
IFAC PapersOnLine 55-30 (2022) 371–376

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2022.11.081

10.1016/j.ifacol.2022.11.081 2405-8963

Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Data-driven approximation and reduction from

noisy data in matrix pencils frameworks

Pauline Kergus ∗ Ion Victor Gosea ∗∗

∗ CNRS, LAPLACE, Toulouse, France (e-mail:
pauline.kergus@laplace.univ-tlse.fr).

∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,
Magdeburg, Germany (e-mail: gosea@mpi-magdeburg.mpg.de)

Abstract: This work aims at tackling the problem of learning surrogate models from noisy
time-domain data by means of matrix pencil-based techniques, namely the Hankel and Loewner
frameworks. A data-driven approach to obtain reduced order state-space models from time-
domain input-output measurements for linear time-invariant (LTI) systems is proposed. This is
accomplished by combining the aforementioned model order reduction (MOR) techniques with
the signal matrix model (SMM) approach. The proposed method is illustrated by a numerical
example consisting of a high-order building model.
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1. INTRODUCTION

Numerous complex dynamical systems used in practical ap-
plications cannot be accurately described by physical models
that are simple enough to be simulated or to be used for control
design purposes. Model order reduction techniques then play a
crucial role in obtaining a suitable complexity-accuracy trade-
off. As recalled in Antoulas (2005), MOR is usually based on full
knowledge of a complex and high-fidelity system description,
derived from physics laws.

However, the increasing availability of data and the rise of data-
driven applications require the incorporation of measurements
when modeling or controlling a system. To that extent, data-
driven reduction techniques, such as the Loewner Framework
(LF) Mayo and Antoulas (2007), Vector Fitting (VF) Gus-
tavsen and Semlyen (1999) or Adapative Antoulas Anderson
(AAA) Nakatsukasa et al. (2018), are particularly appealing.

This paper focuses on the LF, which was mostly applied (with
some exceptions) for noise-free data, obtained by simulating
a high-fidelity model of the dynamical system under investi-
gation. Indeed, as pointed out in Lefteriu et al. (2010), LF is
quite sensitive to noisy (perturbed) data. Physical modes of
the system may only be included in the model at the expense
of overmodeling, which generally leads to high variances and
overfitting. As a result, noisy data complicates the selection of
the system’s order and may lead to high approximation errors.
To tackle this issue, in Lefteriu et al. (2010) the poles were
selected according to their residue norm to make the Loewner
framework more robust to noise. This approach has also been
used in the context of data-driven control based on the LF
in Kergus et al. (2018). In Ionita (2013), it is suggested that
the choice of the frequencies (interpolation points), as well as
the partition of the corresponding data points, impacts the
robustness with respect to noise. This idea was also explored
in Gosea et al. (2021) and Palitta and Lefteriu (2022), where
different partitioning were studied for various numerical ex-
periments. In Embree and Ioniţă (2022), the influence of the

location and partition of the data points was studied through
the pseudospectrum of the Loewner pencil. In Drmač and
Peherstorfer (2019), it was shown that for Gaussian noise, the
resulting Loewner model error grows at most linearly with the
standard deviation of noise.

This work primarily aims at proposing a way to obtain
reduced-order models (ROMs) through matrix pencils tech-
niques, namely the LF and Hankel Framework (HF), that is
more robust to noisy data. The objective is hence to enable the
use of such techniques to obtain a ROM from measurements.
In what we propose, the order is a tunable parameter, without
considering available access to a high fidelity representation.
To that extent, this work is at the crossroads of MOR and
system identification (SI). The proposed method is based on
matrix pencils approaches (LF and HF). The HF is rooted
in realization theory Schutter (2000), in since it constructs a
minimal LTI realization from Markov parameters, i.e. impulse
response of discrete-time systems. Therefore, HF can be seen as
a time-domain counterpart of LF Ionita and Antoulas (2012).
In practice, the impulse response often has to be estimated
from available input-output data. This is usually done through
least-squares-based linear regression. In this work, we propose
strategies for making this approach more robust to noisy data
by using the SMM method introduced in Yin et al. (2020)
(which allows estimating the impulse response of a system from
noisy data).

To sum up, the proposed approach brings together aspects from
MOR, realization theory and SI in an unified framework, which
constitutes the main contribution of this work. Time-domain
data, consisting of noisy input-output measurements, is used
to estimate the finite impulse response of the system as in Yin
et al. (2020), which constitutes a non parametric characteriza-
tion of the underlying LTI system. The finite impulse response
is then used to obtain a reduced-order, explicit model through
the HF/LF.
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driven reduction techniques, such as the Loewner Framework
(LF) Mayo and Antoulas (2007), Vector Fitting (VF) Gus-
tavsen and Semlyen (1999) or Adapative Antoulas Anderson
(AAA) Nakatsukasa et al. (2018), are particularly appealing.

This paper focuses on the LF, which was mostly applied (with
some exceptions) for noise-free data, obtained by simulating
a high-fidelity model of the dynamical system under investi-
gation. Indeed, as pointed out in Lefteriu et al. (2010), LF is
quite sensitive to noisy (perturbed) data. Physical modes of
the system may only be included in the model at the expense
of overmodeling, which generally leads to high variances and
overfitting. As a result, noisy data complicates the selection of
the system’s order and may lead to high approximation errors.
To tackle this issue, in Lefteriu et al. (2010) the poles were
selected according to their residue norm to make the Loewner
framework more robust to noise. This approach has also been
used in the context of data-driven control based on the LF
in Kergus et al. (2018). In Ionita (2013), it is suggested that
the choice of the frequencies (interpolation points), as well as
the partition of the corresponding data points, impacts the
robustness with respect to noise. This idea was also explored
in Gosea et al. (2021) and Palitta and Lefteriu (2022), where
different partitioning were studied for various numerical ex-
periments. In Embree and Ioniţă (2022), the influence of the

location and partition of the data points was studied through
the pseudospectrum of the Loewner pencil. In Drmač and
Peherstorfer (2019), it was shown that for Gaussian noise, the
resulting Loewner model error grows at most linearly with the
standard deviation of noise.

