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Abstract. We consider the extreme value statistics of centrally-biased random

walks with asymptotically-zero drift in the ergodic regime. We fully characterize

the asymptotic distribution of the maximum for this class of Markov chains lacking

translational invariance, with a particular emphasis on the relation between the time

scaling of the expected value of the maximum and the stationary distribution of the

process.
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1. Introduction

Since their first appearance, stochastic processes have been widely recognized as a

fundamental tool for the analysis and prediction of complex systems. It is not surprising

that by relying on a probabilistic description based on diffusion theory or random walks,

an endless list of phenomena have been explained in physics and a variety of other fields

such as biology [1], chemistry [2, 3] and finance [2, 3], to name just a few. One of

the most intriguing topics is related to the study of extreme events, e.g. records and

maxima, which is covered by the so-called Extreme Value Theory. Such a branch of

study finds important applications, for instance, in the analysis of climate phenomena

[4, 5, 6], earthquakes [7] and floods [9, 8], all of which have undoubted relevance in

everyday life.

The standard problem consists in deriving the statistics of the maximum of an

uncorrelated sequence of n independent and identically distributed random variables.

It is possible to show that in the large-n regime the limiting distribution is described

by one of three possible laws, named Fréchet, Gumbel and Weibull, depending on the

common probability density function of the individual entries [10, 11]. However, such a

description is not always the most appropriate and one is often forced to consider some

kind of correlation in the sequence, for example when the entries may be interpreted
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as the steps of a random walk [12, 13, 14]. In these cases the problem becomes

much more challenging and the emergence of universal laws represents an outstanding

result [15, 16]. Interestingly, a few studies have shown that there exists an important

connection between the first passage properties and the statistics of extrema, see for

example [17, 18], implying that for a stochastic process the survival probability and the

distribution of the maximum are deeply related.

In this paper we focus on one-dimensional positive recurrent random walks. A

random walk is positive recurrent if it returns to the starting point x0 with probability

one and finite expected return time. Among other reasons, the relevance of this class

of processes is due to the fact that usually the statistical analysis of an ergodic process

is easier, as will be soon exemplified, and sometimes it is possible to perform proper

transformations that may preserve Markovianity but induce stationarity in the modified

model: by way of illustration, one can refer to the Lamperti representation for self-affine

stochastic processes [19], which has recently awakened interest also for experimental

purposes [20], or consider the edge reinforcement technique for impatient random walks

[21]. In our context, the recurrence property, together with the further assumptions

that each return to the initial position is a renewal event and that the two half-lines

of the state space can communicate only through the occurrence of x0, allows us to

implement an important simplification. In fact, under these hypotheses, the dynamics

can be seen as a sequence of probabilistically identical segments, called excursions, which

describe the motion between two successive returns. Hence the problem is reduced to

the analysis of a sequence of independent and identically distributed random variables,

and the distribution of the maximum of the whole process can be written in terms of the

maximum of a single excursion. Notably, a finite mean return time guarantees that the

law of the maximum, appropriately rescaled, is described in the long time limit by one

of the three aforementioned distributions, Fréchet, Gumbel or Weibull —which marks a

significant difference with the infinite-mean case [16, 22, 23]. Furthermore, we will show

that the scaling function, which yields the asymptotic behaviour of the moments and

in particular the expected value of the maximum, can be derived from the stationary

distribution of the process.

The rest of the paper is organised as follows. In section 2 we summarise the general

guidelines on the extreme value analysis for a generic positive recurrent stochastic

process. In section 3 we specifically consider some applications to non-homogeneous

centrally-biased random walks with asymptotically-zero drift and compare our findings

with other results available in the literature. Finally, in section 4 we provide some

concluding remarks.

2. Extreme value statistics of positive recurrent models
{sec:EVT}

In the following section, we will consider discrete-time random walks on a lattice, that

are sequences of random variables (Xk)k∈N0 capable of assuming values in a countable

state space (aj)j∈Z . By performing an appropriate continuum limit, however, in some
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cases it is possible to carry out limits and recover a continuous model characterized by

the same asymptotic statistical features of the original one.

More precisely, we will be interested in the study of the extreme value statistics

of discrete stochastic processes converging to a stationary process: the probability

associated with each possible state aj becomes independent of time and for a fixed

set of values as1 , . . . , asr the probability

P[Xk1 = as1 , Xk2 = as2 , . . . , Xkr = asr ]

depends only on the differences |ki − kj| . This stationary distribution (πj)j∈Z helps

to solve the first-passage problem: one can directly find the mean time for which the

random process first passes through a specific threshold. Indeed, it is a well known

result (Kac Lemma, see Theorem 2 in [24]) that, by taking the inverse of the stationary

probability distribution, one immediately obtains also the expected return time to each

state aj. In particular, we will consider 〈τ〉 := 1/πX0 , which is a key quantity in the

characterization of the extreme value statistics, as will soon become clear.

From now on, we will equivalently (in the above meaning) deal with particles

diffusing in sufficiently confining potentials, in the sense that they ensure positive

recurrence and the systems relax to the Boltzmann distributions associated with the

potentials. The first quantity of interest, as we just said, is the stationary distribution.

The Fokker-Planck equation for a one-dimensional diffusive particle subject to a

potential V (x) is

∂

∂t
p(x, t) = D

∂2

∂x2
p(x, t) +

∂

∂x

(
d

dx
V (x)p(x, t)

)
=

∂

∂x

[
D
∂

∂x
+

d

dx
V (x)

]
p(x, t) , (1) {eq: FP}

where p(x, t) is the probability density function of the position at a fixed time t. Since, by

definition, a stationary process does not change with a shift in time, it is straightforward

to find that the limiting probability density function π(x) is the normalized Boltzmann-

Gibbs equilibrium density

π(x) = lim
t→∞

p(x, t |x0) =
1

Z
e−V (x)/D , for any initial condition x0 , (2) {eq: statDist}{eq: statDist}

where 1/Z is the normalizing constant.

At this point, after having introduced the two parallel frameworks of interest, it

is possible to unveil a less explicit interconnection with the extreme value statistics.

The running maximum of a stochastic process (Xt)t∈R+
0

up to time t is naturally

defined as the largest value assumed by the position in that particular time window,

Mt := maxs∈[0,t] Xs. One way to study its statistics is to deduce information about the

maximum of the entire motion from the characterization of a shorter sample between

consecutive visits to the starting point, that is called excursion. In the presence of

positive recurrence, we know that the mean number of excursions, that are independent

of one another due to the renewal property of the process, is estimated by the ratio
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of the time t over the mean return time 〈τ〉. We will consider symmetric potentials

with respect to the starting site: as a consequence, for the time being it is possible to

assume, for simplicity, that the motion is restricted to the positive semi-axis, with a

reflecting barrier at x0 . Equivalently, it means considering the maximum distance from

the starting position on the real line.

