
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21065  | https://doi.org/10.1038/s41598-022-25573-9

www.nature.com/scientificreports

A perceptual glitch in serial 
perception generates temporal 
distortions
Franklenin Sierra 1*, R. Muralikrishnan 1, David Poeppel 2,3 & Alessandro Tavano 1

Precisely estimating event timing is essential for survival, yet temporal distortions are ubiquitous in 
our daily sensory experience. Here, we tested whether the relative position, duration, and distance in 
time of two sequentially-organized events—standard S, with constant duration, and comparison C, 
with duration varying trial-by-trial—are causal factors in generating temporal distortions. We found 
that temporal distortions emerge when the first event is shorter than the second event. Importantly, 
a significant interaction suggests that a longer inter-stimulus interval (ISI) helps to counteract such 
serial distortion effect only when the constant S is in the first position, but not if the unpredictable C is 
in the first position. These results imply the existence of a perceptual bias in perceiving ordered event 
durations, mechanistically contributing to distortion in time perception. We simulated our behavioral 
results with a Bayesian model and replicated the finding that participants disproportionately expand 
first-position dynamic (unpredictable) short events. Our results clarify the mechanisms generating 
time distortions by identifying a hitherto unknown duration-dependent encoding inefficiency in 
human serial temporal perception, something akin to a strong prior that can be overridden for highly 
predictable sensory events but unfolds for unpredictable ones.

Precisely estimating event timing is essential for a range of perceptual and cognitive tasks, yet temporal distor-
tions are ubiquitous in our daily sensory experience1–3. A specific kind of time distortion is the presentation-order 
error4. In 1860, Fechner observed that when comparing the weight of two elements, the order in which they were 
lifted mattered5. This led to a systematic error on a subject’s judgment of sequentially presented stimuli, which 
was termed time-order error (TOE)4. Time-order errors have been detected in different stimulus modalities, 
such as audition, vision, and taste, as well as different stimulus dimensions, such as loudness, heaviness, and 
brightness4. Understanding how they are generated is fundamental as humans ordinarily perceive events in a 
series, not in isolation.

Time-order errors in temporal judgment can be experimentally tested by implementing a two-interval forced 
choice (2IFC) discrimination task, whereby participants compare the duration of two successive time intervals 
(events) per trial—a Standard and a Comparison (S vs C)—separated by an inter-stimulus interval (ISI)6,7. 
When combined with the method of constant stimuli, the duration of S is kept fixed across the experimental 
session, whereas the duration of C changes from trial to trial and usually it can take one of six to nine durations 
distributed around the S duration8.

In a 2IFC task, temporal performance is modelled by fitting a psychometric function. From this fitting, two 
main dependent variables are obtained: the point µ where the curve cuts the 50% line (that is, the point of subjec-
tive equality [PSE]) and the slope of the resulting curve. While the PSE estimates the accuracy of the comparison 
judgment—and provides a marker for temporal distortions—, the slope estimates their temporal precision9,10. 
Time order error effects have recently classified into two types: effects of the stimulus order on the PSE are called 
Type A effects, whereas effects on temporal precision are called Type B effects11,12. It is important to note that 
there exists another type of mistake called the contraction bias: When the 1st stimulus is small relatively to the 
distribution of the stimuli used in the experiment, participants tend to overestimate it, whereas when it is large 
relatively to the distribution of the stimuli used in the experiment, they tend to underestimate it13,14.

Traditionally, TOEs have been variously attributed to sensory desensitization7,15, poor sensory weighting of C 
relative to S16,17, or idiosyncratic response bias15. However, more recently, two additional models have attempted 
to explain TOE: (1) the internal reference model (IRM)18—an updated version of the sensory desensitization 
model—and (2) Bayesian observer models19–21.
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The underlying idea behind IRM is that in comparing S and C, participants maintain an internal representa-
tion with the average duration of previous trials. However, this internal representation is updated by taking into 
consideration only the first presented stimulus (S or C). Because the S stimulus has a constant duration and the 
C stimulus varies unpredictably, more errors will be made when the order of presentation is <CS> compared to 
when it is <SC> . Raviv et al.14 proposed a Bayesian observer model, which is akin to the IRM but with a Bayes-
ian inference approach. Such a model assumed that the brain uses a heuristic strategy to discriminate auditory 
temporal intervals, with the idea being that when a human participant compares two stimuli, the second auditory 
interval is compared against the decaying average of the first one. Raviv et al., suggested that errors in temporal 
discrimination arise during memory retrieval/decision making and not during memory encoding.