This work primarily aims at proposing a way to obtain
reduced-order models (ROMs) through matrix pencils tech-
niques, namely the LF and Hankel Framework (HF), that is
more robust to noisy data. The objective is hence to enable the
use of such techniques to obtain a ROM from measurements.
In what we propose, the order is a tunable parameter, without
considering available access to a high fidelity representation.
To that extent, this work is at the crossroads of MOR and
system identification (SI). The proposed method is based on
matrix pencils approaches (LF and HF). The HF is rooted
in realization theory Schutter (2000), in since it constructs a
minimal LTI realization from Markov parameters, i.e. impulse
response of discrete-time systems. Therefore, HF can be seen as
a time-domain counterpart of LF Ionita and Antoulas (2012).
In practice, the impulse response often has to be estimated
from available input-output data. This is usually done through
least-squares-based linear regression. In this work, we propose
strategies for making this approach more robust to noisy data
by using the SMM method introduced in Yin et al. (2020)
(which allows estimating the impulse response of a system from
noisy data).

To sum up, the proposed approach brings together aspects from
MOR, realization theory and SI in an unified framework, which
constitutes the main contribution of this work. Time-domain
data, consisting of noisy input-output measurements, is used
to estimate the finite impulse response of the system as in Yin
et al. (2020), which constitutes a non parametric characteriza-
tion of the underlying LTI system. The finite impulse response
is then used to obtain a reduced-order, explicit model through
the HF/LF.
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1. INTRODUCTION

Numerous complex dynamical systems used in practical ap-
plications cannot be accurately described by physical models
that are simple enough to be simulated or to be used for control
design purposes. Model order reduction techniques then play a
crucial role in obtaining a suitable complexity-accuracy trade-
off. As recalled in Antoulas (2005), MOR is usually based on full
knowledge of a complex and high-fidelity system description,
derived from physics laws.

However, the increasing availability of data and the rise of data-
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driven reduction techniques, such as the Loewner Framework
(LF) Mayo and Antoulas (2007), Vector Fitting (VF) Gus-
tavsen and Semlyen (1999) or Adapative Antoulas Anderson
(AAA) Nakatsukasa et al. (2018), are particularly appealing.

This paper focuses on the LF, which was mostly applied (with
some exceptions) for noise-free data, obtained by simulating
a high-fidelity model of the dynamical system under investi-
gation. Indeed, as pointed out in Lefteriu et al. (2010), LF is
quite sensitive to noisy (perturbed) data. Physical modes of
the system may only be included in the model at the expense
of overmodeling, which generally leads to high variances and
overfitting. As a result, noisy data complicates the selection of
the system’s order and may lead to high approximation errors.
To tackle this issue, in Lefteriu et al. (2010) the poles were
selected according to their residue norm to make the Loewner
framework more robust to noise. This approach has also been
used in the context of data-driven control based on the LF
in Kergus et al. (2018). In Ionita (2013), it is suggested that
the choice of the frequencies (interpolation points), as well as
the partition of the corresponding data points, impacts the
robustness with respect to noise. This idea was also explored
in Gosea et al. (2021) and Palitta and Lefteriu (2022), where
different partitioning were studied for various numerical ex-
periments. In Embree and Ioniţă (2022), the influence of the
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the pseudospectrum of the Loewner pencil. In Drmač and
Peherstorfer (2019), it was shown that for Gaussian noise, the
resulting Loewner model error grows at most linearly with the
standard deviation of noise.

This work primarily aims at proposing a way to obtain
reduced-order models (ROMs) through matrix pencils tech-
niques, namely the LF and Hankel Framework (HF), that is
more robust to noisy data. The objective is hence to enable the
use of such techniques to obtain a ROM from measurements.
In what we propose, the order is a tunable parameter, without
considering available access to a high fidelity representation.
To that extent, this work is at the crossroads of MOR and
system identification (SI). The proposed method is based on
matrix pencils approaches (LF and HF). The HF is rooted
in realization theory Schutter (2000), in since it constructs a
minimal LTI realization from Markov parameters, i.e. impulse
response of discrete-time systems. Therefore, HF can be seen as
a time-domain counterpart of LF Ionita and Antoulas (2012).
In practice, the impulse response often has to be estimated
from available input-output data. This is usually done through
least-squares-based linear regression. In this work, we propose
strategies for making this approach more robust to noisy data
by using the SMM method introduced in Yin et al. (2020)
(which allows estimating the impulse response of a system from
noisy data).

To sum up, the proposed approach brings together aspects from
MOR, realization theory and SI in an unified framework, which
constitutes the main contribution of this work. Time-domain
data, consisting of noisy input-output measurements, is used
to estimate the finite impulse response of the system as in Yin
et al. (2020), which constitutes a non parametric characteriza-
tion of the underlying LTI system. The finite impulse response
is then used to obtain a reduced-order, explicit model through
the HF/LF.
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The rest of the paper is organized as follows. In Section
2, the problem under investigation is formulated. Here, the
Loewner and Hankel frameworks, which constitute the basis
of this work, are recalled. The proposed approach is then
introduced in Section 3 and a detailed specification on tuning
its hyperparameters is also provided. This method is then
illustrated by a numerical example in Section 4, which is the
Los Angeles Hospital building benchmark from the COMPleib
library Leibfritz (2004), described by a 48th-order state-space
model. Finally, the conclusion and outlook are discussed in
Section 5.