Let us denote the maximum of a single excursion by

M := max
t∈[0,τ ]

Xt , τ := min{t > 0 |Xt = x0} . (3)

We want to compute

P(Mt ≤ x) = [P(M ≤ x)]
t
〈τ〉 = [1−Q(x)]

t
〈τ〉 , x ≥ x0 , (4)

where Q(x) denotes the splitting probability, that is the probability for a particle

diffusing on the finite interval [x0, x] to eventually hit x without hitting x0, with an

appropriate starting position that will be discussed later on. Generally speaking, Q(x)

is a function of the initial condition x̄ ∈ (x0, x) arbitrarily chosen in the open interval. It

is a well known result [25] that for isotropic diffusion on a finite interval the first-passage

probability to one end-point is just the fractional distance to the other boundary. This

suggests that we need another useful mathematical tool, the Lyapunov function [26],

which is an appropriate transformation of the original stochastic process in a confining

potential into a motion with no longer drift. Formally, g : R 7→ R is the Lyapunov

function associated with the process (Xt)t∈R+
0

if Yt := g(Xt) is an induced process such

that

E[∆t |Xt = x] ≈ 0 , (5) {eq: 0drift}{eq: 0drift}

where ∆t represent the increment of the process Y at time t, namely

∆t = Yt+δt − Yt = g(Xt + δXt)− g(Xt) = g′(Xt) · δXt +
1

2
g′′(Xt) · δX2

t + . . . . (6)

We recall that

Ẋt = −dV (Xt)

dXt

+
√

2Dξ(t) , (7)

which follows from the Langevin equation related to (1), with ξ(t) a δ-correlated gaussian

white noise, which means independent at distinct time moments 〈ξ(t)ξ(t′)〉 = δ(t − t′)
and characterized by a zero average 〈ξ(t)〉 = 0 . As a consequence, if we perform a

discretization and a first-order expansion, thanks to the features of the noise we can

write

E[g′(Xt)δXt |Xt = x] = g′(x)δt

(
−dV (x)

dx

)
, (8)

E[g′′(Xt)δX
2
t |Xt = x] = g′′(x)δt2

(
2D

δt
+O(1)

)
, (9)

by observing that 〈ξ2(t)〉 = 1/δt . In conclusion, we impose the condition (5) and get

−dV (x)

dx
g′(x) +Dg′′(x) = 0 , (10) {eq: 0driftPot}{eq: 0driftPot}
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which identifies the family of functions

g(x) = g1

∫ x

x0

eV (y)/D dy + g0. (11)

g0 is an arbitrary constant, since the free motion (Yt)t∈R+
0

is translationally invariant:

without loss of generality we can set g0 = 0. Furthermore, notice that in the absence of

a confining potential g(x) must be (up to an eventual translation) the identity function,

since the original motion is already a Wiener process: this constraint implies g1 = 1 .

At this point, we can therefore compute Q(x) by means of the modified process (Yt)t∈R+
0

and get

Q(x) =

∫ x̄
x0
dy eV (y)/D∫ x

x0
dy eV (y)/D

. (12) {eq: Q}{eq: Q}

An alternative derivation of the result can be found in [27].

To sum up, keeping in mind (2), we found that

P(Mt ≤ x) =

[
1− CZ∫ x

x0
dy/π(y)

] t
〈τ〉

, (13) {eq: max}{eq: max}

and as a rough estimate it is evident that if there exists a t-independent limiting

distribution for the maximum, then∫ x

x0

dy

π(y)
= O(t) . (14) {eq: maxEst}{eq: maxEst}

This relation directly provides the correct asymptotic behaviour for the maximum in

the long-time limit, however one can use a more refined argument. By appropriately

shifting and scaling the random variable Mt with respect to t, it is also possible to

explicitly obtain the exact distribution

lim
t→∞

P(Mt ≤ at + btz) = F (z) . (15)

We postpone the details of this last part to the next section, devoted to the study of

some specific applications.

3. Non-homogeneous centrally-biased random walks
{sec:NHRW}

From now on we will focus more specifically on the analysis of non-homogeneous discrete-

time random walks, which can be traced back to the problem of a particle diffusing in

a confining potential by performing an appropriate continuum limit.

In this framework, an asymptotically-zero drift, whose magnitude tends to zero as

the distance from the origin increases, is the weakest possible binding condition that

can be imposed in order to ensure positive recurrence. It is known that recurrence

properties of a discrete-time irreducible Markov chain (Xn)n∈N0 with stationary
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transition probabilities depend solely on the information carried by the first two

moments of the increments

µk(x) := E[(Xn+1 −Xn)k |Xn = x] , k = 1, 2 , (16)

and they are summarized in the so-called Lamperti criteria [28, 29]. In short, under

suitable hypotheses of boundedness about the increments, we know that if

lim sup
n→∞

[2xµ1(x) + µ2(x)] < 0 , (17) {eq: lamp}{eq: lamp}

then the stochastic process is positive recurrent. Uniform boundedness is clearly satisfied

by considering nearest-neighbour random walks on Z, and this will be our case.

Thus, to summarize, centrally-biased random walks can be seen as perturbations

of standard i.i.d. jump processes with zero-drift. The magnitude of the perturbation is

the tuning parameter that modifies the asymptotic behaviour of the process, by making

the mean return time to the starting position finite. In the following we will deal with

an outstanding example, known in the literature as Gillis random walk [30], which is

an emblematic critical stochastic system in the phase transition from null-recurrence

to positive-recurrence. Then we will move to some possible generalizations. Our aim,

as already stated in the previous section, is to characterize the extreme value statistics

and compare it to the moments spectrum, that is the mean asymptotic behaviour of

positive powers of the absolute value of the position with respect to time. In the ergodic

regime, there is a marked difference between the moments spectrum and the statistics

of the maximum, and this is in contrast to what happens in many examples in the

presence of null-recurrence, where the expected maximum and the mean absolute first

moment share the same asymptotic growth (and possibly also higher-order moments)

[30, 31, 32, 33]. To provide a heuristic argument, a generic stochastic process on the

real line starting from X0 = 0, symmetric but not necessarily renewal with respect to

the initial condition, either is at the maximum distance M̄t := maxs∈[0,t] |Xs| from the

origin where |Xt| = M̄t or is confined in the interval −M̄t < Xt < M̄t: in the latter case

we say that it experiences off-periods. Notice that, due to the recurrence property and

symmetry, it holds that

〈Mt〉 ∼ K · 〈M̄t〉 , with K ∈
[

1

2
, 1

]
. (18)

As a consequence, we just have to focus on the analysis of a single off-period: in the

absence of a pretty strong drift toward the origin, it is evident that, since the motion

starts from the boundary ±M̄t, on average |Xt| & M̄t/2 [31], and one can therefore

conclude that 〈|Xt|〉 is of the same order of magnitude of 〈Mt〉:

〈|Xt|〉 � 〈Mt〉 , as t→∞. (19)

This effect can be possibly enhanced by the presence of long ballistic flights dominating

the dynamics, in the course of which there is an equivalence between position and
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maximum—see also the big jump principle [34, 35, 36]. On the other hand, the confining

action of a significant bias, responsible for the existence of a stationary distribution, can

instead break up this correspondence, during the off-periods, between the absolute value

of the position and the maximum distance reached by the process up to that time.

