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ABSTRACT: The Hohenberg−Kohn theorem of density-func-
tional theory (DFT) is broadly considered the conceptual basis for
a full characterization of an electronic system in its ground state by
just the one-body particle density. Part I of this review aims at
clarifying the status of the Hohenberg−Kohn theorem within DFT
and Part II at different extensions of the theory that include
magnetic fields. We collect evidence that the Hohenberg−Kohn
theorem does not so much form the basis of DFT, but is rather the
consequence of a more comprehensive mathematical framework.
Such results are especially useful when it comes to the construction
of generalized DFTs.
KEYWORDS: density-functional theory, density-potential mapping, Hohenberg−Kohn theorem, v-representability, Kohn−Sham theory,
molecular Hamiltonian, electronic ground state, convex analysis, Moreau−Yosida regularization

1. INTRODUCTION
The theorem of Hohenberg and Kohn1 (HK) is usually
presented as the theoretical justification of density-functional
theory (DFT). It states that the one-body particle density
uniquely (up to an additive constant) determines the scalar
potential of a nonrelativistic many-electron system in its
ground state. The Mathematical analysis of ground-state DFT
was pioneered by Lieb,2 using tools from convex analysis. In it,
some important problems, especially in relation with differ-
entiability of the involved functionals that map densities to
energies, were left unanswered and remained as open
questions. Lammert3 then demonstrated that the key func-
tional of DFT is indeed nondifferentiable, but it remained
unclear to what extent this threatens the foundations of DFT
and its algorithmic realization, the Kohn−Sham scheme
employed for practical calculations. Regularization as a
means to overcome nondifferentiability has been applied to
DFT4 (Section 9) and its extension, current DFT (CDFT).5,6

The existence of functional derivatives through regularization
also avoids the problem of v-representability that usually
haunts DFT, i.e., that not every reasonable density is the
solution to a certain potential (Section 3).
A central result in this work is a very convenient and novel

formulation of the HK theorem that restructures it into two
subtheorems, HK1 and HK2 (Section 4):

• (HK1) If two potentials share a common ground-state
density, then they also share a common ground-state
wave function or density matrix.

• (HK2) If two potentials share any common eigenstate
and if that eigenstate is nonzero almost everywhere (a
property that is guaranteed if the unique-continuation
property (UCP) holds; see Section 5), then they are
equal up to a constant.

Combining HK1 and HK2, one obtains the classical HK
theorem and with it a well-defined density-potential mapping.
The proof of HK1 will be shown to be immediate from just the
formulation of “ground-state energy”. Consequently, it is also
easily attainable in an abstract or extended formulation of DFT
(Section 10). The situation for HK2, on the other hand, is
more complicated but, as will be demonstrated, it holds true
with certain restrictions in the standard DFT setting. It is
known not to hold in paramagnetic CDFT7 and has, to the best
of our knowledge, an unknown status in total CDFT. In Part II
of this review, we will exemplify how different DFTs follow this
structure and, maybe more importantly, pinpoint why this
route might fail.
After analyzing its basic structure, the status of the HK

theorem within DFT is scrutinized. If only the ground state of
a system is the matter of interest, a constrained-search
approach seems to be sufficient for the formulation of DFT,
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and the usual type of constrained-search functional8,9 even
implicitly includes HK1 (Section 6). Besides being a mathemati-
cally more transparent formulation than the HK theorem, the
constrained-search formalism is also a better starting point for
deriving approximate density functionals. Nonetheless, the full
HK theorem remains important for going beyond the bare
minimum needed to set up a ground-state theory. For example,
the HK theorem implies that the ground-state density
determines not only the ground state but, by fixing the scalar
potential, also all excited states. This becomes relevant when
thermostatistical properties are considered. Furthermore, in
order to be able to define the Kohn−Sham scheme (Section
8), one actually demands more than just the HK result, relying
on differentiability of the energy functional that in turn would
imply the whole HK result (Section 7). Consequently, in a
(Moreau−Yosida) regularized setting, the Kohn−Sham
scheme can be rigorously formulated and even proven to
converge in finitely many dimensions,10−12 and HK becomes
just a byproduct.
Although we will do our best to orient the reader within the

rich subject that is DFT, the scope of this review is limited. We
will mainly focus on, in our opinion, matters closely related to
the HK mapping and properties of the exact functional(s).
Many excellent reviews and textbooks are available on the
subject.13−18 For the interested reader, we also point out the
very recent article based on a round-table discussion.19

2. PRELIMINARIES
Density-functional theory is an approach to describe particles
that obey the laws of quantum mechanics, but that avoids their
full description by a wave function and instead switches to
reduced quantities like the one-particle density. In its basic
form discussed here, the focus is solely on the ground-state
properties of the quantum system. For the configuration space
of a single particle we always choose 3 with the additional
spin degree-of-freedom for spin-1/2 particles. The Hamil-
tonian comprises three parts,

[ ] = + + [ ]H v T W V v

relating to the kinetic energy, the Coulomb repulsion, and the
external scalar potential, respectively. The internal parts will be
collected as H0 = T + W. The kinetic-energy operator is T =
−1/2Σi = 1

N ∇i2 in standard DFT, where atomic units are
employed. Notation-wise, we use small letters for one-body
objects. The external potential contribution V[v] is always
defined from a one-body potential v(r) and is of an additive
form,

[ ] =
=

V v vr r( ) ( )
i

N

i
1

where =r r r( , ..., )N1 . For later reference, we also define
= ( , ..., )N1 for the spin degrees-of-freedom. The full

quantum-mechanical description of a system in its ground state
is achieved by determining the eigenstate ψ0 of H[v] that has
the correct symmetry and the lowest eigenvalue E0 (ground-
state energy),

[ ] =H v E0 0 0 (1)

If such a lowest eigenstate is not unique, we speak of
degeneracy, a case that will often appear in the discussion below
and that leads to several complicacies. Then a valid ground

state can also be given as a statistical mixture of the pure
ground states ψk in the form of a density matrix Γ =
Σkλk|ψk⟩⟨ψk| with λk ∈ [0, 1] and Σkλk = 1. It is natural to
require states of finite kinetic energy,

| | = | | < +
=

T r1
2

d
i

N

i
1

2
N3

and we define the basic set for wave functions

= { | | | < + }Tantisymmetric,

In cases where density matrices Γ are considered, we require
k for all their components.
The one-particle density of a given ψ as the basic variable of

standard DFT is

= | |Nr r( ) d1
2

N3( 1)
(2)

where we used the shorthand notation r⊥ = (r2, ..., rN), and it is
=r r( ) ( )k k

k
for a given mixed state Γ. Since Γ already

includes the squared wave function from eq 2, the mapping
is linear. Note that whenever we talk about a “density”,

this will be assumed to be a map : 3
0 that is

normalized to the particle number N, ∫ ρ(r)dr = N, like it is
automatically the case for ρψ and Γψ if ψ, Γ are normalized to 1.
The density alone suffices to give an expression for the

potential energy contribution. The resulting integral over the
single-particle configuration space will be written like an inner
product ⟨·, ·⟩, to wit,

| [ ]| = | |

= | |

= =

=
V v v a

N v

v v

r r

r r r

r r r

( ) d

( ) d d

( ) ( )d ,

i

N

i
1

2

1
2

1

N

N

3

3 3( 1)

3 (3)

The notation ⟨v, ρ⟩ thus expresses a dual pairing between two
Lp spaces or a combination of such, one for densities and the
other one for potentials. These density and potential spaces are
the topic of the next section. Without going into technicalities,
the space L ( )p n , 1 ≤ p ≤ ∞, can be thought of as all functions
f(r) that have a finite Lp norm

i
k
jjj y

{
zzz= | | <f f r r( ) dL

p
p1/

p
n

where in the case p = ∞ a supremum norm is employed
instead.