Bayesian models offer a dynamical approach and take into consideration the representation of the two stimuli, 
S and C. Thus, the result of perceiving an S or C interval (modeled as a posterior distribution) is the product 
of the previous trial’s representation—and all the information collected until that point—(modeled as a prior 
distribution) and the current sensory input (the likelihood function). In this model, the prior distribution is 
updated from trial to trial, whereas the posterior distribution is modulated at each trial by the perception of 
both stimuli, S and C. A common strategy used to model the update of the prior and posterior distributions is 
by using a Kalman filter22,23. Indeed, de Jong et al.12 found that in comparing the duration of visual stimuli, the 
influence of statistical context on time estimation is best explained by a Bayesian model using a Kalman filter, 
and thus discarded the IRM model. The authors found that Type A effects are influenced by a dynamic prior that 
is sequentially updated by both stimuli, S and C.

In our previous work, we showed that in discriminating two successive visual events (each event signaled by 
two blue disks) with S < 200 ms, time distortions appear only if the ISI is shorter than 1 s24. Here, we focused on 
the type A effect and tested how the factors that determine serial dynamics of relative event duration—relative 
position, relative distance in time, and relative duration of S and C—contribute to generating temporal distor-
tions. We used an S of 120 ms and varied the ISI over four different intervals (400, 800, 1600, and 2000 ms).

Firstly, we swapped the order of presentation of S and C (relative position factor). Secondly, we tested whether 
a long ISI (relative distance factor) increases the temporal accuracy. Finally, we tested whether the ordinal posi-
tion of the longer stimulus (relative duration factor) modulates temporal accuracy, under the assumption that 
the contraction bias may apply locally, that is for relative durations within a trial, and independently of event type 
(S or C). For this, we used equiprobable C durations distributed around the duration of the S stimulus. We thus 
hypothesized that: (1) with an ever-changing C in first position, time distortions would increase as participants 
would benefit to a markedly lesser extent from increased attention orienting for long ISIs. Hence, we expected an 
interaction between the two factors: stimulus presentation order and ISI; (2) if distortions in duration comparison 
are mainly resultant from the predictability features of S and C (trial-by-trial predictable vs. unpredictable), then 
the ordinal position of the longer stimulus should not modulate temporal perception.

Results verify hypothesis 1: the best Generalized Linear Mixed Model (GLMM) included an interaction 
between stimulus presentation order ( <SC> or <CS> ) and ISI. Increasing ISI reduces temporal distortions, more 
so for the <SC> group. Surprisingly, however, and contrary to hypothesis 2, the relative position of the longer 
stimulus has important modulatory effects on temporal perception. Not all first-position events are subjectively 
expanded to the extent that they produce distortions in temporal judgment. Instead, time distortions tend to 
be generated when the first event in a series is shorter than the second event, independent of event type (S or 
C). Notably though, when the dynamic stimulus (C) is in first position, the ensuing distortion effect cannot be 
compensated for by increasing the ISI.

To dig deeper into the mechanics of TOEs and show the computational plausibility of the highlighted per-
ceptual bias, we considered the fixed factors of the best GLMM and simulated our findings by implementing 
a Bayesian model using a Kalman filter12,22,23. Model results confirm the findings on human participants: first-
position shorter events are disproportionately expanded. Our results contribute to clarifying the mechanics 
generating perceptual time distortions, by identifying a novel duration-dependent encoding inefficiency in 
human serial time perception.

Results
Two separate groups of human participants performed a 2IFC discrimination task comparing the duration of an 
S event against that of a C event (or vice versa), and deciding which stimulus was longer. To signal the onset and 
offset of each event, we used a short-duration blue disk (hence, S and C were empty visual stimuli, see “Material 
and methods” section). For the <SC> experimental group, the S stimulus was displayed in the first position, and 
was shifted to the second position for the < CS > experimental group (Fig. 1a). The duration of the S event was 
kept constant (120 ms), whereas the duration of the C event varied, providing participants with three degrees 
of sensory evidence (weak ±� 20 ms, medium ±� 60 ms, and strong ±� 100 ms; Fig. 1b). We parametrically 
manipulated the ISI by using four durations: 400, 800, 1600, and 2000 ms.

Temporal accuracy.  Temporal accuracy was 84.39% (SD = 7.16) and 79.75% (SD = 9.79) for the <SC> and 
<CS> groups, respectively. Accuracy improved across the board for ISI conditions > 400 ms, however accuracy 
values were always lower for the <CS> than for the <SC> group (Fig. 1c; Table 1).

Raw accuracy was analyzed with GLMMs using a binomial parameter with a logit link function10,25. Model 
selection was based on the Akaike Information Criterion (AIC), whereby the model with the lowest AIC was 
selected as the one that best explained the data (see “Material and methods”). Results showed that the best model 
for explaining the data included all the factors: � , ISI, Group, and Ordinal position of the longer stimulus, and 
their interaction term, with random intercepts for each participant (AIC = 39,322.53). Models involving less 
complex / no random intercept specifications either did not converge or had higher AIC.
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Type II Wald chisquare tests on the selected model showed a main effect of Delta ( χ2(2) = 3467.69, p < 0.001 ), 
ISI ( χ2(3) = 190.40, p < 0.001 ), Group ( χ2(1) = 6.60, p < 0.001 ), and Ordinal position of the longer stimulus 
( χ2(1) = 545.93, p < 0.001 ), their interactions were also significant (Table 2). As the best model included the 
Ordinal position of the longer stimulus as fixed effect (and their interactions), this suggest that the position of 
the longer stimulus, regardless of their experimental function—Standard or Comparison—modulates accuracy 
(Fig. 1d).