3.1. Gillis random walk in the ergodic regime.

The Gillis model is one of the few analytically solvable non-homogeneous random walks

whose key defining feature is a drift dependent on the position in the sample. The lack

of translational invariance is clear from the definition of the transition probabilities,

since there appears an explicit dependence on the current site. The walker starts at the

origin X0 = 0 and then moves on Z according to the following rules: if pi,j denotes the

probability of moving from site i to site j, we have

R(j) := pj,j+1 , L(j) := pj,j−1 , pi,j = 0 if |i− j| 6= 1 , (20) {eq: GillisDef}{eq: GillisDef}

where

pj,j±1 :=
1

2

(
1∓ ε

j

)
for j ∈ Z\{0} , R(0) :=

1

2
=: L(0) , (21)

and the real parameter ε ∈ (−1, 1) tunes the bias toward or away from the origin.

From (17) it is immediate to verify that in order to guarantee positive-recurrence it is

necessary to require that ε ∈
(

1
2
, 1
)
. In fact, we have

µ1(j) = R(j)− L(j) = − ε
j
, µ2(j) = R(j) + L(j) = 1 . (22)

Positive recurrence, together with aperiodicity and irreducibility (that implies

ergodicity) of the Markov chain, allows us to state that there exists a unique stationary

distribution πj , with π−j = πj by symmetry. More explicitly, this is defined by

πj =
∑
i

pi,jπi, with
∑
j

πj = 1, (23)

which leads to a simple expression written in terms of the transition probabilities L(j)

and R(j) and the probability π0 of being at j = 0:

πj = π0


1

2L(1)
if |j| = 1 ,

1

2L(|j|)

|j|−1∏
k=1

R(k)

L(k)
if |j| > 1.

(24) {eq: Stat_general}{eq: Stat_general}

For the Gillis model, with a simple computation it is possible to fully determine the

stationary distribution [37], which remarkably shows an asymptotic power-law decay

πj =
|j|(1− ε)|j|−1

(1 + ε)|j|
π0 ∼ π0

Γ(1 + ε)

Γ(1− ε)
|j|−2ε as j → ±∞ , (25) {eq: stat}{eq: stat}
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where (x)k is the Pochhammer symbol (or rising factorial) and

π0 =
1

〈τ〉
=

2ε− 1

2ε
, (26) {eq:Bir}{eq:Bir}

according to the Birkhoff ergodic theorem. In fact, it is easy to observe that in the

long-time limit the time average of the number of returns to the origin Rn =
∑n

k=1 δXk,0
converges to the ensemble average of the Kronecker delta, which is π0 by definition,

and at the same time 〈τ〉 is trivially given by the ratio of the number of steps over the

mean number of returns Rn. Thus (26) immediately follows, by referring to [38] for the

computation of the expected return time.

As we emphasized in our previous works [37, 39], this random walk is a discrete

realization of a diffusing particle in the presence of an asymptotically logarithmic

potential. Indeed, if one considers the master equation governing the time evolution

of the probability p(j, n) of finding the walker at site j after n steps

p(j, n+ 1) = p(j − 1, n)R(j − 1) + p(j + 1, n)L(j + 1) , (27)

and defines a lattice spacing δx and a time increment δt in such a way that δx, δt→ 0 ,

x = jδx, t = nδt together with the diffusion approximation δx2/δt → D0 (set equal to

1 without loss of generality), one gets the Fokker-Planck equation

∂

∂t
p(x, t) =

1

2

∂2

∂x2
p(x, t) +

∂

∂x

( ε
x
p(x, t)

)
. (28) {eq: GillisCL}{eq: GillisCL}

Actually, in a neighbourhood of the origin, denoted by the interval (−a, a), the particle

diffuses freely, as can be seen from the definition of the model in (20), and so,

heuristically, the potential obtained in (28) must be regularized. More correctly, with a

simple argument (see Appendix A for a detailed discussion), one obtains that

V (x) =


0 for |x| < a ,

1

2
log

[
Γ(1− ε)
Γ(1 + ε)

Γ(|x|+ 1 + ε)

|x|Γ(|x| − ε)

]
for |x| > a ,

(29) {eq: potGillisCL}{eq: potGillisCL}

where V (x) ∼ ε log(|x|) for x � 1 , according to Eq. (28). Notice that the length of

the interval of free diffusion is a crucial quantity to ensure the validity of the continuum

limit (29) and can not be chosen arbitrarily. More precisely, the parameter a must

be fixed by imposing to obtain matching results with respect to those of the original

discrete model, and in particular one can exploit the consistency check for the stationary

distribution (25): a detailed discussion is postponed to Appendix A. For our purposes,

it is sufficient to observe that at large distances from the origin

V (x) ∼ ε log

(
|x|
η

)
with η2ε =

Γ(1 + ε)

Γ(1− ε)
, (30) {eq: pot}{eq: pot}

or equivalently

π(x) ∼ 1

Z

(η
x

)2ε

, with Z ≡ 1

π0

=
2ε

2ε− 1
. (31) {eq: potStat}{eq: potStat}
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As a final comment, it is worth noting that the regularization of the potential at the

origin corresponds to similarly consider the identity as Lyapunov function in the interval

of free diffusion and combine it with the non-trivial transformation at large distances

from the origin.

At this point, we are therefore equipped to move on to the analysis of the extreme

value statistics. In order to deal with a symmetric random walk Yn := g(Xn) with no

drift, as explained above we can take a test function g(x) = xγ that inserted in (5) gives

E[∆n |Xn = x] = E[Yn+1 − Yn |Xn = x] = E[Xγ
n+1 −Xγ

n |Xn = x]

= E
[
Xγ
n

[(
1 +

Xn+1 −Xn

Xn

)γ
− 1

] ∣∣∣Xn = x

]
= γµ1(x)xγ−1 +

γ(γ − 1)

2
µ2(x)xγ−2 + . . .