3. REPRESENTABILITY OF DENSITIES
The notion of “representability” is ubiquitous and conceptually
important in DFT. It generally refers to the situation that any
density of a certain class comes from a well-defined
construction. Such a construction can simply be how a density
is calculated from an N-particle wave function of finite kinetic
energy following eq 2 and we then call the density “N-
representable”. Or one demands that the density should be
that of an actual ground-state solution of a Schrödinger
equation with some given external potential v and one calls it
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“v-representable”. However, this definition of v-representability
is a bit naive since the set of permitted potentials to choose
from was not even specified.3 One could argue that any
potential that can be put into the Schrödinger equation should
be considered, but then the dual pairing ⟨v, ρ⟩ appearing in eq
3 between the spaces of densities and potentials might be
“lost”, which has consequences for the density functionals
defined later in Section 6. So in order to talk about v-
representability, we will first have to choose a basic density
space that includes the N-representable densities.
The task of determining N-representable density classes was

originally tackled by Gilbert20 and Harriman.21 In the first
work, differentiability of the density was required, whereas in
the second work no further conditions on the density were
assumed. Here, we rely on the version by Lieb22 that gives the
following class of N-representable densities,

{ }= =N N Lr rrep ( ) 0, d , ( )2 3

The benefit of the additional constraint L2 is that one
can always find a wave function that not only gives the desired
density but also has finite kinetic energy and is thus in (and
in addition is properly normalized). Lieb2 further showed that
N-rep is convex and included in =X L L( ) ( )1 3 3 3 . This
space X is the basic density space in terms of Lp spaces, so by
eq 3 this automatically yields a corresponding potential space
that is its dual, * = +X L L( ) ( )3/2 3 3 . Any element v ∈ X*
can thus be written as v = v1 + v2 with v L ( )1

3/2 3 and
v L ( )2

3 . Potentials of Coulomb type, v(r) = Cr−1, r = |r|,
are for example elements of this X* (by virtue of ∫ 0

R|v(r)|3/2r2dr
< ∞ for any finite R > 0 and |v(r)| < ∞ for r > R).
The issue of “v-representability” is much more profound. To

date there is no explicit description for the set of all v-
representable densities v-rep. This issue is known as the “v-
representability problem”. We already noted that v-rep should
contain all densities that are a ground-state density for some
potential v ∈ X*. For a glimpse of what densities have to be
included in this set we refer to the illustrative construction of
Englisch and Englisch.23 At this point one has to differentiate
between several levels of v-representability. We defined v-rep as
coming from a ground state of a Schrödinger equation with
some given external potential v. Within DFT we usually
consider two settings, the full system that contains a
(Coulomb) interaction W and the Kohn−Sham system that
does not. So whenever we talk about v-representability, this can
be amended by the attributes “interacting” or “noninteracting”
and it is not obvious at this point if the two classes are equal,
overlap, or are even disjoint. After all, the sets are not explicitly
known. Within each class we also have the possibility of
ground-state degeneracy. Then, instead of ground-state wave
functions, the more general concept of density matrices comes
into play. The resulting notions are then “pure-state v-
representability” and “ensemble v-representability”. In the
second case such a density ρ is then the convex combination of
pure-state v-representable densities ρk that come from the
degenerate ground-states ψk of H[v], i.e., ρ = Σkλkρk (λk ∈ [0,
1], Σkλk = 1). In the first case, only densities from pure states
are allowed, but they might still individually come from a set of
degenerate ground-state wave functions. It was demonstrated
by Englisch and Englisch23 by giving explicit examples that
there are N-representable densities that are not ensemble v-

representable (an obvious example is a density that vanishes on
a set of positive measure; however, for more elaborate
examples, we refer to Section 3.2 in ref 23). Levy24 and
Lieb2 gave arguments that an ensemble v-representable density
does not have to be pure-state v-representable. An explicit
example for such a density ρ ∈ v-repens\v-reppure was found
within a finite-lattice system of cuboctahedral symmetry.25 So
we can symbolically note that

v v N Xrep rep reppure ens (4)

In the work by Garrigue,26 it was demonstrated that the set v-
reppure is path-connected. There are further topological
relations between the sets appearing in eq 4 that are worth
mentioning. Since every ρ ∈ v-repens is a convex combination ρ
= Σkλkρk with ρk ∈ v-reppure, it holds

=
v v N Xrep conv rep repens pure

where conv is the convex hull of a set. So while v-reppure is
definitely not convex because of the mentioned counter-
examples, v-repens might still be (to our understanding this is
not known). Lastly, N-rep is the closure of v-repens within L1 ∩
L3, which means that any ρ ∈ N-rep can be approximated
arbitrarily well by densities in v-repens when distance is
measured in the L1 ∩ L3-norm.27 With the notion of the
“subdifferential” from Section 7, this result can be established
as a direct consequence of the Brøndsted−Rockafellar
theorem.29 Still, potentials that lead to densities that are
arbitrarily close could be very far apart in the potential space
X*. On the other hand, it has been suggested that v-reppure is
not dense in N-rep (see Conjecture 3.8 in ref 30).

4. THE HOHENBERG−KOHN THEOREM
The classical HK theorem1 states the existence of a well-
defined density-potential mapping for ground states. For a
given potential v,

[ ] = { | + [ ]| | = }

= { | | + | = }

E v H V v

H v

inf , 1

inf , , 1
0

0 (5)

is the ground-state energy by the Rayleigh−Ritz variation
principle. If a minimizer exists, then ψ and ρψ are the
corresponding ground state and ground-state density that might
not be unique in the case of degeneracy. If a minimizer does
not exist, there is still always a sequence ψi in with ∥ψi∥ = 1
such that ⟨ψi|H0 + V[v]|ψi⟩ converges to E[v]. In eq 5, v should
be selected from a class that makes E[v] bounded below. See
Reed and Simon, Section X.2, for an extensive discussion on
such potentials.31 A further demand on v will later be that it
guarantees a ground state that is nonzero (almost everywhere),
a property needed in the proof of the second part of the HK
theorem (HK2) below.
In eq 5, the problem of solving a partial-differential equation,

the stationary Schrödinger eq 1, has been transformed into a
variational problem: finding a minimizer for eq 5. The route
backward is also feasible and any such minimizer is also a
distributional solution to the Schrödinger equation.33

We will now demonstrate that simply by virtue of the
structure of E[v], where density and potential are combined in
the term ⟨v, ρ⟩ that makes no explicit reference to the wave
function while the remaining part ⟨ψ|H0|ψ⟩ (or Tr(H0Γ), if
density matrices are used to describe the state) does not
depend on v, we can already define a mapping from ground-
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state densities to ground-state wave functions or density
matrices. This, then, is already half of a HK theorem, that we
will already give in a variant for ensemble v-representable
densities.

