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Abstract
For any simply-laced type simple Lie algebra g and any height function ξ adapted
to an orientation Q of the Dynkin diagram of g, Hernandez–Leclerc introduced a
certain category C≤ξ of representations of the quantum affine algebra Uq (̂g), as well
as a subcategory CQ of C≤ξ whose complexified Grothendieck ring is isomorphic to
the coordinate ring C[N] of a maximal unipotent subgroup. In this paper, we define
an algebraic morphism ˜Dξ on a torus Y≤ξ containing the image of K0(C≤ξ ) under
the truncated q-character morphism. We prove that the restriction of ˜Dξ to K0(CQ)

coincideswith themorphism D recently introduced byBaumann–Kamnitzer–Knutson
in their study of equivariantmultiplicities ofMirković–Vilonen cycles. This is achieved
using the T-systems satisfied by the characters of Kirillov–Reshetikhin modules in CQ ,
as well as certain results by Brundan–Kleshchev–McNamara on the representation
theory of quiver Hecke algebras. This alternative description of D allows us to prove
a conjecture by the first author on the distinguished values of D on the flag minors
of C[N]. We also provide applications of our results from the perspective of Kang–
Kashiwara–Kim–Oh’s generalized Schur–Weyl duality. Finally, we use Kashiwara–
Kim–Oh–Park’s recent constructions to define a cluster algebra AQ as a subquotient
of K0(C≤ξ ) naturally containing C[N], and suggest the existence of an analogue of
the Mirković–Vilonen basis in AQ on which the values of ˜Dξ may be interpreted as
certain equivariant multiplicities.
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1 Introduction

Since their introduction by Drinfeld [10] and Jimbo [25], the quantized enveloping
algebras of Lie algebras and Kac–Moody algebras have been intensively studied and
were at the heart of numerous important developments in the past decades. The quan-
tum groupUq(g) associated to a finite-dimensional simple Lie algebra g can be viewed
as a deformation of the universal enveloping algebra of g. The construction of remark-
able bases of the negative partUq(n) arising from a triangular decomposition ofUq(g)
has been one of them, initiated with the construction of the dual canonical basis by
Lusztig [37] and the upper global basis by Kashiwara [27]. Other bases with good
properties were later considered, such as Lusztig’s dual semi-canonical basis or the
Mirković–Vilonen basis arising from the geometric Satake correspondence [39]. The
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attempt towards a combinatorial description of the dual canonical basis has been one
of the main motivations for the introduction of cluster algebras by Fomin and Zelevin-
sky [12]. It was proved by Berenstein–Fomin–Zelevinsky [2] that the coordinate ring
C[N] of a maximal unipotent subgroup of the Lie group G of g has a cluster algebra
structure. This cluster algebra has infinitely many seeds in general, but there is a finite
family

{S i =
(

(x i1, . . . , x
i
N ), Qi

)

, i ∈ Red(w0)}

of distinguished seeds called standard seeds, whose cluster variables are given by
explicit regular functions on N and whose exchange quiver Qi is constructed purely
combinatorially. They are indexed by the set Red(w0) of all reduced expressions of
the longest element w0 of the Weyl group of g. The cluster variables x i1, . . . , x

i
N are

called the flag minors associated to i.
In their recent proof of Muthiah’s conjecture [40], Baumann–Kamnitzer–Knutson

[1] introduced a remarkable algebra morphism

D : C[N] −→ C(α1, . . . , αn)

essentially via Fourier transforms of the Duistermaat–Heckmann measures (here
α1, . . . , αn are formal variables corresponding to the simple roots ofG). They proved
that the evaluation of D on the elements of the Mirković–Vilonen basis are related
to certain geometric invariants of the corresponding Mirković–Vilonen cycles called
equivariant multiplicities, defined by Joseph [26], Rossmann [44] and later devel-
oped by Brion [4]. Furthermore, the morphism D turns out to be useful to compare
good bases of C[N]: in an appendix of the same work [1], Dranowski, Kamnitzer,
and Morton–Ferguson use this morphism D to prove that the MV basis and the dual
semi-canonical basis are not the same.

The main purpose of the present paper is to extend D to a larger algebra natu-
rally containing C[N], defined as the complexified Grothendieck ring of a monoidal
category C≤ξ of finite-dimensional representations of the quantum affine algebra
Uq (̂g). This category was introduced by Hernandez-Leclerc [24], who showed that
its Grothendieck ring has a cluster algebra structure. Recently Kashiwara–Kim–Oh–
Park [32] proved that C≤ξ provides a monoidal categorification of this cluster algebra
in the sense of [22]. Restricting our construction to C[N] allows us to investigate the
behaviour of D on the elements of the dual canonical basis using former results by
Hernandez–Leclerc [23]. Our motivations are two-fold.

Firstly, the cluster algebraC[N] has another monoidal categorification using quiver
Hecke algebra [30]. It was proved by the first author in [7] that when g is of type
An, n ≥ 1 or D4, the morphism D takes distinguished values on the flag minors of
C[N], similar to its values on the classes of Kleshchev–Ram’s strongly homogeneous
modules over the quiver Hecke algebras associated to g or on the elements of the
MV basis corresponding to smooth MV cycles. Certain polynomial identities relating
these values for flag minors belonging to the same standard seed were also exhibited
and were proved (for all simply-laced types) to be preserved under cluster mutation
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from one standard seed to another ([7, Theorem 5.6]). But the cases where g is of type
Dn, n ≥ 5 or Er , r = 6, 7, 8 were left open ([7, Conjecture 5.5]), and the meaning of
these remarkable families of polynomial identities still remained mysterious.

The second motivation for the present work comes from the fact that Baumann–
Kamnitzer–Knutson’s morphism D is known to admit natural interpretations in terms
of various categorifications of C[N]. For instance, the evaluation of D on the elements
of the dual semi-canonical basis can be naturally expressed in terms of the Euler
characteristics of certain varieties of representations of the preprojective algebra asso-
ciated to g. For an element of the dual canonical basis, viewed as the isomorphism
class of a module M over the quiver Hecke algebras associated to g, a similar for-
mula can be written using the dimensions of the weight subspaces of M . However,
the dual canonical basis admits another categorification, due to Hernandez–Leclerc
[23], which involves certain finite-dimensional representations of the quantum affine
algebra Uq (̂g). For instance, such representations were used in [9] to study the dual
canonical basis of the Grassmannian cluster algebra C[Gr(k, n)]. It is thus natural
to ask whether the values of D can be interpreted in a natural way using this other
categorification.

The present paper provides answers to these questions. Although it is also related to
the behaviour of D with respect to the cluster structure ofC[N], our approach involves
different ideas from those of [7]. Furthermore, whereas the results of [7] were proved
using the representation theory of quiver Hecke algebras, and thus could only make
sense on C[N], the framework we develop here allows to extend these results to larger
cluster algebras and therefore opens new perspectives (see Sect. 11 for example). It
also yields natural proofs and interpretations of the polynomial identities mentioned
above as well as several other conjectural observations made in [7] (for instance [7,
Remark 6.4]).

Hernandez–Leclerc’s categorification of C[N] involves a family of monoidal cate-
gories CQ of finite-dimensional representations of Uq (̂g), indexed by the orientations
Q of the Dynkin diagram of g. The main result in [23] consists in constructing for each
choice of Q a ring isomorphism from the Grothendieck ring K0(CQ) to C[N] induc-
ing a bijective correspondence between the classes of simple objects in CQ and the
elements of the dual canonical basis ofC[N] ([23, Theorem 6.1]). In [32], Kashiwara–
Kim–Oh–Park defined a larger monoidal category C≤ξ containing CQ for each choice
of height function ξ adapted to Q. In the case where ξ corresponds to a sink-source
orientation, C≤ξ coincides with the category C− introduced by Hernandez–Leclerc in
[24]. There is an injective ring morphism

χ̃q : K0(C≤ξ ) −→ Y≤ξ := Z[Y±1
i,p , (i, p) ∈ I≤ξ ] where

I≤ξ := {(i, p), i ∈ I , p ∈ ξ(i) + 2Z≤0}

called truncated q-character morphism, which is a truncated version of Frenkel-
Reshetikhin’s q-character [14]. An important family of simple objects in C≤ξ are
the Kirillov–Reshetikhin modules X (k)

i,p, (i, p) ∈ I≤ξ , k ≥ 1, whose (truncated)
q-characters are known to satisfy certain distinguished identities called T -systems
(see [21]). It is shown ([24, Theorem 5.1]) that the Grothendieck ring of C≤ξ
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has a cluster algebra structure, with an initial seed given by an explicit (infinite)
quiver Qξ ([24, Sect. 2.1.2]) with set of vertices I≤ξ , together with a cluster con-
sisting of the isomorphism classes of the Kirillov–Reshetikhin modules of the form
Xi,p := X (1+(ξ(i)−p)/2)

i,p , (i, p) ∈ I≤ξ . The T-system relations between the characters

of the X (k)
i,p correspond to the exchange relations of certain sequences of mutations for

the cluster structure of K0(C≤ξ ). Moreover, denoting by iQ a reduced expression ofw0
adapted to Q, the exchange quiver QiQ of the standard seedS iQ ofC[N] can be viewed
as a (finite) subquiver of Qξ , and the cluster variables (flag minors) x

iQ
1 , . . . , x

iQ
N of

S iQ are identified with the classes of the modules Xi,p, (i, p) ∈ IQ via the natural
embedding C[N] � K0(CQ) ↪→ K0(C≤ξ ) (where IQ is a finite subset of I≤ξ ).

In this paper we introduce an algebra morphism ˜Dξ from the complexified torus
C⊗Y≤ξ to the fieldC(α1, . . . , αn). Its definition involves the coefficients of the inverse
of the quantum matrix of g, which are a family of integers C̃i, j (m), i, j ∈ I ,m ∈ Z

appearing in the theory of q-characters [14] initiated by Frenkel and Reshetikhin,
q, t-characters initiated by Nakajima [42], and then further developed in [20, 23]. We
also refer to [16] for recent advances in this area. The precise definition of ˜Dξ is the
following:

∀(i, p) ∈ I≤ξ , ˜Dξ (Yi,p) :=
∏

( j,s)∈I≤ξ

(

ε j,sτ
(ξ( j)−s)/2
Q (γ j )

)C̃i, j (s−p−1)−C̃i, j (s−p+1)

where for each j ∈ I , γ j is the sum of the simple roots αi such that there exists a path
from i to j in Q, τQ is the Coxeter transformation associated to Q and ε j,s ∈ {−1, 1}
is the unique sign such that τ (ξ( j)−s)/2

Q (γ j ) ∈ ε j,s	+ for every ( j, s) ∈ I≤ξ . Note that

this product is always finite, because C̃i, j (m) := 0 ifm ≤ 0. In Sect. 6.2,we investigate
the images under ˜Dξ of the truncatedq-characters of theKirillov–Reshetikhinmodules
Xi,p, (i, p) ∈ I≤ξ categorifying the cluster variables of Hernandez–Leclerc’s initial
seed in K0(C≤ξ ).Weprove that the rational fractions ˜Dξ

(

χ̃q(Xi,p)
)

satisfy remarkable
properties analogous to those exhibited in [7] for the values of D̄ on the flag minors
of C[N].

We also consider the restriction ˜DQ of ˜Dξ to the torus YQ := Z[Y±1
i,p , (i, p) ∈ IQ]

image of K0(CQ) under the truncated q-character morphism χ̃q . Our first main result
is the following:

Theorem 1 (cf. Theorem 6.1) For every simply-laced type Lie algebra g and for every
orientation Q of the Dynkin diagram of g, the following diagram commutes:

C[N]

D

�
C ⊗ K0(CQ)

χ̃q
C ⊗ YQ

D̃Q

C(αi , i ∈ I )

Asignificant part of this paper (Sects. 7 and 8 aswell as the beginning of Sect. 9)will
be devoted to proving Theorem 1 in the case of a particular well-chosen orientation Q0
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for each simply-laced type (see Sect. 7). It is achieved by proving that D and ˜DQ0 agree
on the dual root vectors associated to iQ0 , which are known to generate C[N] as an
algebra. The dual root vectors are categorified on the one hand by the so-called cuspidal
representations over quiver Hecke algebras (see [5, 35, 38]) and by the fundamental
representations in CQ on the other hand. In Sect. 7, we use the representation theory
of quiver Hecke algebras to provide formulas for the evaluation of D on the dual root
vectors of C[N]. Our proof crucially relies on certain results by Brundan–Kleshchev–
McNamara [5] on cuspidal representations as well as Kleshchev-Ram’s construction
[34] of (strongly) homogeneous modules. In Sect. 8, we prove several formulas for the
evaluation of ˜DQ0 on the classes of all Kirillov–Reshetikhin modules in CQ using the
T-system relations satisfied by the (truncated) q-characters of these modules. As the
fundamental representations are particular cases of Kirillov–Reshetikhin modules, we
can conclude by comparing with the results obtained in Sect. 7.

The values of D (resp. ˜DQ0 ) on the dual root vectors of C[N] (resp. the classes
of Kirillov–Reshetikhin modules in CQ0 ) are obtained in Sect. 7 (resp. Sect. 8) by
considering each simply-laced type. The case of type An is in fact contained as a
subcase of the type Dn but for the reader’s convenience we chose to state the formulas
in different subsections for each of these types. We deal with the types Er , r = 6, 7, 8
separately using a computer software. For certain dual root vectors, the results are
extremely complicated, which suggests there exists probably no uniform formula for
the image of ˜DQ on the classes of Kirillov–Reshetikhin modules (or even simply on
the dual root vectors) that would hold for any simply-laced type and for an arbitrary
orientation Q.

Combining Theorem 1 with [7, Theorem 5.6] allows us to prove the second main
result of this paper, which was stated as a conjecture in [7] ([7, Conjecture 5.5]).

Theorem 2 (cf. Theorem 9.1) Let g be a simple Lie algebra of simply-laced type. Then
for any reduced expression i = (i1, . . . , iN ) of w0, the flag minors x i1, . . . , x

i
N satisfy

D(x ij ) = 1/P i
j where P i

j is a product of positive roots. Furthermore, the polynomials

P i
1, . . . , P

i
N satisfy the identities

∀1 ≤ j ≤ N , P i
j P

i
j− = β j

∏

l< j<l+
il∼i j

P i
l .

where β j := si1 · · · si j−1(αi j ) for each j ∈ {1, . . . , N }.
We refer to Sects. 2.1 and 2.2 for precise definitions of the notations involved in

this identity. We first prove the statement in the case i = iQ0 using Theorem 1,
which provides an efficient way of computing the images under D of the flag minors

x
iQ0
1 , . . . , x

iQ0
N because the Kirillov–Reshetikhin modules Xi,p have truncated q-

characters reduced to a single term. Then [7, Theorem 5.6] guarantees that the result
holds for arbitrary reduced expressions of w0. In the case of reduced expressions of
w0 adapted to orientations of the Dynkin diagram of g, these polynomial identities
are now naturally understood as consequences of the well-known recursive relations
between the coefficients C̃i, j (m). Sect. 6.2 contains further explanations about this, as
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well as analogous interpretations of various other observations from [7], such as [7,
Remark 6.4].

We have been informed that it could be also possible to obtain a geometric proof of
Theorem 1 relying on the geometric Satake correspondence and the results from [1].
The idea is to prove that the MV cycles associated to the flag minors of the standard
seed S iQ satisfy certain smoothness properties, which allow one to compute their
equivariant multiplicities, and hence the values of D using [1, Corollary 10.6]. One
could then conclude by combining this with the results of Sect. 6 of the present paper.

Our approach has the advantage to provide closed formulas for the evaluation
of D on a large family of cluster variables in C[N] (namely, all the classes of the
Kirillov–Reshetikhin modules in CQ0 ), several of which correspond to MV cycles that
fail to satisfy any smoothness property (this can be seen for example by the fact the
numeratorsmay not be equal to 1 in our formulas). Furthermore, the techniques used in
the present paper can be extended in a direct way beyond C[N] to obtain formulas for
the evaluation of ˜Dξ on classes of Kirillov–Reshetikhin modules in K0(C≤ξ ), which
are not described by the geometric Satake correspondence.

In Sect. 10 we present some applications of our results involving Kang–Kashiwara–
Kim–Oh’s generalized quantumaffineSchur–Weyl duality [29].An element of the dual
canonical basis of C[N] can be viewed either as the class of a (simple) module L in
CQ , or as the class of the corresponding object FQ(L) in R-mod, where FQ denotes
Kang–Kashiwara–Kim–Oh’s generalized quantum affine Schur–Weyl duality functor.
Then Theorem 1 yields the following identity

∑

m′�m

dim(Lm′)˜DQ(m′) =
∑

j=( j1,... jd )

dim
(

(FQ(L))j
)

Dj (1.1)

where m′ are the Laurent monomials in the variables Yi,s appearing in the truncated
q-character of L , and the Dj are certain explicit rational fractions for each weight j of
FQ(L) (see Sect. 10). In other words, although the objects of the categories CQ and R-
mod are a priori of different natures, the equality (1.1) provides an unexpected explicit
relationship between the respectiveweight-subspace structures of a representation L of
CQ and the correspondingmoduleFQ(L) in R-mod.We provide a concrete illustration
of this fact by proving a formula relating the dimensions of FQ0(L) and the truncated
part of L when g is of type An and Q = Q0 (Theorem 10.1).

In the final section of this work (Sect. 11), we turn back to the geometric motiva-
tions at the origin of the construction of D by Baumann–Kamnitzer–Knutson [1]. As
our results show that ˜Dξ is an extension of D to C ⊗ K0(C≤ξ ), it is natural to ask
whether certain values of ˜Dξ may be possibly related to certain equivariant multi-
plicities of some closed algebraic varieties. However, it turns out that unlike D, ˜Dξ

takes trivial values on certain cluster variables of K0(C≤ξ ), which seems difficult to
understand geometrically. To circumvent this issue, we show that the values of ˜Dξ

on the cluster variables [Xi,p] of Hernandez–Leclerc’s initial seed in K0(C≤ξ ) satisfy
certain periodicity properties (Corollary 11.2). This is derived from the periodicity
of the coefficients C̃i, j (m) established by Hernandez–Leclerc ([23, Corollary 2.3]).
Therefore one looses essentially no information by restricting ˜Dξ to a smaller cluster
algebraAQ of finite cluster rank still containing C[N] as a subalgebra. In some sense,
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one can view AQ as a period of ˜Dξ and C[N] as a half-period of ˜Dξ . Then we prove
(Corollary 11.3) that ˜Dξ takes trivial values on the frozen variables ofAQ . Therefore
it factors through a morphism DQ defined on the quotient algebra AQ . We propose
this algebraAQ as the most appropriate domain to study ˜Dξ . We ask for the existence
of a basis in AQ containing the Mirković–Vilonen basis of C[N], whose elements
may be indexed by a family of closed algebraic varieties, such that the values of DQ

on the elements of this basis could be interpreted as certain equivariant multiplicities
of the corresponding varieties with respect to the action of some torus. In a different
direction, the recent results by Kashiwara–Kim–Oh–Park [32] imply thatAQ admits a
monoidal categorification (in the sense of Hernandez–Leclerc [22]) by a subcategory
of C≤ξ . Therefore, it would be interesting to investigate whether the quotient algebra
AQ could also be studied via monoidal categorification using the categorical spe-
cialization techniques developped by Kang–Kashiwara–Kim [28] and more recently
Kashiwara–Kim–Oh–Park [31].