= γ

(
−ε+

γ − 1

2

)
xγ−2 + · · · ≈ 0 , ∀x , (32)

which results in γ = 2ε + 1. Alternatively, the Lyapunov function can be obtained as

the solution of (see (10))

g′(x)

(
−2ε

x

)
+ g′′(x) = 0 , for |x| � a . (33)

To be more accurate and determine the scaling as well as the constants of proportionality,

we can directly exploit the stationary distribution (31) associated with the logarithmic

confining potential (30) to be replaced in (13) and write

P(Mt ≤ x) ∼
[
1− η2ε(2ε+ 1)

x2ε+1

] t
2〈τ〉

as t, x� 1 , (34)

where the exponent is the number of excursions divided by two since by symmetry in

half of the cases the walker explores the negative semi-axis and the maximum stays

below the threshold x > 0 with probability one. Notice that we set C ∼ 1 in (13) since,

in the discrete-time random walk on the lattice, the excursion begins when the walker

jumps to the right (or to the left) of the origin and this determines the correct fractional

distance from the origin for the modified process with no drift [25]. For further details,

refer to Appendix A.

It is easy to observe that the change of variable x = btz , with

bt =

(
η2ε(2ε+ 1)

2〈τ〉
t

)1/(2ε+1)

,

leads to a Fréchet distribution

F (z) = e−z
−2ε−1

, with mean Γ

(
1− 1

2ε+ 1

)
. (35)

In particular, we can therefore conclude that in the long-time limit the asymptotic

behaviour of the expected maximum is completely determined by

〈Mt〉 ∼
[
η2ε(2ε+ 1)

2〈τ〉

]1/(2ε+1)

Γ

(
1− 1

2ε+ 1

)
· t1/(2ε+1) . (36) {eq:Max_Gillis}{eq:Max_Gillis}
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For a numerical check, see figure 1.

Figure 1. (a) Expected maximum as a function of time: markers represent data

obtained simulating 104 walks up to time 106 for different values of ε, lines are the

corresponding theoretical predictions given by (36); (b) Fréchet distribution for 106

walks evolved up to time 106 with ε = 0.8. {fig: gillis erg}

3.2. Gillis persistent random walk in the ergodic regime.

At this point, one can wonder what happens if we define transmission and reflection

coefficients dependent on the position on the one-dimensional lattice, which means to

inquire about the potentiality of non-homogeneous persistence. A first non-Markovian

generalization of Lamperti criteria can be found in [42], concerning random walks with

transmission and reflection coefficients of the form

t±j :=
1

2

(
1− ε±
|j|

)
, r±j :=

1

2

(
1 +

ε±
|j|

)
for j 6= 0 , t±0 ≡ r±0 :=

1

2
, (37)

where + denotes the outward direction, whereas − the inward motion with respect to the

origin. It is easy to show (see Appendix B) that, in the continuum limit, these processes

are equivalent to a Gillis random walk with parameter ε = ε+−ε−
2

. As a consequence, the

generalized theorem characterizing the recurrence properties (see Corollary 3.1 in [42])

can be directly derived from the application of the original version of Lamperti criteria

and one can conclude that positive-recurrence is ensured whenever ε+ − ε− > 1. It is

worth noting that in the symmetric case (ε+ = ε−) we have free diffusion: diversification

in the coupling with the two possible directions of motion is therefore essential in the

persistent model.

The most general non-homogeneous persistent random walk, however, stems from

the perturbation of a homogeneous Markov chain with constant transmission and

reflection coefficients p 6= q
(
6= 1

2

)
[43, 44]. For a general introduction to one-dimensional

correlated random walks having diverse intrinsic probabilities in different directions refer

to [47, 48, 49]. In our context, we can explicitly define

t±j := q − ε±
2|j|

, r±j := 1− q +
ε±
2|j|

, q ∈ (0, 1) , (38) {eq: persGen}{eq: persGen}
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with a proper regularization for small |j|. This is asymptotically indistinguishable from

a standard Gillis random walk with ε = ε+−ε−
4q

, given that the diffusion equation in the

continuum limit becomes

∂

∂t
p(x, t) =

D0

2

q

1− q

[
∂2

∂x2
+
ε+ − ε−

2q

∂

∂x

(
1

x
p(x, t)

)]
. (39) {eq: persGenCL}{eq: persGenCL}

Therefore, by applying once again Lamperti criteria, we know that there exists a unique

stationary distribution if and only if ε+ − ε− > 2q . In particular, if q = 1
2
, we recover

the statement of Corollary 3.1 in [42]. For a rigorous analysis of the generalized model

q 6= 1
2
, instead, refer to Theorem 2.6 in [45] and Appendix B.

Turning back to our study of the maximum statistics, it is now clear that the

asymptotic scaling with respect to the time determined in the previous subsection

remains valid also in these examples, by replacing in a proper way all the parameters.

3.3. Generalized Gillis model: supercritical power-law drift.
{subsec:GGL}

Now we can think to examine also the supercritical cases, where |xµ1(x)| → ∞.

Starting from (20), we can slightly change the definition of the transition probabilities

by introducing an additional parameter β ∈ (0, 1) such that

pj,j±1 :=
1

2

(
1∓ sgn(j)

ε

|j|β

)
for j 6= 0 , µ1(j) = − sgn(j)ε/|j|β . (40)

Clearly, the mean first-return time to the origin is finite if and only if ε > 0. Similarly to

the Gillis model in the ergodic regime, by using (24) it is possible to define recursively

the discrete stationary distribution

πj = π0


1

1 + ε
if |j| = 1 ,

|j|β

|j|β + ε

|j|−1∏
k=1

kβ − ε
kβ + ε

if |j| > 1 ,
(41) {eq: superStat}{eq: superStat}

even though we can not carry out an explicit computation as in (25). Anyway, for our

aim we are only interested in the long-distance asymptotic behaviour, which can be

extracted by first observing that for |j| > 1 we may write

πj = π0 exp

−2

|j|−1∑
k=1

atanh
( ε

kβ

)
− log

(
1 +

ε

|j|β

) , (42) {eq:super_atan}{eq:super_atan}

where atanh(z) is the inverse hyperbolic tangent and we used the relation [40]

2atanh(z) = log

(
1 + z

1− z

)
, 0 ≤ z2 < 1. (43)

11



To estimate the summation in (42), we replace atanh(z) with its MacLaurin series,

obtaining

|j|−1∑
k=1

atanh
( ε

kβ

)
=

|j|−1∑
k=1

∞∑
n=0

ε2n+1

2n+ 1
k−(2n+1)β

=
∞∑
n=0

ε2n+1

2n+ 1

|j|−1∑
k=1

k−(2n+1)β. (44)