Theorem 1 (HK1). Let Γ1 be a ground state of H[v1] and
Γ2 a ground state of H[v2]. If ; i.e., if these states
share the same density, then Γ1 is also a ground state of H[v2]
and Γ2 is also a ground state H[v1].
Proof 1. Since we assumed the existence of ground states Γ1,

Γ2 for the potentials v1, v2, the infimum in eq 5, when varied
over density matrices, is actually a minimum. Further, the
potential-energy contribution ⟨v, ρ⟩ is fixed because ρ is given
and can be taken out of the minimum,

For completeness, we also give the same expression for a
general v in case the state is pure.

Here, the notation “ ” and “ ” means variation over
all states in with density ρ. But the remaining minima in eq
6 are then completely determined by the fixed ground-state
density and we can always choose Γ1 = Γ2 [primes removed] as
a valid ground state. Thus, the density alone already defines the
ground state, irrespective of the potential v1 or v2.
As highlighted before, the above proof relies purely on the

specific structure of the energy function E[v] that allows the
potential part to be taken as a separate, additive contribution
that depends solely on the density. This idea is due to Paul E.
Lammert (during discussion at the workshop “Do Electron
Current Densities Determine All There Is to Know?” in Oslo,
2018). In contrast to this, the usual proofs of this part of the
HK theorem additionally depend on the linear structure of the
density-potential pairing. Moreover, such proofs are almost
always performed indirectly (reductio ad absurdum), with a few
notable exceptions.34,35 For completeness, we will give an
additional, more traditional proof, yet one that is direct and
does not work by raising a contradiction.
Proof 2. By the variational principle, we have

[ ] = [ ] [ ]

[ ] = [ ] [ ]

E v H v H v

E v H v H v

Tr( ) Tr( ),

Tr( ) Tr( )

1 1 1 1 2

2 2 2 2 1

Exploiting the shared density ρ, this may be written as

[ ] = +

+ +

= [ ] +

E v H v

H v v v

E v v v

Tr( ) ,

Tr( ) ,

,

1 0 1 1

0 2 1 2 2

2 1 2

and analogously as

[ ] [ ] +E v E v v v ,2 1 2 1

Combining the inequalities gives

[ ] [ ] =E v E v v v ,1 2 1 2

and from

[ ] = [ ]H v H v v vTr( ) Tr( ) ,2 1 1 1 1 2

that Tr(H[v2]Γ1) = E[v1]. So Γ1 is also a ground state of H[v2].
Likewise, Tr(H[v1]Γ2) = E[v2], so Γ2 is also a ground state of
H[v1], as required.
HK1 holds generally for mixed or pure ground states. The

same proofs remain valid when the theorem is specialized to a
statement about pure states Γi = |ψi⟩⟨ψi|. An immediate but
maybe surprising consequence that is often referred to as the
basis of DFT is that a ground-state density ρgs alone already
determines a ground state. This result has been coined a weak
HK-like result before36 and it will be used to define the HK1
functionals on v-reppure and v-repens in eq 9 below. The ground
state (associated with ρgs) is pure if ρgs ∈ v-reppure but has to be
an ensemble if ρgs ∈ v-repens\v-reppure. Any state that is a
minimizer in eq 6 is really a ground state for all potentials that
share the same ground-state density. That all those potentials
are in fact equal (up to a constant) is then the statement of
HK2, the second part of the HK theorem. It will be formulated
for eigenstates, in case of an ensemble we are free to just take
any of its components.

Theorem 2 (HK2). If two potentials share any common
eigenstate and if that eigenstate is nonzero almost everywhere,
then the potentials are equal up to a constant.
Proof. If v1, v2 share a common eigenstate ψ, it holds

+ [ ] = [ ]

+ [ ] = [ ]

H V v E v

H V v E v

( ) ,

( )

0 1 1

0 2 2

Subtraction of the two equations and moving all potential parts
that do not depend on r1 to the right-hand side gives

= [ ] [ ]

=

v v E v E v

v v

r r

r r

( ( ) ( )) ( )

( ( ) ( ))
i

N

i i

1 1 2 1 1 2

2
1 2

(8)

Since we assumed ψ nonzero almost everywhere, we can then
divide by ψ and get v1(r1) − v2(r1) = constant (almost
everywhere) because the right-hand side does not depend on
r1.
Since HK2 states that sharing any common eigenstate for

two potentials means that they are equal (up to a constant),
this of course implies that the potentials share all eigenstates
because they yield exactly the same Hamiltonian (up to an
additive constant that just shifts the spectrum). The special
requirement that the wave function is nonzero (almost
everywhere) is guaranteed for a large class of potentials by
the unique-continuation property (UCP) from sets of positive
measure. This property will be further discussed in Section 5.
That zeroes (nodes) in the wave function are still allowed on a
set of measure zero is important here, since the Fermionic
many-particle wave functions will exhibit nodal surfaces when
particle positions agree. Outside of the continuum setting, for
example in finite-lattice systems, such a UCP is not at hand and
there are actual counterexamples to HK2, were two different
potentials share a common eigenstate.25

The complete HK result is then obtained by combining the
two theorems above. We will assume here that the potential is
from the mentioned class that guarantees a nonzero ground
state. We should remember that such or similar restrictions will
always come into play if we want to show validity of a density-
potential mapping in other settings. The statement will be
formulated for densities in v-repens, so it automatically holds for
v-reppure as well.
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Corollary 3 (HK). If two potentials share a common
ensemble v-representable ground-state density, then they are
equal up to a constant.
Proof. By HK1 there is a density matrix Γ = Σkλk|ψk⟩⟨ψk| that

is a ground state for both potentials. Since at least one λk ≠ 0
and since the corresponding ψk is a ground-state wave function
for both Hamiltonians, the proof can be completed by HK2.
This structuring into two separate theorems was already

used in Kohn et al.,37 just in the reverse order, for a brief
argument about DFT with magnetization. Historically, the HK
theorem was first given only for the nondegenerate case and
was only later extended to include degeneracy.23,38 The proof
presented here does not suffer from any limitation to
nondegenerate ground states.
A final note is directed toward more general DFTs that will

be briefly discussed in Section 10 and especially in the
forthcoming Part II of this review. For other types of
potentials, like vector potentials, the statement in the HK
theorem would not necessarily be that the potentials are equal
“up to a constant”, but for example “up to a gauge
transformation”. The set of gauge transformations that are
possible without affecting the physical properties of the system
then have to be specified within the respective theory.

5. THE UNIQUE-CONTINUATION PROPERTY
In this section, we summarize some important results on the
unique-continuation property (UCP) of solutions to the
Schrödinger equation that is heavily used in the context of
(mathematical formulation of) HK-type theorems. The current
understanding is that the UCP cannot be avoided in a rigorous
proof of a HK-type theorem. The setting will be slightly more
general than before and allow for dimensionality d of the
spatial part of the single-particle configuration space d. The
N-particle configuration space is then n with n = dN.
Roughly speaking, the desired UCP result states that under

certain conditions on the potentials building up the operators
V and W and if a solution ψ to the (distributional) equation
H[v]ψ = 0 vanishes on a set of positive measure, then ψ
vanishes everywhere. That the right-hand side is zero comes as
no restriction here, since the energy E can always be absorbed
into the scalar potential v. The usual literature on the UCP
shows strong UCP, which means that ψ is assumed to vanish to
inf inite order at a point r n

0 and then the statement
follows. A function f(r) is said to vanish to infinite order at
r n

0 if for all k ≥ 1 there is a ck such that

| | <
| |<

f cr r( ) d k
k

r r

2

0

for every 0 < ε < 1. Now a very convenient result by
Regbaoui39 shows that the UCP on sets of positive measure
actually follows from such a strong UCP if the potentials are in
Llocn/2. This work apparently built on de Figueiredo and
Gossez40 that again rests on an early estimate for general
Sobolev spaces by Ladyzenskaya and Ural’tzeva.42 The result
and its proof have been repeated by Lammert.43 For us that
means that any strong UCP can also be used as a UCP on sets
of positive measure which is the one needed for the proof of
HK2. Yet the traditional strong UCP results, like most notably
in Jerison and Kenig,44 also give dimension-dependent
constraints on the potentials like Llocn/2, which approaches
L∞ for growing particle number and is thus too restrictive for
our use where singular potentials need to be considered. The

saving idea recently came from Garrigue35 and was also
extended to more complex systems:45,46 To take the special N-
body structure of the potentials into account and thus avoid
any dependence of the constraints on the particle number N.

