally, in a second study, 103 

Turnbull and colleagues found that at rest, trait variance in the ability to focus on self-104 

generated experience in laboratory situations with lower task demands is associated with 105 

 
  In this paper we refer to the networks using the taxonomy provided by Yeo, Krienen and colleagues 
(Yeo et al., 2011) 
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decoupling of signals arising from the DAN and DMN (Turnbull et al., 2019a). Summarising 106 

this emerging evidence, studies focused on understanding ongoing thought patterns from 107 

different perspectives converge on the view that regions of the VAN may be important for 108 

gating conscious access to different types of content by biasing interactions between the DAN 109 

and the DMN (Huang et al., 2021; Smallwood et al., 2021b). 110 

 111 

Our current study explored whether this “tri-partite network” view of ongoing conscious thought 112 

derived from studies focused on understanding conscious experience, provides a useful 113 

organising framework for understanding the relation between observed brain activity at rest 114 

and patterns of cognition/ personality traits. Such analysis is important because at rest there 115 

are multiple features of brain activity that can be identified via complex analyses that include 116 

regions that show patterns of coactivation (which are traditionally viewed as forming a 117 

cohesive network, (Biswal et al., 1995) as well as patterns of anti-correlation with other regions 118 

(e.g. Fox et al., 2005). However, it is unclear which of these relationships reflect aspects of 119 

cognition or behaviour or are in fact aspects of the functional organisation of the cortex (Fox 120 

and Raichle, 2007). Consequently, our study builds on foundational work (e.g. 121 

Vanhaudenhuyse et al., 2011) in order to better understand which aspects of neural function 122 

observed at rest are mostly likely linked to cognition and behaviour. With this aim in mind, we 123 

examined links between macro-scale neural activation and both (i) trait descriptions of 124 

individuals and (ii) patterns of ongoing thought. Our sample was a cohort of 144 participants 125 

who underwent a one-hour resting-state scan. Across this one-hour period, participants were 126 

interrupted on four occasions to answer a set of questions about their experiences at rest 127 

using multidimensional experience sampling (MDES), similar to a number of prior 128 

neuroimaging studies (Smallwood et al., 2016; Poerio et al., 2017; Wang et al., 2018). During 129 

a different session, the same participants also completed a battery of measures assessing 130 

features of their personality (such as the Big five (Costa and McCrae, 2008)) as well as 131 

subclinical/ psychiatric traits such as trait anxiety and depression (Zigmond and Snaith, 1983). 132 

Since our research question depends on understanding the hypothesised relationship 133 
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between large scale networks (VAN, DMN and DAN), we used the BrainSpace toolbox (Vos 134 

de Wael et al., 2020) to provide whole brain low dimensional representations of functional 135 

brain organisation, generating maps which represent the similarities and differences in the 136 

activity within different systems. We used R version 4.2.0 (R Core Team, 2021) to produce 137 

low dimensional representations of both traits and thoughts using principal component 138 

analysis (PCA). Using these two sets of data, we performed multiple regression to identify how 139 

brain network organisation varies with traits and states. In these analyses, the low dimensional 140 

representations of brain organisation were the dependent measures, and the components of 141 

traits and states were explanatory variables. 142 

 143 

Methods 144 

Data 145 

The dataset used here is part of the MPI-Leipzig Mind-Brain-Body (MPILMBB) database 146 

(Mendes et al., 2019). The complete dataset consists of a battery of self-reported personality 147 

measures, measures of spontaneous thought, task data, and structural and resting-state 148 

functional MRI from participants between 20 and 75 years of age. Data were collected over a 149 

period of five days, with the MRI sessions always falling on day 3. The questionnaires were 150 

completed by participants before and after this day, using Limesurvey 151 

(https://www.limesurvey.org: version 2.00+) at their own convenience and using pen-and-152 

paper on-site. A detailed description of the participants, measures, and data acquisition 153 

protocol has been previously published along with the dataset (Mendes et al., 2019).  154 

 155 

Participants 156 

We limited our investigation to personality and thought self-reports, and rs-fMRI from 157 

participants under 50 years of age, who had complete data from at least three resting-state 158 
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scans. The resulting sample included 144 participants (74 men, mean age= 26.77 years, SD= 159 