Our construction also suggests possible connections with the quantum cluster
algebra structures of quantized coordinate rings and more generally of certain quan-
tum Grothendieck rings of Hernandez–Leclerc’s categories. Indeed, the expressions
C̃i, j (s − p − 1) − C̃i, j (s − p + 1) involved in the definition of ˜Dξ coincide (up to
sign) with the entries of the t-commutation matrix describing Hernandez–Leclerc’s
quantum torus [23, Equation (8)]. This is known from the works of Bittmann [3] to
correspond to the quantum torus of a quantum cluster algebra Kt (C≤ξ ), which is a non-
commutative deformation of K0(C≤ξ ) naturally containing the quantized coordinate
ringAq(n) (dual ofUq(n)) via an algebra isomorphismAq(n) � Kt (CQ) identifying
the indeterminates t and q.

The paper is organized as follows. In Sect. 2 we gather all the necessary reminders
about Hernandez and Leclerc’s categorification of cluster algebras and its applications
to the study of the coordinate ring C[N]. In Sect. 3, we provide some reminders about
the coefficients of the inverses of quantum Cartan matrices and prove a couple of
elementary properties which will be useful in the sequel of the paper. In Sect. 4,
we recall the main results from the representation theory of quiver Hecke algebras,
in particular certain results from [5]. Section5 is devoted to some reminders about
Baumann–Kamnitzer–Knutson’s morphism D as well as the main results from [7]. In
Sect. 6, we introduce the main objects of the present paper, namely the morphisms ˜Dξ

and ˜DQ , investigate several of their properties and state our first main result Theorem
6.1. In Sect. 7, we use the representation theory of quiver Hecke algebras to compute
the values of D on the dual root vectors ofC[N] associated to awell-chosen orientation
Q0 of the Dynkin diagram of g. In Sect. 8, we provide formulas in types An and Dn for
the values of ˜DQ0 on the classes of all Kirillov–Reshetikhin modules in CQ0 . Section9
is devoted to the proofs of the two main results of this paper, Theorems 6.1 and 9.1.
We begin by proving Theorem 6.1 in the case Q = Q0, which allows us to prove
Theorem 9.1, which can then be used to prove Theorem 6.1 for arbitrary orientations.
In Sect. 10, we provide a representation-theoretic interpretation of Theorem 6.1 from
the perspective of Kang–Kashiwara–Kim–Oh’s generalized quantum affine Schur–
Weyl duality, with an application when g is of type An (Theorem 10.1). Finally in
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Sect. 11we define a cluster algebraAQ naturally containingC[N] and discuss possible
geometric interpretations of the values taken by ˜Dξ on AQ .

2 Hernandez–Leclerc’s category C≤�

In this section, we recall Hernandez–Leclerc’s categorifications of certain clus-
ter algebras via the categories C≤ξ introduced in [24] (denoted C− in [24]), for
each height function ξ on the vertices of the Dynkin diagram of g. We also recall
Hernandez–Leclerc’s former construction [23] of categorifications of coordinate rings
via subcategoriesCQ ofC≤ξ ,whereQ is anorientationof theDynkingraphofg adapted
to ξ .

2.1 Coordinate rings and their cluster structures

Let g be a simple complex Lie algebra of simply-laced type, let I be the set of vertices
of the Dynkin diagram of g, and let n = |I |. We denote by C = (ci, j ) the Cartan
matrix of g and for any i, j ∈ I we will write i ∼ j for ci, j = −1. Let us fix a
nilpotent subalgebra n arising from a triangular decomposition of g and let N denote
the corresponding Lie group. We consider the ring C[N] of regular functions on N,
which we will refer to as the coordinate ring in what follows. We also let W denote
the Weyl group of g and w0 denote the longest element of W . We let α1, . . . , αn

(resp. ω1, . . . , ωn) denote the simple roots (resp. the fundamental weights) of g. Let
�+ := ⊕

i Nαi and let 	+ ⊂ �+ denote the set of positive roots of g.
The coordinate ring C[N] contains a distinguished family of elements D(uλ, vλ)

called unipotent minors parametrized by triples (λ, u, v) ∈ P+ × W × W where P+
stands for the set of dominant weights of g. These unipotent minors always belong to
the dual canonical basis of C[N] when they are not zero (see for instance [30, Lemma
9.1.1]). Two special subsets of unipotent minors will play a central role throughout
this paper, both of them depending on a choice of reduced expression of w0. Let
N := �	+ = l(w0) and let i = (i1, . . . , iN ) be a reduced expression of w0. On the
one hand, we will consider the unipotent minors

x ik := D(si1 · · · sikωik , ωik ) , 1 ≤ k ≤ N

which are called the flag minors associated to i. On the other hand, the unipotent
minors

r∗
k
i := D(si1 · · · sikωik , si1 · · · sik−1ωik ) , 1 ≤ k ≤ N

are called the dual root vectors associated to i. Note that the dual root vectors also
belong to the dual PBW basis corresponding to i.

One of the properties of C[N] we will be mostly interested in is its cluster algebra
structure in the sense of Fomin-Zelevinsky [12]: a cluster algebra is defined as the sub-
algebra of a field of functions Q(x1, . . . , xN ) generated by a family of distinguished
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elements called cluster variables. These are obtained by performing a recursive proce-
dure starting from the initial data (called a seed) of a N -tuple x1, . . . , xN of variables
(called a cluster) as well as a quiver with N vertices and without any loop or 2-cycles
(called an exchange quiver). For every 1 ≤ k ≤ N , one can define a new generator x ′

k
given by the exchange relation

x ′
k = 1

xk

⎛

⎝

∏

j→k in Q

x j +
∏

j←k in Q

x j

⎞

⎠ (2.1)

aswell as a newquiver Q′
k , both uniquely determined by x1, . . . , xN and Q. This yields

a new seed given by S ′
k := ((x1, . . . , xk−1, x ′

k, xk+1, . . . , N ), Q′
k). This procedure is

called the mutation in the direction k of the seed S := ((x1, . . . , xN ), Q). It has
the important property of being involutive, i.e. performing the mutation in the same
direction k to the seed S ′

k recovers the seed S. Iterating this for all possible sequences
of directions of mutations, we get a (finite or infinite) set of new generators called
cluster variables, each of them appearing in several clusters. The rank of a cluster
algebra is the cardinality of each of its clusters.

The general theory of cluster algebras developed in particular in [13] has found
a large range of applications to various areas of mathematics such as representation
theory, Poisson geometry, representations of quivers etc... As far as coordinate rings
are concerned, the main result that will be relevant for us is the following.

Theorem 2.1 (Berenstein–Fomin–Zelevinsky [2], Geiss–Leclerc–Schröer [19])

(1) The coordinate ring C[N] has a cluster algebra structure, of rank equal to the
number of positive roots of g.

(2) For each reduced expression i of w0, the flag minors D(si1 · · · sikωik , ωik ), 1 ≤
k ≤ N form a cluster in C[N].
There is in addition a purely combinatorial way of defining a quiver Qi with N

vertices for each reduced expression i, which yields a seed in C[N]:

S i =
(

(x i1, . . . , x
i
N ), Qi

)

.

The seedsS i are called the standard seeds ofC[N]. Note that different reduced expres-
sions may yield the same seed: this is the case for instance for reduced expressions
in the same commutation class. Moreover, cluster mutations from one standard seed
to another correspond to performing braid relations on the corresponding reduced
expressions.

Remark 2.2 (1) The cluster structure ofC[N] can have infinitelymany seeds in general
(in fact it is always the case, unless g is of type An, n ≤ 4 see [18])

(2) The exchange relations associated to the cluster mutations from one standard seed
to another are special cases of the determinantal identitieswhich play an important
role in the work of Geiss–Leclerc–Schröer (see [19, Proposition 5.4]) as well as
in the work of Fomin-Zelevinsky [11].
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2.2 Auslander–Reiten theory

We fix an orientation Q of the Dynkin diagram of g. Let 〈·, ·〉Q denote the Euler-
Ringel form of the quiver Q, i.e. the unique bilinear form on the free abelian group
� := ⊕

i Zαi given on simple roots by 〈αi , α j 〉Q := δi, j − �{i → j inQ}. Finally we
denote by (·, ·) the Cartan pairing associated to g, i.e. the symmetric bilinear form on
�+ defined by (αi , α j ) = ci, j . Recall that one has (β, γ ) = 〈β, γ 〉Q + 〈γ, β〉Q for
any β, γ ∈ �+.

We fix a height function ξ : I → Z adapted to Q i.e. an integer-valued function
satisfying

ξ( j) = ξ(i) − 1 if there is an arrow i → j inQ.

For i ∈ I , denote by si (Q) the quiver obtained from Q by changing the orientation
of every arrow with source i or target i . A sequence i = (i1, . . . , ik) of elements of
I is called adapted to Q if i1 is a source of Q, i2 is a source of si1(Q), . . ., ik is a
source of sik−1 · · · si1(Q). There is a unique Coxeter element in W , denoted by τQ ,
having reduced expressions adapted to Q. It satisfies τ hQ = 1 where h denotes the dual
Coxeter number defined by h := 2N/n, where N is the number of positive roots in
the root system of g.

Most importantly, we also fix a reduced expression iQ = (i1, . . . , iN ) ofw0 adapted
to Q. Recall that such a reduced word always exists and is unique up to commutation.
For each i ∈ I , we denote by nQ(i) the number of occurrences of the letter i in the
reduced word iQ . For every i ∈ I , let B(i) denote the set of indices j ∈ I such that
there exists a path from j to i in Q, and let γi := ∑

j∈B(i) α j . Then γi ∈ 	+ for every
i ∈ I , and moreover one has

	+ = {τ r−1
Q (γi ), i ∈ I , 1 ≤ r ≤ nQ(i)}.

Following [32], we also define an infinite sequencêiQ = (i1, i2, . . .) of elements of
I as follows. For each i ∈ I , we let i∗ denote the unique element of I such that
w0(αi ) = −αi∗ . The map i �→ i∗ is an involution. Then for each 1 ≤ k ≤ N and each
m ≥ 0, we set

ik+Nm :=
{

ik if m is even,

i∗k if m is odd.

It is proved (see [32, Proposition 6.11]) that for any t ≥ 1, the finite sequence

(it , it+1, . . . , it+N−1)

is a reduced expression of w0 adapted to the orientation sit−1 · · · si1(Q).
We will use the following notation from [32, Eq. (4.2)]. For each t ≥ 1, we set

t+ := min
({t ′ > t, it ′ = it } ∪ {+∞}) and t− := max

({t ′ < t, it ′ = it } ∪ {0}) .



    9 Page 12 of 58 E. Casbi, J.-R. Li

For t+, the set {t ′ > t, it ′ = it } is never empty. For t−, the set {t ′ < t, it ′ = it } can be
empty so we use the convention max ∅ := 0.

We set

I≤ξ := {(i, p) | i ∈ I , p ∈ ξ(i) + 2Z≤0}.

There is a bijection ϕ : I≤ξ −→ Z≥1 defined by

ϕ(i, p) :=
{

min{t ≥ 1, it = i} if p = ξ(i),

(ϕ(i, p + 2))+ otherwise.
(2.2)

Equivalently, ϕ(i, p) is the position of the mth occurrence of the letter i in̂iQ , where
m := (ξ(i) − p + 2)/2. The inverse of ϕ is given by

ϕ−1(k) = (ik, ξ(ik) − 2NQ(k) + 2) where NQ(k) := �{k′ ≤ k, ik′ = ik}.

We also set

IQ := ϕ−1 ({1, . . . , N }) = {( j, s) ∈ I≤ξ , ξ( j) ≥ s ≥ ξ( j) − 2nQ( j) + 2}. (2.3)

Then following [23] one can define a sequence of positive roots (βk)k≥1 ∈ 	
Z≥1
+ by

setting

βϕ( j,ξ( j)) := γ j and βϕ( j,s−2) =
{

τQ
(

βϕ( j,s)
)

if τQ
(

βϕ( j,s)
) ∈ 	+,

−τQ
(

βϕ( j,s)
)

if τQ
(

βϕ( j,s)
) ∈ −	+.

(2.4)

for every ( j, s) ∈ I≤ξ . We also denote by ε j,s ∈ {−1, 1} the unique sign such that

τ (ξ( j)−s)/2(γ j ) = ε j,sβϕ( j,s).

We have the following result.

Proposition 2.3 ([17, Corollary 2.40]) For every ( j, s) ∈ I≤ξ one has βϕ( j,s) =
βϕ( j∗,s+h) and ε j,s = −ε j∗,s+h.

In other words one has τ (ξ( j)−s)/2(γ j ) = −τ (ξ( j∗)−s−h)/2(γ j∗) for every ( j, s) ∈
I≤ξ . Consequently, given ( j, s) and ( j ′, s′) in I≤ξ , one has βϕ( j,s) = βϕ( j ′,s′) if
and only if j ′ = j and s′ ∈ s + 2hZ (and in this case ε j,s = ε j ′,s′ ) or j ′ = j∗ and
s′ ∈ s+h+2hZ (and in this case ε j,s = −ε j ′,s′ ).Moreover it is known (see for instance
[32, Proposition 6.11 (2)–(iii)] and references therein) that for every ( j, s) ∈ I≤ξ one
has ϕ( j, s) = ϕ( j, s + 2h) + 2N . Therefore we have

ϕ−1([1, 2N ]) = {( j, s) ∈ I≤ξ | ξ( j) ≥ s ≥ ξ( j) − 2h + 2}. (2.5)
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Moreover, it is also known that if ( j, s) ∈ ϕ−1([1, 2N ]) then ε j,s = 1 if and only if
( j, s) ∈ ϕ−1([1, N ]), and in this case we have τ (ξ( j)−s)/2(γ j ) = βt = si1 · · · sit−1αit
where t := ϕ( j, s) (see [32, Proposition 6.11 (2)–(ii)]).

Remark 2.4 Comparing with the notations used in [17], our bijection ϕ corresponds to
the projection onto the first component of the bijection φQ defined in [17, Sect. 2.7].
Moreover ε j,s = (−1)k where k is the second component of φQ( j, s).

2.3 Quantum affine algebras and their representations

The quantum affine algebra Uq (̂g) is a Hopf algebra that is a q-deformation of the
universal enveloping algebra of ĝ [10, 25]. In this paper, we take q to be a non-zero
complex number which is not a root of unity.

Denote by P the free abelian group generated by Y±1
i,a , i ∈ I , a ∈ C

×, denote by
P+ the submonoid of P generated by Yi,a , i ∈ I , a ∈ C

×. Let C denote the monoidal
category of finite-dimensional representations of the quantum affine algebra Uq (̂g).

Any finite dimensional simple object in C is a highest l-weight module with a
highest l-weight m ∈ P+, denoted by L(m) (cf. [8]). The elements in P+ are called
dominant monomials.

Frenkel-Reshetikhin [14] introduced the q-character map which is an injective ring
morphism χq from the Grothendieck ring of C to ZP = Z[Y±1

i,a ]i∈I ,a∈C× . For a
Uq (̂g)-module V , χq(V ) encodes the decomposition of V into common generalized
eigenspaces for the action of a large commutative subalgebra ofUq (̂g) (the loop-Cartan
subalgebra). These generalized eigenspaces are called l-weight spaces and generalized
eigenvalues are called l-weights. One can identify l-weightswithmonomials inP [14].
Then the q-character of a Uq (̂g)-module V is given by (cf. [14])

χq(V ) =
∑

m∈P
dim(Vm)m ∈ ZP,

where Vm is the l-weight space with l-weight m.
Let Q+ be the monoid generated by

Ai,a = Yi,aqYi,aq−1

∏

j∈I ,i∼ j

Y−1
j,a , i ∈ I , a ∈ C

×. (2.6)

There is a partial order � on P (cf. [14]) defined by m′ � m if and only if mm′−1 ∈
Q+. For any m ∈ P+, one has

χq(L(m)) = m

(

1 +
∑

m′≺m

am,m′m′
)

where only finitelymany terms are non zero. For i ∈ I , a ∈ C
×, k ∈ Z≥1, themodules

X (k)
i,a := L(Yi,aYi,aq2 · · · Yi,aq2k−2)
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are called Kirillov–Reshetikhin modules. The modules X (1)
i,a = L(Yi,a) are called

fundamental modules.

2.4 Categorification of cluster algebras

Recall the indeterminates Yi,a, i ∈ I , a ∈ C
× from the previous Section. As in the

works of Hernandez–Leclerc [22–24], we will only be considering shift parameters a
such that a ∈ qZ and therefore we will simply write Yi,p instead of Yi,q p for every
p ∈ Z. In the same way we have

Ai,p = Yi,p+1Yi,p−1

∏

j∈I ,i∼ j

Y−1
j,p, i ∈ I , p ∈ Z. (2.7)

Following [32], we consider the smallest monoidal subcategory C≤ξ of C containing
all fundamental representations L(Yi,p), (i, p) ∈ I≤ξ and stable under taking subquo-
tients and extensions (this category was denoted C− in [24] where it was introduced for
certain choices of height functions ξ ). The Kirillov–Reshetikhin modules belonging
to C≤ξ are the X (k)

i,p such that (i, p) ∈ I≤ξ and 1 ≤ k ≤ 1 + (ξ(i) − p)/2. As shown
by the results below from [23, 24], a special subfamily of these simple objects play a
distinguished role from the perspective of the cluster theory, namely

Xi,p := X1+(ξ(i)−p)/2
i,p = L(Yi,pYi,p+2 · · · Yi,ξ(i)) (i, p) ∈ I≤ξ .

Constructed by Hernandez–Leclerc in a former work [23], the category CQ is
the monoidal subcategory of C≤ξ generated by the fundamental representations
L(Yi,p), (i, p) ∈ IQ . The Kirillov–Reshetikhin modules belonging to CQ are the

X (k)
i,p such that (i, p) ∈ IQ and 1 ≤ k ≤ 1 + (ξ(i) − p)/2.
Recall the bijectionϕ fromSect. 2.2. One of themain results of [23] is the following:

Theorem 2.5 ([23, Theorem 6.1]) There is an algebra isomorphism C ⊗ K0(CQ) �
C[N] inducing a bijection from the set of isomorphism classes of simple objects in
CQ to the elements of the dual canonical basis of C[N]. Furthermore, under this
isomorphism, one has

∀(i, p) ∈ IQ, r∗
ϕ(i,p)

iQ = [L(Yi,p)] and x
iQ
ϕ(i,p) = [Xi,p].

The next statement deals with the larger category C≤ξ .

Theorem 2.6 ([24, Theorem 5.1]) The complexified Grothendieck ring C ⊗ K0(C≤ξ )

is isomorphic to a cluster algebra A≤ξ , with an initial cluster given by the classes of
the Kirillov–Reshetikhin modules Xi,p, (i, p) ∈ I≤ξ .

