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Abstract 

The size of the human head is determined by growth in the first years of life, while the rest of the body 

typically grows until early adulthood1. Such complex developmental processes are regulated by 

various genes and growth pathways2. Rare genetic syndromes have revealed genes that affect head 

size3, but the genetic drivers of variation in head size within the general population remain largely 

unknown. To elucidate biological pathways underlying the growth of the human head, we performed 

the largest genome-wide association study on human head size to date (N = 79,107). We identified 67 

genetic loci, 50 of which are novel, and found that these loci are preferentially associated with head 

size and mostly independent from height. In subsequent neuroimaging analyses, the majority of 

genetic variants demonstrated widespread effects on the brain, whereas the effects of 17 variants 

could be localized to one or two specific brain regions. Through hypothesis-free approaches, we find a 

strong overlap of head size variants with both cancer pathways and cancer genes. Gene set analyses 

showed enrichment for different types of cancer and the p53, Wnt and ErbB signalling pathway. Genes 

overlapping or close to lead variants – such as TP53, PTEN and APC – were enriched for genes 

involved in macrocephaly syndromes (up to 37-fold) and high-fidelity cancer genes (up to 9-fold), 

whereas this enrichment was not seen for human height variants. This indicates that genes regulating 

early brain and cranial growth are associated with a propensity to neoplasia later in life, irrespective of 

height. Our results warrant further investigations of the link between head size and cancer, as well as 

its clinical implications in the general population. 
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Main 

To gain more insight into the genetic underpinnings of the human head size, we performed a meta-

analysis of genome-wide association studies (GWAS) by including samples measuring head size 

using intracranial volume from magnetic resonance imaging or computed tomography, and tape 

measured head circumference (Table S1-S4; Online Methods). Compared to previous efforts4,5, we 

nearly doubled the sample size (N = 79,107), of which the majority were of European ancestry (N = 

75,309). We identified 90 independent genetic variants in 67 loci associated with human head size in 

the European sample (Figure 1A; Table S5-S7), of which 50 loci were novel. Most variants (N = 48) 

showed consistent directions of association between the European, African (N = 1,356), and Asian (N 

= 1,335) ancestry samples (Figure 1B), while nominally significant heterogeneity was observed for 

five variants (Table S6), suggesting population-specific genetic effects on head size in these loci. 

Head-specific growth versus general growth  

Head growth coincides with growth of the entire body, prompting us to investigate whether variants 

affecting head size are specific for growth of the human brain and cranium or whether this is driven at 

least partly by an effect on human body height. We therefore performed an additional height-adjusted 

head size GWAS in European studies for which height measures were also available (N = 50,424). 

The genetic correlation between head size and height (ρgenetic = 0.26, P = 2.1 x 10-30) disappeared in 

this second model (ρgenetic= -0.02, P = 0.58) (Figure 1C), confirming the removal of height-associated 

effects. Importantly, there was no significant attenuation for any of the lead variants’ effect sizes for 

their association with head size (Table S6). We further explored the effect of these variants on the size 

of other body parts using area measures obtained from bone density scans (N = 3,313). As expected, 

a polygenic score of the lead variants was associated with the skull area, even after adjusting for 

height (P = 2.1 x 10-12). One lead genetic variant (rs12277225) was significantly associated with the 

L1-L4 spine area (P = 1.3 x 10-5), but the other lead variants did not affect bone area measures of arm, 

leg, and spine (Table S8). Altogether, this indicates that the effect of the identified variants on head 

size is predominantly cranium-specific. 

Regional brain volumetric effects 

Height is an overall measure reflective of growth in various body parts. Accordingly, head size itself 

may also reflect growth of specific brain regions. Indeed, 15 lead genetic variants or variants in LD 
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(r2>0.6) from 12 genetic loci were previously reported to affect volumes of subregions of the brain 

(Figure 2A; Table S9). We further screened all loci previously associated with these regional brain 

volumes, and found 16 of those 132 loci to be significantly related with head size in our data set after 

multiple testing correction (Table S10). To determine if the current findings can be localized to specific 

brain regions, we systematically investigated the 90 independent head size variants in relation to more 

fine-grained measures of brain morphometry – corrected for head size – in 22,145 individuals (Figure 