To examine the effects of the Ordinal position of the longer stimulus, we deployed contrast analyses on the 
estimated marginal means (EMMs) of the best GLMM, with bonferroni adjustment of p-values for multiple 
comparisons where applicable. Results showed that for both groups <SC> and <CS> the Ordinal position of the 
longer stimulus has modulatory effects on the accuracy (p = 0.0254; p < 0.0001; respectively). However, when the 
long stimulus is displayed in 1st position there are not differences between Groups, the opposite occurs when 
the long stimulus is displayed in 2nd position (p = 0.8363; p < 0.0001; respectively; Fig. 1d).

Figure 1.   Two-interval forced choice (2IFC) task and accuracy. (a) Timeline of events in the 2IFC task. 
For the <SC> group the standard stimulus (S) was displayed in the 1st position and in the 2nd position for 
the <CS> group. (b) The S stimulus had a fixed duration of 120 ms, whereas the comparison stimulus (c) varied 
trial-by-trial according to its level of sensory evidence: weak, medium, or strong. We implemented four Inter-
stimulus intervals (ISIs: 400, 800, 1600 and 2000 ms). (c) Mean accuracy for each group and each ISI level. 
Data points depict the mean accuracy for each participant. Box and density plots show the distribution of the 
mean accuracy for both <SC> and <CS> groups. The median is represented by the vertical line in the box plots, 
whereas the right and left edges depict the interquartile range (IQR). Accuracy is higher for the <SC> group, 
however for both groups the accuracy increased for ISI > 400 ms. (d) Mean accuracy separated by the ordinal 
position of the longer stimulus. Accuracy for the <CS> group decreases when the 1st stimulus is shorter than the 
2nd stimulus.

Table 1.   Accuracy. Mean accuracy and the standard deviation (SD, in parentheses) for each group and each 
ISI level. In both groups, participants had their worst performance at the ISI400 condition. However, mean 
accuracy values are lower for the <CS> group than for the <SC> group.

Group

ISI level

400 ms 800 ms 1600 ms 2000 ms

 <SC>  80.52% (8.30) 84.59% (6.62) 85.89% (5.80) 86.55% (6.27)

 <CS>  76.41% (10.03) 80.21% (9.89) 81.18% (9.25) 81.20% (9.45)
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Pairwise comparisons at the ISI levels of each group revealed statistically significant differences between 
EMMs only at the ISI400 level for the <SC> group, whereas for the <CS> group we found statistically significant 
differences at each ISI level (all ps < 0.0001; Table 3), suggesting that an increasing ISI does not help suppressing 
distortions when the first stimulus does not have a constant duration.

Results of contrast analyses at each � levels showed that for the <CS> group all pairwise comparisons were 
statistically significant (all ps < 0.0001; Table 4). However, for the <SC> group results revealed a significant dif-
ference only at the � 20 level (p < 0.0002; Table 4). These results suggest the existence of a perceptual bias that 

Table 2.   Statistical table. Results of the II Wald χ2 test on the best model explaining accuracy. All fixed 
factors and their interaction term, except for the Delta × ISI × Group interaction, were statistically significant. 
(Significant codes: ***, p-value < 0.001; **, a p-value < 0.01; and *, a p-value < 0.05).

Fixed factors and interactions χ
2 df p. value

Delta 3467.69 2  < 0.001***

ISI 190.40 3  < 0.001***

Long stimulus first 545.93 1  < 0.001***

Group 6.60 1 0.010*

Delta:ISI 78.22 6  < 0.001***

Delta:Long stimulus first 295.46 2  < 0.001***

ISI:Long stimulus first 75.89 3  < 0.001***

Delta:Group 46.77 2  < 0.001***

ISI:Group 13.19 3  < 0.010**

Long stimulus first:Group 325.33 1  < 0.001***

Delta: ISI:Long stimulus first 30.94 6  < 0.001***

Delta:ISI:Group 11.70 6 0.068

Delta:Long stimulus first 168.20 2  < 0.001***

ISI:Long stimulus first:Group 10.25 3  < 0.050*

Delta:ISI:Long stimulus first : Group 19.73 6  < 0.010**

Table 3.   Pairwise comparisons of estimated marginal means (EMMs) for each ISI level. Post-hoc comparisons 
on the Ordinal position of the longer stimulus, within each Group and each level of ISI, revealed that for 
the <SC> group the only statistically significant comparison was at the ISI400, whereas for the <CS> group all 
pairwise comparisons were statistically significant. (*** p-value < 0.001).