The exchange quiver associated to the cluster given by Theorem 2.6 is explicitly
constructed in [24]. It is checked in [32] (see [32, Proposition 7.27]) that this quiver
is essentially the same as the exchange quivers considered by Berenstein–Fomin–
Zelevinsky [2] and Geiss–Leclerc–Schröer [19]. Hence by analogy with the standard
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seeds S i in C[N] � C ⊗ K0(CQ) (see Sect. 2.1), we will denote by Q̂iQ this exchange

quiver, and by ŜiQ the seed of A≤ξ given by

ŜiQ =
((

x
̂iQ
1 , x

̂iQ
2 , . . .

)

, Q
̂iQ

)

with x
̂iQ
t = [Xϕ−1(t)] for each t ≥ 1.

In particular, if 1 ≤ t ≤ N , then the flag minor x
iQ
t ∈ C[N] is identified with the

cluster variable x
̂iQ
t ∈ A≤ξ via the injection

C[N] � C ⊗ K0(CQ) ↪→ C ⊗ K0(C≤ξ ) � A≤ξ .

2.5 Truncated q-characters and T-systems

Using the notations of Sect. 2.2, we let Y≤ξ and YQ denote the subtori of Y given by

Y≤ξ := Z[Y±1
i,p , (i, p) ∈ I≤ξ ] and YQ := Z[Y±1

i,p , (i, p) ∈ IQ] ⊂ Y≤ξ .

A useful tool to study the structure of the objects of C≤ξ or CQ is the notion of
truncated q-character, a truncated version of Frenkel–Reshetikhin q-character [14].
It is an algebra homomorphism

χ̃q : K0(C≤ξ ) −→ Y≤ξ

such that for every object M in C≤ξ , the truncated q-character χ̃q(M) is obtained from
χq(M) by removing all monomials which do not belong to Y≤ξ . It is proved in [24]
that χ̃q is injective. This morphism restricts to an embedding

K0(CQ) −→ YQ

that we still denote χ̃q . It is known that the truncated q-characters of the modules
Xi,p, (i, p) ∈ I≤ξ are reduced to a single term namely their dominant monomial
Yi,p · · · Yi,ξ(i) (this is of course not true anymore for the other Kirillov–Reshetikhin
modules).

It is shown in [21, 42] that q-characters of Kirillov–Reshetikhin modules sat-
isfy T -system relations. Therefore the truncated q-characters of Kirillov–Reshetikhin
modules also satisfy T -system relations:

χ̃q(L(X (k)
i,p))χ̃q(L(X (k)

i,p−2)) = χ̃q(L(X (k+1)
i,p−2))χ̃q(L(X (k−1)

i,p )) +
∏

j∼i

χ̃q(L(X (k)
j,p−1)).

(2.8)
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3 Quantum Cartanmatrices

Let g be of simply-laced type and let C(z) be the corresponding quantum Cartan
matrix, given by

Ci, j (z) :=

⎧

⎪

⎨

⎪

⎩

z + z−1 if i = j,

−1 if i ∼ j,

0 otherwise.

This matrix is invertible and we denote by C̃(z) its inverse. For each (i, j) ∈ I 2, we
let C̃i, j (z) denote the entry of the matrix C̃(z) in position (i, j). For every m ≥ 1 we
define C̃i, j (m) as the coefficient of the term of degree m in the expansion of C̃i, j (z)
as a power series in z, i.e.

C̃i, j (z) =
∑

m≥1

C̃i, j (m)zm .

Byconventionweextend this definition to all integers by setting C̃i, j (m) := 0 ifm ≤ 0.
It is a well-known fact (that can be straightforwardly deduced from the definition) that
the C̃i, j (m) satisfy the following relations:

{

C̃i, j (m + 1) + C̃i, j (m − 1) − ∑

k∼ j C̃i,k(m) = 0 for any m ≥ 1

C̃i, j (1) = δi, j .
(3.1)

The following important result is due to Hernandez–Leclerc [23]. We state it using
the bijection ϕ and the signs εi,p introduced in Sect. 2.2.

Theorem 3.1 ([23, Proposition 2.1]) Let (i, p) and ( j, s) be two elements of I≤ξ and
assume s ≥ p. Then one has

C̃i, j (s − p + 1) = εi,pε j,s
〈

βϕ(i,p), βϕ( j,s)
〉

Q .

The following consequence will be also useful for us, especially for the computa-
tions we perform in Sect. 8. It can be straightforwardly deduced from Theorem 3.1
using the expression of theCartan pairing in terms of Euler-Ringel forms (see Sect. 2.2)
as well as the well-known identity 〈β, γ 〉Q = −〈τ−1

Q (γ ), β〉Q .

Corollary 3.2 ([23, Proposition 3.2]) For any (i, p), ( j, s) ∈ (I≤ξ )2 define
N (i, p; j, s) := C̃i, j (s − p + 1) − C̃i, j (s − p − 1). Then one has

N (i, p; j, s) =
{

εi,pε j,s
(

βϕ(i,p, βϕ( j,s)
)

if s > p,

δi, jδp,s otherwise.
(3.2)
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We conclude this section with the following elementary property of the coefficients
C̃i, j (m) that will be useful in Sects. 6.2 and 11.1.

First of all, let us denote by d(i, j) the length of the shortest (non oriented) path
from i to j in the Dynkin diagram of g (this makes sense as it is a connected acyclic
graph). In particular d(i, i) = 0 for any i and d(i, j) = 1 if i ∼ j .

Lemma 3.3 Let i, j ∈ I and let m ∈ N≥1. Assume that m ≤ d(i, j). Then one has
C̃i, j (m) = 0.

Proof We prove by strong induction on m ≥ 1 the statement

∀i, j d(i, j) ≥ m ⇒ C̃i, j (m) = 0.

If m = 1 then this amounts to prove that if i �= j then C̃i, j (1) = 0. But this follows
from the second equality of (3.1). Let m ≥ 1 and assume the desired statement holds
for all m′ such that 1 ≤ m′ ≤ m. Let i, j ∈ I such that d(i, j) ≥ m + 1. Then the first
relation of (3.1) yields

C̃i, j (m + 1) = −C̃i, j (m − 1) +
∑

k∼ j

C̃i,k(m).

One has d(i, j) ≥ m+1 > m−1 hence C̃i, j (m−1) = 0 by the induction assumption.
Moreover for each k ∼ j , one has d(i, k) = d(i, j) ± 1 and hence d(i, k) ≥ m. Thus
the induction assumption again yields C̃i,k(m) = 0 for each k ∼ j . This proves the
Lemma. ��
Remark 3.4 With similar arguments, one can also prove that C̃i, j (d(i, j)+1) = 1 for
any i, j ∈ I .

Example 3.5 Consider g of type A3. Then the series C̃i, j (z), i, j ∈ {1, 2, 3} are given
as follows:

C̃1,1(z) = z − z7 + z9 − z15 + · · ·
C̃1,2(z) = z2 − z6 + z10 − z14 + · · ·
C̃1,3(z) = z3 − z5 + z11 − z13 + · · ·
C̃2,2(z) = z + z3 − z5 − z7 + z9 + z11 − z13 − z15 + · · ·
C̃2,3(z) = z2 − z6 + z10 − z14 + · · ·
C̃3,3(z) = z − z7 + z9 − z15 + · · ·

4 Representation theory of quiver Hecke algebras

This section is devoted to some reminders on quiver Hecke algebras and their finite-
dimensional representations. We will mostly focus on certain distinguished families
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of representations, such as the cuspidal modules and the (strongly) homogeneous
modules following [5, 34, 35]. Although a large part of the content of this section
remains valid in non-simply-laced types, we will restrict ourselves to the setting of
Sect. 2.1, and refer to [5, 35] for a more general exposition.

4.1 Quiver Hecke algebras

Let M denote the set of all finite words over the alphabet I . For any such word
j = ( j1, . . . , jd), the weight of j is defined as

wt(j) :=
∑

i∈I
�{k, jk = i}αi ∈ �+.

Quiver Hecke algebras are defined as a family {R(β), β ∈ �+} of associative C-
algebras indexed by �+. For every β ∈ �+, the algebra R(β) is generated by three
kind of generators: there are polynomial generators x1, . . . , xn , braiding generators
τ1, . . . , τn−1, and idempotents e(j), j ∈ Seq(β) where Seq(β) is the finite subset of
M given by

Seq(β) := {j ∈ M | wt(j) = β}.

The idempotent generators commute with the polynomial ones and are orthogonal to
each other in the sense that e(j)e(j′) = δj,j′e(j). For each β ∈ �+, one can consider
the category R(β)-mod of finite dimensional R(β)-modules, as well as

R − mod :=
⊕

β

R(β) − mod.

The category R-mod can be endowed with a structure of a monoidal category via a
monoidal product ◦ constructed as a parabolic induction. Therefore the Grothendieck
group K0(R)-mod has a ring structure.

The following results are the main properties of quiver Hecke algebras:

Theorem 4.1 (Khovanov–Lauda [33], Rouquier [45]) There is an algebra isomor-
phism

C ⊗ K0(R − mod)
�−→ C[N].

Theorem 4.2 (Rouquier [45], Varagnolo–Vasserot [48]) The above isomorphism
induces a bijection between the set of classes of simple objects in R-mod and the
dual canonical basis of C[N].

4.2 Irreducible finite-dimensional representations

This subsection is devoted to some reminders about the main results of classification
of simple objects in the category R-mod associated to a finite-type simple Lie algebra
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g, due to Kleshchev–Ram [35], McNamara [38] and Brundan–Kleshchev–McNamara
[5]. We recall in particular the notion of cuspidal representation with respect to any
fixed convex ordering on the set of positive roots 	+.

We assume< is an arbitrary convex ordering on	+, and we let (i1, . . . , iN ) denote
the corresponding reduced expression of w0, the longest element of the Weyl group
W of g. Then one has 	+ = {β1 < · · · < βN } with

βk = si1 · · · sik−1(αik )

for every 1 ≤ k ≤ N . Recall from Sect. 2.1 the dual root vectors r∗
j
i ∈ C[N] for each

1 ≤ j ≤ N . It was proved by McNamara [38] that there exists a family of simple
modules {Sβ, β ∈ 	+} in R-mod, unique up to isomorphism, such that [Sβ j ] = r∗

j
i

for every 1 ≤ j ≤ N . The module Sβ is called the cuspidal module associated to β

(with respect to the chosen convex ordering < on 	+).
GeneralizingLeclerc’s algorithm ([36, Sect. 4.3]),Brundan–Kleshchev–McNamara

[5] describe a procedure producing a word jβ ∈ M for every positive root β ∈ 	+,
which we now briefly recall. The crucial tool, that will be useful in the sequel of the
present paper, is the notion of minimal pair.

Definition 4.3 (McNamara [38], Brundan–Kleshchev–McNamara [5]) Let β ∈ 	+
be a positive root. A pair of positive roots (γ, δ) ∈ 	2+ with γ < δ is called a minimal
pair for β if γ + δ = β and there is no other pair (γ ′, δ′) such that γ ′ + δ′ = β and
γ < γ ′ < β < δ′ < δ.

Let us now fix a choice of a minimal pair (γβ, δβ) for each positive root β. One
inductively defines the words jβ as follows. For each i ∈ I , set jαi := (i). If β ∈ 	+
is not a simple root, then jβ := jγβ jδβ . This yields a finite collection of words, in
bijection witht the set of positive roots of g. In the case considered in [35], where the
order < arises from a total order on I , the words jβ1 , . . . , jβN are called good Lyndon
words.

We can now state the main classification result.

Theorem 4.4 (Kleshchev–Ram[35],McNamara [38],Brundan–Kleshchev–McNamara
[5]) There is a bijection between the set of isomorphism classes of simple objects in
R-mod and the set N

	+ , given by

c := (c1, . . . , cN ) ∈ N
	+ �−→ L(c) := hd

(

S◦cN
βN

◦ · · · ◦ S◦c1
β1

)

.

Moreover, for each (c1, . . . , cN ) ∈ N
	+ , one has

dimC

(

e(jcNβN
· · · jc1β1)L(c)

)

= 1.

In this statement, hd(M) stands for the head of a module M , i.e. the quotient of M
by its radical (the intersection of its maximal submodules).
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4.3 Short exact sequences in R-mod

In this paragraph, we recall an important result proved in [5] as the length two property.
It will play a crucial role in Sect. 7 for our computations of the images of certain dual
root vectors under Baumann–Kamnitzer–Knutson’s morphism D, especially in type
Dn, n ≥ 4.

We fix an arbitrary convex ordering < on 	+.

Theorem 4.5 ([5, Theorem 4.7]) Let β ∈ 	+ and let (γ, δ) be a minimal pair for β.
Let c = (c1, . . . , cN ) be the N-tuple of integers defined by ck := 1 if βk ∈ {γ, δ} and
ck := 0 otherwise. Then one has a short exact sequence in R-mod:

0 −→ Sβ −→ Sδ ◦ Sγ −→ L(c) −→ 0.

Remark 4.6 This short exact sequence is an ungraded version of Brundan–Kleshchev–
McNamara’s statement, but it will be sufficient for our purpose.

4.4 Homogeneousmodules over quiver Hecke algebras

In this paragraph, we recall Kleshchev–Ram’s construction of simple homogeneous
representations of simply-laced type quiver Hecke algebras. We begin with some
reminders on the combinatorics of fully-commutative elements of Weyl groups fol-
lowing Stembridge [47]. For any w ∈ W , we will denote by Red(w) the set of all
reduced expressions of w.

For w ∈ W and i = (i1, . . . , iN ) ∈ Red(w), one can define an infinite sequence
î := (i1, i2, . . .) exactly as in Sect. 2.2. Then using the notation k+ introduced in
Sect. 2.2, for every 1 ≤ k ≤ N we have that k+ > N if and only if k is the position of
the last occurrence of ik in i.

The following definition is essentially due to Stembridge [47] relying on former
constructions by Proctor [43]. Here we write it in a way suited to simply-laced cases.

Definition 4.7 (Stembridge [47]) Let w ∈ W .

• The elementw is called fully-commutative if for every i ∈ Red(w) and 1 ≤ k ≤ N ,
one has

k+ ≤ N ⇒ �{l | k < l < k+, ik ∼ il} ≥ 2.

• The element w is called dominant minuscule if for every i ∈ Red(w) and 1 ≤ k ≤
N , one has

k+ ≤ N ⇒ �{l | k < l < k+, ik ∼ il } = 2 and k+ > N ⇔ �{l | l > k, ik ∼ il } = 1.

We will denote by FC (resp.Min+) the set of fully-commutative (resp. dominant
minuscule) elements of W . Note that Min+ ⊂ FC.

We now recall the construction of simple homogeneous representations following
Kleshchev–Ram [34].
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Theorem 4.8 ([34, Theorem 3.6]) For every w ∈ FC and for every i ∈ Red(w), there
exists a unique simple module S(i) in R-mod such that dim e(i)S(i) = 1. Moreover,
if i (resp. i′) is a reduced expression of w (resp. w′), then the modules S(i) and S(i′)
are isomorphic in R-mod if and only if w = w′.

For each w ∈ FC, we denote by S(w) the module S(i) for an arbitrary reduced
expression i of w.

Remark 4.9 The modules S(w),w ∈ FC are called homogeneous. This is due to the
fact the quiver Hecke algebras R(β), β ∈ �+ carry a natural Z-grading, and the
modules S(w) are precisely those which are concentrated in a single degree for this
grading.

The following distinguished family of homogeneous representations will be of
particular interest for us, especially in Proposition 5.2 below.

Definition 4.10 (Kleshchev–Ram [34]) The simple modules S(w) forw ∈ Min+ are
called strongly homogeneous.

5 Baumann–Kamnitzer–Knutson’s morphismD

This section is devoted to several reminders on the definition and some of the main
properties of the algebraic morphism D recently introduced by Baumann–Kamnitzer–
Knutson [1]. We also recall certain results from the first author [7] that will be needed
in Sect. 9, in particular the propagation result [7, Theorem 5.6] (Theorem 5.3 below)
which will be involved in the proof of the second main result of this paper (Theo-
rem 9.1).

5.1 Geometric Satake correspondence

Throughout this sectionG denotes a simple simply-connected group, P stands for the
weight lattice and W the Weyl group of G. Let G∨ denote the Langlands dual of G,
fix a Borel subgroup B∨ in G∨ and a maximal torus T∨ in B∨. Furthermore for every
λ ∈ P+ we let L(λ) denote the finite-dimensional irreducible representation of G of
highest weight λ, and L(λ)μ denote its weight subspace of weight μ for any μ ∈ P .

We set O := C[[t]] and K := C((t)). The affine Grassmannian GrG∨ of G∨ is
defined as

GrG∨ := G∨(K)/G∨(O).

There is a natural action of T∨(C) on GrG∨ whose locus of fixed points is given by a
collection {Lμ,μ ∈ P} of points in GrG∨ indexed by the weight lattice ofG. For each
(λ, μ) ∈ P+ × P , Mirković–Vilonen [39] constructed a closed subvarietyMVλ,μ of
GrG∨ such that there is an isomorphism of vector spaces

H•(MVλ,μ) � L(λ)μ. (5.1)



    9 Page 22 of 58 E. Casbi, J.-R. Li

The irreducible components of MVλ,μ are called the MV cycles of type λ and of
weightμ. For every λ ∈ P+, the images under the isomorphism (5.1) of the homology
classes of allMV cycles of type λ and of weightμ (μ ∈ P) form a basis of L(λ), called
theMV basis of L(λ). Using the classical injections from L(λ) to the coordinate ring
C[N] (see for example [1, Sect. 2.5]), one can then build a basis of C[N] out of the
MV bases of all the simple representations L(λ) of G, called the MV basis of C[N],
whose elements are indexed by certainMV cycles called stable MV cycles. We denote
by bZ the element of the MV basis corresponding to the stable MV cycle Z .

5.2 Equivariant multiplicities

One of Baumann–Kamnitzer–Knutson’s main motivations was Muthiah’s conjecture
[40] stating the W -equivariance of a certain map L(λ) −→ C(T). The proof of [1]
relies on the notion of equivariant multiplicities developped by Brion [4] out of former
constructions due to Joseph [26] and Rossmann [44].

Given a closed projective scheme X together with an action of a torus T on X , we
let XT denote the set of fixed points of this action and HT• (X) denote the T -equivariant
homology of X . It follows from Brion’s results [4] that the set of homology classes of
the points in XT actually forms a basis of HT• (X). Therefore, for any closed subvariety
Y ⊂ X stable under the action of T , one can decompose the class of Y on this basis
as

[Y ] =
∑

p∈XT

εTp (Y )[{p}].

The coefficient εTp (Y ) is an element of the field C(T ) of functions on T and is called
the equivariant multiplicity of Y at p. Note that εTp (Y ) = 0 if p /∈ Y (see [4, Theorem
4.2 (i)]).