Theorem 4 (Garrigue’s UCP). Suppose that the potentials
are in L ( )p d

loc with p > 2 for d = 3 and p = max(2d/3, 2) else.
If a solution ψ to the Schrödinger equation vanishes on a set of
positive measure or if it vanishes to infinite order at any point,
then ψ = 0.
The most relevant case here is obviously d = 3 which means

that the potentials need to be in L ( )p
loc

3 with p > 2 but exactly
p = 2 is not enough yet. This clearly does not fit our potential
space * = +X L L( ) ( )3/2 3 3 , so while this UCP result is
the best one available, it cannot be used for a HK2 theorem
that covers the whole potential space of DFT in the
formulation discussed here. Lieb2 also remarked on the UCP
in the context of the HK theorem, which “is believed to hold”
for potentials in X*, however in a weaker form that is not
sufficient for the current purpose. So whenever we state that
the HK holds in standard DFT, we actually mean under the
given restrictions on the potentials.

6. HIERARCHY OF DENSITY FUNCTIONALS
The first part of the HK theorem, HK1, analogously holds in
many different varieties of DFT (that will be explored in Part
II), simply because its validity just depends on the form of the
energy functional. HK1 then ensures that we can map from
pure-state v-representable ground-state densities ρgs,pure to
ground-state wave functions ψ[ρgs,pure] and from ensemble v-
representable ground-state densities ρgs,ens to ground-state
density matrices Γ[ρgs,ens]. This makes it possible to define the
HK1 functionals

[ ] = [ ]| | [ ]F H von repHK1,pure gs gs 0 gs pure (9a)

and

[ ] = [ ]F H vTr( ) on repHK1,ens gs 0 gs ens (9b)

as the energy contribution only from the internal parts H0 of
the Hamiltonian. The universal nature of such functionals,
being independent of any external v, justifies the usual
attribution as universal functionals. It is then possible to
determine also the internal energy contributions for any state
with density ρgs just from ρgs. To get the total ground-state
energy (eq 5) with the help of the functional above, it is
enough to vary over v-representable densities alone, instead of
the much larger set of wave functions. We can write

[ ] = { | | + | = }

= { [ ] [ ] + }

= { [ ] + } *

E v H v

H v

F v X

inf , , 1

inf , ,

inf , on

0

gs 0 gs gs

HK1,pure gs gs

gs

gs (10)

or equivalently with FHK1,ens. We see already that there is a
certain ambiguity in which density functional to use in the
definition of E[v]. The other density functionals presented
here will all have the property that they give the correct
ground-state energy when applied in eq 10 which makes them
all admissible functionals.47 Yet, they will differ with respect to
their mathematical properties and we thus aim for the one with
the best features.

ACS Physical Chemistry Au pubs.acs.org/physchemau Review

https://doi.org/10.1021/acsphyschemau.2c00069
ACS Phys. Chem Au 2023, 3, 334−347

338

pubs.acs.org/physchemau?ref=pdf
https://doi.org/10.1021/acsphyschemau.2c00069?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The first problem here is that the densities to be considered
in the variational problem are limited to those that are actual
ground-state densities (v-rep), because else FHK1[ρgs] is left
undefined, and we already learned in Section 3 that v-rep is not
an explicitly characterized set. Apart from that, HK1 just states
the existence of a map or Γ without giving any hints
toward a constructive scheme. A first step to overcome these
problems is to inspect eq 7. This suggests the definition of
another pair of density functionals that goes under the name of
“constrained search”,

and

The domain is now the larger, convex, and explicitly defined N-
rep in both cases. Note that the literature mostly denotes those
functionals as FCS,pure = FLL (“Levy−Lieb”2,9) and FCS,ens = FDM
(from “density matrix”2). A recent, comprehensive study of
these functionals can be found in Lewin et al.48 Since the
density is limited to the set N-rep that guarantees finite kinetic
energy, the infima in eq 11 are always attained, though not
necessarily by a possible ground state (if ρ is not v-
representable), and can thus be replaced by minima in both
cases.49 The convex combination of pure-state projections into
density matrices translates to the functionals, so that FCS,ens is
the convex envelope of FCS,pure.

50 This automatically ensures
that FCS,ens is convex, a fact that can also be concluded from
observing that linear.51

Since these density functionals appear in the optimization
problem that determines the ground-state energy and density,
like in eq 10, convexity is of great importance because only for
a convex functional can we be sure that identifying any local
minimum also means that a global minimum has been found.
So while we now know that FCS,ens is convex, the previous
functional FHK1,pure does not even have a convex domain and
therefore cannot be convex. Levy24 and Lieb2 also gave
arguments for the nonconvexity of FCS,pure. Since FCS,ens =
convFCS,pure, any density where FCS,ens[ρ] ≠ FCS,pure[ρ] already
shows nonconvexity of FCS,pure. But this is equivalent to saying
that ρ is ensemble v-representable while it is not pure-state v-
representable, so ρ ∈ v-repens\v-reppure.52
Note especially that HK1 was necessary to define FHK1, but

is not needed any more for the constrained-search functional
FCS. Being able to define a universal constrained-search
functional, one that is independent of the potential like in eq
11, already fully facilitates the proof of HK1 and thus implies
this result. A potential-independent constrained-search func-
tional already implicitly includes HK1. This implication was
proven by Levy9 along the lines of the usual HK proof and is
mentioned in textbooks like Parr and Yang53 and Tsuneda.55

Speaking generally though, a constrained search is just as
feasible if the constrained-search functional also depends on
the external potential v (although it would not be universal), so
indeed this approach is more general than relying on HK1.
Such a case turns up in CDFT when the current variable is the
total current that itself depends on the vector potential (see
Part II of this review for more on this).
By employing the constrained-search functional, the ground-

state energy from eq 5 can now be rewritten again as

[ ] = { | | + | = }

= { [ ] + | = }

= { [ ] + } *

E v H v

F v

F v X

inf , , 1

inf , , 1

inf , on

0

CS,pure

CS,pure

or equivalently with FCS,ens, where minimization is now
performed over N-rep.
When looking at noninteracting systems, the definitions of

FHK1, eq 9, and FCS, eq 11, involve only the kinetic-energy
operator T instead of H0. We will then denote these functionals
with a zero superscript, FHK10 , FCS0 , etc., that indicates that
noninteracting systems are considered. A further functional
then comes into play that is defined like FCS,pure, but where
only Slater determinants are considered as wave functions. We
define on N-rep,