4.03; 70 women, mean age = 26.93 years, SD = 5.55). 160 

 161 

Resting state fMRI with Multidimensional Experience Sampling (MDES) 162 

The current sample includes one hour of fully pre-processed rs-fMRI data from 144 163 

participants (four scans from 135 participants, and three scans from nine participants whose 164 

data were missing or incomplete). The rs-fMRI was performed in four adjacent 15-minute 165 

sessions each immediately followed by MDES which retrospectively measured various 166 

dimensions of spontaneous thought during the scan. Images were acquired in axial orientation 167 

using T2∗-weighted gradient-echo echo planar imaging (GE-EPI) sensitive to blood oxygen 168 

level-dependent (BOLD) contrast. Sequences were identical across the four runs, except for 169 

alternating slice orientation and phase-encoding direction, to vary the spatial distribution of 170 

distortions and signal loss. Motion correction parameters were derived by rigid-body 171 

realignment of the time-series to the first (after discarding the first five volumes) volume with 172 

FSL MCFLIRT (Jenkinson et al., 2002). Parameters for distortion correction were calculated 173 

by rigidly registering a temporal mean image of this time series to the fieldmap magnitude 174 

image using FSL FLIRT (Jenkinson and Smith, 2001) which was then unwarped using FSL 175 

FUGUE (Jenkinson et al., 2012). Transformation parameters were derived by coregistering 176 

the unwarped temporal mean to the subject’s structural scan using FreeSurfer’s boundary-177 

based registration algorithm (Greve and Fischl, 2009). All three spatial transformations were 178 

then combined and applied to each volume of the original time series in a single interpolation 179 

step. The time series was residualised against the six motion parameters, their first 180 

derivatives, “outliers” identified by Nipype’s rapidart algorithm 181 

(https://nipype.readthedocs.io/en/latest/interfaces/ A CompCor (Behzadi et al., 2007) 182 

approach was implemented to remove physiological noise from the residual time-series- which 183 

included first six principal components from all the voxels identified as white-matter 184 

cerebrospinal fluid. The denoised time series were temporally filtered to a frequency range 185 
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between 0.01 and 0.1 Hz using FSL, mean centered and variance normalized using Nitime 186 

(Rokem et al., 2009). Imaging and pre-processing protocols are described in detail in Mendes 187 

et al (Mendes et al., 2019).  188 

 189 

The MDES battery included 12 statements (Table 2) which participants rated on a visual 190 

analog scale with 5% response increments that go from 0% = “describes my thoughts not at 191 

all” to 100% = “describes my thoughts completely”. The current analysis sample includes 192 

MDES data for all available instances of rs-fMRI scans for each participant.  193 

 194 

Table 1. Multidimensional Experience Sampling (MDES) Statements 

Dimension Statement 

Positive “My thoughts were positive” 

Negative “My thoughts were negative.” 

Future “I thought about future events.” 

Past “I thought about past events.” 

Myself “I thought about myself.” 

People “I thought about other people.” 

Surroundings “I thought about my present environment/ surrounding.” 

Wakeful “I was completely awake.” 

Images “My thoughts were in the form of images.” 

Words “My thoughts were in the form of words” 

Specific “My thoughts were more specific than vague” 

Intrusive “My thoughts were intrusive” 

 195 

Personality measures  196 

To provide a broad description of individual traits we included data from the following 21 197 

questionnaires:  198 

 199 

Table 2. List of personality/ dispositional trait questionnaires 200 

Abbreviation Behavioural Measure 

ACS Attention Control Scale (Derryberry and Reed, 2002) 

ASR Adult Self Report (Achenbach and Rescorla, 2003) 

BDI-II Beck Depression Inventory -II (Beck et al., 1993) 

BIS/BAS Behavioural Inhibition and Approach System (Carver and White, 1994) 

BP Boredom Proneness Scale (Farmer and Sundberg, 1986) 

ESS Epworth Sleepiness Scale (Johns, 1991) 

Gold-MSI Goldsmiths Musical Sophistication Index (Müllensiefen et al., 2014) 
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HADS Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983) 

IAT Internet Addiction Test (Young, 1998) 

IMIS Involuntary Musical Imagery Scale (Floridou et al., 2015) 

MMI Multimedia Multitasking Index (Ophir et al., 2009) 

NEO PI-R NEO Personality Inventory-Revised (Costa and McCrae, 2008) 

PSSI Personality Style and Disorder Inventory (Kuhl and Kazén, 2009) 

SCS Brief Self-Control Scale(Tangney et al., 2004) 

SDS Social Desirability Scale-17 (Crowne and Marlowe, 1960) 

SES Self-Esteem Scale (O’Malley and Bachman, 1979) 

SD3 Short Dark Triad (Jones and Paulhus, 2014) 

S-D-MW Spontaneous and Deliberate Mind-Wandering (Carriere et al., 2013; Golchert et al., 

2017) 
STAXI State-Trait Anger Expression Inventory 

TPS Tuckman Procrastination Scale (Tuckman, 2016) 