2B; Table S11). Twenty-nine variants were associated with multiple cortical, subcortical, and global 

brain regions, and for the other 51 variants there was no apparent predilection to influence particular 

brain regions. However, seventeen variants were preferentially associated with one or two specific 

cortical or subcortical regions. For example, rs111939932 was associated with nucleus accumbens 

volume. This intronic variant in PCBP2 is an eQTL for different genes in multiple tissues, including 

ATP5G2 in the nucleus accumbens and basal ganglia of the brain. Further analysis additionally 

revealed localized effects of this variant on the shape of this structure (Figure 2C; Table S12). In the 

largest GWAS on nucleus accumbens volume to date6, this variant was nominally significant (P = 

0.02), underlining the improved power of the current study to identify novel loci for brain morphometry. 

Overall, these results suggest that most head size variants are important for generalized brain or 

cranial growth, while a minority influences regional brain growth. 

Pathway analysis 

To obtain novel insights into the biological mechanisms underlying variation in human head size, we 

performed a hypothesis-free gene set enrichment analysis of all KEGG7 gene sets and found 14 to be 

significantly enriched (Figure 3A; Table S13). Nine of those gene sets represent different cancer 

types that substantially overlap between each other and share underlying biological pathways (Figure 

3B). The remaining gene sets represent the p53, Wnt and ErbB signalling pathways, which are all 

involved in tumorigenesis including in the above cancer types8. Remarkably, the lead variants were 

often intragenic for the overlapping 7 genes in the p53 pathway, 8 genes in the Wnt pathway and 6 

genes in the ErbB-EGFR pathway (Figure 3C), suggesting that modulation of these pathways plays 

an important role in head size variation. 

P53 signalling pathway 

The signalling pathway showing the strongest enrichment was the p53 signalling pathway (Padjusted = 

7.6 x 10-4) (Figure 3C). The tumour suppressor protein p53, encoded by TP53, is activated by 
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different stress signals to regulate the cell cycle and apoptosis. Our lead signal in this locus was the 

TP53 3’-UTR variant rs78378222 with predicted deleterious effects (CADD = 15.93), which was 

identified previously5. Three other genes in this pathway (ATR, CDK6 and PTEN) also contained 3’-

UTR or exonic variants in LD (r2 > 0.6) with the identified lead variants. As we identified genes involved 

in cell cycle arrest and cellular senescence (CDK6, CDK2 and CCND2), apoptosis (IGF1) and 

inhibition of the IGF-1/mTOR pathway (PTEN), our results suggest a comprehensive involvement of 

the p53 signalling pathway in cranial growth. This finding is in line with evidence that p53 signalling 

regulates both normal and malignant neural stem cell populations9-11. 

Wnt signalling pathway 

The Wnt signalling pathway has extensive links to carcinogenesis, but also plays pivotal roles in the 

developing and adult central nervous system12,13, as well as in bone development including cranial 

growth14. Of the eight overlapping genes, three contained exonic or 3’-UTR variants in LD (r2>0.6) with 

identified lead variants (APC, TP53 and TCF7L1). The Wnt signalling pathway gene FRZB, not 

annotated in KEGG, also contained exonic and 3’-UTR variants. In total, 1,948 genetic variants in LD 

with the identified lead variants (r2>0.6), among which 35 exonic variants, are eQTLs for WNT3 in 27 

different tissues including the cerebellar hemispheres. In addition, various exonic, 3’-UTR and 5’-UTR 

variants in LD with the lead variants are eQTLs for TCF7L1 in brain tissues. Altogether, these 

observations suggest that this pathway is critical for brain and cranial growth in humans. 

ErbB signalling pathway 

The third enriched signalling pathway was the ErbB pathway (Padjusted = 0.014), also known as the 

EGFR signalling pathway, with six overlapping genes. Overlapping genes near head size variants are 

involved in the downstream calcium signalling (PLCG1), MAPK signalling (NCK1 and MAPK1) and 

PI3K-AKT signalling (ERBB3, AKT3 and CDKN1B) pathways. In addition, five genetic variants are 

eQTLs for EGFR in the cerebellum. Interestingly, both AKT3 and CDKN1B have been linked to clinical 

head size syndromes and cancer risk15-18 and contain, respectively, 3’-UTR variants and an exonic 

variant that reached genome-wide significance in the current study. This ErbB signalling is also 

increasingly recognized for its involvement in neurodevelopment19-21, making it a plausible pathway 

involved in head size variations. 