The usual name in the literature is FSD0 = TS. This functional is
of importance because it is the one used in Kohn−Sham
theory which will be discussed in Section 8. In their original
article, Kohn and Sham56 implicitly set FSD0 = FHK1,pure0 for all
noninteracting pure-state v-representable densities, which has
been noted to be wrong because of possible degeneracy.57 On
the other hand, for nondegenerate ground states ϕ, which by
necessity are always determinants in noninteracting systems, it
holds that [ ] = [ ] = [ ]F F FSD

0
CS,pure
0

HK1,pure
0 , and else FSD0

≥ FCS,pure0 . Nevertheless, for practical purposes, FSD0 usually
takes up the role of the density functional when defining the
energy functional in a noninteracting setting.
The transformation from any density functional F• for an

interacting system from above to the energy functional,

[ ] = { [ ] + } *•E v F v Xinf , on
(12)

is called the convex conjugate or Legendre−Fenchel trans-
formation.58 There is also a way to reverse the transformation
and we define

[ ] = { [ ] }F E v v Xsup , on
v (13)

This F is the famous Lieb functional,2 yet another density
functional, but this time the last one to be defined in standard
DFT. It is the biconjugate of any F• considered before. Defined
this way, both E and F are lower-semicontinuous and E is
concave while F is convex and has the propertyF ≤ F•.

59

Actually, as a biconjugate, F is the largest convex and lower
semicontinuous functional that fulfills F ≤ F• which makes it
the convex envelope of F•. The domain is now the whole

=X L L( ) ( )1 3 3 3 , but automatically F[ρ] = ∞ for all
densities that are not in N-rep,60 while at the same time F[ρ] <
∞ if ρ ∈ N-rep.61 Let the ef fective domain “dom” of a convex
functional be the elements from its domain where it is finite,
then this means that dom F = N-rep. Having reached F, it does
not matter any more which (admissible) functional has been
used in eq 12, which means the convex envelopes of all the
functionals above agree. Conversely, the Legendre−Fenchel
transformation can also be utilized to go back from F to E,62

[ ] = { [ ] + }E v F vinf ,
(14)

We already noted that F is convex and lower-semi-
continuous, which are both important properties if we want
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to use the variational problem E[v] = infρ{F[ρ] + ⟨v, ρ⟩} to
find a minimizing density. The same properties come into play
when defining the minimizers by differentiation in Section 7.
From the definition of F it follows directly that

[ ] [ ] +E v F v ,

a version of the Young inequality. Equality in the above
estimate holds if the density is the ground-state density ρgs for
the potential v,

[ ] = [ ] +E v F v ,gs gs

For FCS, pure the converse holds too: If it holds E[v] =
FCS,pure[ρ] + ⟨v, ρ⟩ then ρ is a ground-state density within v-
reppure for the potential v and further FHK1,pure[ρ] = FHK1,ens[ρ]
= FCS,pure[ρ] = FCS,ens[ρ] = F[ρ].63 But what about using the
more general functional F for the variational principle like in eq
14? Can we find a real ground state like this or will this
variational principle yield additional artificial solutions because
it is too general? Because it is the convex envelope of the other
functionals, it cannot produce a functional value below the
ground-state energy, but it could produce a minimizing density
where there are no v-representable ground-state densities! The
problem is solved if we allow for ensembles of ground states:
An “amusing fact” in Lieb64 gives F = FCS,ens on N-rep, which
effectively means F = FCS,ens since we can just set FCS,ens[ρ] =
∞ outside of its domain N-rep to achieve equality globally on
X. So any minimizer of F + ⟨v, ·⟩ is also one of FCS,ens + ⟨v, ·⟩,
and it is further the convex combination of ground states for
the potential v. Consequently, when talking about ground
states in the context of the functional F, we will always actually
mean ensembles of possibly degenerate ground states.
When comparing the functionals on X, we just set them to

∞ whenever we are outside their domains. The following
hierarchy can be set up and is further laid out in Table 1.

=F F
F F

F
F

( )
CS,ens

CS,pure SD
0

HK1,ens
HK1,pure

Here, FSD0 appears in parentheses since it only comes into play

in the noninteracting setting where we can perform the same

type of transformations and have F0[ρ] and E0[v].

7. DENSITY-POTENTIAL MAPPINGS FROM
DIFFERENTIALS

In the previous section, it was stated that in order to get the
ground-state density of any system we have to find a solution
to the variational problem

[ ] = { [ ] + }E v F vinf ,
(15)

now relying on the density functional F from eq 13. To find the
global minimum of a convex and lower-semicontinuous func-
tional we can perform differentiation, i.e., demand that the
differential of F[ρ] + ⟨v, ρ⟩ with respect to ρ must equal zero at
the position of a ground-state density ρgs.
The suitable notion of differentiation here is the

subdifferential F that gives the set of all linear continuous
tangent functionals to a convex functional F at a given density
ρ,

[ ] = { *|
+ }

F v X X F

F v

: ( )

( ) ,

It is always well-defined, since the set [ ]F can contain many
elements, in case the functional F has a kink (like the example
shown in Figure 1), or can even be empty. Finally, if it contains

exactly one element, we found a unique potential yielding that
ground-state density. In any case, the variational problem (eq
15) has a minimizer ρgs if and only if the following condition is
fulfilled,65

[ ] + · [ ]=F v v F( , ) 0 , gsgs (16)

In what follows, we identify v with the functional ⟨v, ·⟩
whenever the context implies a functional on density space
instead of a potential on configuration space, so eq 16 can be
written [ ]v F gs . The potential as the subdifferential of
the density functional means that potentials v are from the dual
of the space of densities like already noted in Section 3. This
general principle is not always respected in more complex
versions of DFT, as we will see in Section 10 and discuss
further in Part II of this review.
If the set [ ]F gs is nonempty, then there is at least one

potential v ∈ X* that yields the given ground-state density.
The set of all densities where [ ]F gs is called the domain

Table 1. Relations between the Functionals Discussed in
Section 6. From FHK1,pure to FHK1,ens, the domain gets
extended to v-repens while they agree on v-reppure. From
FHK1,ens to FCS,pur,e the domain gets closed (cl) within L1 ∩
L3, and from FCS,pure to FCS,ens the functional itself gets
convexified (conv) while the domain remains the same.
Finally, F is just equal to FCS,ens on N-rep.