UPPS-P UPPS-P Impulsive Behaviour Scale (Lynam et al., 2006; Schmidt et al., 2008) 

 201 

Analyses 202 

Dimension reduction for questionnaire and MDES data 203 

We performed two separate principal component analyses (PCA) to obtain low dimensional 204 

summaries of the 71 trait variables from 21 questionnaires, and 12 thought variables from 205 

MDES.  206 

 207 

71 scores from the personality questionnaires of 144 participants were included and missing 208 

data (3.15% of including all variables) were imputed by the variable mean. PCA was performed 209 

on this matrix and five “trait” components (henceforth referred to as “traits”) were selected on 210 

the basis of eigenvalues >1, using the Kaiser-Guttman criterion (Joliffe, 2002) and their 211 

congruence with the previously well-established “Big Five” personality traits (Digman, 1990; 212 

Cobb-Clark and Schurer, 2012). For the MDES data, separate instances of responding for 213 

each participant were concatenated, resulting in a matrix with 576 observations of 12 214 

variables. PCA was performed on this matrix, and five “thought” components (henceforth 215 

referred to as “thought patterns”) were selected on the basis of eigenvalues >1. Varimax 216 

rotation was applied to both solutions to optimize the distinctiveness of each component. The 217 

five thought pattern scores were then averaged across the four scans, resulting in one score 218 
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for each thought pattern for each participant, describing their location on a particular thought 219 

dimension. 220 

 221 

Dimension reduction for whole-brain functional connectivity 222 

Functional time-series for each participant was extracted using the Schaefer 400 parcellation 223 

(Schaefer et al., 2018) using the fully pre-processed data from all four resting-state scans. The 224 

data from separate scans were concatenated, and a 400x400 connectivity matrix was 225 

calculated from the resulting time series for each participant using Pearson correlation. A 226 

group connectivity matrix of the whole sample was calculated by averaging the 144 individual 227 

matrices. 228 

 229 

In order to summarize whole brain connectivity in a low-dimensional space, we performed 230 

gradient analysis using the BrainSpace toolbox (Vos de Wael et al., 2020). 10 macro-scale 231 

gradients were calculated for the group (Figure 2). First, we applied fisher’s z transform to the 232 

group matrix, building an affinity matrix (kernel= normalized angle, sparsity= 0.9) and then 233 

decomposed it using PCA. We chose the PCA approach for gradient calculation, as Hong and 234 

colleagues (Hong et al., 2020) have shown that compared to non-linear decomposition 235 

methods, PCA provides better reliability and higher phenotypic predictive value for 236 

connectivity gradients. For ease of interpretation and comparability, group gradients were 237 

aligned to a subsample of the HCP dataset (Van Essen et al., 2013) included in BrainSpace. 238 

Finally, following Mckeown et al. (Mckeown et al., 2020) 10 gradients were calculated in order 239 

to maximize the gradient fit for all individuals during alignment. Individual gradients were 240 

calculated for each participant, aligned to the group-level gradients, resulting in a 400x10 241 

matrix for each participant. 10 gradients were calculated to facilitate alignment across 242 

individuals irrespective of differences in rank order of individual gradients (to control for the 243 

possibility, for example, that the pattern summarised by group-level Gradient 2 is Gradient 4 244 

for some participants). Subsequent regression analyses were limited to the first three group-245 
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aligned gradients, which have been relatively well-characterized in previous work (Margulies 246 

et al., 2016; Mckeown et al., 2020; Turnbull et al., 2020b). To visualize the functional axis 247 

captured by each gradient, we performed Neurosynth (Yarkoni et al., 2011) decoding on the 248 

group gradient maps (Figure 2). Further, we calculated the average gradient score for all 249 

parcels within each of the seven connectivity networks described by Yeo and colleagues (Yeo 250 

et al., 2011) (Figure 2). 251 

 252 

Stability of thoughts-patterns and gradients 253 

To quantify the stability of thoughts and connectivity gradients over the whole scanning period, 254 

intra-class correlation coefficients (ICC) were calculated for the thought patterns and following 255 

Hong and colleagues (Hong et al., 2020), discriminability indices (Bridgeford et al., 2021) were 256 

calculated for whole gradients by treating the 4 scans and subsequent thought probes as 257 

separate instances. We used the two-way mixed effects model (i.e. type 3 ICC) used for 258 

quantifying test-retest reliability, where samples cannot be considered independent (Koo and 259 