P53, Wnt and ErbB signalling pathway in general growth 
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Since these signalling pathways have universal roles in cell growth, and thus are not specific for head 

size, we determined the enrichment for these pathways in the height GWAS. We found that from these 

three signalling pathways, only the Wnt signalling pathway was significantly enriched in the height 

GWAS (Padjusted = 3.8 x 10-2), suggesting that the p53 and ErbB signalling pathways are more 

specifically involved in processes for head growth rather than generalized body growth. 

Enrichment analyses 

Because pathway analyses aggregate all genes in the vicinity of the lead variant, it becomes difficult to 

discern actual target genes. Given that target genes of GWAS variants are often close to the lead 

variant22, we determined the enrichment of different categories of genes located nearby head size 

variants stratified by their distance (Table S14). 

OMIM macro- and microcephaly genes 

First, we investigated genes mutated in OMIM syndromes associated with abnormal head size, i.e. 

macrocephaly or microcephaly (Table S15-16). We found increasing enrichment for macrocephaly 

genes with decreasing distance to the lead variants, culminating in a 37-fold enrichment of 

macrocephaly genes in genes containing an intragenic lead variant. In contrast, microcephaly genes 

did not enrich upon shorter distance from lead variants (Figure 4A). The striking enrichment of 

macrocephaly genes did not change in the height-adjusted GWAS (Table S17). Furthermore, there 

was only a modest enrichment for macrocephaly genes in the height GWAS, even for the top 67 loci 

(i.e., the same number of loci as our GWAS; Table S17). Macrocephaly genes with intragenic lead 

variants include AKT3 (Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 2), 

PTCH1 (Basal cell nevus syndrome), PTEN (Cowden syndrome 1), CCND2 (Megalencephaly-

polymicrogyria-polydactyly-hydrocephalus syndrome 3) and NFIX (Sotos syndrome 2). We conclude 

that common genetic variation in genes associated with macrocephaly syndromes, but not 

microcephaly syndromes, contributes to variation in head size in the general population. Reciprocal to 

this, genes identified through our GWAS of head size may therefore also identify currently unknown 

causal genes for macrocephaly. Accordingly, we observed a patient in a previously described 

intellectual disability cohort23 who presented with macrocephaly and had a mutation in TICRR, a gene 

for which a lead variant and variants in LD were eQTLs in twelve different tissues. This gene is 

involved in the initiation of DNA replication and interacts with CDK224, one of the genes nearby 
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another lead variant. Thus, TICRR is an interesting candidate for further study in currently 

undiagnosed macrocephaly syndromes. 

Autosomal dominance score 

We did not observe a significant enrichment for microcephaly genes (Figure 4A). This lack of 

enrichment is likely due to differences between the microcephaly and macrocephaly gene sets. 

Notably, macrocephaly typically results from mutations with an autosomal dominant inheritance 

pattern (64.6%, Table S15), whereas microcephaly predominantly involves mutations with an 

autosomal recessive inheritance pattern (72.3%, Table S16). We observed a profound increase for 

genes with a predicted dominant inheritance pattern closer to our lead variants (Figure 4B). However, 

neither dominant nor recessive microcephaly genes were enriched (Table S17) and the predominant 

recessive inheritance patterns of microcephaly genes could not explain their lack of enrichment. An 

alternative explanation is that microcephaly syndromes are more clinically heterogeneous and the 

underlying mechanisms are less specific to brain and cranial growth. 

COSMIC tier 1 cancer genes 

As our KEGG analysis showed a strong enrichment for cancer pathways (Figure 3A), we determined 

whether cancer genes are also enriched among genes closer to the lead variants (Figure 4A). Indeed, 

there was a 9-fold enrichment for high-fidelity cancer genes (first tier COSMIC25) among genes with an 

intragenic lead variant, which persisted after adjusting for height (Table S17). There was only a 

modest enrichment of cancer genes close to variants from the height GWAS, providing additional 

evidence that cancer-related genes are specifically important for head size. 