2. PRELIMINARIES

2.1 Problem formulation

We consider an LTI discrete-time system with nu inputs, ny

outputs and of order nx, characterized by the following state-
space realization:

Σ :

{
xt+1 = Axt +But

yt = Cxt +Dut

, (1)

with x ∈ Rnx the state vector, u ∈ Rnu the input vector,
y ∈ Rny the output vector, A ∈ Rnx×nx , B ∈ Rnx×nu ,
C ∈ Rny×nx and D ∈ Rny×nu . The value of a vector v at
the time step t is denoted vt.

The transfer function of Σ (1) is given by:

H(z) = D+C(zI−A)−1B. (2)

The Loewner Framework (LF) Mayo and Antoulas (2007),
recalled in Section 2.2, can identify the underlying system from
noise-free frequency-domain samples H(eıωi) in (2). The Han-
kel Framework (HF) Schutter (2000), summarized in Section
2.3, relies on the impulse response {hk} that connects the input
and output samples as follows:

yt =

∞∑
k=−∞

hkut−k. (3)

The HF could be considered as a time-domain counterpart
of the LF, as the frequency-domain representation (2) and
the time-domain one (1) are connected: the impulse response
coefficients, also known as Markov parameters, are defined as
follows:

hk =

{
D, if k = 0,

CAk−1B, if k > 0.
(4)

Note that hk = 0 for k < 0 as the systems under consideration
are causal. The transfer function (2) can then be written as an
Infinite Impulse Response (IIR) filter:

H(z) =

∞∑
k=0

hkz
−k. (5)

These matrix pencils techniques (LF and HF) also allow to
reduce the order of the obtained models in a straightforward
manner.

Remark 1. (Descriptor/state-space forms). Both the LF and
HF are inherently leading to a descriptor model formulation
(E,A,B,C,D):

Σ̂ :

{
Êx̂t+1 = Âx̂t + B̂ut

yt = Ĉx̂t + D̂ut

. (6)

In practice, due to the reduction process, the Ê matrix in (6) is
full rank and therefore invertible. It is then possible to rewrite

(6) in a standard state-space form as in (1), with the matrices(
E−1A,E−1B,C,D

)
. The same considerations hold for HF.

While the LF and HF techniques have proven to be fairly
successful when applied to MOR of given (large-scale) complex
systems, they are indeed known to be quite sensitive to noisy
data Lefteriu et al. (2010). The problem under consideration
that is tackled in this paper is formulated below:

Problem 1. Given noisy data, how to obtain a linear reduced-
order approximation of the underlying dynamical system through
the LF or the HF frameworks?

In a sense, by using noisy data through these techniques, we
more generally aim at bridging the gap between MOR, in which
the underlying system is known but of complex or large-scale
structure, and SI, which aims at building models from (noisy)
measurements. As the proposed approach relies on the LF and
HF frameworks, we will briefly summarize them in the two next
subsections.

Remark 2. (Time-domain LF). Another time-domain counter-
part of LF has been proposed in Peherstorfer et al. (2017):
based on noise-free time-domain data {uk, yk}k and on the
knowledge of a high-fidelity model, frequency-domain data is
inferred to use the LF. In comparison, the present work pro-
poses to obtain a non-parametric characterization of the system
by estimating its Markov parameters, from which frequency-
domain data can be inferred to be used in the LF. Contrary
to Peherstorfer et al. (2017), the proposed approach does not
require any description of the system and is more robust to
noise.

2.2 The Loewner framework

Here, we briefly review the LF approach, see Antoulas et al.
(2017) for more details. The LF is based on frequency-domain
measurements {H(zk)}Nk=1 corresponding to the transfer func-

tion (2), and finds a state-space model Ĥ such that the follow-
ing interpolation conditions are (approximately) fulfilled:

Ĥ(zk) = H(zk) ∀k = 1 . . . N. (7)

The available data is partitioned into two disjoint subsets,

{H(zi)}
N
2
i=1 and {H(zj)}

N
2
j=1. The Loewner pencil (L,Ls) is

defined as follows

L(i,j) =
H(zi)−H(zj)

zi − zj
, Ls(i,j) =

ziH(zi)− zjH(zj)

zi − zj
, (8)

while the data vectors V,WT ∈ Rk are introduced as

V(i) = H(zi), W(j) = H(zj), for i, j = 1, . . . ,
N

2
. (9)

By assuming that the data is not redundant, a minimal real-
ization is then given by:

Ê = −L, Â = −Ls, B̂ = V, Ĉ = W, D̂ = 0.

However, in practical applications, the Loewner pencil (Ls, L)
is often singular and a ROM needs to be computed. In such
cases, a singular value decomposition (SVD) of the Loewner
matrices is typically performed in order to determine a suitable
truncation index r and the corresponding projection matrices
denoted with Xr and Yr. The projection matrices are com-
puted based on the SVD of the Loewner matrix L, with Xr

chosen as the first r columns of X and Yr as the first r columns
of Y:

L = XSY∗ ≈ XrSrY
∗
r . (10)

Then, the reduced-order Loewner model of dimension r is given
by the following matrices:

Ê = −X∗
rLYr, Â = −X∗

rLsYr, B̂ = X∗
rV, Ĉ = WYr, D̂ = 0.