Group ISI Estimate SE df z. ratio p. value

 < SC > 

400 0.29 0.07 Inf 3.87  < 0.001***

800 0.18 0.09 Inf 1.91 0.055

1600 0.07 0.10 Inf 0.72 0.467

2000 − 0.13 0.09 Inf − 1.42 0.154

 < CS > 

400 0.84 0.07 Inf 11.98  < 0.001***

800 0.74 0.08 Inf 8.97  < 0.001***

1600 0.45 0.08 Inf 5.40  < 0.001***

2000 0.54 0.08 Inf 6.28  < 0.001***

Table 4.   Pairwise comparisons of EMMs for each Delta level. Post-hoc comparisons on the Ordinal position 
of the longer stimulus, within each Group and each Delta level, revealed that for the <SC> group the only 
statistically significant comparison was at the � 20, whereas for the <CS> group all pairwise comparisons were 
statistically significant. (*** p-value < 0.001).

Group Delta Estimate SE df z. ratio p. value

 < SC > 

20 0.18 0.04 Inf 3.74  < 0.001***

60 0.05 0.07 Inf 0.69 0.485

100 0.07 0.10 Inf 0.69 0.485

 < CS > 

20 1.54 0.05 Inf 30.19  < 0.001***

40 1.04 0.06 Inf 17.13  < 0.001***

60 − 0.65 0.09 Inf − 7.01  < 0.001***



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21065  | https://doi.org/10.1038/s41598-022-25573-9

www.nature.com/scientificreports/

can be minimized by both an increase of the ISI or providing more sensory evidence (that is, � ), but only if the 
first event has a constant duration.

Constant error (CE).  To obtain the temporal sensitivity and the magnitude of the time distortions (indexed 
via the PSE) of each group, we fitted GLMMs using the percentage of responses “C longer than S” (Fig. 2a). We 
used as predictors the fixed factors of the previous model, except for the “Ordinal position of the longer stimu-
lus” factor. Here again, we used a binomial parameter.

Based on the AIC the best model included the C stimulus, ISI, Group, and their interaction term as fixed 
effects, with random intercepts for each participant and random slopes for the effect of the ISI for each participant 
(AIC = 40,208.74; Fig. 3a). Type II Wald chisquare tests on the selected model showed a main effect of C stimulus 
and Group ( χ2(5) = 18457.67, p < 0.001;χ

2
(1) = 64.53, p < 0.001; respectively ). All interactions (C stimulus 

× ISI; C stimulus × Group; ISI × Group; C stimulus × ISI × Group) were also significant (all ps < 0.001; Table 5).
To obtain the individual temporal sensitivity and the PSE, we fitted a GLM for each participant by using as 

predictors the fixed effects of the best GLMM. We derived the CE from the PSE to obtain the exact magnitude of 
the time distortions (see “Material and methods” section). Results showed that, group-wise, CE values decrease 
with increasing ISI regardless of the group. However, CE values were higher for the <CS> than for the <SC> 
group (Fig. 3b; Table 6). Indeed, a Mixed Bayesian ANOVA revealed that best model for explaining these data 
was the model including the factors ISI and Group (BF10 = 5.7 × 107).

Bayesian model.  We implemented a Bayesian model to replicate our results by using a Kalman filter12,22,23. 
For each group we simulated data of 100 subjects using 120 trials at each ISI level (see “Material and methods” 
section). We applied the best GLMM of the human observers to the simulated data. As with the human partici-
pants, we applied a GLM to each subject to obtain the individual temporal sensitivity and the PSE. To compare 
the responses of the human observers against the Bayesian observer’s responses, we obtained the root mean 
squared error (RMSEs). Results showed that the Bayesian observer’s responses successfully simulated the trend 
of results of the human observers: (1) the CEs decrease with an increase of the ISI; (2) CEs values are higher for 
the <CS> than for the <SC> group (Fig. 4a, b).

Discussion
The duration of an event can be distorted when the event is inserted in a series. Such distortion, termed 
time-order error (TOE), constitutes one of the oldest and most investigated phenomena of subjective time 
perception5,17,26. Yet, the mechanics of TOE generation are still unclear. Since TOEs occur in serial discrimina-
tion tasks, we tested how event duration dynamics—relative position, distance in time and duration of two 
successive events—contributes to time distortions by flipping the positions of S and C events in two separate 
behavioral experiments.