Gain of function and loss of function 

We found that macrocephaly-associated genes were more enriched for high-fidelity cancer genes than 

microcephaly-associated genes (enrichment ratio 12.9 vs. 3.2, Table S17). We therefore investigated 

whether the same mutation type, i.e. gain of function or loss of function, causes both macrocephaly 

syndromes as a germ line mutation but also associate with cancer as somatic mutations. We found 

that this was the case for the vast majority of macrocephaly-associated genes with a defined role in 

cancer (37 of 41 genes, Table S15), i.e. the same type of mutation associates with both macrocephaly 

and cancer. Moreover, germ line mutations in 14 of these 37 genes, including our GWAS genes 

PTEN, PTCH1 and SUFU, are associated with a syndrome or condition with a suggested cancer-
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predisposition (Table S15). Our GWAS data and these observations therefore suggest that subtle up-

regulation of oncogenes and oncogenic pathways or down-regulation of tumor suppressor genes and 

pathways may increase head size in the general population. 

Implications of the head size and cancer link 

The link between cancer and head size is intriguing, with some of the high-fidelity cancer genes being 

known macrocephaly genes (Figure 4C). Germline mutations in two genes are known to be related to 

clinical syndromes causing both abnormal head sizes and an increased cancer risk, namely the genes 

PTEN (Cowden syndrome) and PTCH1 (Gorlin syndrome). For both syndromes, patients are routinely 

screened for macrocephaly as part of the diagnostic criteria, but this relationship is not yet known for 

other syndromes such as Li-Fraumeni syndrome (TP53) or familial adenomatous polyposis syndrome 

(APC), both of which are near lead variants. Our GWAS, however, was performed in the general 

population, prompting the interesting question whether the link between head size and cancer extends 

beyond rare genetic syndromes. 

Meta-analyses of prospective observational studies found associations between height and increased 

risk of various forms of cancer26, and the few studies on body length and head circumference at birth 

have shown similar results27-29. Our results also indicate that particularly genes associated with early 

growth rather than later adolescent growth may be associated to neoplasia, since cranial growth is 

completed around the 6th to 7th year of age whereas height is primarily determined by peripubertal 

growth. In combination with our findings, the relationship between head size and cancer risk warrants 

further study, as well as an exploration of its clinical implications. 
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Online methods 

Study population 

Most studies participate in the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE)30 or the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA)31 

consortium. We also included the results of the most recent head circumference GWAS5. A complete 

overview of the population characteristics is presented in Table S1. Each contributing study was 

approved by their institutional review boards or local ethical committees. Written informed consent was 

obtained from all study participants. 

Genotyping 

Genotyping of individuals was performed on commercially available arrays, and imputed to 1000 

Genomes (1KG) or Haplotype Reference Consortium (HRC) imputation panels (Table S2). Quality 

control was performed using the EasyQC software32. In each study, genetic variants with an 

imputation quality r2 below 0.3 and a minor allele frequency (MAF) below 0.001 were excluded. 

Additionally, variants were filtered on study level requiring ��� � ��� � �	 
 5. 

Phenotyping 

Different methods were used to measure human head size across studies. Briefly, either head 

circumference was measured, or intracranial volume was measured on computed tomography (CT) or 

magnetic resonance imaging (MRI) scans. In total, human head size was measured using intracranial 

volume measured on CT or MRI scans in respectively 1,283 and 57,186 individuals, and using head 

circumference in 20,524 individuals (Table S3). These measures have previously shown to be 

phenotypically and genetically correlated4,5,33, allowing us to perform a combined meta-analyse of 

different measures of head size. 

Genome-wide association studies 

GWAS were performed for each study adjusted for age, age2 (if significant), sex, eigenstrat PC1-4 (if 

significant), study-specific adjustments and case-control status (if applicable). In a second model, 

additional adjustment for height was made. The METAL software34 was used to perform a sample size 

weighted Z-score meta-analysis. After meta-analysis, genetic variants available in less than 5,000 
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individuals were excluded. Comparable betas were derived using the formula ����� � � �

� � � � ���
 as 

was done previously35. Genomic inflation and polygenic heterogeneity were assessed using the LD 

score regression software36 by comparing the genomic control inflation factor and the LD score 

regression intercept (Table S4). 