(11)

Remark 3. (Data partitioning). How to effectively separate the
available data into two subsets still remains an open question.
It is shown in Ionita (2013) that this partition impacts the
robustness to noise. In Karachalios et al. (2021); Gosea et al.
(2021), two different partitioning were numerically analyzed:

• “alternate” (the most recurrent way of separating
data):

{zk}Nk=1 = {z1, z2, . . . zN−1, zN} . (12)

• “half-half ” (an intuitive way of separating data):

{zk}Nk=1 =
{
z1, . . . , zN/2, zN/2+1, . . . , zN .

}
(13)

Fig. 1. Splitting schemes commonly used in the LF

As previously reported in Gosea et al. (2021), the effect of
half-half partitioning is that the decay of the singular values
of the Loewner matrix is clearer (more revealing) than for
the alternate splitting (when dealing with noisy frequency-
domain data). As a result, half-half LF seems to ease the order
selection and hence avoids overfitting due to noise. Both types
of partitioning are used jointly in this work, as explained in the
next section.

2.3 The Hankel framework

While the LF interpolates the frequency response, the HF
provides a model that interpolates the impulse response, sim-
ilarly to the Ho-Kalman algorithm Ho and Kalman (1966) or
Silverman realization Silverman (1971). Given the truncated
impulse response h = [h0,h1, · · · ,hN−1], the resulting Hankel
model is given in descriptor form by the following matrices:

Ê = H, Â = Hs,

Ĉ =

h1, h2, · · · , hN


, B̂ = ĈT , D̂ = h0.

(14)

with the Hankel pencil (H,Hs) defined as follows:

H(i,j) = hi+j−1, Hs(i,j) = hi+j , (15)

As in the LF, the dimension of the Hankel model (14) can
be reduced by means of projection, using orthogonal matrices
computed by means of applying an SVD for the Hankel matrix
H. In this case, we enforce approximation, i.e. by fitting a model
which approximately explains the data. Additional insights on
the HF were given in Ionita and Antoulas (2012).

3. FROM NOISY DATA TO REDUCED-ORDER MODELS

3.1 Overview of the proposed approach

To the best of our knowledge, most of the attempts to make
the LF and HF matrix pencils identification techniques more
robust to noisy data have consisted in changing the way the
model is obtained as in Lefteriu et al. (2010).In this work,
it is proposed to pre-process the noisy data instead. First,
an estimation of the truncated impulse response {h̃k}N−1

k=0 of
the system is obtained from the available noisy measurements
through the SMM approach, as proposed in Yin et al. (2020).
This estimation forms a non-parametric model of the system,

which is then parameterized and reduced through the HF or
the LF.

While the estimated values {h̃k}N−1
k=0 can be used directly

in the HF, another possibility consists in applying a fast
Fourier transform (FFT) to the impulse response to estimate
frequency-response samples as follows:

H̃N (eıωi) =

N−1
k=0

hke
−ıωik, ω =

2πi

N
, i = 0 . . . N − 1, (16)

which is a truncated version of (5). The frequency-domain data
estimated from (16) can then be used in the LF.

In this section, the SMM approach from Yin et al. (2020)
is recalled in Section 3.2. The tuning knobs of the proposed
approach, that combines SMM and matrix pencils approaches,
are then detailed in Section 3.3. A synthesized algorithm that
brings these different aspects together is then provided in
Section 3.4.

3.2 Impulse response estimation: the SMM approach

Traditionally, Markov parameters hk’s can be obtained from
input-output measurements {uk, yk}Ns

k=0 by solving a linear
system of equations based on (3): it is the least squares
(LS) approach. It consists in identifying a N -th order FIR
filter from the available data, rather than obtaining the true
value of the first N -th Markov parameters. In practice, a
very long impulse response sequence may be needed to reach
a negligible truncation error with respect to (5), even for a
low-order system. In Markovsky et al. (2005), a data-driven
simulation approach, based on Willem’s fundamental lemma,
was proposed when noise-free input-output data are available.
It allows to estimate the impulse response even when the
truncation error is not negligible. The following assumptions
are enforced:

(1) The LTI system is finite-dimensional and controllable;
(2) The input {uk}Ns

k=0 is persistently exciting of order L =
N + L0, with L0 > nx, meaning that the Hankel matrix
U ∈ RLnu×M (with M = Ns − L+ 1)

U(i,j) = ui+j−2. (17)

has full row rank Willems et al. (2005).

Under these assumptions, the output trajectory of the system
for an input u ∈ RNnu , starting from initial conditions uniquely
determined by the past input-output trajectory uini ∈ RL0nu

and yini ∈ RL0ny for L0 ≥ nx, is y = Yfg. Here, g ∈ RM′
is

the solution of the linear system of equations:

Up

Yp

Uf


 g =



uini

yini

u


 , (18)

where Up ∈ RL0nu×M , Uf ∈ RNnu×M are matrices computed
by using the available data such that:

U =


Up

Uf


, (19)

and similarly for Yp ∈ RL0ny×M and Yf ∈ RNny×M with the
Hankel matrix Y of the output samples defined as U in (17).

In order to handle the case for which only noisy input-output
measurements are available, the SMM approach in Yin et al.
(2020) builds on Markovsky et al. (2005) and represents a
maximum likelihood framework to obtain a statistically op-



	 Pauline Kergus  et al. / IFAC PapersOnLine 55-30 (2022) 371–376	 373

Then, the reduced-order Loewner model of dimension r is given
by the following matrices:

Ê = −X∗
rLYr, Â = −X∗

rLsYr, B̂ = X∗
rV, Ĉ = WYr, D̂ = 0.