We report on four main findings. First, in line with previous work, the interaction between stimulus order 
presentation and ISI suggest that, with an ever-changing and therefore unpredictable stimulus in first position, 
temporal accuracy decreases. These differences in accuracy contribute to the Type A effect: smaller CEs for the 
<SC> group and larger CEs for the <CS> group. Dyjas et al.18 found no significant statistical differences for the 
Type A effect between <SC> and <CS> presentation orders, as far as both visual and auditory modalities are 
concerned. On the contrary, our findings show that at least when using empty visual events, the serial order 
of presentation <SC> and <CS> modulates temporal accuracy and thus the Type A effect arise. Second, we 

Figure 2.   “C > S” responses. (a) Percentage of “C > S” responses plotted as a function of the C stimulus. Data 
points depict individual mean responses at each ISI level. For the <SC> group participants tend to make more 
mistakes at the 140-ms C stimulus, whereas for the <CS> group they tend to make more mistakes at the 100-ms 
C stimulus. We analyzed these behavioral responses with generalized linear mixed models (GLMMs) to estimate 
a single model across all subjects.
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Figure 3.   Constant error (CE) of human observers. (a) Psychometric curves of human observers. Fitted curves 
modeling performance of each ISI level for both groups: <SC> and <CS> . The durations of the six C stimuli are 
plotted on the x-axis and the probability of responding “C longer than S” on the y-axis. Logistic curves depict 
separate fits for each ISI condition. The gray dot and vertical line depicts the physical magnitude φs of the S 
stimulus. The remaining dots and vertical lines represent the point of subjective equality (PSE) for each ISI 
condition. Density plots show the subject-to-subject variability of the PSE for each ISI level. (b) Data points 
depict individual CEs for both <SC> and <CS> groups at each ISI level. Box-whisker, and density plots show the 
distribution of the CEs. The median is represented by the horizontal line in the box plots, whereas the bottom 
and top whiskers depict the IQR. CEs are larger for the <CS> than for the <SC> group. However, for both groups 
the CE decreases as the ISI increases, with exception of the ISI2000 condition of the <CS> group. Note that 
subjects with 3 standard deviations above-below the mean of the CE and slope were discarded.

Table 5.   Statistical table. Results of the II Wald χ2 test on the best model explaining “C > S” responses. The C 
stimulus and the Group factors with their interaction term were significant.

Fixed factors and interactions χ
2 df p. value

C stimulus 18,457.67 5  < 0.001***

ISI 3.87 3 0.275

Group 64.53 1  < 0.001***

C stimulus:ISI 293.18 15  < 0.001***

C stimulus:Group 480.01 5  < 0.001***

ISI:Group 18.28 3 0.003***

C stimulus:ISI:Group 63.51 15  < 0.001***

Table 6.   Constant errors (CEs). Mean CE values and SDs for each group and each ISI level. CEs were larger 
for the < CS > than for the < SC > group. However, for both groups the CE decreases as the ISI increases, with 
exception of the ISI2000 condition of the < CS > group.

Group

ISI level

400 ms 800 ms 1600 ms 2000 ms

 < SC >  6.78 (17.45) 4.52 (17.94) 1.27 (13.11) − 4.23 (16.26)

 < CS >  25.46 (24.19) 17.86 (23.46) 13.45 (21.82) 15.35 (20.24)
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replicated our finding that, by increasing the ISI between the first and second event, CEs decrease, although 
significantly less frequently for the <CS> group24.

Classical TOE studies suggest that the level of noise in the internal representation of the 1st stimulus is 
larger than the 2nd stimulus’ noise due to the encoding process and the maintenance of the 1st stimulus in 
memory27,28. Likewise, recent results in the auditory system propose a Bayesian model where the discrimination 
of two stimuli is done by comparing the second tone versus the decaying average of the first tone14. Thus, errors 
in temporal discrimination should be occur during memory retrieval and decision-making processes. Such a 
Bayesian model predicts that participants will have a better performance with a short ISI. However, our results 
show that increasing maintenance in memory does not have a detrimental effect on accuracy, on the contrary 
it has beneficial effects, possibly by reducing attentional blink effects. Indeed, our results are consistent with 
Grondin’s findings showing that the CE is reduced when the duration of the ISI is 1.5 s9. Grondin found that this 
benefit occurs when using both single and multiple visual standard stimuli. We suggest that these results can 
be explained by the beneficial effects of allocating attention in time, oriented to the encoding of unpredictable 
events29–31. Attention helps when S is in the first position, as it enhances the encoding of the C stimulus whose 
duration is unpredictable. We used this assumption to build our Bayesian model: allocating attention in time 
was modeled by decreasing the noise of the sensory input when the ISI increased.