We now observe that in the limit of large |j| the leading order term is obtained for

n = 0. By approximating the sum over k with an integral we get

|j|−1∑
k=1

atanh
( ε

kβ

)
≈ ε

∫ |j|−1

1

dk k−β =
ε

1− β
[
(|j| − 1)1−β − 1

]
, (45) {eq:Pot_super_est}{eq:Pot_super_est}

hence by retaining only the leading term for |j| � 1 in the above expression, the resulting

asymptotic behaviour of πj is given by

πj ∼ π0 exp

(
−2ε|j|1−β

1− β
− η
)
. (46)

The validity of this estimate can be confirmed by considering the continuum limit. It is

easy to prove that this random walk is the discrete version of a diffusing particle subject

to a force asymptotically characterized by a power-law dependence on the distance from

the origin. Indeed, by Taylor expanding the master equation, one gets

∂

∂t
p(x, t) =

δx2

δt

[
1

2

∂2

∂x2
p(x, t) + sgn(x)εδxβ−1 ∂

∂x

(
p(x, t)

|x|β

)]
, (47)

and by requiring, in the continuum limit δx, δt → 0, that ε → 0 and the product

ε := εδxβ−1 remains finite, the diffusion equation becomes

∂

∂t
p(x, t) =

1

2

∂2

∂x2
p(x, t) + sgn(x)

∂

∂x

(
ε

|x|β
p(x, t)

)
, (48)

that implies handling with a potential of the form

V (x) ∼ ε

1− β
|x|1−β , as |x| � 1 , (49)

in agreement with (45) by setting ε ≡ ε . Hence, turning to the asymptotic behaviour of

the maximum, in (13) we can consider the continuum approximation of the stationary

distribution

π(x) ∼ 1

Z
exp

(
−2ε|x|1−β

1− β
− η
)
. (50) {eq: statApprox}{eq: statApprox}

Let us point out that Z and η are no longer explicit, but we anticipate that they will not

take an active role in our estimates. Moreover, we postpone to Appendix C a numerical

12



analysis on the validity of (50). Before proceeding further, notice that all the moments

converge to a constant, due to the stretched exponential form of the stationary solution,

whereas in the original model the slow decay |x|−2ε makes the high-order moments to

diverge, providing non-trivial transport properties.

As a first step, starting from (13) we need to compute the integral∫ x

0

dy eλy
1−β

=
1

λ

∫ x

0

dy
yβ

1− β
d

dy
eλy

1−β
=
xβeλx

1−β

λ(1− β)
− 1

λ

∫ x

0

dy
eλy

1−β

y1−β
β

1− β

∼ xβeλx
1−β

λ(1− β)
+ . . . (51)

as x→∞ . Hence we can write

P(Mt ≤ x) ∼
[
1− 2Cεe−η

xβe
2ε

1−β x
1−β

] t
2〈τ〉

, (52) {eq: maxSuper}{eq: maxSuper}

and impose the condition (14) in order to obtain the correct scaling with respect to t,

for t� 1 . What we get is an equation where the unknown quantity appears both in the

base and the exponent, and so it can be solved by using the Lambert W function, which

is defined as the inverse function of f(z) = zez with z any complex number. By means

of the change of variable w := x1−β , our equation can be converted into an equation of

the form

Aw = B · wE , with


A = e

2ε
1−β

B =
Cεt

eη〈τ〉
E = − β

1−β

, (53) {eq: lambert}{eq: lambert}

and it is not difficult to show that the solution is

w = − E

log(A)
W

(
− log(A)

EB1/E

)
. (54)

In conclusion, by substituting our parameters, we have

x =

[
β

2ε
W

(
2ε

β

(
Cεt

eη〈τ〉

) 1
β
−1
)] 1

1−β

∼
(

1− β
2ε

log(t)

) 1
1−β

as t→∞ . (55) {eq: meanMaxSuperRough}{eq: meanMaxSuperRough}

It is worthwhile to notice that the pairing of a stretched exponential with a power

of the logarithm is analogous to the relationship between the exponential stationary

distribution and the logarithmic growth of the expected maximum for stochastic

processes with Poissonian resetting [52] (see also section 3.5).

For a more accurate analysis, we have to find the transformation x = at + btz that

ensures the convergence to a Gumbel distribution

lim
t→∞

P(Mt ≤ at + btz) = e−e−z , (56)

13



which is expected since the decay in (52) is slower than a pure exponential. By

comparison with (52), this is clearly equivalent to requiring that

lim
t→∞

Cεt

eη〈τ〉
e−

2ε
1−β (at+btz)1−β

(at + btz)β
= e−z . (57)

Thus we have to perform a series expansion of the left-hand side

lim
t→∞

Cεt

eη〈τ〉
e
− 2ε

1−β a
1−β
t

(
1+

bt
at

(1−β)z+...
)

aβt

(
1 + bt

at
βz + . . .

) , (58)

and compare the coefficients of the powers z0 and z1 on both sides

e
2ε

1−β a
1−β
t ∼ Cεt

eη〈τ〉
a−βt , (59a)

e−z ∼ e
−2εa1−βt

bt
at
z
e
−β bt

at
z
, (59b)

to conclude that

at =

[
β

2ε
W

(
2ε

β

(
Cεt

eη〈τ〉

) 1
β
−1
)] 1

1−β

, bt =
at

2εa1−β
t + β

. (60) {eq: scalSuper}{eq: scalSuper}

Since the mean value of the Gumbel distribution is the Euler-Mascheroni constant γ ,

we can affirm that the expected maximum in the long-time limit is given by

〈Mt〉 ∼ at + btγ ∼ at +
γ

2ε
aβt as t→∞ , (61)

see figure 2 for a numerical check; thus by using the asymptotic expansion of the principal

branch of the Lambert W function we obtain that up to leading order

〈Mt〉 ∼
(

1− β
2ε

log(t)

) 1
1−β

, (62) {key}{key}

which confirms the scaling we found with the rough estimate (55).

3.3.1. The limit case β = 0 It is instructive to study the case where the bias is still

directed toward the origin, but its intensity does not depend on the distance from it. In

this way, clearly, the asymptotically-zero drift property breaks down. This corresponds

to setting β = 0 in the previous supercritical model. From a physical point of view,

the motion corresponds to the diffusion of a Brownian particle in a constant central

field. In this simple scenario we can arrive to an explicit expression for the stationary

distribution, which reads

πj = π0


1 if j = 0 ,

1

1− ε

(
1− ε
1 + ε

)|j|
if |j| ≥ 1.