(11)

Remark 3. (Data partitioning). How to effectively separate the
available data into two subsets still remains an open question.
It is shown in Ionita (2013) that this partition impacts the
robustness to noise. In Karachalios et al. (2021); Gosea et al.
(2021), two different partitioning were numerically analyzed:

• “alternate” (the most recurrent way of separating
data):

{zk}Nk=1 = {z1, z2, . . . zN−1, zN} . (12)

• “half-half ” (an intuitive way of separating data):

{zk}Nk=1 =
{
z1, . . . , zN/2, zN/2+1, . . . , zN .

}
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Fig. 1. Splitting schemes commonly used in the LF
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half-half partitioning is that the decay of the singular values
of the Loewner matrix is clearer (more revealing) than for
the alternate splitting (when dealing with noisy frequency-
domain data). As a result, half-half LF seems to ease the order
selection and hence avoids overfitting due to noise. Both types
of partitioning are used jointly in this work, as explained in the
next section.

2.3 The Hankel framework

While the LF interpolates the frequency response, the HF
provides a model that interpolates the impulse response, sim-
ilarly to the Ho-Kalman algorithm Ho and Kalman (1966) or
Silverman realization Silverman (1971). Given the truncated
impulse response h = [h0,h1, · · · ,hN−1], the resulting Hankel
model is given in descriptor form by the following matrices:

Ê = H, Â = Hs,

Ĉ =

h1, h2, · · · , hN


, B̂ = ĈT , D̂ = h0.

(14)

with the Hankel pencil (H,Hs) defined as follows:

H(i,j) = hi+j−1, Hs(i,j) = hi+j , (15)

As in the LF, the dimension of the Hankel model (14) can
be reduced by means of projection, using orthogonal matrices
computed by means of applying an SVD for the Hankel matrix
H. In this case, we enforce approximation, i.e. by fitting a model
which approximately explains the data. Additional insights on
the HF were given in Ionita and Antoulas (2012).

3. FROM NOISY DATA TO REDUCED-ORDER MODELS

3.1 Overview of the proposed approach

To the best of our knowledge, most of the attempts to make
the LF and HF matrix pencils identification techniques more
robust to noisy data have consisted in changing the way the
model is obtained as in Lefteriu et al. (2010).In this work,
it is proposed to pre-process the noisy data instead. First,
an estimation of the truncated impulse response {h̃k}N−1

k=0 of
the system is obtained from the available noisy measurements
through the SMM approach, as proposed in Yin et al. (2020).
This estimation forms a non-parametric model of the system,

which is then parameterized and reduced through the HF or
the LF.

While the estimated values {h̃k}N−1
k=0 can be used directly

in the HF, another possibility consists in applying a fast
Fourier transform (FFT) to the impulse response to estimate
frequency-response samples as follows:

H̃N (eıωi) =

N−1
k=0

hke
−ıωik, ω =

2πi

N
, i = 0 . . . N − 1, (16)

which is a truncated version of (5). The frequency-domain data
estimated from (16) can then be used in the LF.

In this section, the SMM approach from Yin et al. (2020)
is recalled in Section 3.2. The tuning knobs of the proposed
approach, that combines SMM and matrix pencils approaches,
are then detailed in Section 3.3. A synthesized algorithm that
brings these different aspects together is then provided in
Section 3.4.

3.2 Impulse response estimation: the SMM approach

Traditionally, Markov parameters hk’s can be obtained from
input-output measurements {uk, yk}Ns

k=0 by solving a linear
system of equations based on (3): it is the least squares
(LS) approach. It consists in identifying a N -th order FIR
filter from the available data, rather than obtaining the true
value of the first N -th Markov parameters. In practice, a
very long impulse response sequence may be needed to reach
a negligible truncation error with respect to (5), even for a
low-order system. In Markovsky et al. (2005), a data-driven
simulation approach, based on Willem’s fundamental lemma,
was proposed when noise-free input-output data are available.
It allows to estimate the impulse response even when the
truncation error is not negligible. The following assumptions
are enforced:

(1) The LTI system is finite-dimensional and controllable;
(2) The input {uk}Ns

k=0 is persistently exciting of order L =
N + L0, with L0 > nx, meaning that the Hankel matrix
U ∈ RLnu×M (with M = Ns − L+ 1)

U(i,j) = ui+j−2. (17)

has full row rank Willems et al. (2005).

Under these assumptions, the output trajectory of the system
for an input u ∈ RNnu , starting from initial conditions uniquely
determined by the past input-output trajectory uini ∈ RL0nu

and yini ∈ RL0ny for L0 ≥ nx, is y = Yfg. Here, g ∈ RM′
is
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Up
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
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where Up ∈ RL0nu×M , Uf ∈ RNnu×M are matrices computed
by using the available data such that:
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Up
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, (19)

and similarly for Yp ∈ RL0ny×M and Yf ∈ RNny×M with the
Hankel matrix Y of the output samples defined as U in (17).

In order to handle the case for which only noisy input-output
measurements are available, the SMM approach in Yin et al.
(2020) builds on Markovsky et al. (2005) and represents a
maximum likelihood framework to obtain a statistically op-
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timal implicit model. Additive i.i.d Gaussian output noise is
considered:

ỹ = y + w, w ∼ N (0, σ2I). (20)

As in Yin et al. (2020), the SMM approach is used to estimate
the impulse response with uini = 0, yini = 0 and u = [1 0 . . . 0].
The estimate of the first N Markov parameters denoted with
ĥ is explicitly given by ĥ = Yfgh, where

gh = (F−1 − F−1UT (UF−1UT )−1UF−1)Y T
p yini

+ F−1UT (UF−1UT )−1

[
uini

u

]
,

F = Y T
p Yp + Lσ2I.