F• convex domain convex

FHK1,pure no v-reppure no
↓ cl

FHK1,ens ? v-repens ?
FCS,pure no N-rep yes

↓ conv
FCS,ens yes N-rep yes
F yes L1 ∩ L3 yes

Figure 1. Example of a convex and lower-semicontinuous function
with a discontinuity at ρ0 and some elements from the subdifferential
displayed as linear continuous tangent functionals at ρ0, represented
by dashed lines.
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of the subdifferential, so it follows that =F vdom repens.
Note that, by a theorem of convex analysis,66 Fdom is dense
in domF, so v-repens is dense in N-rep, a fact already expressed
with N-rep being the closure of v-repens in Section 3.
The meaning of a valid HK theorem for a class of densities is

that they can all be mapped as ground-state densities back to a
unique potential (modulo a constant) and consequently

[ ] = { + | }F v c cgs . By eliminating the (physically
unimportant) constant potentials from the potential space,
the subdifferential of a v-representable density is precisely

[ ] = { }F vgs if the HK theorem holds. If, on the other
hand, F is assumed differentiable, then the directional
derivative [ ] =F vgs anyway always maps to a unique
potential. One thus has a well-defined map from densities in v-
rep to the corresponding potentials, exactly the content of the
HK theorem! But where did it enter? The HK theorem is here
a consequence from the assumption of differentiability of F[ρ] at
v-representable densities. The situation will be summarized
diagrammatically in Section 11.
Because any potential v that we determine by eq 16 will also

be the maximizer in the conjugate variational problem

[ ] = { [ ] }F E v vsup ,
v

gs gs

we can just as well say the same with the superdifferential of
the concave functional E,

[ ] = [ ]
=

E v v E v( , ) 0
v vgs gs (17)

The right-hand side, [ ]E vgs , means to find a density (or
possibly many) that comes from a wave function that
minimizes the total energy including v. It is thus a conceptual
shortcut to map from potentials to ground-state densities
without any reference to an underlying wave function or
Schrödinger equation. The situation of a set ∂E[v] with more
than one element is known from degeneracies of the
Hamiltonian H0 + V[v], where different linearly independent
ground states with eventually different densities all have the
same eigenvalue.
We showed in this section the important role of the

generalized concepts of sub/superdifferentials in the context of
DFT, because indeed the functionals from Section 6 cannot be
assumed differentiable as van Leeuwen67 has demonstrated for
the FHK1 functionals and Lammert3 for FCS. The reason for
nondifferentiability even of FCS is that at any ρ the functional
F[ρ + δρ] is infinite for various, arbitrarily small shifts δρ that
lead out of N-rep, even if the normalization of the density is
kept constant. This happens by infinitely increasing the
internal energy through tiny oscillations of the density. A
possible way to prevent that is to limit the density space X so
that such shifts δρ are not possible any more and Lammert3

actually shows this for the Sobolev space H ( )2 3 when ρ is also
assumed v-representable. Another way is to establish a coarse-
grained model for DFT in which F really becomes differ-
entiable and every density is ensemble v-representable.68 In the
following section, in accordance with the vast majority of the
literature, we will assume functional differentiability of F and
consequently v-representability. This strong assumption can be
justified a posteriori, as discussed later in Section 9, when a
regularization procedure is applied.

8. LINKING TO A REFERENCE SYSTEM: THE
KOHN−SHAM SCHEME

In Section 6 it was noted that a functional might be introduced
for an interacting or a noninteracting system. This means the
respective Hamiltonian has the internal part T + λW with λ ∈
{0, 1}. We will now write F1 and F0 to differentiate clearly
between those two situations. We then introduce the difference
functional FHxc = F1 − F0, which just corresponds to the
internal-energy difference between the interacting and the
noninteracting system and that will later be linked to the
Hartree-exchange-correlation potential vHxc. This potential
effectively compensates for the Hartree-mean-field interaction
as well as “exchange” and “correlation” effects. The idea behind
introducing this auxiliary noninteracting system is that the
energy difference between the (numerically tractable) non-
interacting system and the (numerically unfeasible) interacting
system is small and can be efficiently approximated. Since the
reference system is noninteracting, FSD0 can be employed for F0
if degeneracy for the ground state does not have to be taken
into account, like it was mentioned in Section 6, and this
switchover is performed in most practical situations. Then the
energy functional for the full system is

[ ] = { [ ] + }

= { [ ] + [ ] + }

= { | | + [ ] + }

E v F v

F F v

T F v

inf ,

inf ,

inf ,

1 1

0
Hxc

Hxc

In the last step the variation is changed from N-rep densities to
single Slater determinants ϕ, the minimizer−if it exists−is then
the Kohn−Sham Slater determinant. In order to link this to a
partial differential equation for the orbitals φi constituting ϕ,
the Kohn−Sham equation, variation of the energy expression
above with respect to φi is performed under the constraint that
a l l t h e φ i s t a y n o r m a l i z e d . T h i s m e a n s

= | |=r r( ) ( )i
N

i1
2 always stays in N-rep, but generally

the issue of nondifferentiability from Section 7 remains. The
resulting equation is a one-particle Schrödinger equation with
effective potential vs and eigenstates φi,

i
k
jjj y

{
zzz+ =v r r r

1
2

( ) ( ) ( )s i i i
2

(18)

On the other hand, this approach does not lead to the effective
potential vs for the Kohn−Sham equation right away, but
requires the additional, computationally challenging step of
extracting the effective potential from the variation of FHxc with
respect to the orbitals (OEP integral equation69).
To have a well-defined FHxc[ρ] = F1[ρ] − F0[ρ], the ρ must

be both, interacting and noninteracting v-representable. Both
systems then share the same ground-state density ρ when the
different external potentials

[ ] [ ]v F v Fand s
1 0

(19)

are assigned to them. That the density ρ is simultaneously
interacting and noninteracting v-representable is tacitly
assumed here, else one of the subdifferentials above is
empty. This means that actually the v-representability problem
from Section 3 shows up at this point. A purported
solution70−72 rests on an ill-founded notion of differentiability
where the functionals are extended to distributions, but with an
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incorrect application of the calculus of distributions (see, e.g.,
eq 0.24 in Gonis70).
The usual rationale of DFT is to assume that the potentials

from eq 19 exist and are unique (modulo a constant; after all
the latter is the content of the HK theorem). The difference
vHxc = vs − v is then known as the Hartree-exchange-correlation
potential: what needs to be added to the fixed external
potential v in order to simulate all interactions in an
noninteracting system. Note that such missing effects from
interactions do not stem exclusively from theW-term in F1, but
also from the different kinetic energy contributions between
the interacting and noninteracting system. Nevertheless, the
usual understanding is that most of the kinetic energy
contributions can already be captured by a noninteracting
system (with an uncorrelated wave function) and that they
thus practically cancel between F1 and F0 when we calculate

[ ] = [ ] [ ]v v v F FsHxc
1 0

(20)

At this point, a problematic discrepancy is introduced, since
the subdifferential is not linear and thus vHxc and FHxc need
not match. If vHxc cannot be determined as FHxc we are left
with the necessity of individually solving the inverse problems

and in eq 20 for both systems, interacting and
noninteracting. In practice this means one cannot benefit from
finding good approximations to FHxc which are the most
important elements of applied DFT.
A possible circumvention lies in a conceptual shift from

describing a system in terms of energies to forces. The ground
state is then characterized by a certain force-balance equation
that can be equally found in nonequilibrium settings, just with
an additional dynamical term.73,74 At a density that is
simultaneously interacting and noninteracting v-representable
and where the wave function has a sufficient regularity, the
force-balance equation can be employed to derive vHxc as the
solution of a Poisson equation instead of a functional
derivative.75 An alternative derivation for this was already
given earlier using line integrals describing the work it takes to
move an electron from infinity against the force field of the
exchange-correlation hole charge.76,77

Yet, we will proceed here for the sake of argument by
assuming differentiability for now. Since the functional
derivative δ/δρ is linear and it holds

[ ] = = [ ] + [ ]

= [ ] [ ] = [ ]

v v v F F

F F F( )

sHxc
0 1

1 0
Hxc

(21)