Li, 2016). Only the 135 participants who had four full-length resting state scans were included 260 

in this analysis. As this analysis found reasonable levels of reliability (see below), the averages 261 

of the four separate thought scores were used as regressors in subsequent analysis. This 262 

allowed for both a robust measure of thought patterns over the whole testing period, and the 263 

inclusion of all 144 participants in the analysis. 264 

 265 

Multiple Multivariate Regression 266 

To investigate the relationship between individual differences in traits, thoughts, and macro-267 

scale cortical gradients, we used multiple multivariate regression as implemented in the 268 

MATLAB SurfStat Toolbox (Worsley et al., 2009) [http://www.math.mcgill.ca/keith/surfstat/]. 269 

400 separate linear models were estimated for 400 parcels, with the gradient scores from the 270 

first three gradients as the dependent variables, and with five trait scores (Figure 1A) and five 271 

thought scores (Figure 1B), as well as nuisance variables age, motion, and gender included 272 
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as independent variables. The resulting significant effects from 400 parcels were corrected for 273 

False Discovery Rate (FDR, q < .05) (Storey, 2003) at the multivariate (three gradients) level. 274 

In order to test which gradient score was affected, follow-up univariate analyses were 275 

performed on the resulting parcels for each gradient separately, and effects were further 276 

Bonferroni corrected (pbonf < .025) for the total number of comparisons performed for all parcels 277 

(including the analyses of all three gradients) for each variable. Additionally, to see how the 278 

trait components related to the thought components, we performed multiple multivariate 279 

regression with the thoughts as dependent variables and traits as independent variables.  280 

 281 

Results  282 

Traits and thought patterns 283 

Application of PCA to the battery of personality questionnaires resulted in five “traits” (Figure 284 

1 A, Supplementary Figure 1) with eigenvalues > 1, explaining 48.4% of the variance. The five 285 

trait components, independent of the direction of loadings, largely map onto the “big five” 286 

personality factors: neuroticism, conscientiousness (positive loading on “procrastination” in 287 

our PCA result), extraversion (positive loading on “introversion” in our PCA result), 288 

agreeableness (positive loading on anti-social in our results) and openness to experience, 289 

respectively. Application of PCA to the MDES questions revealed five “thought patterns” 290 

(Figure 1B, Supplementary Figure 2) with eigenvalues>1, explaining 65.4% of the variance. 291 

Based on the most heavily loaded dimensions within each pattern, we named these: “modality” 292 

(image vs words), “positive episodic social”, “specific internal”, “self-relevant” and 293 

“prospective”.  294 

 295 

Intraclass correlation – thoughts  296 

Our first analysis established the reliability of thought components across the one hour of 297 

scanning. The five thought patterns showed low to moderate agreement between individual 298 
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scores from single sessions (modality = 0.5856, positive episodic-social= 0.4531, specific 299 

internal= 0.5226, self-relevant = 0.5832, prospective= 0.3118), indicating a degree of 300 

variability between sessions. The average of all scores had high ICCs for the first four 301 

components (modality = 0.8497, positive episodic social = 0.7783, specific internal = 0.8141, 302 

self-relevant = 0.8484, prospective = 0.6444). The average scores from 4 sessions were used 303 

as regressors in subsequent analyses. 304 

 305 

Next, we examined the relationship between the low dimensional representations of both 306 

personality and thoughts. Multiple multivariate regression using traits as predictor variables of 307 

thought patterns established that “negative affect” had a significant effect on thoughts (5,134) = 308 

3.88, p = 0.003, partial η² = 0.127). Univariate follow-up showed that a high score on trait 309 

neuroticism was significantly associated with less “positive episodic social” thought (pattern 2;  310 

ß = -0.229, 95% CI = [-0.389 -0.07], p = 0.005, partial η² = 0.055) as well as greater “self-311 

relevant” thought (pattern 4; ß = 0.229, 95% CI = [0.066 0.391], p = 0.006, partial η² = 0.053), 312 

(Supplementary Fig. 4). 313 

 314 
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315 

 316 

Figure 1. Principal components of traits and thoughts  317 

A) First five trait components derived from PCA after varimax rotation are represented as 318 

word-clouds with negative loadings shown in cold colours and positive loadings in warm 319 

colours; the relative loading of each variable within a component is represented by the relative 320 

font size (See Supp Figures 1 and 2 for numerical loading values). In the bottom left panel, 321 

scree-plot showing the percentage of trait variance explained by the each of the first 10 322 
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components in grey, and the first five components after varimax rotation in red. B) Results of 323 

the application of PCA to the MDES data, depicted in the same way.  324 

 325 

Macro-scale cortical gradients  326 

The first three group level gradients are shown in Figure 2 along with their Neurosynth meta-327 

analytic associations and relationships to the Yeo-networks (Yeo et al., 2011) (7-network 328 

solution). The first gradient (G1) differentiates between visual regions at one end and DMN at 329 

the other. The second gradient (G2) describes the dissociation between somatomotor and 330 

visual cortices. The third gradient (G3) captures the segregation between different transmodal 331 

systems (the default mode network versus the fronto-parietal system). The three gradients are 332 

largely similar to the ones reported by Margulies et al.(Margulies et al., 2016) and subsequent 333 

literature (Hong et al., 2019; Paquola et al., 2019; Bethlehem et al., 2020; Mckeown et al., 334 