(21)

The result is unbiased for an arbitrary length N .

3.3 Tuning the hyper-parameters

a) Persistency of excitation and the choice of L0: Per-
sistency of excitation is the key assumption of Willem’s funda-
mental lemma Willems et al. (2005) as it allows to characterize
all possible trajectories of length N from the available data.
However, it implies that the order of the underlying system
is known. In the ideal case, L0 = nx should be used in order
to exploit the available data to the fullest extent. Nonetheless,
the most important condition to be imposed is L0 ≥ nx so that
uini and yini uniquely define the initial conditions. In practice,
when nx is unknown, a good choice for L0 can be found by
computing the cross-correlation Ryu of the measured output
and the input signal and L0 is then chosen as the minimal
positive lag such that:

∀τ > L0, |Ryu(τ)| ≤ ϵ. (22)

As the system is causal, the cross-correlation for negative lags
is merely a numerical artifact and does not represent any real
input-output relationship. For this reason, the threshold ϵ is
fixed in this work as:

ϵ = (1 + α)×max {|Ryu(τ)| for τ < 0} , (23)

where the scalar 0 ≤ α ≤ 1 allows introducing an additional
margin to avoid choosing a too large value for L0.

b) The number N of estimated Markov parameters: A
necessary condition for the matrix U to be of full row rank (the
so-called persistency of excitation assumption) is M ≥ Lnu,
which gives an upper bound Nmax for the number of Markov
parameters that can be estimated when a number of Ns input-
output measurements are available:

Nmax =
Ns + 1

nu + 1
− L0. (24)

On the other hand, as the Hankel and shifted Hankel matrices
are of size N , then N Markov parameters allow to obtain a
model of order at most N through HF. In addition, when using
the LF, the more Markov parameters are used, the lower the
truncation error between (5) and (16) is. Consequently, after
having chosen L0 as previously explained, it is recommended
to choose N = Nmax/2 to enforce M ≪ Lnu. Then, one could
decrease it if necessary until the matrix U is of full row rank.

c) Noise variance σ2: The noise variance σ2 is used in the
SMM approach, see (21). In practice, this information might
not be available. An approximation can be obtained through
the LS approach. As recalled in Niu and Fisher (1995), for zero-
mean white noise, an unbiased estimate of the variance σ2 is
given by:

σ2 = lim
Ns→∞

∥h− hLS∥22
Ns −N

, (25)

where h are the first N true Markov parameters of the system
and hLS is the estimate by the classical LS approach, obtained
by usingNs input-output samples. An approximation σ̂2 is then
chosen as follows:

σ̂2 =
∥h− hLS∥22
Ns −N

. (26)

d) Order of the reduced-order model: The order of the
reduced-order model is a tunable parameter for both HF
and LF. An adequate value is supposed to be chosen based
on a rank-revealing decomposition of the Hankel or Loewner
matrices. As detailed in Lefteriu et al. (2010), measurement
noise complicates the choice of the reduced order r. In that
case, it is possible to change the data partitioning in the LF
in order to obtain a clearer SVD decay, as suggested in Gosea
et al. (2021) and recalled in Remark 3. However, while half-
half partitioning (13) reveals the system’s order in a clear
way and is robust to noise, it leads to less accurate models
because the Loewner matrices tend to be ill-conditioned for
this choice. At the same time, alternate partitioning (12) leads
Loewner pencils that are diagonally dominant. Therefore, for a
fixed order, this approach will result in more accurate models.
This behavior has been pointed out in Ionita (2013), and more
recently in Palitta and Lefteriu (2022) based on analyzing
Cauchy matrices, which explicitly appear in the definition
of Loewner matrices. For such reasons, we propose here to
combine both types of data-partitioning in the LF to benefit
from their respective advantages, see Algorithm 2.

3.4 Summary

Given noisy data {uk, ỹk}, k = 0 . . . Ns − 1, the proposed
approach consists in tuning some hyper-parameters as ex-
plained in Section 3.3, before using the SMM approach from
Yin et al. (2020) as recalled in Section 3.2. The resulting
estimated Markov parameters hSMM , which constitute a non-
parameterized model of the system, are then used in matrix
pencil approaches, the HF (Algorithm 1) or the LF (Algorithm
2), allowing to obtain a linear reduced-order approximation(
Êr, Âr, B̂r, Ĉr, D̂r

)
of the underlying dynamical system (1).

These two techniques are referred to as SMM-HF and SMM-LF
respectively. SMM-LF allows using different data-partitioning
techniques in order to reveal the order of the system despite
measurement noise, it is affected by the truncation of the
Markov series when the truncation error is not negligible, while
the SMM-HF is not sensitive to it. For this reason, it might
be more interesting to use the HF once the order r has been
determined from the SVD of the Loewner matrix built with
half-half partitionning, which combines SMM-HF and SMM-
LF.

Algorithm 1 SMM-HF

Inputs: Input-output time-domain data {uk, ỹk}, k =
0 . . . Ns − 1.
(1) Step 1: Tune the hyper-parameters L0 from (22),

N = Nmax/2 based on (24) and decrease it until U is
full rank, and estimate the noise variance σ̂2 (26).

(2) Step 2: Using L0, N and σ̂2, estimate the Markov
parameters hSMM through SMM (21) as in Yin et al.
(2020).

(3) Step 3: Apply the HF based on hSMM

Algorithm 2 SMM-LF

Inputs: Input-output time-domain data {uk, ỹk}, k =
0 . . . Ns − 1.
(1) Steps 1 and 2: same as in Algorithm 1.
(2) Step 3: Apply the LF on the FFT of hSMM

(a) Use half-half partitioning (13) to determine the
order r.