Also, several important properties that the Hxc potential needs
to have are automatically fulfilled when they are functional
derivatives,78 which is especially relevant for functional
approximations to vHxc.
The Kohn−Sham scheme is now introduced in order to find

an unknown ground-state density ρgs of an interacting system
by starting from an initial guess ρ0 and by using vHxc (in
practice a suitable approximation to it) as the connection
between the interacting system and a noninteracting reference
system. To this end, rewrite eq 19 with assumed differ-
entiability as [ ] + =F v 01

gs and [ ] + =F v 0s
0

gs and set

the two equations equal,

[ ] + = [ ] +F v F vs
1

gs
0

gs

Now, apart from the fixed external potential v of the interacting
system, all variables in this equation still remain generally
unknown: the effective potential of the noninteracting system
vs and, especially, the density ρ of both systems that we would
like to determine. The trick lies in introducing sequences ρi →
ρgs, vi → vs and define an update rule,

= + [ ] [ ] = + [ ]+v v F F v vi i i i1
1 0

Hxc
(22)

We see immediately that if ρi has converged to the correct
ground-state density ρgs of the interacting system, then

+ [ ] =v F 0i
1 and the remaining equation tells us that

indeed vi+1 is the potential that gives the same density ρgs in the
noninteracting system. The next step after eq 22 in the Kohn−
Sham iteration lies in determining the density ρi+1 that comes
from vi+1 in the noninteracting system (which is comparably
easy achieved by solving the corresponding Kohn−Sham eq
18) and then iterate. Convergence problems are a big issue
within this iteration scheme and have been dealt with by either
damping the iteration step from ρi → ρi+1 to ρi → ρi + μ(ρi+1 −
ρi), μ ∈ (0, 1), or mixing several of the previous steps {ρi} into
the result ρi+1.79−81 Guaranteed convergence has been studied
and proven for the finite-lattice case10−12 by combining an
optimal damping step and a regularization technique,4,12 with
the latter truly making F differentiable and E a strictly concave
functional. This solves the problem of defining vHxc in eq 21
and yields a curvature bound on F that is needed for
guaranteed convergence. The regularization method is briefly
explained in Section 9 below. For the Kohn−Sham iteration in
continuum DFT the convergence is still an open problem, a
direct generalization of the finite-lattice case has been found to
be insufficient.82 In practical applications that suffer from
convergence issues, imaginary-time propagation in time-
dependent DFT has recently been found as a viable alternative
to find a Kohn−Sham ground state.83

9. DENSITY-POTENTIAL MIXING AND REGULARIZED
DFT

The full HK theorem guarantees a unique inversion from
densities to potentials, but the whole discussion, especially
regarding the necessary conditions for showing HK2, probably
already made us a little bit sceptical about its validity in
different settings. We will thus introduce a method that always
guarantees a bijective mapping, not between densities and
potentials, but between quasidensities (called pseudodensities in
the original work on regularization4) and potentials. The basic
idea is simple: If for some reason we cannot guarantee a unique
(injective) mapping from potentials to ground-state densities

, meaning that different v ≠ v′ map to the same ρ[v]
= ρ[v′], then let us try it for , where
at least in the previous example we would have ρε[v] ≠ ρε[v′]
for sure. One could argue that this could just as easily
introduce new problems for injectivity, like having v ≠ v′ such
that ρε[v] = ρε[v′], but we will show in the following that this
cannot be the case for the functionals considered here.
Remember that the mapping can be defined by the
superdifferential of E, ρ[v] = ∂E[v], as explained in eq 17. So
what is the corresponding functional Eε such that

[ ] = [ ] = [ ]v v v E v ? The superdifferential retains the
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linear nature of a derivative if only concave functionals are
added, so we can look for a convex functional ϕ such that

[ ] = [ ] =v v v( ) . In a general space, such a
question proves hard,82 but it is easy to see that in the usual
space L2 of square-integrable functions the norm square gives
exactly what we need, ϕ[v] = 1/2∥v∥2 = 1/2⟨v,v⟩. In any case,
we have established Eε = E − εϕ and [ ] = [ ]v E v with such
a convex ϕ. But in many cases, not only for the mentioned L2
space, the functional ϕ is not only convex, but strictly convex,
meaning that any local minimizer is not only global but even
unique. But this feature transfers to Eε if −εϕ, as a strictly
concave functional, is added to E. Consequently, Eε is also
strictly concave and any maximizing potential in

[ ] = { [ ] }F x E v v xsup ,
v (23)

is necessarily unique (not just up to a constant). This means
we can always uniquely map and back. We
wrote x now to make clear that this is a quasidensity, a mixture
between a density and its associated potential. As such it is
neither necessarily normalized nor positive, just a general
element of the density space, x ∈ X. By what we learned in
Section 7, the quasidensity-potential mapping can also be
directly defined by [ ] = { }F x v for all x without any “v-
representability” restriction for x. Consequently, the mapping
is defined for all x in the density space X and thus bijective.
The whole maneuver of passing from F to Fε corresponds to

a regularization strategy called Moreau−Yosida regulariza-
tion4,12 by which not only the concave E transforms into a
strictly concave Eε, but also the Fε defined by eq 23 is finally
differentiable if the spaces X, X* have some additional
properties.84 The only problem is that this requires the space
X to be reflexive, which it is not in our current formulation as
introduced in Section 3, since it includes the nonreflexive L1 in
its definition. So a different choice for the basic spaces, like X =
L2 on a bounded domain4 or X = L3 as a larger alternative to
our space,5 has to be taken.
This section demonstrated how such a regularization that

facilitates a unique (quasi)density-potential mapping can be
used to fully circumvent any reference to the HK theorem. But
to avoid confusion we will not say that in a regularized setting
the HK theorem “holds” even though a unique and well-
defined (quasi)density-potential mapping exists. It is interest-
ing to note that the popular Zhao−Morrison−Parr method for
density-potential inversion already implicitly employs Mor-
eau−Yosida regularization and a limit procedure ε → 0.85

10. ABSTRACT DENSITY-POTENTIAL MAPPING
The presented form of HK1 allows for an abstraction and
thereby for generalizations. Therein, the density is generalized
to any system-inherent quantity that seems suitable to describe
other system parameters that we are interested in. This could
be the density together with the spin density, a current-
quantity etc. On the other side, we select a generalized form of
the potential that enters the Hamiltonian and that is able to
steer the “density-quantity” by coupling to it. Such a
framework was developed in Laestadius et al.,5 building on
Banach spaces and their duals for density and potential
quantities. This enables us to employ the regularization
technique from Section 9 to obtain a well-defined Kohn−
Sham iteration scheme.

In order to be more concrete, let x be the density quantity
describing a state that will in general include many
components, like different densities, currents etc., and v the
collection of external potentials acting on them. At this point
we do not even assume that x and v have the same number or
type of components like a dual structure between densities and
potentials would impose. Instead of a linear pairing ⟨v, x⟩ for
the coupling to the external potential we can introduce an
arbitrary functional f [v, x]. Then the only necessary condition
left for an abstract HK1 is that the ground-state energy
expression has the form

Since F̃[x] is independent of v, the critical argument in the first
proof of HK1 still holds and thus two potentials that share a
common x in the ground state will also share a common
ground-state wave function or density matrix. Consequently,
HK1 is secured in any such formulation of DFT, while the
situation for HK2 quite generally is more problematic. Even if
the coupling between v and x that enters the energy functional
in eq 24 is linear like in f [v, x] = ⟨v, x⟩, the critical step (eq 8)
in the proof of HK2 will involve more degrees-of-freedom on
the potential side and the argument may fail.
In the literature, the presented situation with linear coupling

corresponds to what Schönhammer et al.86 call {a}-functional
theory. Similarly, Higuchi and Higuchi87,88 allow for a more
general choice of basic variables in DFT next to the usual
density. Xu et al.89 derived conditions that need to be fulfilled
to also have a HK2 in such a general setting. One can then try
and extend DFT and the Kohn−Sham scheme systematically
to predict further system parameters, if good approximative
functionals can be found.
A first example would be the spin-resolved functional that

has the usual one-particle density ρ = ρ↑ + ρ↓ and the spin-
density ρ↑ − ρ↓ as basic variables, x = (ρ↑ + ρ↓, ρ↑ − ρ↓). An
alternative possible choice would clearly be x = (ρ↑, ρ↓).