2020; Turnbull et al., 2020b).  Due to the difference in the decomposition provided by PCA vs. 335 

DM approach, the endpoints of G1 are different from those first reported by Margulies et al 336 

(Margulies et al., 2016) in that one end is anchored by the visual network alone, as opposed 337 

to visual and somatomotor, while in G2, the somatomotor network is separated from both the 338 

visual and default mode networks, as opposed to the visual network alone in the (Margulies 339 

et al., 2016) study. However, like those reported by Margulies and colleagues, the first two 340 

gradients together describe network-level connectivity space anchored at three ends by the 341 

visual, somatomotor and default mode network, respectively (Figure 3). Stability of results 342 

irrespective of the decomposition approach is shown in supplementary Figure 4. Single 343 

gradients tended to be stable over the 4 sessions, with a discriminability index of 0.964 for 344 

Gradient 1, 0.918 for Gradient 2, and 0.983 for Gradient 3 over four adjacent scans from 135 345 

participants. Discriminability indices are similar to those previously reported by (Hong et al., 346 

2020).  347 
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 348 

Figure 2. Group-level gradients of functional connectivity 349 

On the left are the first three group-averaged gradients, represented in left lateral and medial 350 

views. Regions with similar whole-brain connectivity profiles are shown in similar colours, with 351 

yellow and purple regions indicating most dissimilar connectivity patterns. Loading ranges and 352 

directions are arbitrary. In the middle, word clouds representing the top 10 positively (warm 353 

colours) and negatively correlated (cold colours) Neurosynth decoding topic terms for each 354 

gradient map. The relative strength of correlation is represented by the relative font size. On 355 

the right, radar-plots showing the Yeo-network profile of each group-level gradient depicted in 356 

the left column. Each radar-plot shows the mean gradient loadings for all parcels within the 357 

seven Yeo networks.  358 

 359 
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 360 

Figure 3. Comparison of group-level gradients to BrainSpace HCP template  361 

The first scatterplot shows 400 parcel positions along G1 and G2 in the template calculated 362 

from the HCP subsample included in BrainSpace toolbox (Vos de Wael et al., 2020). The 363 

second scatterplot shows parcel positions in the group-level gradients G1 and G2 after 364 

Procrustes alignment to the HCP template. Parcels are color-coded according to their 365 

respective Yeo network. Yeo networks are shown as color-coded brain maps on the right.   366 

 367 

Relationship between state- trait variability and cortical gradients   368 

Having established low dimensional representations of thought, personality, and brain 369 

organisation, we next examined associations between different types of personality and 370 

ongoing thought experienced during the scan and our metrics of functional brain organisation. 371 

To this end, we performed a multiple multivariate regression with thoughts, traits, and nuisance 372 

variables (motion, age and gender) as independent variables, with whole brain functional 373 

organisation, as captured by the first three gradients, as dependent variables. In this analytic 374 

approach relationships between cognition along one gradient but not along another help 375 

identify which relationships between brain systems are mostly likely to relate to the feature of 376 

cognition in question (i.e. each gradient acts as a control for the other).  In these analyses 377 

both trait “introversion” and a pattern describing “specific internal” thought showed significant 378 

effects at the multivariate level. Results from the univariate follow-up of effects within each 379 

gradient are shown in Figures 4 and 5, and Table 3.  380 
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Trait Introversion  381 

Along the first gradient, a parcel within the right orbitofrontal cortex (within the executive 382 

control network, shown in orange) showed more similarity with transmodal regions for 383 

individuals high on introversion. Six parcels within the ventral attention network, including 384 

anterior insula, operculum and cingulate cortex were closer to the somatomotor end along 385 

gradient two (shown in purple). The same regions showed lower scores along the third 386 

gradient in participants with higher introversion scores, indicating stronger integration with the 387 

default mode network. A parcel within posterior cingulate cortex (control) was also more 388 

segregated from the visual end of gradient two in participants with higher introversion scores. 389 

Associations between trait “introversion” and brain-wide activity are shown in Figure 4.   390 