(63) {eq:beta0Stat}{eq:beta0Stat}
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Figure 2. Expected maximum as a function of time for the supercritical model for

several values of β, with (a) ε = 0.3 and (b) ε = 0.8. In both panels, the markers

represent data obtained simulating 104 walks up to time 109. The solid lines are fitted

curves, using the expression of at given by (60). For each fixed value of β, the fit

function used is of the kind y =
[
kW

(
qx1/β−1

)]1/(1−β)
, with k and q left as free

parameters. In the plot are reported the fitted k and the corresponding theoretical

values kth = β
2ε . {fig: gillis super}

The value of π0 can be determined from the normalization condition, yielding π0 =

ε/(1 + ε). Note that, except for the point j = 0, we have πj = π0e−λ|j|−η, with

λ = 2atanh(ε), η = log(1− ε), (64)

therefore we can estimate the distribution of the maximum from (13) by using the

continuum approximation (see also Appendix A)

π(x) =
e−λ|x|−η

Z
. (65) {eq: beta0StatCont}{eq: beta0StatCont}

We get

P (Mt ≤ x) ∼
(

1− Cλe−η

eλx

) t
2〈τ〉

, (66)

where 〈τ〉 can be replaced by its explicit expression given by

〈τ〉 =
1

π0

=
1 + ε

ε
. (67)

It is not difficult to obtain the transformation x = at + btz leading to a Gumbel

distribution, described by the coefficients

at =
1

λ
log
(
t̃
)
, bt =

1

λ
, (68)

where t̃ is the rescaled time

t̃ =
λC

2eη
t

〈τ〉
, (69)
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and thus in the long-time limit we observe a logarithmic asymptotic growth of the

expected maximum

〈Mt〉 ∼
1

λ
log(t). (70) {eq:beta0_Max}{eq:beta0_Max}

Interestingly, the same law describes the asymptotic behaviour of 〈Mt〉 for a random

walk with stochastic resetting [51, 52], which indeed exhibits a stationary state of the

same form of our π(x), see (65). This reinforces our observation regarding the relation

between the stationary distribution and the limiting distribution of the maximum.

Figure 3. (a) Coefficients of the asymptotic logarithmic growth describing the

expected maximum, see (70); the slopes have been obtained from a linear fit of

〈Mt〉 versus log(t), while the solid red curve represents the theoretical value. (b)

Representation of the temporal behaviour of the expected maximum, as a function

of log(t); the growth is well described by the solid lines, which have been obtained

by fixing the value of the slopes to 1/(2atanh(ε)) and leaving the intercepts as free

parameters of the fit. All data in both panels have been obtained by evolving 104

walks up to 105 steps. {fig: gillis beta0}

3.4. Logarithmic correction to the Gillis original drift.

As a last example, we can think of adding just a weak logarithmic correction to the

original drift (similarly to [21]). As usual we consider R(j) = 1 − L(j) for any j, and

define

2L(j) =


1 if j = 0 ,

1 +
ε

j
if |j| = 1 ,

1 +
ε

j
log (|j|) if |j| > 1 ,

(71)

from which we observe that the first two moments of the increments are

µ1(x) = − ε
x

log(|x|) (for |x| > 1) , µ2(x) = 1. (72)
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Hence according to Lamperti criteria, see (17), the walk is positive recurrent for ε > 0.

In this range it is possible to recursively compute the stationary distribution

πj =
π0

1 + ε
·



1 if |j| = 1
2(1− ε)

2 + ε log (2)
if |j| = 2

|j|(1− ε)
|j|+ ε log (|j|)

|j|−1∏
k=2

k − ε log(k)

k + ε log(k)
if |j| > 2,

(73)

and we observe that for |j| > 2 we can write

πj = π0 exp

−2

|j|−1∑
k=2

atanh
( ε
k

log(k)
)
− log

(
1 +

ε log(|j|)
|j|

)
− 2atanh(ε)

 . (74)

With the same reasoning adopted for the supercritical model, we can finally conclude

that the discrete random walk is asymptotically equivalent to a diffusing particle moving

in a potential of the form

V (x) ∼ ε

2
log2

(
|x|
η

)
as x→ ±∞ , (75) {eq:PotLog}{eq:PotLog}

corresponding to a stationary solution whose tail decay as x→ ±∞

π(x) ∝ e−ε log2(|x|) (76) {eq: regLog}{eq: regLog}

induces a trivial moments spectrum. For a complete characterization of the maximum

statistics, as will soon become clear, we would need at least to properly determine the

value of the asymptotic constant η in (75), in contrast to what happens in the presence

of a power-law potential. However, we still have enough information to get the correct

scaling with respect to time.

By computing the asymptotic behaviour of the integral∫ x

0

dy eε log2(y/η) =
ηe−1/4ε

2
√
ε

ew√
w

+ . . . with w :=

(
2ε log(x/η) + 1

2
√
ε

)2

, (77)

we obtain again an equation of the form (53) with coefficients

A = e , B =
Ct
√
ε

η〈τ〉
e1/4ε , E =

1

2
, (78)

whose solution is

w = −1

2
W

(
−2

(
Ct
√
ε

η〈τ〉
e1/4ε

)−2
)
. (79)

This time we have to refer to the secondary branch of the Lambert W function and so

we need to use the estimate

W (x) = −y − log(y) + . . . with y = log

(
−1

x

)
as x→ 0− . (80)

In conclusion, we find that for t, x� 1

w ∼ log

(
C
√
εe1/4ε

η
√

2〈τ〉
t

)
=⇒ x ∼ ηe−1/2εe

√
log(t)
ε . (81)
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3.5. Overview and comparison with random walks with stochastic resetting and ergodic

Markov processes in confining potentials
{sec:overview}

Another useful technique to induce positive-recurrence is considering stochastic

processes under resetting [50]: by continually returning a symmetric random walk

with i.i.d. jumps or a diffusing particle to its initial condition, one can generate

an effective potential which drives the system to reach a nonequilibrium stationary

state. Some preliminary investigations on the extreme value statistics have been

recently implemented for the simplest case of Poissonian resetting [51, 52], where the

position reset occurs randomly in time with a constant rate. For an arbitrary resetting

probability, heuristic guidelines are available in order to determine the correct scaling

of our interest: for at least exponential step length distributions, whose tail behavior

is also inherited by the stationary distribution causing trivial constant moments, the

expected maximum (as well as the mean value of the record number) follows a slow

logarithmic growth in time. Actually, the same feature is shared more generally by any

distribution in the limit of small resetting rates.