5.3 Themorphism D

Baumann–Kamnitzer–Knutson [1] used this notion of equivariant multiplicity in the
study of theMVbasis ofC[N] viaDuistermaat–Heckmanmeasures.With the notations
of the previous section, we consider X := GrG∨ together with the action of the torus
T∨(C). As recalled above, the set of fixed points of this action is {Lμ,μ ∈ P}.

The definition of D goes as follows. It is known (see for instance [18, 19]) that
C[N] can be identified with the dual (as a Hopf algebra) of U (n). For any f ∈ C[N]
and e ∈ U (n), we will denote by f (e) the canonical pairing between f and e. Choose
a root vector ei ∈ n of weight αi for each i ∈ I . Then Baumann–Kamnitzer–Knutson
[1] define the following map:

D : C[N] −→ C(T ) = C(α1, . . . , αn)

f �−→ ∑

j f (e j1 · · · e jd ) 1
α j1 (α j1+α j2 )···(α j1+···α jd )

.
(5.2)

Although this sum a priori runs over all arbitrary sequences j of elements of I , it is
nevertheless finite asU (n) acts locally nilpotently on C[N]. The following statement,
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which is one of the main results of [1], asserts that the evaluation of D on an element
bZ of the Mirković–Vilonen basis can be related to a certain equivariant multiplicity
of the corresponding MV cycle Z .

Theorem 5.1 ([1, Lemma8.3,Corollary 10.6]) (1) Themap D is analgebramorphism.
(2) For any μ ∈ −�+ and any stable MV cycle Z of weight μ, one has

D(bZ ) = εT
∨

Lμ
(Z).

The morphism D provides a useful tool to compare various remarkable bases of
C[N]. For instance, the definition of D can be conveniently reformulated using the
categorification of C[N] via modules over the quiver Hecke algebras associated to g
(see Sect. 4.1): for any β ∈ �+, any module M in R(β)-mod can be decomposed into
weight subspaces:

M =
⊕

j∈Seq(β)

e(j) · M

(we refer to Sect. 4.1 for the notations). Then one has

D([M]) =
∑

j∈Seq(β)
j:=( j1,..., jd )

dim (e(j) · M))
1

α j1(α j1 + α j2) · · · (α j1 + · · · + α jd )
. (5.3)

In Sect. 7 we will use this to investigate the values of D on the elements of the dual
canonical basis of C[N]. A similar expression can be written for the evaluation of D
on the elements of the dual semi-canonical basis of C[N] in terms of representations
of preprojective algebras. The dimensions of the weight subspaces of modules in R-
mod are then replaced by the Euler characteristics of certain type-j flag varieties in
the terminology of Geiss–Leclerc–Schröer [18]. As an application of Theorem 5.1,
Dranowski, Kamnitzer, and Morton-Ferguson show in an appendix of [1] that the MV
basis and the dual semicanonical basis ofC[N] are not the same by exhibiting elements
of these bases satisfying some compatibility condition (see [1, Definition 12.1]) but
where D nonetheless takes different values.

We conclude this paragraph by recalling from [7] the following remarkable prop-
erty of Kleshchev–Ram’s strongly homogeneous modules in R-mod (see Sect. 4.4)
involving Baumann–Kamnitzer–Knutson’s morphism D. It can be essentially viewed
as a representation-theoretic reformulation of Nakada’s colored hook formula [41]
using the identity (5.3).

Proposition 5.2 ([7, Proposition 5.1]) Let w be a dominant minuscule element in W
and S(w) the strongly homogeneous simple module in R-mod corresponding to w

under the bijection of Theorem 4.8. Then one has

D([S(w)]) =
∏

β∈	w+

1

β
where 	w+ := 	+ ∩ (−w	+).
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5.4 The values of D on the flagminors ofC[N]

We now recall some setting from the first author’s previous work [7] and in particular
the propagation result [7, Theorem 5.6]. Recall from Sect. 2.1 that there is a distin-
guished family of cluster variables in C[N] called flag minors, grouped into clusters
indexed by the set of reduced epressions ofw0. The main aim of [7] was to investigate
the values taken by Baumann–Kamnitzer–Knutson’s morphism D on the flag minors
of C[N]. It was observed in particular that these values seemed to share a similar form
with the images under D of the elements of the dual canonical basis corresponding to
Kleshchev–Ram’s strongly homogeneous modules (see Proposition 5.2 above) or the
elements of the MV basis associated to smooth MV cycles.

As in [7], we consider the following properties of the flag minors x i1, . . . , x
i
N for

any reduced expression i = (i1, . . . , iN ) of w0:

(Ai) For every 1 ≤ j ≤ N , one has

D(x ij ) = 1/P i
j

where P i
j is a product of positive roots.

(Bi) For every 1 ≤ j ≤ N one has

P i
j P

i
j− = β j

∏

l< j<l+
il∼i j

P i
l

where β j = si1 · · · si j−1(αi j ).
(Ci) For every j such that j+ ≤ N and every 1 ≤ i ≤ N , one has

[βi ; P i
j ] − [βi ; P i

j+] ≤ 1

where [β; P] stands for the multiplicity of the positive root β in the polynomial
P .

The following statement was one of the main results of [7]. It will be involved in
the proof of the second main result of this paper (Theorem 9.1).

Theorem 5.3 ([7, Theorem 5.6]) Let g be a simple Lie algebra of simply-laced type.
Assume there exists a reduced expression i0 such that the standard seed S i0 satisfies
the three properties (Ai0), (Bi0), (Ci0). Then for every reduced expression i of w0, the
properties (Ai), (Bi), (Ci) hold for the standard seed S i of C[N].

6 Definition and properties of themorphism ˜D�

In this section we introduce themain object of the present paper, namely themorphism
˜Dξ : C ⊗ Y≤ξ −→ C(α1, . . . , αn). The definition of ˜Dξ involves the coefficients of
the inverse of the quantum Cartan matrix associated to g (see Sect. 3). We state the
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first main result of this paper (Theorem 6.1), which relates the restriction ˜DQ of ˜Dξ

on the subtorus C ⊗ YQ to Baumann–Kamnitzer–Knutson’s morphism D introduced
in [1]. In this framework, we also provide a general formula for the images under
˜Dξ of the cluster variables of the seed ŜiQ of A≤ξ arising from Hernandez–Leclerc’s
construction [24] and we prove that the obtained rational fractions satisfy a family
of remarkable properties, analogous to (Ai), (Bi), (Ci) from [7] (see also Sect. 5.4
above).

6.1 Themorphisms ˜D� and ˜DQ

Let Q be an arbitrary orientation of the Dynkin diagram of a simply-laced Lie algebra
g and let ξ be a height function adapted to Q. Recall from Sect. 2 the set I≤ξ (resp. IQ),
the torusY≤ξ (resp.YQ) containing the truncatedq-characters of all the representations
in the category C≤ξ (resp. CQ), as well as the bijection ϕ : I≤ξ −→ Z≥1.

We define the algebra morphism ˜Dξ from the complexified torus C ⊗ Y≤ξ to the
field C(α1, . . . , αn) as follows:

∀(i, p) ∈ I≤ξ , ˜Dξ (Yi,p) :=
∏

( j,s)∈I≤ξ

β
C̃i, j (s−p−1)−C̃i, j (s−p+1)
ϕ( j,s) . (6.1)

As C̃i, j (m) := 0 if m ≤ 0, only the couples ( j, s) ∈ I≤ξ , s ≥ p have a non trivial
contribution, and hence this product is finite. We also define the morphism ˜DQ as the
restriction of ˜Dξ to the complexified torus C ⊗ YQ .

The composition of the truncated q-character morphism χ̃q (see Sect. 2.5) with
Hernandez–Leclerc’s isomorphisms (see Theorems 2.5 and 2.6) yields an embedding

ι : A≤ξ −→ C ⊗ Y≤ξ

that restricts to an embedding C[N] −→ C⊗YQ following the commutative diagram

C[N] �
C ⊗ K0(CQ)

χ̃q
C ⊗ YQ

A≤ξ �
C ⊗ K0(C≤ξ )

χ̃q
C ⊗ Y≤ξ

We now state the first main result of this work.

Theorem 6.1 Let g be a simple Lie algebra of simply-laced type and let Q be an arbi-
trary orientation of the Dynkin diagram of g. Then the following diagram commutes:

C[N]

D

�
C ⊗ K0(CQ)

χ̃q
C ⊗ YQ

D̃Q

C(αi , i ∈ I )
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In other words, Hernandez–Leclerc’s categorification allows to embed C[N] into
the torusYQ via the (truncated) q-charactermorphism; then D can be interpreted as the
restriction of ˜DQ on C[N], viewed as a subalgebra of YQ . The proof of this statement
will require several steps which we now briefly describe. We begin in Sect. 6.2 by
establishing a family of remarkable properties satisfied by the values of ˜Dξ on the

cluster variables x
̂iQ
t , t ≥ 1 of the initial seed of A≤ξ constructed by Hernandez–

Leclerc [24] (see Sect. 2.4). The proofs are valid for any simply-laced type and any
orientation Q. These properties will play a crucial role in Sect. 9 for the proofs of
Theorem 6.1 as well as the second main result of this paper (Theorem 9.1). Before
that, we investigate in detail the case where Q is a certain specific orientation Q0 of the
Dynkin diagram of g. Sections7 and 8 are respectively devoted to providing explicit
formulas in types An and Dn for the evaluation of D and ˜DQ0 on the dual root vectors
of C[N] (with respect to the convex ordering on 	+ corresponding to iQ0 ). Note that
the case of type An is in fact contained as a subcase of the case of type Dn but for
we chose to treat them in distinct subsections, for the sake of readibility. We treat the
types E6, E7 and E8 separately. We then prove in Sect. 9 that D and ˜DQ0 coincide
on C[N]. Together with the propagation result from the first author’s previous work
[7] (Theorem 5.3 above), this allows us to prove the second main result of this paper
(Theorem 9.1). The proof is valid for any simply-laced type and any orientation Q.
We conclude the proof of Theorem 6.1 for an arbitrary orientation by combining this
with the properties of ˜Dξ established in Sect. 6.2.

6.2 Properties of ˜D� and initial seed forA≤�

In this subsection, we consider the initial seed ŜiQ in the cluster algebra A≤ξ (see

Sect. 2.4). Recall that the cluster variables of ŜiQ are given by x
̂iQ
1 , x

̂iQ
2 , . . . with

ι(x
̂iQ
t ) = χ̃q(Xϕ−1(t)) for each t ≥ 1 where ϕ is the bijection introduced in Sect. 2.2.

Throughout the rest of this section, we will simply write xt for x
̂iQ
t . We prove

that the images of these cluster variables under the morphism ˜Dξ satisfy properties
( ÂiQ ), (B̂iQ ), (ĈiQ ) analogous to the properties (AiQ ), (BiQ ), (CiQ ) from Sect. 5.4,

with iQ replaced by its infinite analoguêiQ (see Sect. 2.2).Whereas the latter properties
remained mysterious in [7], the former are now naturally deduced from the definition
of ˜Dxi using the properties of the coefficients C̃i, j (m) (Sect. 3). Note that each property
( ÂiQ ), (B̂iQ ) (resp. (ĈiQ )) is an infinite systemof equalities (resp. inequalities) indexed
by Z≥1, whereas (AiQ ), (BiQ ), (CiQ ) were finite systems, indexed by {1, . . . , N }.

Lemma 6.2 Let t ≥ 1 and let (i, p) := ϕ−1(t) ∈ I≤ξ . Then one has

˜Dξ (ι(xt )) =
∏

( j,s)∈I≤ξ

1

β
C̃i, j (s−p+1)
ϕ( j,s)

.
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Proof Let us fix t ≥ 1 and (i, p) := ϕ−1(t) ∈ I≤ξ . Recall from Sect. 2 that one has
χ̃q(Xi,p) = Yi,pYi,p+2 · · · Yi,ξ(i). Hence applying the definition of ˜Dξ , we get

˜Dξ (ι(xt )) = ˜Dξ

(

χ̃q(Xi,p)
) = ˜Dξ (Yi,p · · · Yi,ξ(i)) = ˜Dξ (Yi,p) · · · ˜DQ(Yi,ξ(i))

=
∏

( j,s)∈I≤ξ

β
−(N (i,p; j,s)+···+N (i,ξ(i); j,s))
ϕ( j,s)

whereN (i, t; j, s) := C̃i, j (s − t + 1) − C̃i, j (s − t − 1) as in Sect. 3. Obviously one
has

N (i, p; j, s) + · · · + N (i, ξ(i); j, s) = C̃i, j (s − p + 1) − C̃i, j (s − ξ(i) − 1)

In order to conclude, it remains to observe that one always has ξ(p)− ξ(q) ≤ d(p, q)

for any p, q ∈ I (with equality if and only if p ∈ B(q) with the notations of Sect. 2.2)
where d(p, q) is the distance function on I defined in Sect. 3. In particular one has
s − ξ(i) − 1 ≤ ξ( j) − ξ(i) − 1 < d(i, j) for every ( j, s) ∈ I≤ξ . Thus Lemma 3.3
implies

N (i, p; j, s) + · · · + N (i, ξ(i); j, s) = C̃i, j (s − p + 1)

which proves the Lemma.

We now prove the main statements of this section (Propositions 6.3, 6.5 and 6.8)
which can be seen as analogues of (AiQ ), (BiQ ) and (CiQ ) for the seed ŜiQ in A≤ξ .
Note that Proposition 6.3 restricts to the variables xt , t ≤ 2N . We postpone the case
t > 2N to Sect. 11 (see Corollary 11.2), as it is not strictly necessary for the proof of
Theorem 9.1.

Proposition 6.3 (Property ( ÂiQ )) Let t ∈ {1, . . . , 2N }. Then one has

˜Dξ (ι(xt )) =
∏

β∈	+

1

βnt (β)
with nt (β) ∈ N for every β ∈ 	+.

Moreover, if nt (β) �= 0 then nt (β) = |〈βt , β〉Q |.
Proof Let (i, p) := ϕ−1(t) and γ := βt . As 1 ≤ t ≤ 2N , we have ξ(i) ≥ p >

ξ(i) − 2h by (2.5). Let β ∈ 	+. By Lemma 6.2 the multiplicity nt (β) of β in
(

˜Dξ (ι(xt ))
)−1

is

nt (β) =
∑

( j,s)∈Ip,β
C̃i, j (s − p + 1), Ip,β := {( j, s) ∈ I≤ξ | s ≥ p, βϕ( j,s) = β}.

If Ip,β = ∅ then nt (β) = 0 and we are done. Otherwise, let ( j, s) ∈ Ip,β . If ( j, s) /∈
ϕ−1([1, 2N ]) then s < ξ( j) − 2h + 2 by (2.5) and hence we have ξ(i) − 2h + 2 ≤
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p ≤ s < ξ( j) − 2h + 2. In particular we have 0 ≤ s − p < ξ( j) − ξ(i) ≤ d(i, j).
By Lemma 3.3 this implies C̃i, j (s − p + 1) = 0.

On the other hand for any ( j, s) ∈ Ip,β ∩ϕ−1([1, 2N ]), one has that for anym ≥ 1,
( j, s − 2mh) /∈ ϕ−1([1, 2N ]) as s − 2mh ≤ ξ( j) − 2h, and ( j, s + 2mh) /∈ I≤ξ as
s + 2mh > ξ( j). Consequently Proposition 2.3, implies that Ip,β ∩ ϕ−1([1, 2N ]) is
either of the form {( j, s); ( j∗, s + h)} or of the form {( j, s)}, for some ( j, s) ∈ I≤ξ .
In the first case, Theorem 3.1 implies

nt (β) = C̃i, j (s − p + 1) + C̃i, j∗ (s + h − p + 1) = ε j,sεi,p〈γ, β〉Q + ε j∗,s+hεi,p〈γ, β〉Q
= ε j,sεi,p〈γ, β〉Q − ε j,sεi,p〈γ, β〉Q = 0.

where we used again Proposition 2.3.
If Ip,β ∩ ϕ−1([1, 2N ]) := {( j, s)} then we distinguish two subcases. If (i, p) and

( j, s) belong both to ϕ−1([1, N ]) (resp. both to ϕ−1([N + 1, 2N ])), then ε j,s = εi,p
and on the other hand the condition s ≥ p implies that there are (possibly trivial)
morphisms but no extensions from the indecomposable object of dimension vector
γ to the one of dimension vector β in the heart modCQ (resp. (modCQ)[−1]) of
Db(modCQ). Hence 〈γ, β〉Q ≥ 0 and Theorem 3.1 yields

nt (β) = C̃i, j (s − p + 1) = ε j,sεi,p〈γ, β〉Q = 〈γ, β〉Q ≥ 0.

If on the contrary (i, p) and ( j, s) do not belong both to ϕ−1([1, N ]) or ϕ−1([N +
1, 2N ]), then ε j,s = −εi,p and on the other hand, in the heart containing (i, p) the
unique couple ( j ′, s′) such that βϕ( j ′,s′) = β necessarily satisfies s′ < p (otherwise
Ip,β would be of cardinality 2). Therefore there are no morphisms from the indecom-
posable object of dimension vector γ to the one of dimension vector β in this heart,
which implies 〈γ, β〉Q ≤ 0. Theorem 3.1 yields

nt (β) = C̃i, j (s − p + 1) = ε j,sεi,p〈γ, β〉Q = −〈γ, β〉Q ≥ 0.

This concludes the proof of the Proposition. ��
Remark 6.4 In the case of the fundamental modules Xi,ξ(i) = L(Yi,ξ(i)), the formula
of Lemma 6.2 can also be rewritten explicitly from the quiver Q as

˜Dξ

(

ι(xϕ(i,ξ(i)))
) = ˜Dξ (Yi,ξ(i)) =

∏

j∈B(i)

1

γ j

where B(i) denotes the set of indices j such that there is a path from j to i in Q (see
Sect. 2.2). Indeed, one has

C̃i, j (s − ξ(i) + 1) =
{

1 if s = ξ( j) and ξ( j) − ξ(i) = d(i, j) by Remark 3.4,

0 otherwise, by Lemma 3.3.

As already mentioned in the end of the proof of Lemma 6.2, ξ( j) − ξ(i) = d(i, j) if
and only if j ∈ B(i), which yields the formula.
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Proposition 6.5 (Property (B̂iQ )) Let t ≥ 1 and let (i, p) := ϕ−1(t) ∈ I≤ξ . Then one
has

˜Dξ (ι(xt )) ˜Dξ

(

ι(xt−)
) = β−1

t

∏

r<t<r+
ir∼i

˜Dξ (ι(xr )) .

Recall the notation NQ(k) from Sect. 2.2. We will need the following observation:

Lemma 6.6 Let t ≥ 1 and let (i, p) := ϕ−1(t) ∈ I≤ξ . Then for any r ≥ 1 such that
ir ∼ i one has

r < t < r+ ⇔ ϕ−1(r) = (ir , p + 1).