 391 
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Figure 4. Relationship between trait “Introversion” on the first three connectivity 392 

gradients 393 

On the left, parcels within the first three gradients that show significant (pbonf<0.025) 394 

differences related to trait “introversion”, orange indicating regions within the “frontoparietal 395 

control network”, and violet indicating regions within the “ventral attention”. Scatter plots depict 396 

the relationship between individual scores for “introversion” thought (x-axis) and average 397 

gradient score of all affected parcels (y-axis) within each gradient. Each datapoint is a 398 

participant. Both axes show standardized scores. Detailed results from individual parcels are 399 

reported in Table 3. The right column shows Neurosynth decoding of ROI maps of affected 400 

parcels within each gradient, showing top ten positively correlated topic terms in warm colours, 401 

and top ten negatively associated topic terms in cold colours. 402 

 403 

Specific internal cognition  404 

Relationships with patterns of more specific internal cognition were confined to the dorsal 405 

attention and visual networks. A region within the superior parietal lobule (DAN) had lower 406 

scores on the first gradient (more transmodal) and higher scores on the second gradient (less 407 

visual), indicating less similarity with visual regions whose ongoing experience was more 408 

“specific” and “internal”. Along the third gradient, higher “specific internal” thought scores were 409 

associated with greater separation between these regions and the default mode network. 410 

Finally, a parcel within the parahippocampal gyrus/ extrastriate (visual network) showed a 411 

broad spread along gradient one, with participants with higher “specific internal” thought 412 

scores falling on the transmodal/ DMN side and participants with lower scores (higher 413 

“surroundings”) closer to the visual system side. These findings are shown in Figure 5. 414 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 17, 2024. ; https://doi.org/10.1101/2022.10.11.511591doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.11.511591
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 415 

Figure 5. Relationship between specific internal thought and the first three connectivity 416 

gradients  417 

On the left, parcels within the first three gradients that show significant differences 418 

(pbonf<0.025) related to “specific internal” thought, green indicating regions within “dorsal 419 

attention network” (DAN), and purple indicating regions within the “visual network”. Scatter 420 

plots depict the relationship between individual scores for “specific internal” thought (x-axis) 421 

and average gradient score of all affected parcels (y-axis) within each gradient. Each datapoint 422 

is a participant. Both axes show standardized scores. Detailed results from individual parcels 423 

are reported in table 1. The right column shows Neurosynth decoding of ROI maps of affected 424 

parcels within each gradient, showing top ten positively correlated topic terms in red, and top 425 

ten negatively associated topic terms in blue. 426 
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Table 3. Relationships between first three connectivity gradients and introversion and 427 

specific internal thought 428 

IV DV Yeo Network Parcel t (130) η2
partial puncorr pbonf 

Introversion G1 Control OFC (R) -4.2214 0.11 0.00002 <0.0012 

 

G2 VAN A Ins (L) 3.7888 0.10 0.00012  

   

A Ins (R) 4.3110 0.12 0.00002  

   

Fr Oper (R) 3.8081 0.10 0.00011  

   

A Cing (R) 3.1879 0.06 0.00090  

  

Control P Cing (L) 4.0504 0.07 0.00004  

 

G3 VAN A Ins (L) -3.9539 0.11 0.00006  

   

A Ins (L) -3.6784 0.09 0.00017  

   

A Ins (R) -4.2031 0.13 0.00002  

   

Fr Oper (R) -4.1767 0.12 0.00003  

   

A Cing (R) -3.9732 0.12 0.00006  

Specific  G1 Visual PHC/ ExStr -2.9105 0.05 0.00212 <0.0028 

Internal  DAN SPL (L) -4.5433 0.12 0.00001  

Thought G2 DAN SPL (L) 4.1217 0.09 0.00003  

   SPL (R) 3.3542 0.09 0.00052  

 G3 DAN SPL (L) 4.4548 0.10 0.00001  

IV = Independent Variable, DV = Dependent Variable, G = Gradient, VAN = Ventral Attention Network, 

DAN = Dorsal Attention Network, OFC = Orbitofrontal Cortex, A = Anterior, P = Posterior, Fr = Frontal, 

Ins = Insula, L= Left, R= Right, Oper = Operculum, Cing = Cingulate Cortex, PHC = Parahippocampal 

Cortex, ExStr = Extrastriate cortex, SPL = Superior Parietal Lobule. Results reported in the table are 

from univariate (single-gradient) follow-up tests for parcels showing a significant effect for each IV at 

the multivariate (3-gradient) level. Univariate tests are Bonferroni corrected for the total number of 

parcels (all 3 gradients) where tests were performed (21 parcels for Introversion, 9 for Specific Internal 