(b) Use alternate partitioning (12) to build the
Loewner model (11).

4. NUMERICAL EXAMPLE

The proposed approach is illustrated on the Los Angeles Hos-
pital building benchmark from the COMPleib library Leibfritz
(2004), described by a 48th-order state-space model.

To collect data, the high-order model is simulated using a
normally distributed random input signal. The sampling period
is Ts = 15ms and Ns = 1000 output samples yk are collected.
Additive output Gaussian noise of variance σ2 = 1·10−7 is then
considered, as in (20). 50 different noisy data sets are generated
like this. Algorithms 1 and 2 are derived hereafter.

4.1 Step 1: Choice of the hyper parameters

The cross-correlation is computed for every noise realization
and averaged. The threshold value is chosen as in (23) with
α = 0.4 and, according to (22), L0 = 66 is taken, which slightly
overestimates the order nx of the system. The number of
estimated Markov parameters is taken equal to N = Nmax/2 =
217, and the corresponding matrix U is full row rank, which
means that the input u is persistently exciting of order L0+N .
The LS approach is applied and the resulting variance estimate
is σ̂2 = 1.27 · 10−7.

4.2 Step 2: Impulse response estimation

Based on each noisy data set {uk, ỹk}Ns−1
k=0 , the SMM approach

is used to estimate the firstN Markov coefficients of the system,
i.e. the first N samples of its impulse response. As in Yin et al.
(2020), the fitting of the estimated impulse response ĥ to the
true system impulse response h is defined by:

W = 100

(
1−

√∑N
i=1(hi − ĥi)2∑N
i=1(hi − h)2

)
, (27)

with h the average of the true Markov parameters h. The
results correspond to the level of performance presented in Yin
et al. (2020): the SMM approach (W = 54.2%) outperforms
the LS (W = 47%) one by obtaining a better median fit.

4.3 Step 3: Model approximation and reduction

The estimated impulse responses, denoted hLS and hSMM for
the LS and SMM approach respectively, obtained in Step 2, one
fore each noisy data set, are now used to obtain a parameterized
model of the system through LF and HF.

a) Loewner framework: Frequency-domain data is inferred
by performing a FFT as in (16) of the SMM estimated impulse
response. For comparison purposes, frequency-domain data is
also estimated as the ratio between the cross power spectral
density of u and y, and the power spectral density of u, without

taking noise into account. This last approach is referred to as
noisy LF in this paragraph.

Once frequency-domain data is obtained, the Loewner pencil
from (8) is then built using the two different data partitioning
techniques (12) and (13) from Gosea et al. (2021). A SVD is
performed on the Loewner matrix L to reveal the order of the
underlying system. The average decay of the normalized sin-
gular values is visible on Figure 2: while alternate partitioning
gives almost full-rank Loewner matrices with both the noisy
LF and SMM-LF approaches, half-half partitioning leads to a
Loewner matrix of order 48 for the SMM-LF approach and 60
for the noisy-LF approach (in average over the 50 noisy data
sets). If allowing to approximate the order of the underlying
system, half-half partitioning leads to less precise models, as
highlighted in Gosea et al. (2021). Descriptor models are then
obtained as in (11), based on alternate partitioning (12) as
suggested in Algorithm 2. The order is chosen as r = nx = 48.
The proposed approach allows obtaining a better fit of the
frequency response, on average, see Figure 3 which represents
the average frequency response of the resulting models.
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Fig. 2. Normalized SVD of the Loewner matrices built with
the frequency-domain data inferred from the SMM
approach or directly from the noisy time-domain data
(noisy LF ), and compared with the SVD decay of the
Loewner matrix obtained with noise free frequency-
domain data. Two types of data partitioning are used
as in Gosea et al. (2021) to evaluate the order of the
underlying system despite measurement noise.
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Fig. 3. Average frequency-response obtained when apply-
ing the SMM-LF and noisy LF procedures.

b) Hankel framework: The Hankel pencil from (15) is built
and a SVD is performed on the Hankel matrix H to reveal
the order of the underlying system. The average decay of the
normalized singular values is visible on Figure 4 for the true
Markov parameters h of the system and the estimated ones
hLS and hSMM . The same orders than for LF are chosen.
The average impulse responses are visible on Figure 5, showing
that the SMM-HF approach from Algorithm 1 outperforms the
regular LS + HF approach.
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Algorithm 2 SMM-LF

Inputs: Input-output time-domain data {uk, ỹk}, k =
0 . . . Ns − 1.
(1) Steps 1 and 2: same as in Algorithm 1.
(2) Step 3: Apply the LF on the FFT of hSMM

(a) Use half-half partitioning (13) to determine the
order r.

(b) Use alternate partitioning (12) to build the
Loewner model (11).

4. NUMERICAL EXAMPLE

The proposed approach is illustrated on the Los Angeles Hos-
pital building benchmark from the COMPleib library Leibfritz
(2004), described by a 48th-order state-space model.

To collect data, the high-order model is simulated using a
normally distributed random input signal. The sampling period
is Ts = 15ms and Ns = 1000 output samples yk are collected.
Additive output Gaussian noise of variance σ2 = 1·10−7 is then
considered, as in (20). 50 different noisy data sets are generated
like this. Algorithms 1 and 2 are derived hereafter.