Functional annotations 

Regional association plots were made with the LocusZoom software37. The Functional Mapping and 

Annotation of Genome-Wide Association Studies (FUMA GWAS) platform38 was used to derive the 

independent genomic loci and genetic lead variants, and to functionally annotate the identified genetic 

variants. Additionally, enrichment for KEGG7 biological pathways was assessed for genes located 

nearby the identified genetic loci using the default options in FUMA, using hypergeometric tests. 

Genotype-Tissue Expression (GTEx) v7 was used to identify expression quantitative trait loci (eQTL) 

for the lead genetic variants and variants in LD (r2 > 0.6). 

Effects on anthropomorphic measures and regional brain volumes 

The LD score regression software36,39 was used to assess genetic correlations with adult height40, for 

both the height-unadjusted and height-adjusted model. 

Dual-energy X-ray absorptiometry (DXA) measurements of the UK Biobank imaging subsample (N = 

3,313) were used to examine the effect of the identified lead variants on anthropometric measures 

across the body, i.e. bone area of the arms, legs, pelvis, ribs, spine, trunk and vertebrae L1-L4. In 

these analyses values more than three standard deviations from the mean were considered outliers 

and removed from the analyses. We adjusted for age, age2, sex and principal components (model 1), 

and additionally for height (model 2) to correct for an overall growth effect. 

To investigate the effects of the identified variants for head size on growth in specific brain regions, we 

investigated the overlap between the identified loci for head size and previous genome-wide 

association studies (GWAS) on brain volumes6,41-44. We also analysed the associations between the 

identified lead genetic variants and volumes of four brain lobes, the lateral ventricles, eight subcortical 

structures and 34 cortical regions of interest in the UK Biobank (N = 22,145). Volumes were derived 

using the FreeSurfer 6.0 software. Values more than 3.5 standard deviations away from the mean 
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were considered outliers and removed from the analysis. In the first model, we adjusted for age, age2, 

sex and principal components, and in the second model additionally for intracranial volume. 

Additionally, we took the lead variants specifically associated with one or two subcortical volumes, and 

investigated their effects on the shape of seven subcortical structures, i.e. amygdala, caudate nucleus, 

hippocampus, nucleus accumbens, pallidum, putamen and thalamus. The radial distances and log 

Jacobian determinants were derived using the ENIGMA-Shape package 

(http://enigma.usc.edu/ongoing/enigma-shape-analysis/). Volumetric outliers more than 3.5 standard 

deviations from the mean were removed from the analysis. 

We performed 10,000 permutations to define the number of independent DXA, brain volumetric and 

subcortical shape outcomes. We used this number to define our multiple testing adjusted p-value 

thresholds for significance, i.e. 0.05 / (number of independent outcomes x number of lead genetic 

variants). 

Enrichment analyses 

We performed enrichment analyses of different gene sets: genes within 1 Mb, 100 kb or 10 kb of the 

identified genetic loci, genes within 10 kb of the identified genetic loci with intragenic genetic variants, 

and genes within 10 kb of the identified genetic loci with intragenic genetic lead variants. As a 

reference, we used the rest of the protein-coding genome. 

First, the Online Mendelian Inheritance in Man (OMIM) database45 was used to retrieve information on 

genes related to heritable phenotypes affecting head size. Second, the Catalogue of Somatic 

Mutations in Cancer (COSMIC) database25 was used to extract Tier 1 cancer genes. Taking the rest of 

the genome as our reference gene set, we calculated the enrichment of these macrocephaly, 

microcephaly and cancer genes in the abovementioned gene sets. 

Lastly, DOMINO46, a previously developed machine learning tool, was used to assess if the genes in 

the different gene sets were more often predicted to harbour dominant changes in comparison with 

genes in the rest of the genome. 