Thought).  
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Discussion  429 

Our study investigated whether an emerging “tri-partite” perspective from contemporary views 430 

of ongoing conscious thought can provide a framework that can account for the relationship 431 

between dispositional traits, self-reports of ongoing thought, and individual differences in large 432 

scale patterns of neural connectivity at rest. This tri-partite network account emphasises the 433 

roles of regions embedded within three large scale networks as important for ongoing 434 

experience: the ventral attention network, the dorsal attention network and the default mode 435 

network (Huang et al., 2021; Smallwood et al., 2021b). We calculated macro-scale 436 

connectivity gradients from one hour of resting state fMRI for 144 participants. The variability 437 

of these gradients was then analysed as a function of self-reports of ongoing thought patterns 438 

(captured by the principal components of MDES) and personality traits (described by the 439 

principal components of a battery of personality and habit measures). Given the tendency of 440 

certain traits to be correlated with frequency of specific patterns of thought (e.g. depression 441 

level with intrusive and negative thought (Konu et al., 2021) we also looked for possible 442 

dependencies between trait and thought components through multivariate regression using 443 

traits as predictors. 444 

 445 

Our analyses confirmed that both patterns of thought, and indices of traits, contribute to 446 

patterns of brain organisation in a manner that converges with the emerging tri-partite view of 447 

ongoing conscious thought. For example, it has been hypothesised that the ventral attention 448 

network (VAN) helps adjudicate between internal and external influences on ongoing thought 449 

(Huang et al., 2021; Smallwood et al., 2021b) and we found that individuals who were high on 450 

dispositional “introversion” showed variation in anterior insula, overlying operculum and ACC: 451 

all regions making up part of the VAN. For more introverted people these regions showed 452 

greater alignment with somatomotor regions and less with visual cortex (gradient 2), and 453 

greater alignment with default mode network than the fronto-parietal network (gradient 3).  454 

Notably, prior studies have found that regions of sensorimotor cortex are linked to deliberate 455 
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mind-wandering (Golchert et al., 2017) and individuals who tend to generate patterns of 456 

episodic social cognition during periods of low task demands show greater temporal 457 

correlation between the VAN and sensori-motor cortex (Turnbull et al., 2019a). Introversion 458 

reflects a predisposition towards internal subjective states rather than external objects (Jung, 459 

1995), and so our analysis adds to an emerging literature (Golchert et al., 2017; Turnbull et 460 

al., 2019a) that suggests that there may be an important  relationship between sensorimotor 461 

cortex and the ventral attention network in patterns of internal self-generated thought. 462 

 463 

Our study also highlighted that associations between observed patterns of neural organisation 464 

at rest and patterns of ongoing thought are consistent with the hypothesized tripartite view 465 

(Huang et al., 2021; Smallwood et al., 2021b). For example, we found a pattern of detailed 466 

thinking during wakeful rest that was correlated with stronger decoupling between a region 467 

within dorsal parietal cortex from the visual network (as indexed by changes in both gradients 468 

1 and 2), and greater separation from the default mode network (gradient 3).  This region 469 

overlaps with a region within the DAN identified by (Turnbull et al., 2019b) in which brain 470 

activity was reduced during self-generated thoughts relative to external task focus, suggesting 471 

an important role for the DAN in external facing attention. Furthermore, using a technique 472 

known as “echoes” analysis (see Leech et al., 2012), Turnbull and colleagues (Turnbull et al., 473 

2019b) established that individuals who engaged in self-generated thought during situations 474 

of low external demand, at rest showed greater separation between the dorsal attention 475 

network and lateral regions of the default mode network in a region of the dLPFC, also a 476 

member of the VAN. Thus, our study confirms prior studies that highlight that greater 477 

segregation between the DAN and the DMN in the capacity to engage in thoughts that are 478 

less linked to the external environment. Together, the convergence between the current 479 

analysis and perspectives from research on conscious experience highlight a high degree of 480 

overlap in both the regions identified and the hypothesised functions. Our observations are 481 

important, therefore, because they help establish that with the appropriate methodology 482 

(Mckeown et al., 2020; Finn, 2021; Gonzalez-Castillo et al., 2021) neural accounts of 483 
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conscious experience (Huang et al., 2021; Smallwood et al., 2021b) provide an important 484 

valuable way to make sense of brain-cognition links observed at rest. Second, our data 485 

provides evidence for the “decoupling” hypothesis of self-generated experience (Smallwood, 486 