4.1 Step 1: Choice of the hyper parameters

The cross-correlation is computed for every noise realization
and averaged. The threshold value is chosen as in (23) with
α = 0.4 and, according to (22), L0 = 66 is taken, which slightly
overestimates the order nx of the system. The number of
estimated Markov parameters is taken equal to N = Nmax/2 =
217, and the corresponding matrix U is full row rank, which
means that the input u is persistently exciting of order L0+N .
The LS approach is applied and the resulting variance estimate
is σ̂2 = 1.27 · 10−7.

4.2 Step 2: Impulse response estimation

Based on each noisy data set {uk, ỹk}Ns−1
k=0 , the SMM approach

is used to estimate the firstN Markov coefficients of the system,
i.e. the first N samples of its impulse response. As in Yin et al.
(2020), the fitting of the estimated impulse response ĥ to the
true system impulse response h is defined by:

W = 100

(
1−

√∑N
i=1(hi − ĥi)2∑N
i=1(hi − h)2

)
, (27)

with h the average of the true Markov parameters h. The
results correspond to the level of performance presented in Yin
et al. (2020): the SMM approach (W = 54.2%) outperforms
the LS (W = 47%) one by obtaining a better median fit.

4.3 Step 3: Model approximation and reduction

The estimated impulse responses, denoted hLS and hSMM for
the LS and SMM approach respectively, obtained in Step 2, one
fore each noisy data set, are now used to obtain a parameterized
model of the system through LF and HF.

a) Loewner framework: Frequency-domain data is inferred
by performing a FFT as in (16) of the SMM estimated impulse
response. For comparison purposes, frequency-domain data is
also estimated as the ratio between the cross power spectral
density of u and y, and the power spectral density of u, without

taking noise into account. This last approach is referred to as
noisy LF in this paragraph.

Once frequency-domain data is obtained, the Loewner pencil
from (8) is then built using the two different data partitioning
techniques (12) and (13) from Gosea et al. (2021). A SVD is
performed on the Loewner matrix L to reveal the order of the
underlying system. The average decay of the normalized sin-
gular values is visible on Figure 2: while alternate partitioning
gives almost full-rank Loewner matrices with both the noisy
LF and SMM-LF approaches, half-half partitioning leads to a
Loewner matrix of order 48 for the SMM-LF approach and 60
for the noisy-LF approach (in average over the 50 noisy data
sets). If allowing to approximate the order of the underlying
system, half-half partitioning leads to less precise models, as
highlighted in Gosea et al. (2021). Descriptor models are then
obtained as in (11), based on alternate partitioning (12) as
suggested in Algorithm 2. The order is chosen as r = nx = 48.
The proposed approach allows obtaining a better fit of the
frequency response, on average, see Figure 3 which represents
the average frequency response of the resulting models.

50 100 150 200 250 300 350 400 450 500

10
-15

10
-10

10
-5

10
0

Fig. 2. Normalized SVD of the Loewner matrices built with
the frequency-domain data inferred from the SMM
approach or directly from the noisy time-domain data
(noisy LF ), and compared with the SVD decay of the
Loewner matrix obtained with noise free frequency-
domain data. Two types of data partitioning are used
as in Gosea et al. (2021) to evaluate the order of the
underlying system despite measurement noise.
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Fig. 3. Average frequency-response obtained when apply-
ing the SMM-LF and noisy LF procedures.

b) Hankel framework: The Hankel pencil from (15) is built
and a SVD is performed on the Hankel matrix H to reveal
the order of the underlying system. The average decay of the
normalized singular values is visible on Figure 4 for the true
Markov parameters h of the system and the estimated ones
hLS and hSMM . The same orders than for LF are chosen.
The average impulse responses are visible on Figure 5, showing
that the SMM-HF approach from Algorithm 1 outperforms the
regular LS + HF approach.
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Fig. 4. Normalized SVD of the Hankel matrices built
with Markov parameters estimated through the LS
and SMM approaches and with the true Markov
parameters of the system.
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Fig. 5. Average impulse response obtained when applying
the SMM-HF and LS-HF procedures.

5. CONCLUSIONS AND OUTLOOKS

In this work, a method to handle noisy data in matrix pencils
frameworks, namely HF and LF, has been proposed. It relies
on the SMM approach from Yin et al. (2020) to estimate the
impulse response of the system from a noisy data set. The
impulse response constitutes a non-parameterized model of
the system, which is then used in the HF or LF to obtain
a parameterized model and to reduce it. As in Gosea et al.
(2021) Palitta and Lefteriu (2022), different data partitioning
can be used to reveal the order of the system. As opposed to
existing works such as Lefteriu et al. (2010), the new method
proposes a preliminary step on the available data (the SMM
approach), rather than modifying the way of obtaining the
model. A thorough comparison between these methods and
the proposed approach is left for future work (both in terms
of computational complexity and also of accuracy of computed
models). Connections to newly-proposed work in Wilber et al.
(2021) could also be investigated (this work combines the
classical Prony algorithm with the recently-proposed AAA
algorithm mentioned in Gosea et al. (2021)).

Future work will also investigate the impact of noise level on the
accuracy of the resulting models and it would be interesting to
include pseudospectra analysis Embree and Ioniţă (2022) in the
proposed approach. In addition, this work should be illustrated
on real-world datasets. The proposed approach could also be
used to improve the robustness to noise in the Loewner Data-
Driven Control (L-DDC) framework Kergus et al. (2018), and
to introduce a counterpart based on time-domain data relying
on the HF the same way L-DDC relies on LF.

REFERENCES

Antoulas, A.C. (2005). Approximation of large-scale dynamical
systems. SIAM, Philadelphia.

Antoulas, A.C., Lefteriu, S., and Ionita, A.C. (2017). A tutorial
introduction to the Loewner framework for model reduction. In
Model Reduction and Approximation, chapter 8. SIAM.
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