Proof This is a consequence of the well-known fact that reduced expressions of w0
adapted to orientations of Dynkin graphs are alternating (see for instance [49]). This
means that each neighbour of the letter i appears exactly once between two consecutive
occurrences of i in iQ . Therefore this also holds for the infinite sequencêiQ , as any
finite subword of length N of̂iQ is still a reduced expression of w0 adapted to some
orientation of the Dynkin graph of g (see Sect. 2.2). Thus there are two possibilities:
if the first occurrence of ir appears before the first occurrence of i , then there is an
arrow from ir to i in Q and hence ξ(ir ) = ξ(i) + 1; furthermore the kth occurrence
of i appears between the kth and the k + 1th occurrences of ir . In other words,
r < t < r+ ⇔ NQ(r) = NQ(t). Thus we get (ξ(ir ) − ξ(i) + 2NQ(t) − 1)/2 =
NQ(t) = NQ(r). If on the other hand the first occurrence of ir appears after the
first occurrence of i , then there is an arrow from i to ir in Q and hence ξ(ir ) =
ξ(i) − 1; furthermore the kth occurrence of i appears between the k − 1th and the kth
occurrences of ir . In other words, r < t < r+ ⇔ NQ(r) = NQ(t) − 1. Thus we get
(ξ(ir ) − ξ(i) + 2NQ(t) − 1)/2 = NQ(t) − 1 = NQ(r). Thus we have proved that

(ir ∼ i and r < t < r+) ⇔ (ir ∼ i and NQ(r) = (ξ(ir ) − ξ(i) + 2NQ(t) − 1)/2).

Recalling the definition of ϕ−1 from Sect. 2.2, this is equivalent to

ϕ−1(r) = (

ir , ξ(ir ) − 2NQ(r) + 2
) = (

ir , ξ(i) − 2NQ(t) + 3
) = (ir , p + 1) .

This finishes the proof of the Lemma. ��
We are now ready to prove Proposition 6.5.

Proof of Proposition 6.5 Let us fix ( j, s) ∈ I≤ξ and investigate the multiplicity of the
positive root βϕ( j,s) in both hand sides of this equality. By Lemma 6.6, one has

∏

r<t<r+
ir∼i

˜Dξ (ι(xr )) =
∏

k∼i

˜Dξ

(

ι(xϕ(k,p+1))
)

.
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Therefore using Lemma 6.2, the multiplicity of βϕ( j,s) in the right hand side can be
written as

−δi, jδp,s −
∑

k∼i

C̃k, j (s − p).

Using the relations (3.1) with m = s − p, this is equal to

−
(

C̃i, j (s − p + 1) + C̃i, j (s − p − 1)
)

.

By Lemma 6.2, this is exactly the multiplicity of βϕ( j,s) in the product

˜DQ
(

ι(xϕ(i,p))
)

˜DQ
(

ι(xϕ(i,p+2))
)

,

which is equal to ˜DQ (ι(xt )) ˜DQ
(

ι(xt−)
)

by (2.2). Thus the multiplicities of βϕ( j,s)

on both hand sides coincide for every ( j, s) ∈ I≤ξ which proves the Proposition. ��
Remark 6.7 Recall from (2.7) the variables A j,s, j ∈ I , s ∈ Z. It is straightforward to
check either from Proposition 6.5 or directly from the definition of ˜Dξ that for every
(i, p) ∈ I≤ξ one has

˜Dξ

(

A−1
i,p−1

)

= βϕ(i,p−2)

βϕ(i,p)
= βt+

βt

where t := ϕ(i, p). This can be viewed as a generalization of [7, Remark 6.4] as it is
known from the works of Hernandez–Leclerc [24] that the A−1

i,p−1, (i, p) ∈ I≤ξ are
exactly the images under ι of Fomin-Zelevinsky’s variables ŷ j (see [13]) for the seed

ŜiQ (up to the convention used for the definition of ŷ j ).

Recall from Sect. 5.4 that for any rational fraction Y and any positive root β, we
denote by [β; Y ] the (algebraic) multiplicity of β in Y .

Proposition 6.8 (Property (ĈiQ )) Let (i, p) ∈ I≤ξ . Then for any β ∈ 	+, one has
| [β; ˜Dξ (Yi,p)] |≤ 1.

Proof Let us fix β ∈ 	+ and let γ := βϕ(i,p). By (6.1) one has

−[β; ˜Dξ (Yi,p)] =
∑

( j,s)∈Ip,β
N (i, p; j, s),

N (i, p; j, s) := C̃i, j (s − p + 1) − C̃i, j (s − p − 1)

where we use the notation Ip,β from the proof of Proposition 6.3.
Let s be the smallest integer such that there exists j ∈ I with ( j, s) ∈ Ip,β . It

follows from Proposition 2.3 that Ip,β is either of the form {( j, s), ( j∗, s+h), ( j, s+
2h), ( j∗, s + 3h), . . . , ( j, s + 2mh)} for some m ≥ 1 if �Ip,β is odd, or of the form
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Fig. 1 The orientation Q0 for each simply-laced type

{( j, s), ( j∗, s + h), ( j, s +2h), ( j∗, s +3h), . . . , ( j, s +2mh), ( j∗, s + (2m +1)h)}
for some m ≥ 1 if �Ip,β is even. Then Corollary 3.2 yields

N (i, p; j∗, s + (2k − 1)h) + N (i, p; j, s + 2kh)

= εi,pε j∗,s+(2k−1)h(β, γ ) + εi,pε j,s+2kh(β, γ )

= 0

as ε j∗,s+(2k−1)h = −ε j,s+2kh for any k ≥ 1. Thus we obtain

−[β; ˜Dξ (Yi,p)] =
{

N (i, p; j, s) if �Ip,β is odd,

N (i, p; j, s) − εi,pε j,s(β, γ ) if �Ip,β is even.

where in the second case we used Corollary 3.2 for (i, p), ( j∗, s + (2m + 1)h) and
the fact that ε j∗,s+(2m+1)h = −ε j,s .

From this together with Corollary 3.2, we obtain that if s > p then [β; ˜Dξ (Yi,p)]
is equal to (β, γ ) up to some sign if �Ip,β is odd, and to 0 if �Ip,β is even. Note that in
this case one has β �= γ (if β = γ then (i, p) ∈ Ip,β and thus s = p by minimality).
Then it is elementary to check that for any simply-laced type Lie algebra g, the Cartan
pairing of any two distinct positive roots of g is always equal to −1, 0 or 1. This can
be deduced for instance from Lemmas 8.1 and 8.5 below respectively for types An

and Dn , and can be checked directly for the types E6, E7 and E8.
If on the other hand s = p, then Corollary 3.2 implies N (i, p; j, s) = δi, j and

moreover by standard Auslander-Reiten theory one has (β, γ ) = 0 if i �= j and
(β, γ ) = (β, β) = 2 if i = j . In other words, one has (β, γ ) = 2δi, j . Therefore,
−[β; ˜Dξ (Yi,p)] is equal either to δi, j if �Ip,β is odd, or to −δi, j if �Ip,β is even. This
concludes the proof of the Proposition. ��

7 Evaluation ofD on the dual root vectors

This section is devoted to the computationof thevalues takenbyBaumann–Kamnitzer–
Knutson’s morphism D on the dual root vectors of C[N] with respect to the convex
ordering on 	+ corresponding to iQ0 where Q0 is the orientation of the Dynkin graph
of g shown in Fig. 1. We provide explicit formulas in types An, n ≥ 1 and Dn, n ≥ 4.
The computations in types Er , r = 6, 7, 8 are performed separately using a computer
software.



    9 Page 32 of 58 E. Casbi, J.-R. Li

7.1 Type An, n ≥ 1

We consider the case where g is of type An, n ≥ 1. For every 1 ≤ i ≤ j ≤ n, we set
αi, j := αi + · · · + α j , and we have 	+ = {αi, j , 1 ≤ i ≤ j ≤ n}. We choose the
following reduced expression of w0:

(1, 2, . . . , n, 1, 2, . . . , n − 1, . . . , 1, 2, 1)

which is adapted to the orientation Q0 (the so-called monotonic orientation) of the
Dynkin graph of g (see Fig. 1). The corresponding convex ordering on	+ is given by

αi, j < αk,l ⇔ i < k or i = k and j < l.

Thus, it coincides with the Lyndon ordering arising from the choice of the natural
order 1 < 2 < · · · < n on the index set of simple roots. Consequently, the cuspidal
representations are explicitly constructed in [35, Sect. 8.4], namely one has jαi, j =
(i, i + 1, . . . , j) and Sαi, j is the one-dimensional vector space generated by a single
vector on which all the generators of the quiver Hecke algebras R(β), β ∈ �+ act by
zero, except the idempotent e(jαi, j ). Applying Equation (5.3) we obtain

D([Sαi, j ]) = 1

αi (αi + αi+1) · · · (αi + · · · + α j )
=

∏

i≤k≤ j

1

αi,k
. (7.1)

Alternatively one can note that the word jαi, j is dominant minuscule, hence Sαi, j

is strongly homogeneous (see Definition 4.10) and we can conclude using Proposi-
tion 5.2.

7.2 Type Dn, n ≥ 4

We now focus on the case where g is of type Dn, n ≥ 4. We will use the following
notations: for any (p, q) ∈ {1, . . . , n − 1}2, we set:

θp,q := αmin(p,q) + · · · + αmax(p,q)−1 + 2(αmax(p,q) + · · · + αn−2) + αn−1 + αn .

and for every 1 ≤ p ≤ q ≤ n we set:

αp,q :=
{

αp + · · · + αq if q ≤ n − 1,

αp + · · · + αn−2 + αn if q = n.

In particular we have αn−1,n = αn,n := αn . Also note that θp,q is a positive root if
and only if p �= q. We have

	+ = {θp,q , 1 ≤ p < q ≤ n − 1} � {αp,q , 1 ≤ p ≤ q ≤ n}.
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We will need to consider the automorphism σ of the Dynkin diagram of g defined by
σ(i) = i if 1 ≤ i ≤ n − 2, σ(n − 1) = n and σ(n) = n − 1. We choose the following
reduced expression of w0:

(1, 2, . . . , n)n−1

which is adapted to the orientation Q0 of the Dynkin graph of g shown in Fig. 1. The
corresponding convex ordering on 	+ is given by

αi, j < αk,l ⇔ (i < k) or
(

i = k and ( j < min(l, n − 1) or j = σ i (n) and l = σ i (n − 1))
)

,

αi, j < θp,q ⇔ i < q or i ≤ q and j ≤ n − 2,

θp,q < θr ,s ⇔ q < s or q = s and p < r .

The cuspidal representations corresponding to the positive roots αi, j are given in the
same way as in type An , i.e. for every 1 ≤ i ≤ j ≤ n, one has jαi, j = (i, i +1, . . . , j)
and the cuspidal representation Sαi, j has a unique non trivial one-dimensional weight
space of weight jαi, j (if j = n then the word jαi, j = (i, i + 1, . . . , j) is understood as
(i, i +1, . . . , n−2, n)). Thus the conclusion is the same as in the previous paragraph.

Let us now focus on the cuspidal representations associated to the positive roots
θp,q , 1 ≤ p < q ≤ n − 1. These cuspidal modules turn out to be not homogeneous. It
is therefore not possible to compute D([Sθp,q ]) directly. This is why we use Brundan–
Kleshchev–McNamara’s distinguished short exact sequences from Theorem 4.5.

Lemma 7.1 Fix p, q such that 1 ≤ p < q ≤ n − 1. Then the couple of positive roots
(αp,σ p(n−1), αq,σ p(n)) is a minimal pair for θp,q with respect to the chosen order <

on 	+.

Proof Assume there exists (γ, δ) ∈ 	2+ such that γ + δ = θp,q and αp,σ p(n−1) <

γ < θp,q < δ < αq,σ p(n). If γ is of the form θr ,s , then one has either s < q or s = q
and r < p. In both cases, θp,q − γ /∈ �+ which is a contradiction. Thus γ is of the
form αi, j . Then αp,σ p(n−1) < γ implies i > p. Now if δ was of the form θr ,s then
θp,q < δ < αq,σ p(n) implies r > p. If on the other hand δ = αu,v then θp,q < δ

implies u ≥ q > p. In both cases, αp appears neither in γ nor in δ which contradicts
γ + δ = θp,q as αp appears in θp,q . ��
Proposition 7.2 Fix p, q such that 1 ≤ p < q ≤ n − 1. Then one has

D([Sθp,q ]) = θp,p

αq,q · · · αq,n−2αp,p · · · αp,nθp,q
.

Proof We assume p is even, the other case being identical. By Lemma 7.1, we have a
minimal pair for θp,q given by (αp,n−1, αq,n). By Theorem 4.5, there is a short exact
sequence in R-mod:

0 −→ Sθp,q −→ Sαq,n ◦ Sαp,n−1 −→ L(cp,q) −→ 0 (7.2)
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where cp,q is the N -tuple of integers whose entries are all zero, except the two entries
corresponding to the positive roots αp,n−1 and αq,n which are equal to 1. Hence
Theorem 4.4 implies that

dimC

(

e(jαq,n jαp,n−1)L(cp,q)
) = 1.

As recalled above, we have that jαq,n = (q, q+1, . . . , n−2, n) and jαp,n−1 = (p, p+
1, . . . , n − 2, n − 1). It is now straightforward to check from Definition 4.7 that the
word jαq,n jαp,n−1 is dominant minuscule (i.e. it is a reduced expression of a dominant
minuscule element ofW ). Consequently, Theorem 4.8 implies that L(cp,q) is strongly
homogeneous, and hence Proposition 5.2 yields

D([L(cp,q)]) =
∏

β∈	
wp,q
+

1

β

where wp,q := sqsq+1 · · · sn−2snspsp+1 · · · sn−2sn−1. For every q ≤ s ≤ n − 2, we
have sq · · · ss−1(αs) = αq,s . We also have that sq · · · sn−2(αn) = αq,n . For every
p ≤ r < n − 2, we have

sq · · · sn−2snsp · · · sr−1(αr ) = sq · · · sn−2(αp,r ) =
{

αp,r if r < q − 1,

αp,r+1 if r ≥ q − 1.

Finally the last twopositive roots are sq · · · sn−2snsp · · · sn−3(αn−2)=sq · · · sn−2(αp,n)

= αp,n and sq · · · sn−2snsp · · · sn−2(αn−1) = sq · · · sn−2sn(αp,n−1) = sq · · · sn−2
(θp,n−1) = θp,q . Thus we have

D([L(cp,q)]) = 1

αp,p · · · αp,q−2αp,q · · · αp,nαq,q · · · αq,n−2αq,nθp,q
.

As D is an algebra morphism on C[N] � K0(R)-mod, the short exact sequence (7.2)
yields

D([Sθp,q ]) = D([Sαp,n−1 ])D([Sαq,n ]) − D([L(cp,q)])
= 1

αp,p · · · αp,n−1αq,q · · ·αq,n−2αq,n

− 1

αp,p · · ·αp,q−2αp,q · · ·αp,nαq,q · · ·αq,n−2αq,nθp,q

= θp,qαp,n − αp,q−1αp,n−1

αp,p · · · αp,n−1αp,nαq,q · · ·αq,n−2αq,nθp,q

= θp,qαq,n + αp,q−1(θp,q − αp,n−1)

αp,p · · · αp,n−1αp,nαq,q · · ·αq,n−2αq,nθp,q

= θp,qαq,n + αp,q−1αq,n

αp,p · · · αp,n−1αp,nαq,q · · ·αq,n−2αq,nθp,q
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= θp,p

αp,p · · · αp,n−1αp,nαq,q · · ·αq,n−2θp,q

which concludes the proof. ��

7.3 Types E6, E7, E8

When g is a simple Lie algebra of type Er , r = 6, 7, 8 we use a computer software to
compute the values of D on the dual root vectors of C[N]. This is based on Brundan–
Kleshchev–McNamara’s algorithm [5, Theorem 4.2] (see also [36]) which allows to
recursively determine thegraded characters of the cuspidal representationswith respect
to the convex ordering on 	+ corresponding to iQ0 . Then we can simply forget the
grading and compute the values of D using the equality (5.3).

On the contrary to the types An and Dn , the formulas we get cannot be written in a
simple way (especially the numerators cannot be factored as products of linear terms).
We refer to Sect. 8.3 for more comments about this.

8 Evaluation of ˜DQ0 on the classes of Kirillov–Reshetikhin-modules

In this section, we provide explicit formulas for the evaluation of ˜DQ0 on the classes of
Kirillov–Reshetikhin-modules of CQ0 when g is of type An, n ≥ 1 or Dn, n ≥ 4 and
Q0 is the orientation of the Dynkin displayed in Fig. 1. This yields in particular explicit
formulas for the evaluation of ˜DQ0 on the classes of fundamental representations,
which are known from the work of Hernandez–Leclerc [23] to categorify the dual root
vectors of C[N]. For the classical types, we obtain formulas that could be written in a
uniform way (the formulas for the type An, n ≥ 1 are special cases contained in the
ones for the types Dn). However, for the sake of readability, we prefer dealing with
the two cases in different subsections. We discuss the types Er , r = 6, 7, 8 separately
in Sect. 8.3.

Throughout this section, we will simply write ˜D (resp. τ ) for ˜DQ0 (resp. τQ0 )
as there will be no ambiguity. The techniques used in this Section can be naturally
extended and applied to classes of Kirillov–Reshetikhin modules not belonging to
CQ . Therefore, one could obtain formulas for the evaluation of ˜D on a large family of
cluster variables in cluster algebras strictly larger than C[N], such as the algebra AQ

we introduce in Sect. 11 or even the whole cluster algebra K0(C≤ξ ) itself.
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8.1 Type An, n ≥ 1

We have nQ0(i) = n − i + 1 for each i ∈ I and IQ0 = {(i, ξ(i) − 2r + 2), i ∈ I , 1 ≤
r ≤ n − i + 1}. For each (i, s) ∈ IQ0 with r := ξi−s+2

2 and for each k ∈ {1, . . . , r},
we set

D(k)
i,s :=

∏

r−k+1≤p≤r
r≤q≤r+i−1

1

αp,q
and d(k)

i,s := D(k)
i,s

D(k−1)
i,s+2

(8.1)

where D(0)
i,s := 1 for any i, s. We also denote Di,s := D(r)

i,s and di,s := d(r)
i,s . Note that

one has di,s = Di,s/Di,s+2. The aim is to prove that the value of ˜D on the class of
the Kirillov–Reshetikhin module X (k)

i,s is given by D(k)
i,s (Theorem 8.4). We first prove

this in the case r = k (Corollary 8.3). By Theorem 2.5, the corresponding Kirillov–
Reshetikhinmodules Xi,s categorify the cluster variables of the standard seedS iQ0 .We
then prove the general formula using the T -systems from Sect. 2.5, which correspond
to certain cluster mutations in C[N]. We begin with the following elementary lemma.

Lemma 8.1 For every 1 ≤ i ≤ p ≤ n and 1 ≤ j ≤ q ≤ n one has

(αk,i , αl, j ) = δk,l + δi, j − δk−1, j − δl−1,i .

Proposition 8.2 For every (i, s) ∈ IQ0 , one has ˜D(Yi,s) = di,s .