90 The
energy functional is [ ] = { [ ] + }E v F vxinf ,

x
, with v just the

usual scalar potential that couples to the one-particle density ρ.
The involved spaces for densities and potentials are not dual in
this example, since they involve a different number of
components. But by choosing an FHxc[x] that depends on
the spin-resolved density, the Hxc-potential as its derivative
(and with it the effective potential of the Kohn−Sham system)
must be from the dual space of x and thus include components
that act on the different spin-components individually.
A second example is CDFT and its variants that will be

thoroughly discussed in Part II of this review. The para-
magnetic current density of a given state is defined as

= { * }Nj r r( ) Im dp
1 1N3( 1)

Then the amended density quantity is x = (ρ, jp) which couples
linearly to = + | |( )vv A A,1

2
2 .91 Since by this the potential-

energy contribution amounts exactly to the linear pairing
f [v, x] = ⟨v, x⟩ that allows to define a potential-independent
constrained-search functional, HK1 holds.
This means one can continue along the lines started in this

work and try to generalize many concepts and results from
above to such extended DFTs. This includes the definition of
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representable densities (Section 3), different functionals
(Section 6), functional differentiability (Section 7), setting
up a Kohn−Sham scheme (Section 8), as well as regularization
(Section 9), since also there the existence of a full HK theorem
was hardly ever assumed.

11. SUMMARY
We will give a brief summary of the structure of the density-
potential mapping and its relation to the HK theorem.
Following the last section on abstract DFTs, at least the
HK1 result does not only hold for standard DFT (that maps
one-particle densities to scalar potentials), but it holds for all
variants of DFTs that offer the required structures. This will be
especially useful with foresight toward CDFT, the topic of the
second part of this review.
In standard DFT, with a setting that yields the unique-

continuation property that in turn prevents the ground-state
density from being zero on a set of nonzero measure (Section
5) and due to the simple relation (eq 8) in the proof of HK2, a
full HK result can be established. In any higher DFT this proof
strategy potentially fails. The status of HK1, on the other hand,
is much less critical, since this result holds automatically
whenever a potential-independent (“universal”) constrained-
search functional can be set up. But also in cases where the
constrained-search functional depends on the external
potential, a valid statement like in the HK theorem, that two
potentials that share a common ground-state density are equal
up to gauge changes, is still possible in general. The more
general way how to think and talk about a HK result is by
calling it a “unique density-potential mapping” and we
explained how such a mapping can be established as the
subdifferential of the density functional F at v-representable
densities. If the potentials in the resulting subdifferential are
equal up to a gauge transformation, then this is just the HK
result again. Assuming full differentiability of F implies a one-
element subdifferential, so there would not even be any room
for gauge changes, and a unique density-potential mapping
would be the result once more. This property of differ-
entiability of the density functional F is desirable also in the
context of Kohn−Sham theory in order to be able to link the
functional FHxc to the Hxc potential like in eq 21.
But since differentiability is not a property of the usual

DFTs, a regularization strategy was devised and briefly
explained in Section 9. This yields a unique quasidensity-
potential mapping, where quasidensities are actually mixtures
between ground-state densities and their potentials. The
mixing parameter ε could be set to zero to retrieve the
unregularized theory together with the problem of non-

differentiability. The whole structure is laid out diagrammati-
cally in Figure 2.

12. OUTLOOK
In this outlook, we first want to collect the problems that still
remain open within the foundations of standard DFT and that
will surely be the topic in upcoming works. Considering Lieb’s
mathematical formulation of DFT, summarized above in
Sections 3 and 6, there are two main issues. First, HK2 is
guaranteed only for eigenstates that are nonzero almost
everywhere, a property that is secured by the UCP explained
in Section 5. But the potential space required for this does not
cover all potentials from the Lieb setting and a sufficiently
general UCP result is not available to date. Second, the issue of
v-representability, explained in Section 3, still remains open.
While regularization as described in Section 9 formally allows
us to circumvent this problem, it has not yet been put to
practical use. Since the overlap between interacting and
noninteracting v-representability is poorly understood, this has
direct implications for Kohn−Sham theory. But even with v-
representability assumed, convergence of the Kohn−Sham self-
consistent field iterations in the standard setting is still an open
problem. Both issues, availability of UCP and v-represent-
ability, relate to the function spaces for densities and
potentials. Possibly, with a more refined choice of these
spaces, full v-representability or even differentiability of F
might be achievable. However, it also cannot be ruled out that
nondifferentiability is fundamental to DFT.
This nondifferentiability of F, that has been repeatedly

stressed in this work, implies that the exchange-correlation
potential cannot be found as a functional derivative with
respect to the density, as it is usually assumed in standard
DFT. Orbital-dependent functionals92 can be formally viewed
as relying on the HK1 map to obtain the Kohn−Sham
wave function from a density. Nondifferentiability of F[ρ]
might then be represented in the noninteracting wave function
ϕ[ρ], which may benefit the functional approximations if they
rely directly on the Kohn−Sham orbitals. The lack of
differentiability also favors approaches based on forces instead
of energies, as mentioned in Section 8. However, practical
functionals that are derived from this approach remain
unexplored and there is still a dependence on v-represent-
ability.
It is interesting to note which useful structures of DFT carry

over to “higher” density-functional theories, and in Part II we
will discuss density-functional theory for systems involving
magnetic fields. While one of its flavours, paramagnetic CDFT,
already briefly discussed in Section 10, still allows for a
constrained-search functional (HK1), the realization of a full

Figure 2. Logical implications between the different statements relating to a “unique density-potential mapping” and the HK theorem in standard
DFT.
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density-potential mapping is highly problematic. For this
reason, in the classical formulation of paramagnetic CDFT93

the HK2 result that different potentials lead to different ground
states was just tacitly assumed with the words: “Let ψ and ψ′
be the two different ground states corresponding to the two
sets of fields [(v, A) and (v′, A′)].” Later, Capelle and Vignale7
even found counterexamples to HK2 which shows that a
density-potential mapping cannot be constructed in para-
magnetic CDFT. But this clearly does not mean that in
different versions of CDFT the density-potential mapping is
impossible to achieve in general. A formulation utilizing the
total current will be studied as well, but here the constrained-
search functional would depend on A and thus HK1 is not
available in the fashion as it was presented here. So while for
paramagnetic CDFT the HK2 fails, for total (physical) CDFT
already HK1 does not hold. Overall, the existence of a well-
defined density-potential mapping in CDFT is still an open
issue that will be considered in the second part of this review.
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