The third finding concerns the preeminence of the ordinal position of the longer stimulus—independently 
of event type (S or C)—in driving accuracy. This offers a novel serial order bias in serial perception based on 
duration-dependent relative positions of stimuli, regardless of their duration relative to the global stimulus 
distribution. When the first stimulus in a series is shorter than the second stimulus, regardless of whether it is S 
or C, participants were biased to say that the first event was longer, consistently making mistakes. We found this 
effect in all experimental conditions of the <CS> group, but for the <SC> group it was only present at the shortest 
ISI (400 ms). We also showed that the serial order bias or perceptual glitch arises at all sensory levels of the <CS> 
group but only at the weak sensory level of the < SC > . These patterns of results explain why the magnitude of 
the time distortions (indexed via the CE) are larger for the <CS> than for the <SC> group. The serial order bias 
can be minimized by an increase of the ISI or an increase in the level of the sensory evidence if the first stimulus 
is predictable ( <SC> group). However, when a dynamic, unpredictable stimulus is displayed in first position ( <
CS> group), such a bias is at ceiling and leading to temporal errors that will increase the magnitude of the time 
distortions across the board.

Figure 4.   Root mean squared errors (RMSEs) of human and Bayesian observers. (a) RMSEs of human 
observers. RMSEs are given by the distance from the origin and are depicted by a quarter circle. Any increase 
in the CE or the slope will lead to a larger radius. Big dots depict the intersection of the CE and the slope’s mean 
for each group and each ISI level. Small dots depict individual CEs and slopes values. CE mean values decrease 
as a function of the ISI, with exception of the ISI2000 condition of the <CS> group. However, CE mean values are 
higher for the <CS> than for the <SC> group. (b) RMSEs of Bayesian observers. Bayesian observer’ responses 
successfully simulated the main CE results of the human observers: (1) the CEs decrease as the ISI increases, and 
(2) CEs values are higher for the <CS> than for the <SC> group.
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Fourth, our Bayesian model successfully simulated our human behavioral findings and showed that the Type 
A effect arises under sensory uncertainty because of the highlighted serial perceptual encoding inefficiency. 
Our modelling captures the idea that the temporal stimulus’s perception in the visual system is shaped not only 
by sensory noise but also by a perceptual bias that systematically makes participants expand the first stimulus 
in a series if unpredictable. Naturally, if such stimulus is already longer than the second, the bias would not be 
visible as it would not lead to perceptual mistakes. By simulating our behavioral results with a Bayesian model, 
we provide more evidence to show that time estimation and duration discrimination are a dynamic process that 
not only take in consideration the current sensory information of the two stimuli but also the information of 
previous trials. Note that while we were not able to model the Type B effect, by modelling the Type A effect our 
findings align with recent results showing that the type A effect is best modeled with a Bayesian model using a 
Kalman filter12.

Our behavioral results and simulations highlight the importance of the ISI factor in 2IFC paradigms. Both 
De Jong et al.12 and Raviv et al.14 proposed powerful models for temporal discrimination, but implicit in their 
experimental paradigms and models is the employment of a long ISI. De Jong and colleagues implemented an 
ISI of 1000 ms, whereas Raviv et al., used an ISI of 950 ms. Here, we modeled the ISI’s effects by decreasing the 
noise of the sensory input as the ISI increased. To do that, we implemented different distributions for the internal 
representation’s noise.

The replication of our behavioral results with a Bayesian model offers an insight on the computations that the 
human brain might use as a strategy for temporal discrimination. At the same time, it shows how this computa-
tion is affected by sensory noise, the allocation of attention in time, and a hitherto unknown perceptual bias. 
As our stimuli used visual intervals at the bottom of the sub-second scale (120 ms), the question remains as to 
whether the novel perceptual serial order glitch we disceovered would disappear for stimulus intervals in the 
supra-second range, and whether it is present in other sensory modalities, besides vision45,46. Future research is 
needed to uncover the physiological basis of such a strong, implicit expectation about the temporal statistics of 
incoming stimuli which can drive humans to distort time perception under uncertainty.

Materials and methods
Participants.  The experiment was organized as a between-subject design, with separate groups for the posi-
tion of the stimuli: S in first position ( <SC> ) and C in first position ( < SC> ). Part of the results of the <SC> 
group were previously published24. This dataset has a sample of 52 participants (34 female; ages: 18–33; mean 
age: 24.42). One participant was removed due to chance level accuracy ( < 55%). Therefore, the final sample 
included the data from 51 participants (33 female; ages: 18–33; mean age: 24.45). For the <CS> group we had 
an initial sample of 58 participants (45 female; ages: 18–37; mean age: 25.41). Four participants were removed 
due to chance level accuracy ( < 55%). Therefore, the final analysis included the data from 54 participants (41 
female; ages: 18–33; mean age: 25.31). In total, we report on the behavior of 105 participants. For the analyses of 
the slope and constant error (CE), participants were excluded when one of the dependent variables had a value 
with three standard deviations above (or below) the mean. Thus, for the analyses of the slope and CE, nine par-
ticipants were excluded following this procedure.