Proof Let us fix (i, s) ∈ IQ0 and set r := ξi−s+2
2 as above. For this choice of ori-

entation, we have nQ0(i) = n − i + 1 for each i ∈ I and ξ( j) − ξ(i) = i − j for
every i, j ∈ I . Let ( j, t) ∈ I≤ξ and assume ( j, t) /∈ IQ0 . Thus t ≤ ξ( j) − 2nQ0( j)
by (2.3). If t ≥ s then ξ(i) − 2nQ0(i) < s ≤ t ≤ ξ( j) − 2nQ0( j) and in particular
t − s < ξ( j) − ξ(i) − 2(nQ0( j) − nQ0(i)) = i − j − 2(i − j) = j − i = d(i, j).
Hence Lemma 3.3 implies that C̃i, j (t − s + 1) = C̃i, j (t − s − 1) = 0. This is also
the case if t < s as C̃i, j (m) = 0 if m ≤ 0. Therefore, we can rewrite (6.1) as

˜DQ0(Yi,s) =
∏

( j,t)∈IQ0

β
C̃i, j (t−s−1)−C̃i, j (t−s+1)
ϕ( j,s)

=
∏

( j,t)∈IQ0

(

τ (ξ( j)−t)/2(γ j )
)C̃i, j (t−s−1)−C̃i, j (t−s+1)

.

Moreover, one has τ r−1(γi ) = αr ,r+i−1 and τ l−1(γ j ) = αl,l+ j−1 for every j ∈
{1, . . . , n} and l ∈ {1, . . . , n − j}. Therefore, Corollary 3.2 together with Lemma 8.1
yield

˜D(Yi,s) = 1

αr ,r+i−1

∏

2(l−r)<i− j

α
−δr ,l−δr+i−1,l+ j−1+δr−1,l+ j−1+δr+i,l
l,l+ j−1

= 1

αr ,r+i−1

∏

1≤ j<i

1

αr ,r+ j−1

∏

i< j≤r+i−1

1

αr+i− j,r+i−1

∏

1≤ j≤r−1

αr− j,r−1
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=
∏

1≤p≤r−1 αp,r−1
(

∏

1≤p≤r−1 αp,r+i−1

) (

∏

r≤q≤r+i−2 αr ,q

)

=

⎛

⎜

⎜

⎝

∏

1≤p ≤r−1
r−1≤q≤i+r−2]

αp,q

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

∏

1≤p≤r
r≤q≤i+r−1

αp,q

⎞

⎟

⎟

⎠

−1

= Di,r ,ξi−2r+2

Di,r−1,ξi−2r+4
= di,r ,ξi−2r+2.

��
Corollary 8.3 For every (i, s) ∈ IQ0 , one has ˜D(χ̃q(Xi,s)) = Di,s .

Proof Recall from Sect. 2.5 that the truncated q-character of the Kirillov–Reshetikhin
module Xi,s has only term, namely the dominant monomial Yi,sYi,s+2 · · · Yi,ξ(i).
Therefore, Proposition 8.2 implies

˜D(χ̃q(Xi,s)) = ˜D(Yi,s)˜D(Yi,s+2) · · · ˜D(Yi,ξ(i)) = di,sdi,s+2 · · · di,ξ(i) = Di,s .

��
Theorem 8.4 For every (i, s) ∈ IQ0 and every k ∈ {1, . . . , r}, we have ˜D(χ̃q(X

(k)
i,s )) =

D(k)
i,s .

Proof By Corollary 8.3, the statement is true if r = k i.e. for the Kirillov–Reshetikhin
modules corresponding to the cluster variables of the (standard) seed S iQ0 . As ˜D is an
algebra morphism, the rational fractions ˜D(X (k)

i,s ) satisfy the T -systems (2.8). Since
the solution to the T-system with a given initial condition is unique, it suffices to show
that D(k)

i,s satisfies the recursive equations:

D(k)
i,s D

(k)
i,s−2 = D(k+1)

i,s−2 D
(k−1)
i,s +

∏

j∼i

D(k)
j,s−1.

Recall that r = ξi−s+2
2 . By definition of the D(k)

i,s , we have

D(k)
i,s D

(k)
i,s−2 − D(k+1)

i,s−2 D
(k−1)
i,s

=
∏

p∈[r−k+1,r ]
q∈[r ,r+i−1]

1

αp,q

∏

p∈[r−k+2,r+1]
q∈[r+1,r+i]

1

αp,q
−

∏

p∈[r−k+1,r+1]
q∈[r+1,r+i]

1

αp,q

∏

p∈[r−k+2,r ]
q∈[r ,r+i−1]

1

αp,q

=
∏

p∈[r−k+2,r ]
q∈[r ,r+i−1]

1

αp,q

∏

p∈[r−k+2,r+1]
q∈[r+1,r+i]

1

αp,q

(

1
∏

q∈[r ,r+i−1] αr−k+1,q
− 1

∏

q∈[r+1,r+i] αr−k+1,q

)

=
∏

p∈[r−k+2,r ]
q∈[r ,r+i−1]

1

αp,q

∏

p∈[r−k+2,r+1]
q∈[r+1,r+i]

1

αp,q

(

αr+1,r+i

αr−k+1,r+i
∏

q∈[r ,r+i−1] αr−k+1,q

)

=
∏

p∈[r−k+1,r ]
q∈[r ,r+i]

1

αp,q

∏

p∈[r−k+2,r+1]
q∈[r+1,r+i−1]

1

αp,q
= D(k)

i+1,s−1D
(k)
i−1,s−1. ��
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8.2 Type Dn, n ≥ 4

We have nQ0(i) = n − 1 for each i ∈ I and IQ0 = {(i, ξ(i) − 2r + 2), i ∈ I , 1 ≤
r ≤ n − 1}. For each (i, s) ∈ IQ0 with r := ξi−s+2

2 and for each k ∈ {1, . . . , r}, we
denote r ′ := r + i − n+ 1, r ′′ := max(r ′ − k + 1, 0), and r ′′′ := r − k + 1. We define

D(k)
i,s :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

∏

p∈[r ′′′,r ]
q∈[r ,n−2+min(0,r ′)]

1
αp,q

)(

∏

p∈[r ′′,r ′]
θp,p

(

∏

q∈[r ′′′,r ] θp,q

)(

∏

q∈[r ′,n] αp,q

)

)

, 1 ≤ i ≤ n − 2,

(

∏

p∈[r ′′′,r ]
q∈[r ,n−2]

1
αp,q

)

1
(

∏

p∈[r ′′′,r ] αp,σr−1(i)

)(

∏

r ′′′≤p<q≤r θp,q

) , i ∈ {n − 1, n},
(8.2)

where we used the convention that θp,q = 1 if p = 0 and αp,q = 1 if p = 0. As in

the previous subsection, we also set d(k)
i,s := D(k)

i,s

D(k−1)
i,s+2

. We also denote Di,s := D(r)
i,s and

di,s := d(r)
i,s . Note that one has di,s = Di,s/Di,s+2.

Lemma 8.5 For every 1 ≤ i ≤ j ≤ n with i ≤ n − 1, 1 ≤ p < q ≤ n − 1,
1 ≤ r < s ≤ n − 1, we have that

(1) (αk,i , αl, j ) =
{

δk,l + 2δi, j − 1 if both i and j are in {n − 1, n},
δk,l + δi, j − δk−1, j − δl−1,i otherwise.

(2) (θp,q , αl, j ) = δl,p + δl,q − δ j+1,p − δ j+1,q .
(3) (θp,q , θr ,s) = δs,p + δs,q + δr ,p + δr ,q .

Proposition 8.6 For every (i, s) ∈ IQ0 , one has ˜D(Yi,s) = di,s .

Proof Similar arguments as in the proof of Proposition 8.2 show that (6.1) can be
written as

˜DQ0(Yi,s) =
∏

( j,t)∈IQ0

(

τ (ξ( j)−t)/2(γ j )
)C̃i, j (t−s−1)−C̃i, j (t−s+1)

.

First of all, note that for our choice of orientation we have

τ l−1(γ j ) =

⎧

⎪

⎨

⎪

⎩

αl,l+ j−1 if j < n − l,

θi+l−n+1,l if n − l ≤ j ≤ n − 2,

αl,σ l−1( j) if j ∈ {n − 1, n}.

We distinguish three distinct cases.
Case 1 i ≤ n − 2 and r ≤ n − i − 1. In this case, we have τ r−1(γi ) = αr ,r+i−1

and the proof is identical to the proof of Proposition 8.2.



Equivariant multiplicities via representations of quantum... Page 39 of 58     9 

Case 2 i ≤ n − 2 and r ∈ {n − i, . . . , n − 1}. Recall that r ′ := i + r − n + 1.
Corollary 3.2 together with Lemma 8.5 yield

˜D(Yi,s) = 1

θr ′,r

∏

j<n−l
2(l−r)<i− j

α
−δl,r ′ −δl,r+δl+ j,r ′ +δl+ j,r

l,l+ j−1

×
∏

n−l≤ j≤n−2
2(l−r)<i− j

θ
−(δl,r ′ +δl,r+δ j+l−n+1,r ′ +δ j+l−n+1,r )

j+l−n+1,l

∏

2(l−r)<i−n+1

α
−δl,r ′ −δl,r+δl,n

l,n

= 1

θr ′,r

∏

1≤ j≤n−r ′

1

αr ′,r ′+ j−1

∏

1≤ j<n−r

1

αr ,r+ j−1

∏

1≤ j≤r ′−1

αr ′− j,r ′−1

∏

1≤ j≤r−1

αr− j,r−1

×
∏

n−r ′≤ j≤n−2

1

θ j+r ′−n+1,r ′

∏

1≤l ′<r ′

1

θl ′,r

∏

r ′<l<r

1

θr ′,l
× 1

αr ′,n

= 1

θr ′,r

∏

r ′≤q≤n

1

αr ′,q

∏

r≤q≤n−2

1

αr ,q

∏

1≤ j≤r ′−1

α j,r ′−1

∏

1≤ j≤r−1

α j,r−1

×
∏

1≤ j≤r ′−1

1

θ j,r ′

∏

1≤p≤r ′−1

1

θp,r

∏

r ′<l<r

1

θr ′,l

=
θr ′,r ′

(

∏

p∈[r ′−1] αp,r ′−1

) (

∏

p∈[r−1] αp,r−1

)

(

∏

q∈[r−1] θr ′,q
) (

∏

p∈[r ′] θp,r
) (

∏

q∈[r ′,n] αr ′,q
) (

∏

q∈[r ,n−2] αr ,q
) .

On the other hand, we have

Di,s =
∏

p∈[i+r−n+1] θp,p
(

∏

p∈[i+r−n+1]
q∈[r ]

θp,q

) (

∏

p∈[i+r−n+1]
q∈[i+r−n+1,n]

αp,q

) (

∏

p∈[r ]
q∈[r ,n−2]

αp,q

) .

Similarly we have

Di,s+2 =
∏

p∈[i+r−n] θp,p
(

∏

p∈[i+r−n]
q∈[r−1]

θp,q)

)(

∏

p∈[i+r−n]
q∈[i+r−n,n]

αp,q

)(

∏

p∈[r−1]
q∈[r−1,n−2]

αp,q

) .

Therefore

di,s = Di,s

Di,s+2
=

θr ′,r ′
(

∏

p∈[r ′−1] αp,r ′−1

) (

∏

p∈[r−1] αp,r−1

)

(

∏

q∈[r−1] θr ′,q
) (

∏

p∈[r ′] θp,r
) (

∏

q∈[r ′,n] αr ′,q
) (

∏

q∈[r ,n−2] αr ,q
) .

This proves the desired statement in the case i ≤ n − 2, n − i ≤ r ≤ n − 1.
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Case 3 i ∈ {n − 1, n}. For simplicity, we assume r is odd, as the proof is identical
in the other case. Corollary 3.2 together with Lemma 8.5 yield

˜D(Yi,s) = 1

αr ,i

∏

j<n−l
2(l−r)<n−1− j

α
−δl,r−δl+ j−1,i+δr−1,l+ j−1+δl−1,i
l,l+ j−1

×
∏

n−l≤ j≤n−2
2(l−r)<n−1− j

θ
−δr , j+l−n+1−δr ,l+δi, j+l−n+δi,l−1
j+l−n+1,l

∏

2(l−r)<0

α
−(δr ,l+1)
l,i α

−(δr ,l−1)
l,σ (i)

= 1

αr ,i

∏

1≤ j<n−r

1

αr ,r+ j−1

∏

1≤l≤r−1

αl,r−1

∏

1≤l ′≤r−1

1

θl ′,r
×

∏

1≤l≤r−1

αl,σ (i)

αl,i

=
(∏

l∈[r−1] αl,r−1
) (∏

l∈[r−1] αl,σ r (i)
)

(

∏

q∈[r ,n−2] αr ,q
)

(∏

l∈[r ] αl,σ r−1(i)

)

(

∏

p∈[r−1] θp,r
) .

On the other hand, we have that

Di,s = 1
(

∏

p∈[r ]
q∈[r ,n−2]

αp,q

)

(

∏

p∈[r ] αp,i

) (

∏

1≤p<q≤r θp,q

)

.

Since k − 1 is even, we have

Di,s+2 = 1
(

∏

p∈[r−1]
q∈[r−1,n−2]

αp,q

)

(

∏

p∈[r−1] αp,σ (i)

) (

∏

1≤p<q≤r−1 θp,q

)

.

Therefore

di,s = Di,s

Di,s+2
=

(

∏

p∈[r−1] αp,r−1

) (

∏

p∈[r−1] αp,σ (i)

)

(

∏

q∈[r ,n−2] αr ,q
) (

∏

p∈[r ] αp,i

) (

∏

p∈[r−1] θp,r
) .

��
This concludes the proof.

Corollary 8.7 For every (i, s) ∈ IQ0 one has ˜D(χ̃q(Xi,s)) = Di,s .

Proof The proof is identical to the proof of Corollary 8.3, using Proposition 8.6. ��
Theorem 8.8 For every (i, s) ∈ IQ0 and every k ∈ {1, . . . , r}we have ˜D(χ̃q(X

(k)
i,s )) =

D(k)
i,s .

Proof By Corollary 8.7, the statement is true if r = k. Similarly to the proof of
Theorem 8.4, we prove that the fractions D(k)

i,s satisfy the recursive equations:

D(k)
i,s D

(k)
i,s−2 = D(k+1)

i,s−2 D
(k−1)
i,s +

∏

j∼i

D(k)
j,s−1.
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Case 1 i ∈ [n − 2], r ∈ [n − i − 2]. The proof of this case is the same as the case
of type An .

Case 2 i ∈ [n − 2], r ∈ [n − i − 1, n − 2]. In this case, r ′ = i + r − n + 1 ≥ 0.
We will prove the case where r is odd. The case where r is even is similar.

We have that

D(k)
i,s =

∏

p∈[r ′′,r ′] θp,p
(

∏

p∈[r ′′,r ′]
q∈[r ′′′,r ]

θp,q

)(

∏

p∈[r ′′,r ′]
q∈[r ′,n]

αp,q

)(

∏

p∈[r ′′′,r ]
q∈[r ,n−2]

αp,q

) .

Since ξi−(s−2)+2
2 = r + 1, we have that

D(k)
i,s−2 =

∏

p∈[r ′′+1,r ′+1] θp,p
(

∏

p∈[r ′′+1,r ′+1]
q∈[r ′′′+1,r+1]

θp,q

) (

∏

p∈[r ′′+1,r ′+1]
q∈[r ′+1,n]

αp,q

) (

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

) .

Similarly we have

D(k+1)
i,s−2 =

∏

p∈[r ′′,r ′+1] θp,p
(

∏

p∈[r ′′,r ′+1]
q∈[r ′′′,r+1]

θp,q

)(

∏

p∈[r ′′,r ′+1]
q∈[r ′+1,n]

αp,q

)(

∏

p∈[r ′′′,r+1]
q∈[r+1,n−2]

αp,q

) .

We have

D(k−1)
i,s =

∏

p∈[r ′′+1,r ′] θp,p
(

∏

p∈[r ′′+1,r ′]
q∈[r ′′′+1,r ]

θp,q

)(

∏

p∈[r ′′+1,r ′]
q∈[r ′,n]

αp,q

)(

∏

p∈[r ′′′+1,r ]
q∈[r ,n−2]

αp,q

) .

Since ξi−1−(s−1)+2
2 = ξi+1−(s−1)+2

2 = r + 1, we have that

D(k)
i−1,s−1 =

∏

p∈[r ′′,r ′] θp,p
(

∏

p∈[r ′′,r ′]
q∈[r ′′′+1,r+1]

θp,q

)(

∏

p∈[r ′′,r ′]
q∈[r ′,n]

αp,q

) (

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

) .

Divide D(k)
i,s D

(k)
i,s−2 − D(k+1)

i,s−2 D
(k−1)
i,s by

∏

p∈[r ′′+1,r ′] θp,p
(

∏

p∈[r ′′+1,r ′]
q∈[r ′′′+1,r ]

θp,q

) (

∏

p∈[r ′′+1,r ′]
q∈[r ′,n]

αp,q

) (

∏

p∈[r ′′′+1,r ]
q∈[r ,n−2]

αp,q

)×



    9 Page 42 of 58 E. Casbi, J.-R. Li

×
∏

p∈[r ′′+1,r ′+1] θp,p
(

∏

p∈[r ′′+1,r ′+1]
q∈[r ′′′+1,r+1]

θp,q

) (

∏

p∈[r ′′+1,r ′+1]
q∈[r ′+1,n]

αp,q

) (

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

) ,

we obtain

θr ′′,r ′′
(

∏

p∈[r ′′,r ′] θp,r ′′′
) (

∏

q∈[r ′′′+1,r ] θr ′′,q
) (

∏

q∈[r ′+1,n] αr ′′,q
) (

∏

q∈[r+1,n−2] αr ′′′,q
)×

×
(

1

αr ′′,r ′αr ′′′,r
− 1

θr ′+1,r ′′′θr ′′,r+1

)

= θr ′′,r ′′
(

∏

p∈[r ′′,r ′] θp,r ′′′
) (

∏

q∈[r ′′′+1,r ] θr ′′,q
) (

∏

q∈[r ′+1,n] αr ′′,q
) (

∏

q∈[r+1,n−2] αr ′′′,q
)×

× θr ′′,r ′′′θr ′+1,r+1

αr ′′,r ′αr ′′′,rθr ′+1,r ′′′θr ′′,r+1

= θr ′′,r ′′θr ′+1,r+1
(

∏

p∈[r ′′+1,r ′+1] θp,r ′′′
) (

∏

q∈[r ′′′+1,r+1] θr ′′,q
) (

∏

q∈[r ′,n] αr ′′,q
) (

∏

q∈[r ,n−2] αr ′′′,q
) .

Subcase 2.1 i ∈ [n − 3]. Since ξi+1−(s−1)+2
2 = ξi−1−(s−1)+2

2 = r , we have that

D(k)
i+1,s−1 =

∏

p∈[r ′′+1,r ′+1] θp,p
(

∏

p∈[r ′′+1,r ′+1]
q∈[r ′′′,r ]

θp,q

) (

∏

p∈[r ′′+1,r ′+1]
q∈[r ′+1,n]

αp,q

) (

∏

p∈[r ′′′,r ]
q∈[r ,n−2]

αp,q

) .