2013a). This perspective emerged from observations that cortical processing of external 487 

inputs is reduced when individuals focus on internal self-generated thought (Smallwood et al., 488 

2008; Kam et al., 2011; Baird et al., 2014), and assumes that this reduced processing of 489 

external input allows an internal train of thought to persist in a more detailed manner 490 

(p.524,Smallwood, 2013 Smallwood, 2013b)). Our data is consistent with this view since both 491 

personality traits linked to internal focus (“introversion”), and patterns of detail experience that 492 

are not directed externally (“specific internal thought”), are linked to reductions in the similarity 493 

between neural activity in regions linked to attention and cognition, with regions of visual 494 

cortex. In this way our study provides novel insight into how the macro-scale functional 495 

patterns across the cortex support the emergence of detailed patterns of internal experience. 496 

Critically, in our study there was no external task from which thinking needed to be decoupled 497 

from, ruling out accounts of this process as a “lapse” in the normal upregulation of task relevant 498 

material needed for task completion (for discussion see Franklin et al., 2013, Smallwood 499 

2013ab).  500 

 501 

Although our study establishes how contemporary work on conscious experience can help 502 

understand patterns of brain organisation observed at rest and highlights how these 503 

approaches can be leveraged to understand the neural correlates of both an individuals’ traits, 504 

and their thoughts, there are nonetheless important questions that our study leaves open. For 505 

example, contemporary work on ongoing conscious thought highlights time and context as 506 

key variables necessary for understanding the neural correlates of different features of thinking 507 

(Smallwood et al., 2021b). Since the aim of our study was to focus on the brain at rest, 508 

interpretations of our results should bear in mind that under different task conditions, neural 509 

correlates between thinking, personality and neural activity may be different. For example, 510 

prior studies have established that posterior elements of the default mode network can 511 
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become integrated into task positive systems (Krieger-Redwood et al., 2016; Vatansever et 512 

al., 2017) and under demanding task conditions the default mode network is linked to patterns 513 

of task focused cognition (Sormaz et al., 2018).  Similarly, our analysis focused on ‘static’ 514 

indices of neural activity rather than dynamic measures. We chose to focus on static indices 515 

of neural activity because our prior studies have shown that brain-behaviour correlations can 516 

be relatively stable over time (Wang et al., 2020), and as we establish in our study these 517 

patterns show reasonable stability across a one hour session. Furthermore, our study, 518 

particularly with respect to the findings relating to DAN, map closely onto studies that use 519 

experience sampling to identify momentary correlations between neural activity and 520 

experience (Turnbull et al., 2019b, 2019a, 2020b). Nonetheless, there are likely to be 521 

important  dynamic features of ongoing experience that our analysis of static brain 522 

organisation cannot capture (Kucyi, 2018).  Recent discussions in cognitive neuroscience 523 

have highlighted the link between sample size and the reproducibility of brain-wide 524 

associations with behavioural phenotypes (Marek et al., 2022; Spisak et al., 2023). Our 525 

analysis of the trait and thought data alone revealed that “neuroticism” was related to high 526 

negative and episodic thoughts, however, we did not find any other significant relationships 527 

among traits and thought patterns. In the current data, neuroticism was the most prominent 528 

out of all five traits included in the analysis, accounting for 29% of the total variance explained 529 

by them. It is therefore likely that more extensive and robust correlations between thoughts 530 

patterns and other traits, as well as thoughts, traits and macroscale connectivity patterns 531 

would emerge with data sets with larger sample sizes.  In the future it may also be important 532 

to consider measures of traits that could have relationships to both neural activity and or 533 

experience at rest (e.g. self-consciousness de Caso et al., 2017, or autistic tendencies, 534 

Turnbull et al., 2020a). It is worth noting that mapping momentary changes between ongoing 535 

experience and neural activity will likely depend on a data set tailored to this question, in 536 

particular in which (i) experience sampling measures are collected more frequently as well as 537 

(ii) methodological advances that allow patterns of activity to be mapped without using 538 

temporal correlation. and that measure thinking across multiple contexts.    539 
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Supplementary Figures 874 

 875 

Supplementary Figure 1. Heatmap showing variable component loadings for the first 5 876 

principal components derived from trait questionnaires   877 
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 878 

Supplementary Figure 2. Heatmap showing variable component loadings for the first 5 879 

principal components derived from MDES880 
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 881 

Supplementary figure 3. Ten group-level cortical gradients shown from the left lateral 882 

and medial views.   883 
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 884 

 885 

Supplementary Figure 4. Scatter-plots showing the relationship between trait “Negative 886 

affect”, and “Positive Episodic Social” and “Self-relevant” thought.   887 

 888 
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