Before going any further, let us stress the similarity with the results of the

supercritical Gillis model, as anticipated in the previous subsection. In our context, the

pairing between the stationary distribution decay and the expected maximum growth

becomes clear in (13). Nevertheless, one can notice a richer behaviour in the limiting

distribution of the maximum for random walks with resetting: in the presence of a weak

resetting, by varying the mean number of resettings, the limiting law for the properly

rescaled maximum interpolates between a half-gaussian and a Gumbel distribution,

whereas we directly recover the latter one in our results.

3.5.1. Non-trivial moments spectrum. For subexponential jump distributions, instead,

a considerable difference arises. First of all, we notice that in analogy with the standard

Gillis model in the ergodic regime, a power-law decay of the stationary distribution,

induced by the jump distribution, ensures not completely trivial transport properties,

maintaining a time dependence of some moments. In this context, the expected

maximum grows faster than a logarithm, as a power of the number of steps, in contrast

to the mean record number. In particular, for Lévy flights with finite mean the

characteristic exponent remains unchanged regardless of the presence of resetting events:

there is a change only in the moments spectrum due to the asymptotic properties of the

stationary distribution. For more details, refer to [52].

3.5.2. Lyapunov functions and spectral interlacing. In [53, 18] the authors further

deepen the duality between first-passage times and extreme value statistics but from

the point of view of spectral analysis. For this reason, they are forced to consider

strongly confining potentials which not only guarantee the existence of a stationary

distribution, but also a spectral expansion of the Fokker-Planck operator with discrete

eigenvalues. This technique clearly can not be applied to less binding potentials, for
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instance the logarithmic one, where a continuous spectrum starting at zero appears (see

also [41]).

By way of illustration, for an Ornstein-Uhlenbeck process, that is a harmonic

potential, it is easy to recover (in a similar way to subsection 3.3) the scaling behavior√
log(t) and the Gumbel distribution, as stated by the authors by means of the spectral

analysis, see [18].

4. Conclusions
{sec:conclusion}

In this work we have analysed the statistics of the maximum for different examples of

positive recurrent random walks stemming from the Gillis model, which represents one

of the few exactly solvable non-homogeneous random walks known in the literature.

By tuning the parameter of the position-dependent drift in such a way that the

existence of a stationary probability distribution is ensured, non-trivial transport and

statistical properties arise. In particular, in the previous sections we emphasized the

relation between the tail decay of the stationary measure and the limiting distribution

of the maximum, and we compared it to analogous results recently obtained in other

contexts.

Yet many unresolved questions about the effects of the lack of homogeneity remain

open and we hope that further interesting results will be developed in a near future.
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Appendix A. Gillis potential and regularization at the origin
{app: gillis}

The complete form of the potential of the Gillis random walk can be directly derived

from the stationary distribution πj , see (25). The latter is defined on Z, but can be

easily extended to a setting on the real line, by expressing the Pochhammer symbol in

terms of the Gamma function [40]

(x)n ≡
Γ(x+ n)

Γ(x)
. (A.1)

Hence, for x 6= 0, we can define

π(x) =
2ε− 1

2ε

Γ(1 + ε)

Γ(1− ε)
Γ(|x| − ε)

Γ(|x|+ ε+ 1)
|x| , (A.2)

which is the continuum equivalent of πj for j 6= 0. Ideally, for x = 0 we want

π(0) = (2ε − 1)/2ε, but the previous expression converges instead to 0. Therefore
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Figure A1. Plot of the size a versus ε, defined as a solution of (A.4) for the Gillis

random walk and of (A.9) for the limit case β = 0 of the supercritical model. {fig:a_sol}

we need to introduce a regularizing region around the origin, of size 2a, in such a way

that π(x) is continuous and

π(x) =


2ε− 1

2ε
if |x| < a ,

2ε− 1

2ε

Γ(1 + ε)

Γ(1− ε)
Γ(|x| − ε)

Γ(|x|+ ε+ 1)
|x| if |x| > a.

(A.3)

A proper choice for a would be to take it as the solution of

Γ(1 + ε)

Γ(1− ε)
Γ(|x| − ε)

Γ(|x|+ ε+ 1)
|x| = 1. (A.4) {eq:a_sol}{eq:a_sol}

Note that this equation can be solved numerically not only for ε > 1
2
, i.e., in the ergodic

regime, but also for ε < 1
2

, see figure A1. Hence this particular choice is valid for both

regimes.

Moreover, since the potential is related to the stationary distribution by means of

(2), that is

π(x) =
e−2V (x)

Z
, (A.5)

where 1/Z := (2ε− 1)/2ε is the normalization constant, we can therefore define

V (x) =


0 for |x| < a ,

1

2
log

[
Γ(1− ε)
Γ(1 + ε)

Γ(|x|+ 1 + ε)

|x|Γ(|x| − ε)

]
for |x| > a .

(A.6)

The potential is indeed of the form V (x) ∼ ε log |x| for large |x|, due to the asymptotic

decay of π(x), but it is identified by a different expression for smaller values of |x|. In
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Figure A2. Plot of the constant C, defined in (A.7) for the Gillis random walk and

in (A.10) for the limit case β = 0 of the supercritical model, versus ε. {fig: C}

conclusion, (30) is a good approximation for long-range applications, whereas a more

careful analysis would be needed for intermediate values of |x|. In particular, notice

that in (12) we have to set x̄ = 1 as explained in the main text, as a consequence we

find that the constant C in (13) is given by

C = a+

∫ 1

a

Γ(1− ε)Γ(1 + ε+ y)

Γ(1 + ε)yΓ(y − ε)
dy ≈ 1 , (A.7) {eq: C}{eq: C}

as can be seen in figure A2.

Similar computations also apply to the limit case β = 0 of the supercritical model,

where we explicitly wrote the discrete stationary distribution (63). Thus, we can define

the continuum potential

V (x) =


0 for |x| < a ,

1

2
log

[
(1− ε)

(
1 + ε

1− ε

)|x|]
for |x| > a ,

(A.8)

with a taken as the solution of

1

1− ε

(
1− ε
1 + ε

)|x|
= 1 , (A.9) {eq:a_beta_0}{eq:a_beta_0}

and consequently

C = a+
1− ε

log
(

1+ε
1−ε

) [1 + ε

1− ε
−
(

1 + ε

1− ε

)a]
. (A.10) {eq: C_beta_0}{eq: C_beta_0}

See figures A1 and A2 for a numerical result.
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Appendix B. Continuum limit of the Gillis persistent random walk
{app: gillis pers}

In order to obtain the diffusion equation for the probability density function p(x, t)

corresponding to a random walk defined on Z, first of all we have to fix some notation.