Individuals were recruited through online advertisements. Participants self-reported normal or corrected 
vision and had no history of neurological disorders. Up to three participants were tested simultaneously at 
computer workstations with identical configurations. They received 10 euros per hour for their participation.

Ethics statement.  The studies were carried out in accoirdance with the the code of ethics of the World 
Medical Association (Declaration of Helsinki) for studies involving humans, and were approved by the Ethics 
Committee of the Max Planck Society. Written informed consent was obtained from each participant before 
starting the session.

Design.  We used a classical interval discrimination task by implementing a 2IFC design, where participants 
were presented with two visual durations: S and C6,32. S had a magnitude of 120 ms. For the <SC> group S was 
always displayed in the first position, but it was shifted to second position for the <CS> group. In both groups, 
we used three magnitudes for the step comparisons between S and C: 20, 60, and 100 ms. We derived the mag-
nitudes for the C stimuli as S ±� , which resulted in the next C intervals: 20, 60, 100, 140, 180, and 220 ms. C 
stimuli were randomized on a trial-by-trial base.

We used the same four ISIs for both groups: 400, 800, 1600, and 2000 ms. For each trial, the inter-trial interval 
(ITI) was randomly chosen from a uniform distribution between 1 and 3 s. Participants judged whether the S 
or C stimulus was the longer duration. They responded by pressing one of two buttons on an RB-740 Cedrus 
Response Pad (http://​cedrus.​com) and were provided with immediate feedback on each trial.

Stimuli and apparatus.  Stimulus duration was determined as a succession of two blue disks with a diam-
eter of 1.5° presented on a gray screen33. Empty stimuli were implemented to ensure that participants were 
focused on the stimuli’s temporal properties34. All stimuli were created in MATLAB R2018b (http://​mathw​orks.​
com), using the Psychophysics Toolbox extensions35–37. Stimuli were displayed on an ASUS monitor (model: 
VG248QE; resolution: 1920 × 1080; refresh rate: 144 Hz; size: 24 in) at a viewing distance of 60 cm. When the 
C intervals (20, 60, 100, 140, 180, and 220 ms) were transformed into video frames and resulted with decimal 
fractions, they were rounded to the nearest integer. Thus, the C intervals had 3, 9, 15, 21 26, and 32 frames, 
respectively.

http://cedrus.com
http://mathworks.com
http://mathworks.com
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Protocol (Task).  The experiment was run in a single session of 70 min. Participants completed a practice set 
of four blocks (18 trials in each block). All sessions consisted of the presentation of one block for each ISI condi-
tion. Each block was composed of 120 trials. For each ISI the C intervals were presented in random order. Each 
ISI block was also presented in random order, each randomization was unique.

To avoid fatigue, participants always had a break after 60 trials. Each trial began with a black fixation cross 
(diameter: 0.1°) displayed in the center of a gray screen. Its duration was randomly selected from a distribution 
between 400 and 800 ms. After a blank interval of 500 ms, S was displayed and followed by an ISI. After this, C 
was displayed. Participants were instructed to compare the interval of the two stimuli by pressing the key “left”, if 
S was perceived to have lasted longer, and the key “right” if C was perceived to have lasted longer. After respond-
ing, they were provided with immediate feedback: the fixation cross color changed to green when the response 
was correct, and to red when the response was incorrect.

Data analysis.  Data cleansing was implemented with Python 3.7 (http://​python.​org) using the ecosystem 
SciPy (http: //scipy.org). GLMMs were fitted in R38 using the lme4 package (version 1.1.21). Estimated marginal 
means (EMM) were computed for the significant interactions in the fitted model to perform post-hoc compari-
sons and contrasts using the emmeans package39 (version 1.7.3). Bonferroni adjustment of p-values for multiple 
comparisons was applied where applicable. Raincloud plots were created using the raincloud function for R40. All 
data analyses and simulations, whether using Python or R, were performed in Jupyter Lab (http://​jupyt​er.​org). 
The annotated notebooks can be consulted at Open Science Framework (OSF) (https://​osf.​io/​qnj3t/).

General Linear Mixed Models (GLMMs).  We modeled our behavioral data with GLMMs to estimate a single 
model across all subjects and distinguish within- and between-subjects errors10,25,41. To fit the GLMMs we input 
the responses as a whole10,12. Raw accuracy was analyzed with GLMMs using a binomial parameter with a logit 
link function. To compute the temporal sensitivity and the PSE we fitted GLMMs using as dependent variable 
the percentage of responses “C > S”. We used again a binomial parameter but this time using a probit function. 
We calculated the expected value of the responses as follow:

where xij is the Comparison stimulus’ duration, Yij the response variable for subject I and trial j. If the C stimulus 
is judge longer than S, then Yij = 1; but Yij = 0, if C is shorter than S. The probability of the response “C longer 
than S” P(Yij) = 1 is linked with the linear predictor via the probit link function φ−1 . The fixed-effect parameters 
β0 and β1 are the intercept and the slope, respectively. The β1 is an index of the temporal precision, which is also 
called the Just Noticeable-Difference (JND)10. The PSE is a function of both parameters:

We derived the CE as the difference between the PSE and the magnitude φs of the Standard duration: CE = PSE−φs , 
and CE = φs − PSE , for the <SC> and <CS> groups, respectively.