Therefore D(k)
i,s D

(k)
i,s−2 − D(k+1)

i,s−2 D
(k−1)
i,s = D(k)

i−1,s−1D
(k)
i+1,s−1.

Subcase 2.2 i = n − 2. In this case, r ′ = i + r − n + 1 = r − 1 ≥ 0, r ′′ =
max(r ′−k+1, 0) = max(r−k, 0) = r−k = r ′−k+1 = r ′′′−1, r ′′′ = r−k+1 ≥ 1.

We have ξn−1−(s−1)+2
2 = ξn−2−1−(s−1)+2

2 = r . Since r is odd, we have

D(k)
n−1,s−1 = 1

(
∏

p∈[r ′′′,r ]
q∈[r ,n−2]

αp,q)(
∏

p∈[r ′′′,r ] αp,n−1)(
∏

r ′′′≤p<q≤r θp,q)
.

We have ξn−(s−1)+2
2 = ξn−2−1−(s−1)+2

2 = r . Since r is odd, we have

D(k)
n,s−1 = 1

(

∏

p∈[r ′′′,r ]
q∈[r ,n−2]

αp,q

)

(

∏

p∈[r ′′′,r ] αp,n

) (

∏

r ′′′≤p<q≤r θp,q

)

.
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Using r ′′ + 1 = r ′′′ and
∏

p∈[r ′′+1,r ]
q∈[r ′′+1,r+1]

θp,q =
∏

p∈[r ′′′,r ]
q∈[r ′′+1,r+1]

θp,q

=
(

∏

r ′′′≤p<q≤r θp,q

)2 (

∏

p∈[r ′′′,r ] θp,r+1

) (

∏

p∈[r ′′′,r ] θp,p
)

∏

q∈[r ′′′,r ] θr ′′′,q
,

we have that

D(k)
n−2,s D

(k)
n−2,s−2 − D(k+1)

n−2,s−2D
(k−1)
n−2,s = D(k)

n−3,s−1D
(k)
n−1,s−1D

(k)
n,s−1.

Case 3 i ∈ [n − 1, n], r ∈ [n − 2]. We will prove the case where r is odd. The case
where r is even is similar.

We have that

D(k)
i,s = 1

(

∏

p∈[r ′′′,r ]
q∈[r ,n−2]

αp,q

)

(

∏

p∈[r ′′′,r ] αp,i

) (

∏

r ′′′≤p<q≤r θp,q

)

.

Since ξi−(s−2)+2
2 = r + 1 and r + 1 is even, we have that

D(k)
i,s−2 = 1

(

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

)

(

∏

p∈[r ′′′+1,r+1] αp,i ′
) (

∏

r ′′′+1≤p<q≤r+1 θp,q

)

,

and

D(k+1)
i,s−2 = 1

(

∏

p∈[r ′′′,r+1]
q∈[r+1,n−2]

αp,q

)

(

∏

p∈[r ′′′,r+1] αp,i ′
) (

∏

r ′′′≤p<q≤r+1 θp,q

)

.

We also have

D(k−1)
i,s = 1

(

∏

p∈[r ′′′+1,r ]
q∈[r ,n−2]

αp,q

)

(

∏

p∈[r ′′′+1,r ] αp,i

) (

∏

r ′′′+1≤p<q≤r θp,q

)

.

We have ξn−2−(s−1)+2
2 = ξi+1−(s−1)+2

2 = r + 1. Therefore the integers r ′, r ′′, r ′′′
corresponding to the couple (n − 2, s − 1) are respectively given by

(n − 2) + (r + 1) − n + 1 = r ,
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max(r ′
n−2,s−1 − k + 1, 0) = max(r − k + 1, 0) = r − k + 1 = r ′′′,

rn−2,s−1 − k + 1 = r − k + 2 = r ′′′ + 1.

It follows that

D(k)
n−2,s−1 =

∏

p∈[r ′′′,r ] θp,p
(

∏

p∈[r ′′′,r ]
q∈[r ′′′+1,r+1]

θp,q

) (

∏

p∈[r ′′′,r ]
q∈[r ,n]

αp,q

)(

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

) .

Divide D(k)
i,s D

(k)
i,s−2 − D(k+1)

i,−2 D(k−1)
i,s by

1
(

∏

p∈[r ′′′+1,r ]
q∈[r ,n−2]

αp,q

)

(

∏

p∈[r ′′′+1,r ] αp,i

) (

∏

r ′′′+1≤p<q≤r θp,q

)

×

× 1
(

∏

p∈[r ′′′+1,r+1]
q∈[r+1,n−2]

αp,q

)

(

∏

p∈[r ′′′+1,r+1] αp,i ′
) (

∏

r ′′′+1≤p<q≤r+1 θp,q

)

,

we obtain

1
(

∏

q∈[r+1,n−2] αr ′′′,q
) (

∏

q∈[r ′′′+1,r ] θr ′′′,q
)

(

1

αr ′′′,iαr ′′′,r
− 1

αr ′′′,i ′θr ′′′,r+1

)

= αr+1,i ′θr ′′′,r ′′′
(

∏

q∈[r ,n] αr ′′′,q
) (

∏

q∈[r ′′′+1,r+1] θr ′′′,q
) .

Using
∏

p∈[r ′′′,r ]
q∈[r ′′′+1,r+1]

θp,q =
(

∏

r ′′′≤p<q≤r+1 θp,q

) (

∏

r ′′′+1≤p<q≤r θp,q

) (

∏

p∈[r ′′′+1,r ] θp,p
)

,

we conclude that

D(k)
i,s D

(k)
i,s−2 − D(k+1)

i,s−2 D
(k−1)
i,s = D(k)

n−2,s−1.

��

8.3 Types E6, E7, E8

Assume g is of type Er , r = 6, 7, 8 and Q = Q0 is the orientation considered in Fig. 1.
Using SageMath [46], we use the T -systems (2.8) to compute the images under ˜D
of the truncated q-characters of Kirillov–Reshetikhin modules, and thus in particular
fundamental representations.

For every fundamental module L(Yi,s) in CQ , we computed the graded character of
the corresponding cuspidal representation F(L(Yi,s)) = Sβϕ(i,s) of the quiver Hecke
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algebra using the algorithm in [5, 36]. Then we obtain the corresponding ungraded
character and we apply the map D to the resulting character. Since ˜D(L(Yi,s)) and
D(Sβϕ(i,s) ) are rational functions in α1, . . . , αn , to check that they are equal, it suffices
to check that they are equal for a few choices of numbers for α1, . . . , αn . In this way,
we verified that ˜D(L(Yi,s)) = D(Sβϕ(i,s) ).

As we already mentioned in Sect. 7.3, the formulas of ˜DQ of Kirillov–Reshetikhin
modules in type E can be very complicated and it does not seem possible to write
them in a form similar to (8.1) or (8.2). This motivates us to believe that there is no
general formula for the images under ˜DQ of the truncated q-characters of Kirillov–
Reshetikhin modules (or even fundamental modules) for arbitrary orientations Q in
any simply-laced type.

The SageMath program to verify the above can be found in the link: https://drive.
google.com/drive/folders/1jXW8WG0p_01GkEqYU9s8tLBOvlmlZnT6?usp=sharing.

9 Proofs of themain results

This section is devoted to the proofs of Theorems 6.1 and 9.1. We proceed in the fol-
lowing way: we begin by proving Theorem 6.1 in the particular case of the orientation
Q0, combining the results obtained in Sects. 7 and 8. This allows us to prove Theo-
rem 9.1 for the standard seed S iQ0 . The statement for arbitrary reduced expressions of
w0 then follows from Theorem 5.3. Finally, we prove Theorem 6.1 in full generality
i.e. for an arbitrary orientation Q of the Dynkin diagram of g, by using Theorem 9.1
with i = iQ .

Proof (Proof of Theorem 6.1 in the case of the orientation Q0) Let us fix the ori-
entation Q0 of the Dynkin diagram of g as in Fig. 1. Recall from Sects. 2.4 and 4.2
that the dual root vectors associated to iQ0 are categorified on the one hand by the
fundamental representations of CQ0 (see Theorem 2.5) and on the other hand by the
cuspidal representations of R-mod (for the convex ordering on 	+ corresponding to
iQ0 , see Sect. 7). More precisely, for any i ∈ I and any 1 ≤ r ≤ nQ0(i), we have

[L(Yi,ξ(i)−2(r−1))] = [Sτ r−1(γi )
]

in C[N]. Moreover, the dual root vectors generate C[N] as an algebra. Thus, in order
to prove that ˜DQ0 and D coincide, it suffices to prove that they agree on the dual root
vectors.

Recall (see for exampleSect. 2.3) that the fundamental representation L(Yi,ξ(i)−2(r−1))

is the Kirillov–Reshetikhin module X (1)
i,ξ(i)−2(r−1). Thus we apply the formulas

obtained in Sect. 8 with k = 1. When g is of type An, n ≥ 1, Theorem 8.4 yields

˜DQ0

(

χ̃q(L(Yi,ξ(i)−2(r−1)))
) = D(1)

i,(ξ(i)−2(r−1)) =
∏

r≤q≤r+i−1

1

αr ,q
.

https://drive.google.com/drive/folders/1jXW8WG0p_01GkEqYU9s8tLBOvlmlZnT6?usp=sharing
https://drive.google.com/drive/folders/1jXW8WG0p_01GkEqYU9s8tLBOvlmlZnT6?usp=sharing
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On the other hand, Equation (7.1) yields

D([Sτ r−1(γi )
]) = D([Sαr ,r+i−1 ]) =

∏

r≤q≤r+i−1

1

αr ,q
.

This proves the Theorem in type An . When g is of type Dn, n ≥ 4, Theorem 8.8 yields

˜DQ0

(

χ̃q(L(Yi,ξ(i)−2(r−1)))
) = D(1)

i,(ξ(i)−2(r−1))

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏

r≤q≤r+i−1
1

αr ,q
if i ≤ n − 2 and r ≤ n − i − 1,

θr ′,r ′
θr ′,r

× ∏

r ′≤q≤n
1

αr ′,q
× ∏

r≤q≤n−2
1

αr ,q
if i ≤ n − 2 and r ≥ n − i,

1
αr ,σr−1(i)

× ∏

r≤q≤n−2
1

αr ,q
if i ∈ {n − 1, n}.

On the other hand, if i ≤ n − 2 and r ≤ n − i − 1, then one has τ r−1(γi ) = αr ,r+i−1
and the conclusion is the same as in type An ; if i ≤ n − 2 and r ≥ n − i , then
τ r−1(γi ) = θr ′,r and Proposition 7.2 yields

D([Sθr ′,r ]) = θr ′,r ′

αr ,r · · ·αr ,n−2αr ′,r ′ · · · αr ′,nθr ′,r
.

This coincides with the above expression of ˜DQ0

(

χ̃q(X
(1)
i,ξ(i)−2(r−1))

)

in this case.

Finally, if i ∈ {n − 1, n}, then τ r−1(γi ) = αr ,σ r−1(i) and thus we have

D([Sτ r−1(γi )
]) = D([Sαr ,σr−1(i)

]) = 1

αr ,σ r−1(i)
×

∏

r≤q≤n−2

1

αr ,q
.

This proves the Theorem in type Dn . For the types E6, E7 and E8 we check by
computer that the respective values given by D (see Sect. 7.3) and ˜DQ0 (see Sect. 8.3)
agree on the dual root vectors. ��

We can now use the properties of ˜Dξ established in Sect. 6.2 to prove the second
main result of the present paper, whichwas stated as a Conjecture in [7] ([7, Conjecture
5.5]).

Theorem 9.1 Let g be a simple Lie algebra of simply-laced type. Then for any reduced
expression i of w0, the flag minors x i1, . . . , x

i
N satisfy D(x ij ) = 1/P i

j where P i
j is

a product of positive roots. Furthermore, one has [β; P i
j ] − [β; P i

j+] ≤ 1 for any

β ∈ 	+ and any j such that j+ ≤ N, and the polynomials P i
1, . . . , P

i
N satisfy the

identities

∀1 ≤ j ≤ N , P i
j P

i
j− = β j

∏

l< j<l+
il∼i j

P i
l .
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Proof We begin by proving the desired statement for i = iQ0 . We deduce the relations
(AiQ0

), (BiQ0
), (CiQ0

) respectively from Propositions 6.3, 6.5 and 6.8. Recall from

Sect. 6.1 the natural embedding C[N] ↪→ A≤ξ . Recall also that for any Q, the flag

minors x
iQ
j , 1 ≤ j ≤ N are identified under this embedding with the cluster variables

x
̂iQ
t , 1 ≤ t ≤ N of Hernandez–Leclerc’s initial seed in A≤ξ (see Sect. 2.4). Thus in

the proof below, we will use the notation x
iQ0
j for both the flag minor of the standard

seed S iQ0 in C[N] and its image in A≤ξ .
Denote iQ0 = (i1, . . . , iN ) and let j ∈ {1, . . . , N }. Then by Theorem 6.1 with

Q = Q0 proved above, one has

D(x
iQ0
j ) = ˜DQ0

(

ι(x
iQ0
j )

)

.

Therefore by Proposition 6.3 we have

D(x
iQ0
j ) =

∏

β∈	+

1

βn j (β)

where n j (β) is a nonnegative integer for each β ∈ 	+. This proves that the relation
(AiQ0

) holds.

For the relation (BiQ0
), we denote Pj :=

(

D(x
iQ0
j )

)−1
for each 1 ≤ j ≤ N . Then

using Theorem 6.1 with Q = Q0, we have

Pj Pj− =
(

D(x
iQ0
j )D(x

iQ0
j− )

)−1 =
(

˜DQ0(ι(x
iQ0
j ))˜DQ0(ι(x

iQ0
j− ))

)−1

= β j

∏

r<t<r+
ir∼i

˜DQ0(ι(x
iQ0
r ))−1 by Proposition 6.5

= β j

∏

r<t<r+
ir∼i

D(x
iQ0
r )−1 = β j

∏

r<t<r+
ir∼i

Pr using again Theorem 6.1 for Q0.

For the relation (CiQ0
), let j ∈ {1, . . . , N } such that j+ ≤ N and let (i, p) :=

ϕ−1( j) ∈ IQ0 . By (2.2) we have j+ = ϕ(i, p − 2). Thus applying Theorem 6.1 for
Q0 we get

Pj+ = D(x
iQ0
j+ )−1 = ˜DQ0

(

ι(x
iQ0
j+ )

)−1 = ˜DQ0

(

χ̃q (Xi,p−2)
)−1

= ˜DQ0 (Yi,p−2)
−1

˜DQ0

(

χ̃q (Xi,p)
)−1 = ˜DQ0 (Yi,p−2)

−1D(x
iQ0
j )−1 = ˜DQ0 (Yi,p−2)

−1Pj .

Hence for each β ∈ 	+, one has [β; Pj ] − [β; Pj+] = [β; ˜DQ0(Yi,p−2)]. The con-
clusion follows from Proposition 6.8.

We have proved the desired statement in the case i = iQ0 . The conclusion for
arbitrary reduced expressions of w0 is provided by Theorem 5.3 ([7, Theorem 5.6]),
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which ensures that the properties (Ai), (Bi), (Ci) hold for each standard seed S i of
C[N]. This finishes the proof of Theorem 9.1. ��
Remark 9.2 Alternatively, the relation (AiQ0

) can also be deduced fromCorollaries 8.3
and 8.7 when g is of type An, n ≥ 1 or Dn, n ≥ 4, and can be checked by computer
when g is of type E6, E7 or E8. For the type An , we recover the formulas of [7, Lemma
7.2] which were there obtained using certain results from [6].

Now we can use Theorem 9.1 to prove Theorem 6.1 in full generality i.e. for an
arbitrary orientation of the Dynkin diagram of g.

Proof of Theorem 6.1: the general case Let Q be an arbitrary orientation of the Dynkin
diagramof g and let us fix iQ a reduced expression ofw0 adapted to Q. ByTheorem9.1,
the standard seed S iQ ofC[N] satisfies Properties (AiQ ), (BiQ ) and (CiQ ). So we have

∀1 ≤ j ≤ N , D(x
iQ
j )D(x

iQ
j−) = β−1

j

∏

l< j<l+
D(x

iQ
l ).

On the other hand, by Proposition 6.5 the rational fractions ˜DQ

(

ι(x
iQ
j )

)

, 1 ≤ j ≤ N

satisfy the same relations. Thus by a straightforward induction we have D(x
iQ
j ) =

˜DQ

(

ι(x
iQ
j )

)

for each 1 ≤ j ≤ N . As D and ˜DQ ◦ ι are both algebra morphisms

and the ring C[N] has a cluster structure with a seed given by S iQ , this implies that
˜DQ ◦ ι = D on the whole algebra C[N]. ��

10 Application to the generalized quantum affine Schur–Weyl duality

In this sectionweprovide a representation-theoretic interpretation ofTheorem6.1 from
the perspective of Kang–Kashiwara–Kim–Oh’s generalized quantum affine Schur–
Weyl duality [29].

For any simply-laced type Lie algebra g and for any orientation Q of the Dynkin
graph of g, Kang–Kashiwara–Kim–Oh [29] defined a monoidal functor FQ from the
category R-mod of finite-dimensional modules over the quiver Hecke algebras asso-
ciated to g (see Sect. 4.1) to the category CQ . This functor FQ , called the generalized
quantum affine Schur–Weyl duality functor was moreover proved by Fujita [15] to be
an equivalence of categories. However, the structures of the objects themselves are a
priori very different. For instance the objects in R-mod carry a natural Z-grading (see
Sect. 4.1) which is not the case for the objects of CQ . On the other hand, the classes
of the representations in CQ can be described via Frenkel–Reshetikhin’s (truncated)
q-character [14] which allows to perform computations in certain tori (such as YQ),
whereas the characters of the objects in R-mod take values in the shuffle algebra,
which is much more difficult to tackle with.

Theorem 6.1 yields a surprising connection between the weight subspaces decom-
positions of M and FQ(M) for every object M in CQ . Indeed, by Theorem 6.1, we
have
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˜DQ(χ̃q(M)) = D([FQ(M)]).

By definition, the truncated q-character of M encodes the dimensions of certain of the
loop weight spaces of M (see Sect. 2.3). Hence, recalling Equation (5.3), the previous
equality can be written as

∑

m′�m

dim(Mm′)˜DQ(m′) =
∑

j=( j1,... jd )

dim
(

(FQ(M))j
)

Dj (10.1)

where for each j := ( j1, . . . , jd),

Dj := 1

α j1(α j1 + α j2) · · · (α j1 + · · · + α jd )
.

The sum on the left hand-side runs over all monomials m′ ∈ YQ that are smaller than
m for the Nakajima ordering (see Sect. 2.3), and on the right hand-side (FQ(M))j :=
e(j) · FQ(M) denotes the weight subspace given by the action of the idempotent
e(j) on FQ(M). Equation (10.1) is an explicit identity between rational fractions in
C(α1, . . . , αn) involving the dimensions of the weight subspaces of a representation of
CQ on the one hand and those of the corresponding object in R-mod via the generalized
Schur–Weyl duality functor on the other hand.