Mean autosomal dominance scores were compared with the reference genome using a Mann-Whitney 

test. Differences in the proportions for the OMIM macro- and microcephaly genes, intellectual disability 

genes and COSMIC genes were calculated using a Pearson’s χ2 test. 
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We performed these analyses for the head size height-unadjusted GWAS results, but also the GWAS 

in the subset of studies for which height was available, the height-adjusted GWAS and the height 

GWAS40. For comparison, we also selected the top 67 loci for the height GWAS, so the results were 

not driven by a difference in the number of associated loci. 
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Display items 

Figure 1. Genome-wide association studies on human head size. 

 

Figure 1A. Circos Manhattan plot of the European ancestry GWAS on head size, with the grey 

horizontal lines corresponding to a genome-wide significant (P < 5 x 10-8) or sub-significant (P < 1 x 

10-6) P value threshold. Known genetic variants are depicted in blue, whereas novel variants are 

depicted in red. For each lead genetic variant, the nearest gene is shown with their corresponding 

location on the genome. The colour of each gene corresponds to its position to the lead variant: exonic 

(red), 3’-UTR (green), intronic (blue), intergenic including up- and downstream, exonic and intronic 

non-coding RNA (grey). Genes that are the nearest gene for more than one locus are denoted with an 

asterisk (*).   
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Figure 1B. Circos heatmap showing the betas of the 90 identified lead genetic variants in African, 

Asian and European ancestry sample meta-analysis, as well as the transancestral meta-analysis. In 

addition, the differences between the height-unadjusted (model 1) and height-adjusted (model 2) 

meta-analysis is shown. Positive associations are depicted in red, negative associations are depicted 

in blue. 
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Figure 1C. Barplot of the genetic correlation coefficient (ρgenetic) of the height-unadjusted and height-

adjusted head size genome-wide association study with the height genome-wide association study, 

with their accompanying 95% confidence intervals. 
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Figure 2. Genetic loci for head size and effects on regional brain volumes. 

 

Figure 2A. Heatmap showing the genetic loci identified for human head size that overlap with 

previously identified genetic loci for global brain volumes (depicted in red), subcortical brain volumes 

(depicted in blue) and cortical regional of interest volumes (depicted in green). 
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Figure 2B. UpSet plot of the different combinations of associations of the identified genetic variants for 

human head size and regional brain volumes. The intersection size corresponds to the frequency of 

the combination depicted below the bar. The set size corresponds to the frequency of associations 

with one of the structures belonging to the brain volume category (i.e., global, subcortical or cortical). 

Global volumes include the volumes of four brain lobes and the lateral ventricle volumes (depicted in 

red), subcortical volumes include the volumes of eight subcortical structures (depicted in blue), and the 

cortical volumes include the volumes of 34 cortical regions of interest (depicted in green). 
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Figure 2C. Plot showing the results of the subcortical shape analysis of rs111939932 using log 

Jacobian determinants. Colours correspond to t-values, with positive associations depicted in blue, 

and negative associations depicted in red. The letters point to the different subcortical structures: a – 

putamen; b – pallidum; c – caudate; d – amygdala; e – hippocampus; f – thalamus; g – accumbens. 
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Figure 3. Gene sets enriched in human head size loci. 

 

Figure 3A. Barplots presenting the significantly enriched KEGG gene sets. On the x-axis the –log10 of 

the adjusted p-value is presented, and the proportion of genes in the gene set that overlap with the 

genes nearby the genetic loci are shown inside the bars. Colours correspond to different categories of 

gene sets: cancer gene sets are depicted in pink, cell growth and death gene sets in yellow-green, 

and signal transduction gene sets in turquoise. 
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Figure 3B. Network graph showing the enriched KEGG gene sets and their included genes near 

genetic lead variants. Gene sets are shown in squares, with arrows connecting them to the 

overlapping genes presented as spheres. The colours of the spheres correspond to the gene set 

category the gene is linked to: only cancer gene sets (pink), only cell growth and death gene sets 

(yellow-green), only signal transduction gene sets (turquoise), cancer gene sets and cell growth and 

death gene sets (dark blue), cell growth and death gene sets and signal transduction gene sets 