To apply Model Comparison (BMC) to the GLMMs and decide between models, we applied the Akaike 
Information Criterion (AIC), whereby the model with the lowest AIC was selected as the one that best explained 
the data42.

Bayesian modelling.  We implemented a Bayesian model to replicate our results by using a Kalman filter. We 
based our Bayesian model on the work of Petzschner and Glasauer22, Glasauer and Shi23, and de Jong et al.12. In 
this model the prior represents the intervals stored in memory (that is, the internal representation of previous 
trials), the likelihood is the current sensory input, and the posterior is the current estimate or percept. To run 
our Bayesian model and use it for temporal discrimination, we used the duration of both stimuli—S and C—as 
inputs for this model. To do that we used the representation of the stimulus’ duration on a logarithmic scale and 
added some Gaussian noise:

where d is the physical duration of the stimulus (S or C) in a linear scale and xm is the internal noisy representa-
tion. The random variable nm represents the normally distributed measurement noise p(nm) ≈ N(0, σ 2

m)
43. To run 

simulations for individual participants we randomly selected values for σ 2
m from a truncated normal distribution. 

Note that the magnitude of σ 2
m is the temporal sensitivity of each participant. The model compared on a trial 

basis the logarithmic representations of S and C, and yielded 0 or 1:

•	 the model yielded 0 if “S > C”,
•	 the model yielded 1 if “C > S”,

when a new duration—indexed by n—is perceived it is represented by the likelihood function, which is a Gauss-
ian distribution with p

(

xm,n

)

≈ N(xm,n, σ
2
m) . Note that S and C are the mean of the priors that emerged from 

perceiving both stimuli. The prior too is modelled as a Gaussian distribution: N(µp, σ
2
p ) . To estimate a stimulus’ 

duration the prior is updated through a weighted average of the previous prior distribution and the currently 
sensed likelihood. For each measurement the update step is modeled by the formulation of the Kalman filter 
for a 1D first-order system:

(1)φ−1
[

P
(

Yij = 1
)]

= β0 + β1xij

(2)PSE = −
β0

β1

(3)xm = ln(d)+ nm

http://python.org
http://jupyter.org
https://osf.io/qnj3t/
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where r is the is the uncertainty of the current likehood ( σ 2
m ) and pn−1 the uncertainty of the previous prior 

( σ 2
p,n−1 ). Thus, the Kalman gain (k) of a new observation is determined by both uncertainties and a process 

variance q. The variance of the prior system pn is updated by the product of the Kalman gain and r, whereas the 
prior mean µp,n is updated as follow:

To simulate our behavioral results, we used three assumptions for modelling the noise nm associated with the 
internal representation xm . (1) We assumed that nm decreases as the duration of the ISI increases. That is, the noise 
nm associated with the second stimulus was larger for the ISI400 than for the ISI2000 condition. (2) We assumed 
that independently of the group (<SC> or <CS>) or even type (S or C), the stimulus’ noise come from two dif-
ferent distributions. Thus, we used a distribution for the “Longer stimulus in 1st position” stimuli’ noise and a 
second one for the “longer stimulus in 2nd position” stimuli’ noise. (3) Because the perceptual bias is stronger 
at the weak sensory level than the other two sensory levels, we used a truncated normal distribution for nm at 
the weak sensory level ( � 20). For the < SC > group this bias affected the (+ �20) trails, but for the < CS > group 
affected the −� 20) trials. See the annotated notebooks at OSF (https://​osf.​io/​qnj3t/).

For each group we generated data for 100 participants with 120 trials for each ISI level. For both groups we 
kept a constant value for q (q = 1.5).

Root Mean Squared Error (RMSE).  To compare the performance of human participants against the Bayes-
ian observer’s responses, we computed the RMSE which is given by the standard deviation (SD) and the bias: 
RMSE2 = SD2 + bias2, where the SD is the slope and the bias is the CE19,44. As the RMSE can be written as the 
standard equation of the circle, it provides an effective geometric and graphical description to track changes on 
the CE and explore the tradeoff between the CE and the temporal precision. RMSEs are given by the distance of 
the origin, and are depicted by a quarter circle. Because we had negative values for the CE, we took − 60 as the 
origin point instead of 0. Thus, to find the circle’s intercept on the x-axis, that is the axis of the CE, we took the 
absolute distance between − 60 and the CE.

Data availability
Anonymized data are available at the Open Science Framework (https://​osf.​io/​qnj3t/).
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