We set the parameter equal to ε− when the particle moves toward the origin, ε+ if it

gets away. Moreover, we denote

p+(j, n) := P{ the particle is at site j after n steps and goes right },
p−(j, n) := P{ the particle is at site j after n steps and goes left },
t+j , r

+
j := transmission and reflection coefficients at site j in the outward direction,

t−j , r
−
j := transmission and reflection coefficients at site j in the inward direction,

where

t±j =
1

2

(
1− ε±
|j|

)
, r±j =

1

2

(
1 +

ε±
|j|

)
.

We immediately notice that we have to define the master equation separately on the

positive and negative integers. For instance, if j ∈ Z+{
p+(j, n+ 1) = t+j p+(j − 1, n) + r−j p−(j + 1, n) ,

p−(j, n+ 1) = t−j p−(j + 1, n) + r+
j p+(j − 1, n) .

By summing up the two equations, we get

p(j, n+ 1) = p+(j, n+ 1) + p−(j, n+ 1) = (t+j + r+
j )p+(j − 1, n) + (t−j + r−j )p−(j + 1, n)

= p+(j − 1, n) + p−(j + 1, n) .

Now, by introducing the definitions x := jδx, t := nδt (δx, δt → 0), the probability

density p(x, t) such that p(j, n) = δxp(x, t) and expanding up to the second and first

order in δx, δt respectively, we arrive at the following diffusive approximation

ṗ(x, t) = −m′(x, t) +
1

2

δx2

δt
p′′(x, t) ,

where m(j, n) := p+(j, n) − p−(j, n) = δtm(x, t) = δx[p+(x, t) − p−(x, t)] is the

probability current, δx2

δt
→ D0(= 1) as δx, δt → 0 and the single dot represents the

time derivative, whereas the prime notation is used for spatial derivatives.

At this point, we have to consider also the difference in order to obtain the second

coupled equation, that is

m(j, n+ 1) = (1− 2r+
j )p+(j − 1, n)− (1− 2r−j )p−(j + 1, n) .

We observe that, in the continuum limit, by dropping higher order terms as before, we

get

δtm(x, t) = δtm(x, t)− δx2p′(x, t)− δt(r+(x) + r−(x))m(x, t)

− δx(r+(x)− r−(x))p(x, t) + δx2(r+(x) + r−(x))p′(x, t) ,
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since

2(r+p+ ± r−p−) = (r+ + r−)(p+ ± p−) + (r+ − r−)(p+ ∓ p−) .

Hence we can write

m(x, t) = −ε+ − ε−
2x

p(x, t) , (B.1) {eq: appCurr}{eq: appCurr}

given that

r+ + r− = 1 +
ε+ − ε−

2x
δx , r+ − r− =

ε+ − ε−
2x

δx .

In conclusion, we find again the diffusion equation for a particle in a logarithmic potential

∂

∂t
p =

1

2

[
∂2

∂x2
+ (ε+ − ε−)

∂

∂x

(
1

x
p

)]
,

which is the same of a standard Gillis random walk: it is sufficient to set ε = ε+−ε−
2

.

For the sake of completeness, on the negative integers, instead, the roles of t+ and

t− are reversed {
p+(j, n+ 1) = t−j p+(j − 1, n) + r+

j p−(j + 1, n) ,

p−(j, n+ 1) = t+j p−(j + 1, n) + r−j p+(j − 1, n) .

The sum remains unchanged, whereas for the difference we have to replace the following

relations

2(r−p+±r+p−) = (r−+r+)(p+±p−)+(r−−r+)(p+∓p−) and r−−r+ =
ε− − ε+

2|x|
δx .

In the end, we still obtain

m(x, t) = −ε+ − ε−
2x

p(x, t) for x < 0 .

As a final comment, observe that for a generalized drift identified by (38) the significant

quantities for the continuum limit are r++r− = 2(1−q)+ ε+−ε−
2x

δx and r+−r− = ε+−ε−
2x

δx.

As a consequence, the generalized (B.1) reads

m(x, t) =
1− 2q

2(1− q)
D0p

′(x, t)− D0

2(1− q)
ε+ − ε−

2x
p(x, t) ,

and the related diffusion equation is therefore (39).

A rigorous analysis of recurrence properties for these generalized Lamperti drifts

can be found in [45], where Lamperti criteria are extended by means of Theorem 2.6:

according to their notation, it is sufficient to take q++ = q−− = q, q+− = q−+ = 1 − q,
γ++ = −γ+− = − ε+

2
, γ−− = −γ−+ = − ε−

2
, d+ = −d− = 2q − 1, e+ = −ε+, e− = ε−,

t2i = 1, d++ = −d−− = q, d+− = −d−+ = q − 1, π± = 1
2
, a =

(
0, 1−2q

1−q

)
in order to go

back to our examples.
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Figure C1. Gillis supercritical model: linear fit of log Πj versus j1−β , for j > 0.

Markers represent the exact values of Πj obtained from (C.1). The slope of each line

is in perfect agreement with the theoretical prediction pth = −2ε/(1− β). {fig:Appendix_super_Pot}

Appendix C. Tail decay of the stationary distribution for the supercritical

Gillis random walk
{app:StatSuperGillis}

In order to substantiate the approximation (50) in the main text, one has to exclude the

existence of relevant second-order corrections. Getting rid of the unknown normalization

in (41), we can write

Πj :=
πj
π0

=


1

1 + ε
if |j| = 1 ,

|j|β

|j|β + ε

|j|−1∏
k=1

|k|β − ε
|k|β + ε

if |j| > 1 ,
(C.1) {eq:Pi_j}{eq:Pi_j}

with Π0 = 1 . In accordance with (50), we perform a numerical check by looking for a

stretched-exponential law

Πj = p2e
p1j1−β , (C.2)

which equivalently reads

log(Πj) = p1j
1−β + log(p2) . (C.3)

As can be seen in figure C1, numerical simulations confirm this linear behaviour with

p1 = − 2ε
1−β .
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flights on a line: Statistics of the global maximum and records Physica A 389 4299

[17] Bray A J, Majumdar S N and Schehr G 2013 Persistence and first-passage properties in

nonequilibrium systems Adv. Phys. 62 225

[18] Hartich D and Godec A 2019 Extreme value statistics of ergodic Markov processes from first

passage times in the large deviation limit J. Phys. A: Math. Theor. 52 244001

[19] Lamperti J 1962 Semi-stable stochastic processes Trans. Amer. Math. Soc. 104 62

[20] Magdziarz M 2020 Lamperti transformation of scaled Brownian motion and related Langevin

equations Commun. Nonlinear Sci. Numer. Simulat. 83 105077

[21] Engländer J and Volkov S 2019 Impatient Random Walk J Theor Probab 32 2020
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