(green), or all three gene set categories (orange). The size of a sphere corresponds to the amount of 

gene sets linked to that gene. 
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Figure 3C. Schematic overview of the significantly enriched signalling pathways with proteins encoded by genes near (< 10 kb) identified genetic loci. Proteins 

encoded by these genes are coloured (green – ErbB signalling pathway, red – p53 signalling pathway; blue – Wnt signalling pathway), whereas the other 

proteins are depicted in grey. The circle next to each protein name provides the locus number to which the encoding gene belongs. Locations of lead genetic 

variants and variants in linkage disequilibrium (r2 > 0.6) are shown in the squares within each protein: exonic (e; red), 3’-UTR (3’; green), 5’-UTR (5; light 

green), intronic (i; blue), intergenic including up- and downstream, exonic and intronic non-coding RNA (g; grey). For Frizzled, not only FZD2 but also FRZB is 

taken into consideration.
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Figure 4. Gene enrichment stratified by distance from lead variants. 

 

Figure 4A. Enrichment of genes nearby the identified genetic loci for OMIM macrocephaly genes, 

OMIM microcephaly genes and COSMIC tier 1 genes. Depicted are enrichment of genes within 1 Mb 

(orange), 100 kb (purple) or 10 kb (pink) of the identified genetic loci, genes within 10 kb of the 

identified genetic loci with intragenic genetic variants (light green), and genes with intragenic genetic 

lead variants (yellow), in comparison with genes in the reference genome (dark green). Significant 

results are denoted by asterisks: *P < 0.05; **P < 0.0125 (0.05 / 4); ***P < 0.0025 (0.05 / 4 / 5). 
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Figure 4B. Violin plots and boxplots showing the DOMINO autosomal dominance scores of genes 

within 1 Mb (orange), 100 kb (purple) or 10 kb (pink) of the identified genetic loci, genes within 10 kb of 

the identified genetic loci with intragenic genetic variants (light green), and genes with intragenic 

genetic lead variants (yellow), in comparison with genes in the reference genome (dark green). 

Significant results are denoted by asterisks: *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 4C. Venn diagram showing the nearby (< 10 kb) genes that overlap with OMIM microcephaly 

genes (depicted in yellow), OMIM macrocephaly genes (depicted in green) and COSMIC cancer tier 1 

genes (depicted in red), and their in-between overlap. Genes with intragenic genetic lead variants are 

depicted in black, and genes without intragenic genetic lead variants in grey. 
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Supplementary Materials 

Supplementary Tables 

See separate Excel file. 

Table S1. List of all contributing studies. 

Table S2. Population characteristics of new or updated contributing studies. 

Table S3. Information on genotyping and quality control. 

Table S4. Phenotyping information. 

Table S5. Lambda genomic control, LD score regression intercept and ratio for different models.  

Table S6. Lead genetic variants and their effects on human head size in samples of different 

ethnicities, with and without adjustment for height. 

Table S7. Genome-wide significant genetic variants and variants in linkage disequilibrium (r2>0.6), 

including functional annotations. 

Table S8. Effects of lead genetic variants on bone size area measured using dual-energy X-ray 

absorptiometry (DXA). 

Table S9. Overlap between identified loci and previously identified loci in genome-wide association 

studies of brain volumes. 

Table S10. The effects of previously identified genetic variants for regional brain volumes in the 

current genome-wide association study. 

Table S11. Association of identified lead genetic variants with regional brain volumes. 

Table S12. Results of the subcortical shape analyses of seven lead genetic variants specifically 

associated with one or two subcortical structures. 

Table S13. Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 

Table S14. Genes in or nearby identified genetic loci (< 1 Mb).  
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Table S15. List of genes linked to macrocephaly in the Online Mendelian Inheritance of Man (OMIM) 

database. 

Table S16. List of genes linked to microcephaly in the Online Mendelian Inheritance of Man (OMIM) 

database. 

Table S17. Enrichment of micro- and macrocephaly OMIM genes, COSMIC tier 1 cancer genes, 

intellectual disability trios and autosomal dominance DOMINO score. 

Supplementary Figures 

Figure S1. Forest plots presenting the study-specific associations of the identified lead genetic 

variants with human head size. 

Figure S2. Regional plots of the identified genetic loci for human head size (±100 kb). 
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