We now provide a concrete illustration of this fact. For any object M in CQ with

χ̃q(M) := ∑

m amm, we set d̃imC(M) := ∑

m am. This can be viewed as a truncated
dimension of M , in the sense that it gives the sum of the dimensions of the weight
subspaces of M that are not killed by the truncation.

Theorem 10.1 Assume g is of type An, n ≥ 1 and consider the monotonic orientation
Q0 of the Dynkin diagram of g as in Fig.1. Let M be a simple object in CQ0 and let
m := ∏

i∈I ,1≤r≤n−i+1 Y
mi,r
i,ξ(i)−2(r−1) denote the corresponding dominant monomial.

Then one has

dimC

(FQ0(M)
)

d̃imC(M)
=

⎛

⎜

⎜

⎝

∑

1≤i≤n
1≤r≤n−i+1

i · mi,r

⎞

⎟

⎟

⎠

!
∏

1≤i≤n
1≤r≤n−i+1

(

(r − 1)!
(r + i − 1)!

)mi,r

.

Proof By Remark 6.7, we have

˜DQ0(A
−1
i,ξ(i)−2r+1) = βϕ(i,ξ(i)−2r)

βϕ(i,ξ(i)−2r+2)
= τ r (γi )

τ r−1(γi )
= αr+1,r+i

αr ,r+i−1

for each i ∈ I and 1 ≤ r < nQ0(i) (see the proof of Proposition 8.2). Moreover, the
positive roots αr ,r+i−1 and αr+1,r+i are segments of same length i , for every r ≥ 1.
Hence we obtain

˜DQ0(A
−1
i,ξ(i)−2r+1) |α1=···=αn=1= 1
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for every i ∈ I and 1 ≤ r < nQ0(i). Therefore we have

˜DQ0

(

χ̃q (M)
) |α1=···=αn=1 = d̃imC(M) · ˜DQ0 (m) |α1=···=αn=1

= d̃imC(M) ·
∏

1≤i≤n
1≤r≤n−i+1

(

˜DQ0 (Yi,ξ(i)−2(r−1)) |α1=···=αn=1
)mi,r

.

Now it follows from Proposition 8.2 that for every i ∈ I and 1 ≤ r ≤ n − i + 1 one
has

˜DQ0(Yi,ξ(i)−2(r−1)) =
∏

1≤p≤r−1≤q≤r+i−2 αp,q
∏

1≤p≤r≤q≤r+i−1 αp,q
=

∏

r≤q≤r+i−1

1

αr ,q

∏

1≤p≤r−1

αp,r−1

αp,r+i−1
.

Specializing α1, . . . , αn to 1, this yields

˜DQ0(Yi,ξ(i)−2(r−1)) |α1=···=αn=1 = (r − 1)!
(r + i − 1)! .

Hence we have

˜DQ0

(

χ̃q(M)
) |α1=···=αn=1 =

∏

1≤i≤n
1≤r≤n−i+1

(

(r − 1)!
(r + i − 1)!

)mi,r

· d̃imC(M).

On the other hand, specializing the equality (5.3), we get

D([FQ0(M)]) |α1=···=αn=1= 1

d! dimC(FQ0(M))

where d is the length of the (unique) element β ∈ �+ such thatFQ0(M) ∈ R(β)-mod.
It follows from Kang–Kashiwara–Kim–Oh’s construction [29] that d = ∑

i,r mi,r |
τ r−1(γi ) |= ∑

i,r i · mi,r . Therefore Eq. (10.1) yields

dimC(FQ0(M)) =

⎛

⎜

⎜

⎝

∑

1≤i≤n
1≤r≤n−i+1

i · mi,r

⎞

⎟

⎟

⎠

!
∏

1≤i≤n
1≤r≤n−i+1

(

(r − 1)!
(r + i − 1)!

)mi,r

· d̃imC(M).

��

11 Perspectives towards aMirković–Vilonen basis for new cluster
algebras

In this sectionwe open perspectives relating themorphism ˜Dξ to the geometricmotiva-
tions underlying Baumann–Kamnitzer–Knutson’s constructions [1]. For this purpose,
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we introduce a cluster algebraAQ as a subquotient ofA≤ξ naturally containing C[N]
and prove that ˜Dξ descends to a morphism DQ : AQ → C(α1, . . . , αn) extending
D. We suggest the existence of a basis in AQ containing the Mirković–Vilonen basis
of C[N] where the values of DQ may be interpreted as the equivariant multiplicities
of certain closed algebraic varieties in the spirit of Theorem 5.1. We also point out
possible developments via monoidal categorifications of cluster algebras relying on
Kashiwara–Kim–Oh–Park’s recent advances [31, 32].

11.1 The cluster algebraAQ

In this paragraph, we define the cluster algebra AQ and show that ˜Dξ yields a well-
defined morphism DQ : AQ → C(α1, . . . , αn) extending D. For this purpose, we
prove a technical property of ˜Dξ (Proposition 11.1) implying that the values of ˜Dξ

on the initial cluster variables x
̂iQ
t , t ≥ 1 of A≤ξ satisfy certain periodicity properties

(Corollary 11.2). Thismainly relies on the periodicity of the coefficients C̃i, j (m) estab-
lished by Hernandez–Leclerc ([23, Corollary 2.3]). We then prove that the quotient
map DQ is well-defined (Corollary 11.3).

Kashiwara–Kim–Oh–Park [32] recently introduced for each 1 ≤ a ≤ b ≤ +∞
a monoidal subcategory C[a,b] of C≤ξ defined as the smallest subcategory of C≤ξ

containing all the fundamental representations L(Yi,p) for (i, p) ∈ ϕ−1([a, b]) and
stable under extensions, subquotients and monoidal products. Obviously C[a,b] can be
naturally viewed as a monoidal subcategory of C[a′,b′] if [a, b] ⊂ [a′, b′].

Here we will be focusing on the category C[1,2N ](recall that N denotes the number
of positive roots of g). It follows from the results in [32] that the Grothendieck ring
K0(C[1,2N ]) has a cluster algebra structure whose frozen variables are identified with
the classes of the Kirillov–Reshetikhin modules Xi,p such that (ϕ(i, p))+ > 2N .
These are in bijection with I via I � i �→ Xi,pi with pi := ξ(i) − 2h + 2 for each
i ∈ I (where h is the dual Coxeter number of g, see Sect. 2.2). We define the cluster
algebra AQ in the following way:

AQ := K0(C[1,2N ])/
([Xi,pi ] − 1, i ∈ I

)

.

The algebra AQ has a cluster algebra structure of rank 2N − n with no frozen vari-
ables. The set of isomorphism classes of Kirillov–Reshetikhin modules Xi,p, (i, p) ∈
ϕ−1([1, 2N − n]) forms a cluster inAQ . The coordinate ring C[N] � C ⊗ K0(CQ) is

naturally embedded into AQ via x
iQ
t �−→ [Xϕ−1(t)], t ∈ {1, . . . , N } as illustrated in

Fig. 3 below.

Proposition 11.1 Let (i, p) ∈ I≤ξ such that p ≤ ξ(i) − 2h + 2. Then one has

˜Dξ (Yi,pYi,p+2 · · · Yi,p+2h−2) = 1.

Proof Recall the notation N (i, p; j, s) from Sect. 3. Applying the definition of ˜Dξ

(see (6.1)) we have
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˜Dξ (Yi,pYi,p+2 · · ·Yi,p+2h−2) = ˜Dξ (Yi,p)˜Dξ (Yi,p+2) · · · ˜Dξ (Yi,p+2h−2)

=
∏

( j,s)∈I≤ξ

β
N (i,p; j,s)+N (i,p+2; j,s)+···+N (i,p+2h−2; j,s)
ϕ( j,s)

=
∏

( j,s)∈I≤ξ

β
C̃i, j (s−p+1)−C̃i, j (s−p−2h+1)
ϕ( j,s) .

If ( j, s) ∈ I≤ξ is such that s ≥ p + 2h then [23, Corollary 2.3] implies C̃i, j (s − p −
2h + 1) = C̃i, j (s − p + 1). Recalling moreover that C̃i, j (m) = 0 if m ≤ 0, we can
thus rewrite the above expression as

˜Dξ (Yi,pYi,p+2 · · · Yi,p+2h−2) =
∏

( j,s)∈I≤ξ

p≤s<p+2h

β
C̃i, j (s−p+1)
ϕ( j,s) =

∏

β∈	+
βm(β)

where

m(β) :=
∑

( j,s)∈Jp,β

C̃i, j (s − p + 1), Jp,β := {( j, s) ∈ I≤ξ | p ≤ s < p + 2h, βϕ( j,s) = β}

for each β ∈ 	+. It follows from Proposition 2.3 that Jp,β is non empty. Moreover,
if ( j, s) ∈ Jp,β then s + 2h ≥ p + 2h and s − 2h < p. Hence ( j, s ± 2h) /∈ Jp,β
and similarly for all the ( j, s ± 2mh) for any m ∈ Z \ {0}. Therefore Proposition 2.3
implies �Jp,β ≤ 2 and in case of equality we have Jp,β = {( j, s); ( j∗, s + h)} for
some ( j, s) ∈ I≤ξ . We now fix β ∈ 	+ and prove thatm(β) = 0. We distinguish two
cases.

Case 1 �Jp,β = 2. Applying Theorem 3.1 we get

m(β) = C̃i, j (s − p + 1) + C̃i, j∗(s + h − p + 1)

= εi,pε j,s〈βϕ(i,p), β〉Q + εi,pε j∗,s+h〈βϕ(i,p), β〉Q .

As ε j,s = −ε j∗,s+h by Proposition 2.3, we get m(β) = 0.
Case 2 �Jp,β = 1. Let us write Jp,β := {( j, s)}. Then m(β) = C̃i, j (s − p + 1) =

εi,pε j,s〈βϕ(i,p), β〉Q by Theorem 3.1.
On the other hand, by Proposition 2.3 one hasβϕ( j∗,s−h) = β. As ( j∗, s−h) /∈ Jp,β ,

one must have s − h < p. This implies s + h < p + 2h. As ( j∗, s + h) /∈ Jp,β this is
possible only if ( j∗, s + h) /∈ I≤ξ i.e. s + h > ξ( j∗). Therefore we have

ξ( j∗) < s + h < p + 2h ≤ ξ(i).

In particular, p + 2h > s + h and (p + 2h) − (s + h) < ξ(i) − ξ( j∗) ≤ d(i, j∗).
Thus Lemma 3.3 yields C̃i, j∗((p + 2h) − (s + h) + 1) = 0. As p + 2h > s + h we
can again apply Theorem 3.1 and we get
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0 = C̃i, j∗ ((p + 2h) − (s + h) + 1) = εi,p+2hε j∗,s+h〈βϕ(i,p+2h), β〉Q
= εi,pε j∗,s+h〈βϕ(i,p), β〉Q

by Proposition 2.3. Thus 〈βϕ(i,p), β〉Q = 0 and hence m(β) = 0 as well.
This concludes the proof of the Proposition. ��

Corollary 11.2 For any t ≥ 1, one has ˜Dξ (ι(xt+2N )) = ˜Dξ (ι(xt )).

Proof Let (i, p) := ϕ−1(t + 2N ). Then we have ϕ−1(t) = (i, p+ 2h) (see Sect. 2.2).
We can write

˜Dξ (ι(xt+2N )) = ˜Dξ

(

χ̃q(Xi,p)
) = ˜Dξ (Yi,pYi,p+2 · · · Yi,ξ(i))

= ˜Dξ (Yi,pYi,p+2 · · · Yi,p+2h−2) · ˜Dξ (Yi,p+2hYi,p+2 · · · Yi,ξ(i))

= ˜Dξ (Yi,p+2hYi,p+2 · · · Yi,ξ(i)) by Proposition 11.1

= ˜Dξ

(

χ̃q(Xi,p+2h)
) = ˜Dξ (ι(xt )) .

In particular, this implies that the statement of Proposition 6.3 actually holds for all
t ≥ 1. ��

Corollary 11.3 The morphism ˜Dξ factors into an algebra morphism

DQ : AQ −→ C(α1, . . . , αn).

Proof Let i ∈ I and pi := ξ(i) − 2h + 2. Applying Proposition 11.1 with p = pi ,
we obtain

˜Dξ

(

χ̃q(Xi,pi )
) = ˜Dξ (Yi,pi Yi,pi+2 · · · Yi,ξ(i)) = 1.

By construction of AQ , this shows that ˜Dξ yields a morphism DQ : AQ −→
C(α1, . . . , αn). ��

Remark 11.4 Corollary 11.2 shows that most of the information of the morphism
˜Dξ on A≤ξ is actually contained in its restriction to K0(C[1,2N ]). The motivation
for considering the quotient AQ comes from the geometric perspective explained in
Sect. 11.4 below: the trivial values of ˜Dξ have to be discarded if one wants to interpret
the images of ˜Dξ as equivariant multiplicities of certain closed algebraic varieties as
in Theorem 5.1.

The cluster algebra AQ contains a seed whose exchange quiver can be viewed

as a finite part of Hernandez–Leclerc’s quiver Q̂iQ , (strictly) containing the exchange
quiver of the standard seedS iQ ofC[N]. However, unlikeC[N] or other cluster algebras
of the form K0(C[1,M]), M ≥ 1, the cluster algebra AQ does not have any frozen
variable.
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11.2 An example in type A3

In this section, we study a detailed example of the main features of the present paper
when g is of type A3 and ξ is a height function adapted to a sink-source orientation
of the corresponding Dynkin diagram.

We choose the height function ξ : I −→ Z given by ξ(1) = ξ(3) = −1 and
ξ(2) = 0. The corresponding orientation Q of the type A3 Dynkin graph is given by
the following sink-source orientation

Q : 1 2 3

The corresponding Coxeter transformation is given by τQ = s2s1s3. We choose the
reduced expression iQ = (2, 1, 3, 2, 1, 3) of w0, which is clearly adapted to Q. The
infinite sequencêiQ is given by

̂iQ = (2, 1, 3, 2, 1, 3, 2, 1, 3, 2, 1, 3, . . .).

We have I≤ξ = {(1,−(2k+1)), (2,−2k), (3,−(2k+1)), k ∈ Z≥0} and the bijection
ϕ is given byϕ(1,−(2k+1)) = 2+3k, ϕ(2,−2k) = 1+3k, ϕ(3,−(2k+1)) = 3+3k.
The exchange quiver Q̂iQ of the initial seed ŜiQ considered by Hernandez–Leclerc
is given by the graph denoted G− in [24, Fig. 1]. In Fig. 2 we reproduce this quiver,
were we put at the node (i, p) the inverse of the value of ˜Dξ on the cluster variable
xϕ(i,p) = [Xi,p]. Figure3 provides the exchange quivers and cluster variables (in
terms of classes of Kirillov–Reshetikhin modules) for the respective initial seeds of
the cluster algebrasAQ and C[N]. The picture for C[N] is contained in the one ofAQ

in an obvious way.

11.3 Towards amonoidal categorification ofAQ

It is proved in [32] that C[1,2N ] is in fact a monoidal categorification of a cluster algebra
in the sense of [22], i.e. the classes of simple objects in C[1,2N ] belong to the set of
cluster monomials in K0(C[1,2N ]). In a previous work [31], Kashiwara–Kim–Oh–Park
introduced the notion of commuting family of (graded) braiders in certain categories of
modules over quiver Hecke algebras whichwere known from [30] to providemonoidal
categorifications of cluster algebras (namely the unipotent cells of C[N]). In [31], it
is shown that the simple objects corresponding to the frozen variables of these cluster
structures form a commuting family of braiders. This allows to construct newmonoidal
categories by specializing these simple objects to the unit object, following former
constructions by Kang–Kashiwara–Kim [28]. Therefore, it would be interesting to
investigate whether the simple modules Xi,pi , i ∈ I categorifying the frozen variables
in K0(C[1,2N ]) are commuting braiders. This would yield a monoidal category CQ :=
C[1,2N ][Xi,pi � 1, i ∈ I ] such that AQ = K0(CQ).
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Fig. 2 Values of ˜D−1
ξ on the cluster variables of the seed ŜiQ ofA≤ξ in type A3

Fig. 3 Initial seeds for the cluster structures ofAQ (left) and C[N] (right) in type A3. The variables in grey
boxes are frozen

11.4 Towards a Mirković–Vilonen basis forAQ

Themorphism DQ defined in Sect. 11.1 obviously coincideswith ˜DQ onC[N] (viewed
as a subalgebra of AQ). Thus by Theorem 6.1 it also coincides with Baumann–
Kamnitzer–Knutson’s morphism D on C[N]. We now provide evidences that the
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morphism DQ on AQ can take values not belonging to the image of D. These values
nonetheless share a similar form as the values of D on certain reasonable elements of
C[N] such as cluster variables for instance.

Let us provide a couple of examples of such new rational fractions. The cluster

structure of AQ allows us to mutate in the direction of x4 := x
̂iQ
4 = [X2,−2]. As

recalled in Sect. 2.1, this mutation produces a new seed consisting in a new quiver Q′
(which we do not display here) and with the same cluster variables, except x4 which is
replaced by x ′

4 given by the exchange relation (2.1). As DQ is an algebra morphism,
it is then straightforward to compute DQ(x ′

4). We find

DQ(x ′
4) = α1 + 2α2 + α3

α1α2α3(α1 + α2 + α3)
.

We can perform similar computations starting with the same initial seed as above

and mutating in the direction of x5 := x
̂iQ
5 = [X1,−3] or x6 := x

̂iQ
6 = [X3,−3]. We

respectively obtain

DQ(x ′
5) = α2 + 2α3

α1α2(α1 + α2)
and DQ(x ′

6) = 2α1 + α2

α2α3(α2 + α3)
.

It is not hard to check that the rational fractions DQ(x ′
4), DQ(x ′

5), DQ(x ′
6) do not

belong to the image of D. Nonetheless, these fractions share a similar form as the
values taken by D on the cluster variables of C[N], which belong to the MV basis.
Recalling Theorem 5.1 it is therefore natural to ask the following:

Question 1 Is it possible to construct a basis B = (bY ) of AQ indexed by a family of
closed varieties Y , such that

• The cluster variables x
̂iQ
t , 1 ≤ t ≤ 2N − n belong to B.

• The elements of theMV basis ofC[N] are sent onto elements ofB under the natural
injection C[N] −→ AQ.

• For every Y , there exists p ∈ Y such that DQ(bY ) is equal to the equivariant
multiplicity εTp (Y ) of Y at p with respect to the action of some torus T .

Remark 11.5 It is a general fact (see for instance [4, Theorem 4.2]) that if X is a
closed projective scheme with an action of a torus T and if p is a non-degenerate
point in a T -invariant closed subvariety Y ⊂ X such that Y is smooth at p, then
one has εTp (Y ) = 1/P where P is the product of the weights of the action of T
on the tangent space TpY . Therefore Proposition 6.3 suggests to investigate possible
smoothness properties of the varieties that would correspond to the cluster variables

x
̂iQ
t , 1 ≤ t ≤ 2N − n via the first part of Question 1.
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